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Abstract

We provide a generalization to the higher dimensional case of the
construction of the current algebra g((z)), its Kac-Moody extension g
and of the classical results relating them to the theory of G-bundles
over a curve. For a reductive algebraic group G with Lie algebra g,
we define a dg-Lie algebra g,, of n-dimensional currents in g. For any
symmetric G-invariant polynomial P on g of degree n + 1, we get a
higher Kac-Moody algebra g, p as a central extension of g, by the
base field k. Further, for a smooth, projective variety X of dimension
n = 2, we show that g, acts infinitesimally on the derived moduli space
RBung#(X,z) of G-bundles over X trivialized at the neighborhood of
a point x € X. Finally, for a representation ¢ : G — GL, we construct
an associated determinantal line bundle on RBuny*(X,z) and prove
that the action of g,, extends to an action of g,, p, on such bundle for

P, the (n + 1) Chern character of ¢.
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0 Introduction

(0.1) Let G be a reductive algebraic group over C with Lie algebra g.
The formal current algebra g((z)) = g ®c C((2)) and its central extension g
(the Kac-Moody algebra) play a fundamental role in many fields. It can be
considered as the algebraic completion of the loop algebra Map(S?, g), see
[PreS].

In particular, g((z)) is fundamental in the study of Bung (X ), the moduli
stack of principal G-bundles on a smooth projective curve X over C. More
precisely, let © € X be a point. We then have the scheme (of infinite type)
Bungg(X ,x) parametrizing bundles P together with a trivialization on 7,
the formal neighborhood of x. The ring of functions on 7 is @X,x ~ C[[=]],
the completed local ring and its field of fractions K, ~ C((z)) corresponds
to the punctured formal neighborhood z°.

The key result [KNTY] is that the Lie algebra g, = g ® K, acts on the
scheme Buni#(X, z) by vector fields. Moreover, any representation ¢ of G
gives rise to the determinantal line bundle det® on Bungg(X ,x); the action
of g, extends to the action, on det?, of the central extension §, with central
charge given by a local version of the Riemann-Roch theorem for curves.

(0.2) Our goal in this paper is to generalize these results from curves to
n-dimensional varieties X over C, n > 1 (one can replace C by any field
of characteristic 0). The first question in this direction is what should play
the role of g((z)). In the analytic (as opposed to the formal series) theory,
natural generalizations of Map(S!, g) are provided by the current Lie algebras
Map(2, g) = g ®c C*(2) where ¥ is a compact C*-manifold of dimension
> 1. Our approach can be seen as extending this idea to the derived category.

More precisely, the role of g((z)) will be played by the dg-Lie algebra g? =
g ®c A, where 2 = RI'(Dg, O) is the commutative dg-algebra of derived
global sections of the sheaf O on the n-dimensional punctured formal disk
D;, = Spec(C[[z1, .. .,2,]]) — {0}. More invariantly, we have the punctured
formal disk 7° ~ D¢ associated to a point x € X and the corresponding
current algebra g? ~ g°. For n > 1, passing from the non-punctured formal
disk Z, to z° does not increase the ring of functions (Hartogs’ theorem) but
one gets new elements in the higher cohomology of the sheaf O, so 2’ can
be regarded as a “higher” generalization of the Laurent series field C((z)),



to which it reduces for n = 1.

Principal bundles on X form an Artin stack Bung(X) and we can still
form a scheme Buanig(X ,x) as above. However these objects are, for n > 1,
highly singular because deformation theory can be obstructed. The correct
object to consider is the derived moduli stack RBung(X) obtained, infor-
mally, by taking the non-abelian derived functor of Bung, i.e., extending
the moduli functor to test rings which are commutative dg-algebras [TV].
When X is a curve, RBung(X) ~ Bung(X), but for n > 1 there is a dif-
ference. Most importantly, the tangent complex of RBung(X) is perfect
(a smoothness property). We can similarly construct the derived scheme
RBunl¥(X,z), (an object which locally looks like the spectrum of a com-
mutative dg-algebra) which should also be intuitively considered as being
smooth.

We show, first of all, (Theorem 5.3.8) that g2 acts on RBun"$(X,z) by
vector fields, in the derived sense. At the level of cohomology, the action
gives, in particular, a map

H2 ' (gp) — H* ' (RBung#(X, z), T)

(here T is the tangent complex and ¢ is the differential of g7). When n = 1,
it is the action by vector fields in the usual sense. In the first new case
n = 2, after restricting to the non-obstructed smooth part of the moduli
space, on which T is the usual tangent sheaf, the target of this map becomes
the space of deformations of the (part of the) moduli space. Deforming the
moduli space can be understood as changing the cocycle condition defining
G-bundles (Remark 5.3.9).

Further, each invariant polynomial P on g of degree (n + 1) gives rise to
a central extension gy p (the higher Kac-Moody algebra). Note that unlike
the case n = 1, we now have many non-proportional classes, even for g
simple. Intuitively, they correspond to degree n + 1 characteristic classes for
principal G-bundles. As before, let ¢ be a representation of G. We prove
(Theorem 5.5.9) that the determinantal line bundle det® on RBun"8(X, )
is acted upon by gy, p, where Py(z) = tr(¢(x)" ™) /(n+ 1)! is the “(n + 1)-th
component of the Chern character” of ¢.

These results suggest that representations of the dg-Lie algebra g? should
produce geometric data on the derived moduli spaces of G-bundles on n-
dimensional manifolds.



(0.3) The stack Bung(X) can be seen as a version of the non-abelian first
cohomology H'(X,G(Ox)). When X is a curve, the above classical results
can be seen as forming a part of the “adelic approach” to the geometry of
curves. This approach consists in using the idealized “Cech covering” of X
formed by 7 and X° = X — {x}, with “intersection” Z°, to calculate the H®.
If X is a curve and G is semi-simple, then G-bundles on X° (and certainly
on 7) are trivial, and we can write Bung(X) = G(2)\G(7°)/G(X°) (stack-
theoretic quotient on the left). We then similarly represent Bung# (X, z) as
the coset space G(z°)/G(X°), with G(z°) = G(K) being a group ind-scheme
with Lie algebra g,.

A generalization of the adelic formalism to varieties X of dimension n > 1
was proposed by Parshin and Beilinson [Bel] [Hu] [Os]. In this approach the
completed local fields (analogs of K, for curves) are parametrized not by
points, but by flags {r} = Xy < X; < --- < X,,_; © X of irreducible subva-
rieties in X. If all the X;’s are smooth, then the completion is isomorphic to
k((z1)) - ((2n)), the iterated Laurent series field. As before, it can be seen
as a version of the Cech formalism for an idealized open covering formed
by certain formal neighborhoods. However, the manipulations with iterated
Laurent series fields are quite complicated: in order to capture all the “adic
topologies”, they should be considered as n-fold iterated ind-pro-objects (n-
Tate spaces) [BGW1] and every step involves many levels of technical work.

In a sense, our approach can be seen as a “simplified version” of the
flag adele formalism, in which we keep track only of points = € X (just
like for curves) and package all the combinatorial data involving subvarieties
of dimensions # 0,n, into a “black box” using the cohomological formalism.
This allows us to avoid working with iterated ind-pro-objects and deal instead
with classical Tate spaces (just like for curves) at the small price of having to
pass to the derived category of such spaces, i.e., to study Tate dg-spaces (or
Tate complezes), see §4.1 for details. For example, 2A* is a Tate complex for

each n. Our treatment is an adaptation and development of the approaches
of [Dr| [He3].

(0.4) To relate our approach to the idea of Map(X, g), we can use a partic-
ular model A? of the “abstract” commutative dg-algebra 2 = RI'(D;, O).
This model is formed by relative differential forms on the Jouanolou torsor,
see §1.2B. Such torsors have been used in [BD] as a general tool. In our case,
A? provides a very precise algebraic analog of Q%*(C" — {0}), the d-algebra
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of Dolbeault forms on C" —{0}. In particular, such features of classical com-
plex analysis as the Martinelli-Bochner form or its “multipole” derivatives,
have direct incarnations in A?, see Proposition 1.4.7. Our algebraic approach
allows us to include these features in the formal setting of Tate (dg-)spaces.
It also lends itself to a representation-theoretic analysis providing the analog

of representing elements of k((z)) as infinite sums of monomials (Theorem
1.4.3).

Restricting from C" — {0} to the unit sphere S?"~! we can see A? as
an algebraic analog of Q2’°(S 2n=1) " the tangential Cauchy-Riemann complex
(the dy-complex [BeGr][DT]) of the sphere. The degree 0 part of Q)*(5**1)
is C*(S?"~1), the algebra of smooth complex functions on S**~!. This means
that the degree 0 part of g7 can be seen as an algebraic version of the current
Lie algebra Map(S?"~1, g), and the entire g° as a natural derived thickening
of this current algebra.

Usually, considering Map(2, g) with dim(X) > 1, produces Lie algebras
which, instead of interesting central extensions (classes in H?) have interest-
ing higher cohomology classes. These classes are typically given by versions
of the formula

(0.5) Ao fr) = f e (fo dfs - df.).

In our case (Theorem 3.2.1), we still use a version of this formula (with
integration over S?"~! done algebraically) but the classes we get have total
degree 2 and so give central extensions, regardless of n. This happens because
we take into account the grading on the dg-algebra, In this sense our derived
approach embeds Map(S?"~!, g) into an object whose properties are closer
to those of Map(S?, g).

All this suggests that our higher Kac-Moody algebras should have an
interesting representation theory.

(0.6) As in the 1-dimensional case, a key intermediate step in identifying
the central extension acting on the determinant bundle, is given by a local
analog of the Riemann-Roch theorem (Corollary 4.3.10). It has the form of
comparison of two central extensions of g° for g = gl(r): one given by a
version of (0.5), the other induced from the “Tate class” of the the endomor-
phism dg-algebra of the Tate complex (2A2)®". For r = 1 this statement can
be seen as an analog, in our simplified adelic formalism, of the main result
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of Beilinson [Bel|. Since we deal with the current algebras only, we detect
only the Chern character; the Todd genus will naturally appear, as in [FT2],
after we include the dg-algebra RI'(D;,,T), see (0.8) below.

(0.7) We use three main technical tools. The first one is the general the-
ory of derived stacks [TV]. It is necessary for us to work freely with quite
general derived stacks and even prestacks in order to study, for instance, the
group object corresponding to gr. This is an (infinite dimensional) derived
group G(Dy), see Proposition 5.3.6. In particular, for dealing with various
infinitesimal constructions (even such seemingly simple ones as “passing from
a group to its Lie algebra”) we need to use Lurie’s formalism of formal moduli
problems [Lu2].

The second technical tool is cyclic homology of dg-categories, a concept
of great flexibility and invariance. It includes, in particular cyclic (and de
Rham) homology for schemes and at the same time, is related to the Lie
algebra homology of endomorphism dg-algebras of objects in a dg-category.

Another important tool is the G L,-invariance of our cohomology classes.
In exploiting this invariance, the Jouanolou model for 2 is more convenient
in that it allows an explicit GL,-action which can be analyzed in detail at
the level of complexes. This level of detail is not available for more abstract
models, e.g., for the flag-adelic one.

(0.8) This paper is related to the idea, mentioned already in [BD] and de-
veloped in [FG], of generalizing the theory of chiral and holomorphic factor-
ization algebras to higher dimensions. In this approach we are dealing with
finite collections (x;) of points moving in an n-dimensional variety X, with
“singularities” developing when z; = z; for some 7 # j. These singularities
are of cohomological nature, representing classes in H" (X" — {diag}, O).

Note that the standard quantum field theory approach deals with collec-
tions of points in the Minkowski space with singularities developing when
some x; — x; lies on the light cone, see, e.g., [Tam]| for a discussion from
the factorization algebra point of view. However, our cohomological formu-
las in the Jouanolou model are, up to “details” involving the cohomological
grading, algebraically similar to this. For example, the role of the standard
“propagator” 1/z|? is played by the Martinelli-Bochner form €(z, z*).

The next natural step in this direction would be to study the dg-Lie alge-



bra RI'(D;, T), the analog of the Witt algebra of formal vector fields on the
circle (as well as its central extensions). It should act on the derived moduli
stack of n-dimensional rigidified complex manifolds (X, z, (z1, ..., 2,)) where
x € X is a marked point and (z1,..., z,) is a formal coordinate system near
x. There is a natural combined version involving the derived Atiyah algebra
(RI of the semidirect product of matrix functions and vector fields). We plan
to address these issues in a future paper. The additional technical difficulty
here is the need to work with (quite general) derived stacks in the analytic
context, as not all deformations of an algebraic variety are algebraic.

(0.9) Here is a logical summary of the paper.

In Chapter 1 we present our approach to derived analogs of Laurent poly-
nomials, formal Laurent series and adeles. The abstract derived adelic for-
malism is developed in §1.1. In §1.2 we describe our explicit model Afn] for
the derived analog of the ring k[2*!] of Laurent polynomials (with A®, the
analog of the field of formal Laurent series, obtained as a completion). The
richness of the classical theory of Kac-Moody, Virasoro and vertex algebras
stems largely from the possibility to make purely algebraic computations with
(operator valued) Laurent series, their residues etc., and we want our formal-
ism to have similar capabilities. While, on one hand, our Afn] is an algebraic
analog of the Dolbeault complex (the precise connection is explained in §1.3),
on the other hand, its elements allow explicit algebraic presentation similar
to writing f(z) = > a,z? in the one-variable case. This is done in §1.4. The
role of the integer ¢ (parametrizing, conceptually, irreducible representations
of GLy) is now played by certain irreducible representations of GL,,. We de-
termine, in Theorem 1.4.3, which representations do appear and show that
they appear exactly once. So the analogs of individual Laurent monomials
are now intrinsically defined “monomial subspaces” in Afn], invariant and
irreducible under GL,,. Another standard tool of the classical computations
is the algebraic residue of a Laurent polynomial/series Res(f(2)dz) = a_;.
In §1.5 we develop a similar algebraic residue formalism for our model. As
mentioned above, the standard differential dz/z is replaced by the Martinelli-
Bochner form €2, which has an algebraic meaning in our model.

In Chapter 2 we study the higher-dimensional analog of the residue pair-
ing Res(fdg) of the classical theory. This is a certain degree 1 cyclic homology
class p of Afn]. We give two definitions of p: an abstract one using Hodge



decomposition of the cyclic homology of A™ — {0} in §2.3 B, and a more
explicit algebraic one, analogous to (0.5) and thus to the framework of §1.5,
in §2.3 A. We show that the two definition agree up to a non-zero scalar,
by using G L,-invariance properties (Theorem 2.3.5). The preliminary sec-
tions 2.1 and 2.2 recall, with some slight developments, necessary techniques
related to cyclic homology of dg-categories and schemes. In particular, we
present a result (Proposition 2.2.6) describing the coherent derived category
of a quasi-affine scheme in terms of the dg-algebra of derived functions, which
may have other applications.

In Chapter 3 we introduce our main objects of study: the higher current
algebras and their central extensions. While Chapter 2 was studying the
higher analogs of the pairing Res(fdg) for scalar functions f, g, the central
extensions are governed by the analogs of the pairing Res(tr(fdg)) for matriz
functions. As in the scalar case, we start by recalling, in §3.1, the abstact
formalism of Lie algebra and cyclic homology, and in §3.2 we construct the
cocycles explicitly, using the algebraic residue formalism of §1.5. We prove
(Theorem 3.2.1) that the space of invariant polynomials of degree n + 1 on
a reductive Lie algebra g embeds injectively into the second cohomology of
the current algebra.

Chapter 4 is devoted to identifying some particular central extensions of
higher current algebras: those coming from the “trace anomaly” (failure of
the identity tr[A, B] = 0 for infinite-dimensional operators). The abstract
properties of this anomaly are encapsulated in the theory of Tate vector
spaces and Tate complexes which we recall in §4.1 and perform some ad-
ditional study of the homological properties of the category of Tate spaces.
In §4.2 we embed this into a more general formalism of Tate objects in dg-
categories, where the trace anomaly is obtained as a delooping statement.
The algebra A?, the higher analog of k((z)), is naturally a Tate complex
and we get the corresponding Tate extension of A? ® gl, from the action on
Ay ® k. Determining this extension can be seen as a local analog of the
Riemann-Roch theorem for rank r vector bundles. It is done in §4.3. More
precisely, we prove in Theorem 4.3.5 the the extension is given by a cocycle
proportional to the matrix residue invariant Res(tr(fodf - - - df,,)) with Res is
understood in the sense of §1.5.

In Chapter 5 we relate higher affine algebras with derived moduli spaces
of G-bundles (G a reductive group) on n-dimensional varieties X. In §5.1



and §5.2 we provide a brief backround on derived geometry in general and on
the Kodaira-Spencer homomorphism in particular. In §5.3 we prove (The-
orem 5.3.8) that the higher affine algebra associated to g = Lie(G) acts on
the derived scheme RBun[#(X, x) discussed above. Further, if we want to
extend to action to natural determinantal line bundles over RBungg(X L),
the obstruction to that turns out to be the trace anomaly studied in Chapter
4. This is shown in §5.4. Finally, in §5.5 we explicitly identify the cocycle
that governs the anomaly. More precisely, Theorem 5.5.9 together with the
local Riemann-Roch theorem 4.3.5 shows that that it corresponds to the co-
cycle proportional to Res(tr(o(fo)do(f1)---do(fn)) where ¢ : G — GL, is
the representation of GG used to define the determinantal bundle and Res is
as in §1.5.

The brief Appendix collects background material on dg-algebras, dg-
categories and model categories, used throughout the paper.

(0.10) We would like to thank A. Beilinson, L. Hesselholt, P. Schapira and
B. Vallette for useful correspondence. G.F'. is thankful to J.D. Stasheff, B.H.
to P. Safronov and M.K. to A. Polishchuk for interesting discussions. We are
also grateful to the referees for numerous remarks which helped us improve
the paper.

The work of M.K. was supported by the World Premier International Re-
search Center Initiative (WPI Initiative), MEXT, Japan. It was also partially
supported by the EPSRC Programme Grant EP/M024830 “Symmetries and
Correspondences”.

B.H. would like thank the Max-Planck institut fiir Mathematik in Bonn
for hosting and supporting him during the redaction of this paper.

1 Derived analogs of functions and series

1.1 Derived adelic formalism

A. Local part. We fix a base field k of characteristic 0. For n > 1 we have
the n-dimensional formal disk D,, = Speck[[z1, ..., z,]] and the punctured
formal disk D5, = D, — {0}. We consider them as the completion of the
affine space A" = Speck|z1,..., z,] and of the punctured affine space Ar =
A™ —{0}.
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Fundamental for us will be the commutative dg-algebras
(91;’5) = RF(DSwO)a ( En]aé) = RF(AH>O)

defined uniquely up to quasi-isomorphism. The cohomology of these dg-
algebras is well known and can be obtained using the covering of D; by n
affine open subsets {z; # 0}.

Proposition 1.1.1. Forn = 1 the scheme DY is aﬂine with ring of functions
k((2)) and A' is affine with ring of functions k[z,z"Y]. Forn > 1 we have

k[[z1, .-, 2a]], i=0;
HY(D;,0) = R zrt-2 k[0t 2], i=n—1;
0, otherwise.
Here the notation z; ' -z 'k[2;", ..., 2'] can be seen as encoding the ac-

tion of the n- dzmenszonal torus G, on H" (D, O).
The cohomology HZ(A" O) differs from the above by replacing k[[z1, . .., z,]]
by k[Zl, ey n]

Thus, although for n > 1, the scheme D;. resp. 10%", is not affine and its
global functions are the same as for D,,, resp. A", the missing “polar parts”
are recovered in the higher cohomology of the sheaf O. The dg-algebras 2,
and 2, are, therefore, correct n-dimensional generalizations of the the rings
of Laurent polynomials and Laurent series in one variable.

We will also use the doubly graded dg-algebras

(A, 0,0) @Rr D5, QF), (A, 0,0) = (P RU(A", ),

with ¢ being induced bX the de Rham differential on forms (and increasing
the first grading) and ¢ being the differential on RI" (and increasing the
second grading).

B. Global part. Let X be a smooth n-dimensional variety over k and
r € X a k-point. We then have the completed local ring Ox , which is
isomorphic (non-canonically) to k[[z1,...,2,]]. We denote T = Spec @XJE
the formal disk near x and by z° = Z — {x} the punctured formal disk near
x. We then form the commutative dg-algebras

A = RI(Z°,0), A = PRIGE
p

11



In particular, the Grothendieck duality defines a canonical linear functional
(1.1.2) Res, : RT(2°, Q") =% RD(y (2, 0")[1] — k[1 —n].

Let now x = {x1,...,x,} < X be a finite set of disjoint k-points. We denote
X° = X — x the complement of x, and write X = | |Z; and X° = | |Z7.
In particular, we have the commutative dg-algebra RI'(X°, O). Elements of
this dg-algebra can be seen as n-dimensional analogs of rational functions
on a curve with poles in xy,...,z,. Similarly, if £ is a vector bundle on
X, we have the dg-modules 3 (E) = RI'(X°, E) over 2 = RI'(x°,0) and
RI'(X°, E) over RI'(X°, O). We have the canonical morphism of complexes
(commutative dg-algebras for £ = Q) given by the restriction:

(1.1.3) §: RU(X°, E)®T(R,E) — A (E) = én—)al;i(E).

This morphism can be seen as the dg-version of the adelic complex of Beilin-
son [Bel| [Hu] , in which the dependence on schemes of dimensions 1, ..., n—1
has been “integrated away” and hidden in the cohomological formalism. The
proof of the next proposition can be seen as an explicit comparison.

Proposition 1.1.4. The homotopy fiber of ¢ is identified with RT'(X, E).

Proof: For any Noetherian scheme Y of dimension n over k (proper or not)
and any coherent sheaf F on Y, the construction of [Bel][Hu| provides an
explicit model C*(F) for RI'(Y,F). By definition,

Cp(]:) = @ Cio ..... ip(f),

0<ip<---<ip<n

where 7
Cio ----- Zp(]:) = CYO ----- Yp(F)
Ypc-cYpcY
dim(Yy)=iy
is the appropriate restricted product, over all flags ¥y < --- < ¥, < V

.....

[Bel|[Hu]. In particular, for p = 0 and iy, = 0, the summand Cy(F) is the
usual product of Cy(F) = I'(y, F) over all 0-dimensional points y € Y. We
now take Y = X, F = E and represent

C*(F) = hofib{Ct @ C3 - C3},

12



identifying the three summands with the corresponding summands in (1.1.3)
and d with 0. Explicitly, we take Cy to be the direct sum of C,(F) over
y € x, we take C} to be the direct sum of restricted products of Cyj, ..y, (F)
over all flags Yy < -+ < Y}, such that Y} is any subvariety (of any dimension)
other than some y € x. Then (73 is the adelic complex for the restriction of £
Y = X —x. Similarly, we take C3 to be the direct sum of restricted products

of Cy,,. y,(F) over all flags Yy < --- < Y}, such that ¥ equals some y € x.
Then C3 is the adelic complex for the restriction of E to X. This proves the
statement. [

In particular, for £ = %, we have morphisms
Res,, x : RI(X°, Q") - k[l —n], i=1,...,m,
which satisfy the residue theorem:
Proposition 1.1.5. > Res,, x = 0. O

Proof: This is a standard feature of Grothendieck duality, cf. [Con|. By
degree considerations it suffices to look at the behavior on the (n — 1)-st
cohomology only. That is, we consider, for each i, the map H" !(Res;) :
H™1(Z7,9Q") — k induced by Res,, on the (n — 1)st cohomology, and prove
that the compositions of these maps with the H"}(X°, Q") — H" }(z7,Q")
sum to zero.

Indeed, H" *(Res;) can be represented as the composition

H" 1 77,Q") ~ Hi 2 (23, Q") = HE, 4 (X,Q7) N H'(X, Q") 5k,

where tr is the global Serre duality isomorphism. Now the statement follows
from the fact that in the long exact sequence relating cohomology with and
without support in x,

e X, Q) S HE(X, Q) T (X0

the composition of any two consecutive arrows is zero. O

1.2 Explicit models
We start with the “polynomial” dg-algebra Qlfn]. By considering the fibration

A" — P! we can write

(1.2.1) Ay ~ P RLE,0(3i)).

€L
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From here, passing to the completion is easy: it is similar to passing from
Laurent polynomials in one variable to Laurent series. More precisely, for a
graded vector space @,_, V' we denote

b
3 V= lig lm @V

i»>—00 b i=—a

the vector space formed by Laurent series ) v; with v; € V. Then

13> —00

(1.2.2) A, ~ > RT(P0(i)

> —00

Applying various way of calculating the cohomology of P"~!, we get various
explicit models for 2, and related dg-algebras and modules.

A. The Cech model. Covering P"~! with open sets {z # 0}, or, what is
the same, covering D; with similar open sets right away, we get a model for A,
as the Cech complex of this covering. The Alexander-Whitney multiplication
makes this complex into an associative but not commutative dg-algebra.

We can use Thom-Sullivan forms to replace this by a commutative dg-
algebra model for (7.

B. The Jouanolou model. Introduce another set of variables 27, ..., 2"

T n
which we think of as dual to the z,, i.e., as the coordinates in the dual affine
space A". We write

2z = Zzyzj, ze A", 2* € A"
We form the corresponding “dual” projective space pr-1 = Projk[zf, ..., 2%]
and consider the incidence quadric

Q = {(z,2") e A" x I?’"_l\ 22" =0} < A" x Pt

We denote the complement (A" x Iﬁ’"*l) —( by J and note that the projection
to the first factor gives a morphism

7 J — A"
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whose fibers are affine spaces of dimension n — 1. We refer to J as the
Jouanolou torsor for A". For further reference let us point out that

(1.2.3) T = {(21, 0y 20,28, 00, 25) € A" x (A" —{0}) ] 22* =1},

the isomorphism given by the projection A" — {0} — P"~1 on the second
factor.

For any quasi-coherent sheaf £ on A" we then have the global relative de
Rham complex

Aby(B) = T(J,05,, @7*E).

The differential in A} ,(E) (given by the relative de Rham differential) will
be denoted ¢

Let also R R
J = Jxu D, = JX;MDZLDO

n

be the restriction of .J to the punctured formal disk. As before, J is an affine
scheme and an A"~ !-torsor over D!. For any quasi-coherent sheaf E on D2
we denote

AN(E) = T(J, Q5 pe QT*E).

Proposition 1.2.4. (a) Ap \(E) is a model for RU(A™ E), and A2(E) is a
model for RT'(D;,, E).
(b) The functor E — Ar (E) (resp. E — A}(E)) is a lax symmetric

monoidal functor from the category of quasi-coherent sheaves on Ar (resp.
on Dy, ) to the category of complexes of k-vector spaces. In particular, if E is
a quasi-coherent commutative Oy, -algebra (resp. Ope -algebra), then Afn](E)
(resp. AL(FE)) is a commutative dg-algebra.

Proof: (a) This is a classical argument. We consider the only case of A} ;(E).
Because J is affine, we have quasi-isomorphisms

At )(E) ~ RT(J, Qe @ T°E) ~ RT(A", Rm(Q ;, @ 7" E)).

Because 7 is a Zariski locally trivial fibration with fiber A"~!, the Poincaré
lemma, for differential forms on A"~! implies that the embeddings

E<_)7T*( J/A’!L@E) — Rﬂ-* ( J/A’!L@E)
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are quasi-isomorphisms of complexes of sheaves on A", whence the statement.

(b) Obvious by using the multiplication of differential forms.
U

By the above, the dg-algebras
(1.2.5) Al = AL (Opn), A= A5 (Ops)

are commutative dg-models for Qlfn] and RA? respectively. Their grading is

situated in degrees [0,n — 1]. Let us reformulate their definition closer to
(1.2.1) and (1.2.2). For this, let

J = {(z2)eP" " x Pt | 22* # 0} I, prt

be the classical Jouanolou torsor for P*~!. For a quasi-coherent sheaf F' on
P! we define

RIV(P 1 F) = T(],95 5, @FF).

As before, this is a model of R['(P"~!, F'), depending on F in a way compat-
ible with the symmetric monoidal structures.

Proposition 1.2.6. We have isomorphism of commutative dg-algebras
Ay = @RIVEL03), Ay = Y RIVEL0().
2 2300

Proof: For a line bundle £ on an algebraic variety Z we denote by L° the
total space of £ minus the zero section, so a G,,-torsor over Z. Now, we have
the Cartesian square

J—" - An

)

J—P

where ¢ realizes A" as O(—1)°. Therefore r realizes J as (7*O(—1))°. Fur-

ther, QD/&” = T*Qg/ﬂmfl. Therefore
Al = T(L95 5.) = L((@O(-1))°, r* Qg pn) =
= BT, 7 0() ® Vg pu ) = DRI (P,0(0)).
1€Z 1€Z

The proof for A? is similar with direct products instead of direct sums. [
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C. The Jouanolou model, explicitly. Let
k[z, 2" = Kk[z1,..., 20,27, 20 ], K[[2]][27] = K][[z1, - -5 zal][20 - ) 20 ]

be the algebras of regular functions on A™ x A" and D, x Ar respectively.
Recall the notation zz* = )z, 2.

Proposition 1.2.7. Let m =0,...,n—1. The m-th graded component Af’;;]
(resp. A:) is identified with the vector space formed by differential forms

* E3 %
W= Z fily---ﬂ'm(za z )dZZl c e dzim
1<) < <im<n

where each f;, . is an element of the localized algebra k|[z, z*|[(zz*)7!]
(resp. k[[2]][2*][(22*)]) such that:

(1) w is homogeneous in the z¥,dz} of total degree 0, that is, each fi, ..
is homogeneous of degree (—m).

(2) The contraction ve(w) of w with the Euler vector field & = ) 250/0%}
vanishes.

The differential 0 is given by

n

_ , 0
0 = Zdz”(?z;"

v=1

Proof: We prove the statement about Aﬁ]; the statement about A’ is proved
in the same way. ~ N

Consider the product A" x A" and the incidence quadric () inside it given
by the same equation zz* = 0 as Q. Let U = (A" x A") — Q. All forms w
as in the proposition (not necessarily satisfying the conditions (1) and (2))

form the space I'(U, Q’(’]”L/An).

Now, we have a projection p : U — J of A"-schemes with the multiplica-
tive group G,, acting simply transitively on the fibers (i.e., U is a G,,-torsor
over J). The infinitesimal generator of this action is the Euler vector field &.
Therefore relative forms from QZ”/ i are identified with sections w of QZL/ in
which satisfy

Gelw) = 0, 1¢(w) =0,

where J¢ is the Lie derivative, see, e.g., [GKZ]. These conditions translate
precisely into the conditions (1) and (2) of the proposition. O
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Corollary 1.2.8. The dg-algebra Afn] carries a natural filtration “by the
order of poles”

FA" = {w } (z2*)" ™ f) € k|z, 2%], Viy,. ,zm}

compatible with differential and product:
O(F,A%) c LA, (FA%) - (F.A®) c F, A

1.3 Comparison with the Dolbeault and J;-complexes.

A. Comparison with the Dolbeault complex. In this section we as-
sume k = C. The notation 0 for the differential in Afn] is chosen to suggest
the analogy with the Dolbeault differential in complex analysis. In fact, we
have the following.

Proposition 1.3.1. Let Q%*(C" — {0}) be the smooth Dolbeault complex of
the complex manifold C" — {0}. We have a (unique, injective) morphism of
commutative dg-algebras € : A7 — Q0+ (C™ — {0}) which sends z* to z, and
dz} to dz,, i.e.,

f(z,2")dzf - dzf — f(2,2)

11 im

(C"f{O}dEh ceedzy,

The proof is obvious once we notice that zz* is being sent to 2z = |z|?
which does not vanish on C" — {0}. O

Remark 1.3.2. The morphism ¢ is not a quasi-isomorphism: it identifies
H*(A:) with the “meromorphic part” of H*(Q%*(C" — {0})) = H*(C" —
{0}7 Ohol)-

We also notice that A}, is concentrated in degrees [0, n—1] while Q0 (C"—
{0}) is situated in degrees [0, n]. To exhibit a better analytic fit for A\, we
recall some constructions from complex analysis.

B. Reminder on the J,-complex. Let X be an n-dimensional complex
manifold and S < X a C® real hyper surface (of real dimension 2n—1). The
embedding S < X induces on S a differential geometric structure known as
the CR-structure [BeGr|[DT].

More precisely, let x € S. The 2n — 1-dimensional real subspace TS in
the n-dimensional complex space T, X has the maximal complex subspace

TomS = T,8 ~ i(T,S) < T,X
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of complex dimension (n —1). We get a complex vector bundle 75°™ on S
embedded into the real vector bundle Tg. Its complexification splits, in the
standard way, as

(T QC = Tg' @ Tg' « Ts®C.

So T 5{’0 and T g’l are complex vector sub-bundles in Ts ® C, of complex di-
mension (n — 1). Integrability of the complex structure on X implies that
these sub-bundles are integrable in the sense of Frobenius, i.e., their sections
are closed under the Lie bracket of the sections of T's ® C.

Let *Q%? be the sheaf of C®-sections of the complex vector bundle A%(Tg")*.
Integrability of Tg’l gives, by the standard Cartan formulas, the exterior dif-

ferentials “along” TO*
s
3 . bO0g b0,q+1
Op "Gt — PG

making ng" into a sheaf of commutative dg-algebras known as the tangential
Cauchy-Riemann complex (or d,-complex) of S. It is concentrated in degrees
[0,n—1]. The complex of global C*-sections of bQOS’° is traditionally denoted
by Qp*(S) and is also called the dy-complex.

C. Generalities on real forms. Let Y = Spec R be a smooth irreducible
affine variety over C of dimension m. A real structure on Y is a C-antilinear
involution f — f on R. Such a datum defines an antiholomorphic involution
0:Y(C) - Y(C) on C-points. The fixed point locus of ¢ is denoted Y (R).
If nonempty, Y (R) has a structure of a C*-manifold of dimension m. In
this case we have an embedding ¢ : R — C*(Y(R)). Moreover, any f €
C*(Y(R)) can be approximated by functions from €(R) on compact subsets
(Weierstrass’ theorem). In particular, if Y/(R) is compact, then ¢(R) is dense
in C*(Y(R)) in any of the standard metrics of the functional analysis (e.g.,
in the Lo-metric).

If, further, F is a vector bundle on Y (not necessarily equipped with
a real structure), it gives a C*-bundle E|y®) on Y (R) and an embedding
I'(E) — Few(Ely®)) with approximation properties similar to the above. A
differential operator D : EE — F between vector bundles on Y gives rise to a
C* differential operator Dy ) : Ely®) — F|y®)-

D. The Jouanolou model and the J,-complex for S?"~'. We specialize
part B to X = C" with the standard coordinates z,. We take S to be the

19



unit sphere S*"~! with equation |z|> = 1. We have therefore the dy-complex
(ng’Q.nfla ab)

At the same time, we introduce, on A" x Ar (with coordinates z,,z}),
a real structure by putting z, = z¥ and z¥ = z,. The Jouanolou torsor J

is realized in A" x A" as the hypersurface zz* = 1, so it inherits the real
structure.

Proposition 1.3.3. (a) We have J(R) = S*"~'. In other words, A}, = C[J]
is identified with the algebra of (real analytic) polynomial C-valued functions
on S*—1L,

(b) The C*-vector bundle Qi]]/&nL](]R) on J(R) = S is identified with
ng’gn,l, and the differential induced by dJ/;M, is identified with 0y. In other
words, Afn] is identified with the dg-algebra of polynomial (in the same sense
as in (a)) sections of bQOS’;n,l.

Proof: Part (a) is obvious, as zz* = 1 translates to 2z = 1. To prove (b), we
notice that the sub-bundle

TJ/An|527L71 - TJ|S27L71 = Ts2n71 ®C

is equal to ngi,l. O

Corollary 1.3.4. A, is dense in the Ly-completion of QY9(S?=1). In par-
ticular, A}, is dense in the Ly(S*"™'). O

[n

1.4 Representation-theoretic analysis

A. The GL,-spectrum of A;. The Jouanolou model gives commutative
dg-algebras with a natural action of the algebraic group G L,,. We now study
this action.

Let V' be a k-vector space of finite dimension n. Recall [FH] that irre-
ducible representations of GL(V') are labelled by their highest weights which
are sequences of non-increasing integers o = (a; = -+ = a,), possibly
negative (dominant weights). We will denote the underlying space of the
irreducible representation with highest weight a by X%V and regard ¢ as
a functor (known as the Schur functor) from the category of n-dimensional
k-vector spaces and their isomorphisms, to Vecty. Here are some tie-ins with
more familiar constructions.
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Examples 1.4.1.(a) For d > 0 we have 4%-0(V) = S¢(V) is the dth
symmetric power of V. For 0 < p <nlet 1, = (1,...,1,0,...,0) (with p
occurrences of 1). Then X' (V) = AP(V) is the pth exterior power of V.

(b) We have canonical identifications
R ()~ Fen @ (TF) ~ Jm s =),
In particular, V* = $0--0=1(V). Further,
BLO-0m V)~ sl(V) = {AeEnd(V): tr(A) = 0}.
Recall also the following fact from [Wey].

Proposition 1.4.2. For any dominant weight o for GL,, the restriction of
Y(k™) to GL,_1 has simple spectrum, explicitly given by:

Za(kn”GLnfl &~ @ ZBI ----- anl(kn—l).

a1=f1zae=fo=2fn_120n

We now denote by V' = k" the space of linear combinations of the coor-
dinate functions z; on A", so A" = Spec S*(V), and let GL,, = GL(V'). The
Jouanolou torsor .JJ — P"~!is acted upon by GL,, and so the dg-algebra Afn]
as well as its completion A3, inherit the GL,-action. The following fact can
be seen as a higher-dimensional generalization of the representation of ele-
ments of k[z, 271] as linear combinations of Laurent monomials (irreducible
representations of GLj). It will be used in Proposition 1.4.7.

Theorem 1.4.3. (a) As a GL,-module, each A’[’n] has simple spectrum, that
is, each X%(V') enters into the irreducible decomposition of A’[’n] no more than
once.

(b) More precisely, (V') enters into A’[’n] if and only if
20202022020, 2120, pu=-12>>-1>a,

Examples 1.4.4. (a) For n = 1 the only possible p is p = 0. In this case
the condition on o = (ay) € Z is vacuous and the theorem says that A?l] =

@an Za(k) = k[Z, Z_l]‘
(b) Let n = 2. In this case the theorem says that we have an identification
of complexes of G Lo-modules

Ay = {@zawz(m—‘% P E“l’az(\/)}.

a1=0 a;=—1
<0 ag<—1
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From this we see the identifications

Ker(d) = P = k([z1, 2],
a1=0
Coker(d) = P S7(V) =272 'klz Y, 251,

az<—1

the other irreducible representations, common to A([)z] and A%Q], are cancelled
by the action of 0.

(c) For n = 3 the theorem identifies Afy); as a complex of G Ls-modules,
with

@ Eal,(],ag _5) @ ya1,a2,03 _5) @ 20{17*17043

a1=0 a1=20=2a2=>—1=a3 ar=—1

az<0 az<—1
One can see, for example, the reason why the complex is exact in the middle:
if ap = 0, then X092 lies in Im(0), while if ay = —1, then X122 ig
mapped by ¢ isomorphically to its image.

The proof of Theorem 1.4.3 is based on the following observation. We
use the definition of Ap,) in terms of the torsor J.

Proposition 1.4.5. As a variety with G L, -action, J ~ GL,/GL,_1. Fur-
ther, Q?/M is identified with the homogeneous vector bundle on GL,/GL, 1
associated to the representation AP((k"™1)*) of GL, .

Proof: The identification (1.2.3) exhibits J as a homogeneous space under
GL,. The stabilizer of the point (z,z*) where z = (1,0,...,0) and z* =
(1,0,...,0), consists of matrices of the form

10
(0 A) ) A€ GLn—b

whence the first statement of the proposition. To see the second statement,
look at the action of the stabilizer subgroup GL,,_; on the fiber of Qiz Jin OVer
the chosen point (z,z*) above. By definition, this fiber is the pth exterior
power of the relative cotangent space at this point. It remains to notice that

the relative tangent space is, as a G L,,_;-module, nothing but k™. 0

We now prove Theorem 1.4.3. By Proposition 1.4.5,

Ay =T ) = Indgym  AP(k™h)*

[n] J/An)

22



(induction in the sense of algebraic groups, i.e., via regular sections of the
homogeneous bundle). So we can apply Frobenius reciprocity and obtain:

mult (2°k", IndGym  AP(K")*) = mult(AP(k")*, S°k" gL, ),

where mult means the multiplicity of an irreducible representation. Now,
AP(k"1)* = 3007 L= (k1) (with p occurrences of (—1)). It remains to
apply Proposition 1.4.2. Theorem 1.4.3 is proved.

B. The Martinelli-Bochner form and its multipoles. We use the
analogy with the Dolbeault complex as a motivation for the following.

Example 1.4.6. The Martinelli-Bochner form

n v—1 % * /\* *
(=17 'eidzf Ao AdzEA - A d2

QO = Q(Z,Z*) _ Zy:l (ZZ*>n n

is an element of Af‘n_]l. For n =1 it reduces to 1/z.
The following will be used in Proposition 2.3.6 and Theorem 2.3.5.

Proposition 1.4.7. Let n > 1. )
(a) The class of Q in H""'(A},) = H" (A", O) is a generator of the 1-

dimensional subspace z;* - - - 2

torus, see Proposition 1.1.1.

L of weight (—1,...,—1) under the coordinate

(b) The top degree part A’fn’]1 contains precisely one 1-dimensional irre-
ducible representation of GL,, which is XYY (V) = A®(V*). This sub-
space is spanned by the Martinelli-Bochner form Q(z, z*).

(c) Further, every element of H”’I(Afn]) can be represented as the class
of a “multipole”
P(0yyy...,0,,)z,2%)

for a unique polynomial P(yy,...,Yn)-

Proof: (b) follows from Theorem 1.4.3. To deduce (a) from (b), note that
the class [2; 1+ z7!] € H" (A", O) spans a 1-dimensional representation of
GL,, and so does Q(z, 2*) (direct calculation). At the same time X~ 1~1(V)
is not present in Af‘n_]Q, so [z, 2*)] is a nonzero scalar multiple of [z, - - - 21

To prove (c), we notice the following fact which complements Proposition
1.1.1 and is proved using the same standard affine covering {z; # 0}. Note
that the ring k[0,,, .. ., 0., | of differential operators with constant coefficients

acts naturally on O, and therefore on H n=1(Am O).
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Proposition 1.4.8. As a k[d,,, ..., 0., |-module, the space H" (A", 0) s
free of rank 1, with generator 6 = [z;"--- 271 € H"1(A™, O). O

Proposition 1.4.7 is proved.

Remark 1.4.9. The fact that A([)n] has simple spectrum, allows us to define

a canonical GG L,-equivariant projection S : A?n] — k[z1,...,2,] along all the
irreducible representations which do not enter into k[zy, ..., z,]. This is the

algebraic analog of the classical Szego projection from complex Hilbert space
Ly(S?"1) to the Hardy space formed by the boundary values of functions
holomorphic in the ball |z]|* < 1. See, e.g., [BAMG].

1.5 Residues and duality

A. Jouanolou model for forms. We denote

I
—

(1.5.1) AP = AR ), A = AP

[n]
p=0¢

Il
=

Elements of Aﬁ’ﬁ can be viewed as differential forms on A" x P with poles

on the quadric @) given by zz* = 0. Let Q = {zz* = 0} be the hypersurface
in A" x A" lifting Q. By pulling back from P"~! to A" — {0}, we can view
elements of Apf as differential forms on (A" x A™) — @ of the form
(1.5.2) w =Y i Z'.Z(z, 25)dziy Ao A dzi, Adzf A AdzT

*

* and are annihilated by contraction

which have total degree 0 in the 2z, dz
with the vector field )] z%0/0z%.

It follows that the bigraded vector space AET:] is a graded commutative
algebra, with respect to multiplication of forms, with grading situated in
degrees [0,n] x [0,n—1]. It is equipped with two anticommuting differentials:
0 = >.dz¥0/0z* of degree (0,1) and 0 = >.dz,0/0z, of degree (1,0) which
correspond to exterior differentiation along the two factors in A™ x P, One
can say that 0 is induced by the relative de Rham differential in € 7/ in QTHEQP

and 0 corresponds to the de Rham differential d : Qf  — QEI. Part (a) of
Proposition 1.2.4 implies:

Proposition 1.5.3. The bigraded dg-algebra AET;] 1s a commutative dg-model
for 91{7:] O
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Example 1.5.4.Let k = C. Then we have an embedding of commutative
bigraded bidifferential algebras

S AR QM(C - {0)),

where on the right we have the algebra of C* Dolbeault forms on C* — {0}
with its standard differentials ¢ and ¢. The value of € on a form w given by
(1.5.2), is

e(w) = Zf’.'l """ i.:(z,?)hcn_{o}dz,-l A ndzy, NdZj A - A dE,

MARRRY)

B. The residue map. Since an is identified, as a G'L,-equivariant coher-
ent sheaf on 10%", with Oy, @k A"(k™), we have a G'L,-invariant identification

An,o

)~ A O A(KY).

We define the residue map
(1.5.5) Res: Api ™ — k
as the composition
A%ﬁl = Ap @ A"(k") — A"(k")* @ A" (k") =k,

where Aﬁl—]l — A"(k™)* is the unique G L,-invariant projection which takes
the Martinelli-Bochner form €(z,z*) to dzf A --- A dz¥, see Proposition
1.4.7(b). Thus, by definition,

(1.5.6) Res(Qz,2")dzy A -+ A dz,) = 1.

Note that A?y;?_l is the last graded component of A7 ,(€27,) which is a dg-
model for RT'(A", Q").

Proposition 1.5.7. For any f(z) € K[z, ..., z,] we have
Res(f(2)Qz, 2%)dz1 A -+ A dz,) = f(0)

(the algebraic Martinelli-Bochner formula).
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Proof: Note that both sides of the proposed equality are G L,,-invariant func-
tionals of f € k[z1,...,2,] = @ysgSU V). For d > 0 the space S (V)
does not admit any G L, -equivariant functionals, so the LHS factors through
the projection to d = 0 which is nothing but the evaluation at 0. So our
statement reduces to (1.5.6). O.

The following proposition established compatibility of our algebraic residue
formalism with the more analytic one based on integration of differential
forms. It will not be used in the sequel.

Proposition 1.5.8. Let k = C. Then for any w € A?y;?_l we have

Res(w) = (n—.l)! § e(w)

S2n—1

where the integral is taken over any sphere ||z|| = R in C" — {0}.

Proof: Each ¢(w), w € A’[Z?fl, is a closed (n,n — 1)-form on C™ — {0}, so
its integrals over all spheres as above are equal. We see that the RHS of
the proposed equality is a GL,(C)-invariant functional on A%‘_l, and any
such functional, by Theorem 1.4.3, should factor through the projection to
A"(k™)* ® A™(k™), i.e., through the residue map. This means the statement
holds up to a universal constant depending only on n. To see that this
constant is 1, we invoke the classical Martinelli-Bochner formula [GH], which
gives

jg Qz,2)dzy -+ dz, =

S2n—1

O

Proposition 1.5.9. Fach irreducible representation of GL,, enters into Aﬁ’ﬁ
with at most finite multiplicity.

Proof: As a GL,-module, Ap] = AP(V) ® A[;. By the Pieri formula [FH]
the irreducible components (V) of AP(V) ® X%(V) all satisfy 8 = a +
€, + -+ e, for some 1 < i; < --- < 4, < n. Here ¢; is the ith basis
vector. So the allowed [ situated in some fixed radius neighborhood of « in
Z"™ < R™. This means that tensoring a simple spectrum representation with

AP(V) gives a representation with finite multiplicities. So our statement
follows from Theorem 1.4.3. O
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Let E ~ @, C,®X%(V) be a representation of GL(V') with finite multi-
plicities (so C,, are finite-dimensional vector spaces). We define the restricted
dual of E to be

E* = @CEo*(V)"
Proposition 1.5.10. The (G L, -invariant) residue pairing
(a, B) — Res(a - B) : A7 ®x A’[@n*]p’"fl’q — k
gives an isomorphism A’[@n*]p’"fl’q — (AP

Proof: We first prove a weaker statement: (Af;ﬁ)* is isomorphic, as a G L,-

module, to A" 179 Because of the non-degenerate pairing AP(V) ®
A" P(V) — A™(V), the statement reduces to the isomorphism

This isomorphism follows at once from inspecting the irreducible components

of A‘[Jn] and A?n_]l_q given by Theorem 1.4.3. They are in bijection ¢ «» 37,
so that
(1.5.11) Bi=—1l—ay, i=1,...,n,

which means that X°(V) ~ A"(V)* ® (Z%(V))*.

We now prove that the residue pairing is actually an isomorphism as
claimed. As before, we reduce to considering the pairing
q n—l—q __ pn—1 __  An *
Ay ® Ay Apy — A"
Only the summands X%(V) < Ay, and YAV) < AE‘n_]l_q where a, # corre-
spond to each other as in (1.5.11), can pair in a non-trivial way. It remains
to show that they indeed pair non-trivially. If they pair trivially, then the
subspace X*(V') ¢ A?n] is orthogonal to the entire A?n_]l_q. The easiest way to
see why this is impossible, is to reduce (by the Lefschetz principle) to k = C.
In this case we can use the fact that AFn_]l_q is Ly-dense in Q"' 79(§2—1),

see Corollary 1.3.4, and the non-degeneracy of the Ly-pairing on Qg”(S 2=y,
O
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Proposition 1.5.12 (Algebraic Stokes formula). The residue functional Res :
Aﬁﬁ_l — k wvanishes on é’(A?n_]l’"_l) + 6(A%‘_2).

Proof: As before, the easiest proof is to reduce to k = C and to embed
Apsy into Q°*(C" — {0}). Then we can use the classical Stokes formula for
d = 0 + 0, noticing that elements of Aan]l’"fl are annihilated by ¢, while
elements of A”y;"fz are annihilated by 0.

A purely algebraic proof, by inspection of the possible relevant irreducible
components, is left to the reader. In this inspection we find that Aﬁﬁ_2 does
not contain the trivial representation, while A?n_]l’"_l does contain it but the
corresponding subspace is annihilated by @ (it represents H" (P~ Qn~1)).

O
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2 The residue class in cyclic cohomology

2.1 Cyclic homology of dg-algebras and categories

In this subsection we compare various definitions of cyclic homology of asso-
ciative dg-algebras without any restriction on the grading. Care is needed,
since existing treatments of some issues apply only to Z<g-graded algebras
and rely on spectral sequences which may not converge in the general case.

For general background on cyclic homology (ungraded and Z<-graded
cases), see [Lo].

A. General definitions. Our basic approach is that of Keller [Kel]. That
is, let (A, 0) be any associative dg-algebra over k, possibly without unit. The
Hochschild and the cyclic complexes of A, denoted CHo®(A) and CC.(A),
are defined similarly to what is described in [Lo| 5.2.2 for the Z<,-graded
case. That is, we form the total complex of the double or triple complex
obtained when we take into account the grading and differential on A. For
example,

CHoh(4) = Tot{-- 2> A% 2 A@ A % A}

The total complex here and elsewhere is always understood in the sense of
direct sums. The new phenomenon compared to the Z<g-graded case is that
direct sums can be infinite.

The definition of CC,(A) is similar. More precisely, let V' be a cochain
complex of k-vector spaces with a Z/(n + 1)-action, the generator of the
action denoted by t. We denote

1-t
—

vV},
(the horizontal grading situated in degrees < 0). Then
CCu(A) = Tot{-- > A2 25 (A® A)o —> Ac).

where the Z/(n + 1)-action on A®("*1) is given as in [Lo| (2.1.0), understood
via the Koszul sign rule.

The homology of CHoh(A) and CC,(A) will be denoted HH.(A) and
HC,(A). Each of these complexes has an exhaustive increasing filtration by
the number of tensor factors. This gives a convergent spectral sequence

B, = HC.(H2(A)) = HC.(A),
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and similarly for HH,(A). It follows that the functors HC, and HH, take
quasi-isomorphisms of dg-algebras to isomorphisms and so descend to func-
tors on the homotopy category of associative dg-algebras.

Lemma 2.1.1. Let V be a cochain complex of k-vector spaces with a Z/(n +
1)-action. Then the morphism Vo — Vgymiry from the last term to the
cokernel of (1 —t), is a quasi-isomorphism.

Proof: This is well known if V' in ungraded (Tate resolution). When V
is Z<o-graded, it follows from a spectral sequence argument, as V- has an
increasing exhaustive filtration with quotients V/i. To prove the general case,
it suffices to consider the case when k is algebraically closed. Assuming this,
we consider the abelian category dgVecth/ +1) formed by cochain complexes
with Z/(n + 1)-action.

Lemma 2.1.2. Fach object of dgVecth/("H) 1s isomorphic to a direct sum
of (possibly infinitely many copies) of the following indecomposable objects:

(1) A 1-term complex k (situated in some degree) on which Z/(n + 1) acts
via some character.

(2) A 2-term complex k Bk (situated in a pair of adjacent degrees) on
which Z/(n + 1) acts via the same character.

Lemma 2.1.2 implies Lemma 2.1.1 because the indecomposable objects
are bounded and so 2.1.1 holds for them.

Proof of Lemma 2.1.2: This is well known if n = 0 (i.e., if we consider
just cochain complexes with no group action). Now, given V' with action of
Z/(n+ 1), we first split it (as a complex) into a direct sum of eigencomplexes
V,, corresponding to the characters x of Z/(n +1). Then we decompose each
complex V, into indecomposables. O

Corollary 2.1.3. The complex CC,(A) is quasi-isomorphic to Connes’ com-
plex

CMA) = Tot{--- 2> A%}

7/3 —b’ (A® A)Z/z —b’ A}~

B. Morita invariance. For unital dg-algebras, Keller [Kel] proved that
cyclic homology is Morita-invariant. To formulate the results compactly, it is
convenient to extend the definition of Hochschild and cyclic complexes and
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cohomology to small dg-categories A (a unital dg-algebra is the same as a
dg-category with one object). That is, we define CI°"(A) to be the total
complex of the double complex

o _b) @ ®HOHIA az, a7,+l> b c > ® Hom;l(ao, a,0>,

ag,...,an€Ob(A) i=0 apEOb(A)

(here we put a,,1 := ag) and similarly for CC,(A).

We recall [To4] that a functor f: A — B is called a Morita equivalence,
if f, @ Perf4 — Perfg is a quasi-equivalence. Recall further that Perf 4
is essentially small, if A is small, and the canonical (Yoneda) embedding
v: A — Perf 4 is a Morita equivalence.

Proposition 2.1.4 (Keller, [Ke2]). (a) If f : A — B is a Morita equiva-
lence of small dg-categories, then HC,(f) : HC.(A) — HC,(B) is an

1somorphism.

(b) In particular, if A is an essentially small dg-category, then HC,(A")

where A" < A is an equivalent small dg-subcategory, are canonically
identified, and denoted HC,(A).

(¢) It follows that v induces an isomorphism HC.(A) — HC,(Perf 4).

(d) Therefore any dg-functor ¢ : Perf, — Perfg induces a morphism
¢y HCJ(A) — HC,(B) which is an isomorphism, if ¢ is a quasi-
equivalence.

Let us note a more elementary instance of this proposition, cf. [Lo] 1.2.4
and 2.2.9.

Proposition 2.1.5. Let A be a unital dg-algebra and r = 1. The collection
of the trace maps

Mat, (A)2+) ~ (Mat, (k) @, A)"T 25 480D
tran (ot @+ @ Upan) = tr(ug- - uy)ag® - @ an,
defines quasi-isomorphisms of complexes
Cloch(Mat, (4)) = CHoM(4),  CC,(Mat,(A)) = CC,(A).

The morphisms on CH°N and CC,, induced by the embedding A — Mat,.(A),
are quasi-inverse to tr. ]
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C. Localization sequence.

Definition 2.1.6. A localization sequence of perfect dg-categories is a ho-

motopy cofiber sequence
A—B—C

in the Morita model category of dg-categories (see Appendix), such that the
functor A — B is (quasi-)fully faithful.

Remark 2.1.7. Given such a localization sequence, the homotopy category
[A] is a thick subcategory of the triangulated category [B] and [C] is equiv-
alent to the Verdier quotient [B]/[A].

Theorem 2.1.8 (Keller, [Ke2]). A localization sequence of perfect dg-categories
A — B — C induces a cofiber sequence

CC(A) — CC(B) — CC(C)
in the category of complexes. In particular we get a long exact sequence

- HCy(A) — HCW(B) — HCW(C) — HCp1(A) — -+

2.2 Cyclic homology of schemes

A. Sheaf-theoretic definition and Hodge decomposition. We recall
the basic constructions and results of Weibel.

Definition 2.2.1 [W1].Let X be a k-scheme. Denote by C§" the com-
plex of sheaves on the Zariski topology of X obtained by sheafifying (term
by term) the complex of presheaves U — CHB(O(U)). We define the
Hochschild homology of X as the hypercohomology of this complex:

HH(X) = H*(X,cH(X)).

We also define the complex of sheaves CC, x as the sheafification of the com-
plex of presheaves U — CC,(O(U)), and the cyclic homology of X as

HC(X) = H*(X, Tot(CC. x)).
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So HH and HC fit into Mayer-Vietoris sequences by definition. Weibel
proved that for an affine scheme X = Spec(A), one has

HH(X) = HH(4), HC(X) = HC(A).

Let us also recall here that the cyclic homology of a commutative algebra
has a Hodge decomposition (also called A-decomposition, see [Lo]):

HH.(A) = P HHY(A) and HC.(A) = P HCY(A)
Weibel extends this decomposition to the case of schemes and describes it in
term of HKR~isomorphism in the smooth case.

Theorem 2.2.2 ([W2]). Let X be a qcgs (quasi-compact and quasi-separated)
k-scheme. There are Hodge decompositions

HH.(X) = PHHY(X) and HC.(X) = @HCY(X).

Moreover, if X is smooth, then we have for any i and k

HH)(X) = H7*(X, Q%)  and  HCY(X) = H**(X,QF).
B. Relation to HC of dg-algebras and categories. We first recall the
following result of Keller.

Theorem 2.2.3 ([Ke3]). For any qcgs scheme X we have
HH,(X) ~ HH,(Perf(X)) and HC.(X) ~ HC,(Perf(X)),
where Perf denotes the dg-category of perfect complezes.

Next, we use this result to relate cyclic homlogy of schemes with that of
dg-algebras of derived functions.

Definition 2.2.4. A scheme U is called quasi-affine if it is isomorphic to a
qcgs open subscheme of an affine scheme.

The following will be used in the setup leading to Theorem 2.3.5.

Theorem 2.2.5. For any quasi-affine scheme U, we have

HC.(U) ~ HC,(RT(U, 0)).

33



Proof: By Theorem 2.2.3 and Proposition 2.1.4, it is enough to show that
Perf(X) is equivalent to Perfzp,0). Because perfect complexes (resp. dg-
modules) are intrinsically characterized as compact objects in the derived
category of all quasicoherent sheaves (resp. all dg-modules), we reduce to:

Proposition 2.2.6. Let U be a quasi-affine scheme. The derived category
of quasi-coherent sheaves on U 1is equivalent to the derived category of dg-
modules on the cdga RI'(U, O).

Note that this statement is not true for more general schemes (e.g., for
U="Pr").

Proof of the proposition: Let us denote by A any model for the cdga RI'(U, O).
Let u: U — X = Spec B be an open immersion. In particular, we get a map
of cdgas p: B — A. It induces an adjunction of co-categories

p*: dgMody < dgMod 4 @ p.

We will prove the functor p, to be fully faithful and its essential image to
coincide with that of u,. Recall that both dgMod , and dgMod are stable
oo-categories. In particular, p, preserves finite colimits because it preserves
finite limits. Moreover, filtered colimits in both dgMod, and dgMody are
computed on the underlying k-complexes. It follows that p, preserves all
small colimits.

The element A is a compact generator of dgMod 4 and both p, and p* pre-
serve small colimits. To show that p, is fully faithful, it suffices to show that
the adjunction map p*p,A — A is an equivalence. This map is equivalent to
the multiplication map A ®% A — A.

Lemma 2.2.7. The multiplication map AQL A — A is a quasi-isomorphism.

Proof of the lemma: Let (f;);c; denote a finite family of elements of B such
that U = | J X}, = X, where X}, = Spec(B[f;']). For any non-empty subset
J < I, let By denote the (derived) tensor product

ieJ

By =" B[f].

By definition, the cdga A is equivalent to the homotopy limit holim Bj.

g#JcI
The derived tensor product A ®% A — A is then equivalent to

A®p A ~ holim B, ®jp holim By ~ holim holim (B, @4 By) =

~ holim Jhohm J,B 7o =~ holim Jhohm e J”B g# =~ holim JB g ~ A
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where p is induced by the multiplication maps. Lemma 2.2.7 is proved.

To continue with Proposition 2.2.6, we can now identify dgMod 4 with the
full stable and presentable co-subcategory of dgMod generated by A. We
remark that the derived category of quasi-coherent sheaves on U identifies,
through the functor u,, with a full stable and presentable co-subcategory of
dgMod g containing u, Oy ~ RI'(U, O) ~ A. We hence get an adjunction

F = p*u*: choh(U) = dgMOdA G = U*p*

where the functor G is fully faithful. It therefore suffices to prove that F' is
conservative. Let then £ € Dycon(U) such that F'(E) = 0. For any ¢, if we
denote by v;: Spec(B;) — U the Zariski embedding, we get

vH(E) = F(E)®4 B = 0.

As {Spec(B;)}icr is a cover of U, we deduce that E is acyclic and hence that
the functor F' is conservative. Proposition 2.2.6 and therefore Theorem 2.2.5,
is proved.

2.3 The residue class pe HC'(A?)

A. Definition via a cyclic cocycle. Let (A%, ) ~ RI(A", O) be the
commutative dg-algebra from (1.2.5). We recall that A? is included into
the doubly graded differential algebra (A%*,d,d) ~ RI(A" Q®): we have
Ar = Abe.

Consider the (n + 1)-linear functional

(2.3.1) re (A ko e (fo, .. fa) = Res(fodfy---0f,).

Here 0f; € AL* and Res : A"~ — k is the residue map from (1.5.5). By

definition r(fo, ..., f,) is assumed to be equal to 0 unless fodf; - - 0f, lies in
A=l

Proposition 2.3.2. The functional r is a degree 1 cocycle in the Connes
cochain compler Cy(A2) = Homy (C2(A2), k).

Proof: Degree 1: The expression fy0f;---0df, always lies in A»*. For it to
lie in A®"~1 we must have > deg(f;) = n — 1. The horizontal grading of
(A2)®+1) in the Hochschild chain complex of A, is (—n). So r, as an element
of the dual complex, has degree +1.
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Cyclic symmetry: With the Koszul sign rule taken into account, the condition
for r to lie in C}(Ap) is

P(fo, ooy fo) = (—1)ymHdealolldesliystdestfly (0 f, 0 fy).

This follows at once from the Leibniz rule for ¢ and the fact that Res vanishes
on the image of 0.

r is a cocycle: As C5(A?) is a subcomplex in Cf, (A7), we need to show
that r is closed under the differential in Cf, . This differential is the sum
B+ (7*, where 3 is the Hochschild cochain differential, and 0" is induced by
the differential @ in A%. We claim that both 8(r) and @ (r) vanish. These
statements follow from the Leibniz rule for ¢ and 0 respectively and the fact
that Res vanishes on the images of both ¢ and 0. 0J

We denote by p € HC'(A?) the class of r and call it the residue class.
By construction, p is GL,-invariant.

B. Definition via the Hodge decomposition. By Theorems 2.2.5 and
2.2.2, we have the Hodge decomposition

(2.3.3) HC\(Ar) ~ HC,(A") = @HCY(A") ~ @HZ (A", Q).
i i=1

We consider the projection to the summand
(2.3.4) HC!(A") = H*7'(A", Q") = H*'(A",Q°) = k,
which is the (2n — 1)-st de Rham cohomology of An (e.g., for k = C, the
(2n — 1)-st topological cohomology of C™\{0} ~ S?*~1).

The following will be used in Theorem 4.3.5.
Theorem 2.3.5. The class in HC'(A?) given by the projection of (2.3.3)

to (2.3.4), is the unique, up to scalar, GL,-invariant element in HC'(A?).
In particular, it s proportional to the residue class p.

Proof: We analyze the G'L,-module structure of the H21(A", QS)). Ap-
plying the spectral sequence starting from HP(A", Q) and converging to
H? 1 (A", QS"), we reduce to the following statement.
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Proposition 2.3.6. The vector space HP(A™,Q4) has no GL,-invariants
unless p=q =0 orp=mn—1, ¢ =n, in which case the space of invariants
15 1-dimensional.

Proof: We have, G L,-equvariantly,
HP(A™,Q7) = AU(V) @« HP(A", 0),

which vanishes unless p = 0 or p =n — 1.
If p =0, then

H°(A™,0) = H(A",0) = P 54V

d=0

and AY(V) ® S¥(V) has no GL,-invariants unless ¢ = d = 0.
If p = n— 1, then Propositions 1.4.7 (b) and (c) imply that

H™ YA, 0) = A"(V*) @ P SY(V*), and therefore

d=0
H Y A", Q1) = D AYV)@A"(VF) ® S4(V™),
d=0
which has no invariants unless ¢ = n and d = 0. O

3 Higher current algebras and their central
extensions

3.1 Cyclic homology and Lie algebra homology

A. Reminder on the dg-Lie algebra (co)homology. Let [* be a dg-Lie
algebra with differential 0 and bracket ¢ : A2l — [. The Chevalley-Eilenberg
cochain complex of [* is the symmetric algebra CE*(I) = (S*(I°[1]))* equipped
with the algebra differential dy;, + D, where:

e D is the algebra differential on the symmetric algebra which extends
(2[1])* by the Leibniz rule.

e dy; is the algebra differential given on the generators by the map (s o
c[2)* : (I[1])* — (S2(I°[1]))* (i.e., extended from the generators by
the Leibniz rule). Here we suppressed the notation for decy from (A.2).
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The cohomology of CE*([) (equipped with the total grading) will be de-
noted H, (I).

In fact, CE*(I) is dual to the Chevalley-Filenberg chain complex CE4(l) =
S*(I*[1]) whose differential is defined by obvious “undualizing” of the for-
mulas above. In other words, it can be described in terms of the coalgebra
structure on CE,(I). We have an increasing exhaustive filtration of CE,([)
by the number of tensor factors which gives a convergent spectral sequence
HY(H2(1)) = H*°(1). This implies that H.*°, and therefore Hy;,, are quasi-
isomorphism invariant, in particular, descend to functors on the homotopy
category [dgLie,|. The following is then standard.

Proposition 3.1.1. We have a canonical identification
Homygerie, ) (L k[n]) = HyZ'(1). O
In particular, H?, (I) classifies central extensions of I.

B. Loday’s homomorphism 6. Let A be an associative dg-algebra (pos-
sibly without unit). The graded commutator

[a’ b] = ab— (_1)dog(a)-deg(b)ba
makes A into a dg-Lie algebra which we denote Ap;.. If A is ungraded, then
Hy(Aue) = HCy(A) = A/[A, A],

Extending [Lo] (10.2.3) straightforwardly from the ungraded case, we include
this in the following.

Proposition 3.1.2. For any associative dg-algebra A there is a natural mor-
phism of complezes

HA . CE.+1(AL16) — C.A(A),
ag A -+ A a, — Z sgn(o)[(Id,0)* (ap ® - ® an)].

o€Sy

Here, for o € S, we denote by (Id, o) € S,+1 the permutation of {0,1,...,n}
fizing 0 and acting on 1,2,...,n as . The notation [x] means the class of =
in the coinvariant space of Z/(n + 1). In particular, this gives natural maps

HA = 9;4 . H}iel (ALie> — HCZ(A)
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3.2 Higher current algebras and their central exten-
sions
Let g be a finite-dimensional reductive Lie algebra over k. We consider the

dg-Lie algebra )
gn = 9@ A, ~ RI(A",g®0).
We call g7 the nth derived current algebra associated to g. For n = 1 we get

the Laurent polynomial algebra g, = g[z, 271].

Let P € S""(g*)? be an invariant polynomial on g, homogeneous of
degree (n + 1). We will also consider P as a symmetric (n + 1)-linear form
(o, ..., Ty) — P(xg,...,x,) on g.

Theorem 3.2.1. (a) Consider the functional vp : (g5[1]))®" ) — k given
by
TP ((20®f0) (220 /1)@ - ®(4n®fn)) = P, ..., 2n)-Res(fo-0fin---ndfyn).

Here x, € g, f, € A2, 0 is the degree (1,0) differential in A2* > A?, and
we consider Res as a functional on the entire A}® vanishing on all AP with

This functional is of total degree 2, is symmetric and is annihilated by both
differentials dy;. and D. Therefore it is a cocycle in CE*(g?) and defines a

class [vp] € Hi,o(gr).

(b) Assume g semisimple. The correspondence P — [yp| given an em-
bedding S™+(g*)s < H2,(g5).

The cocyles constructed in theorem 3.2.1, will be used in the local Riemann-
Roch theorem (Corollary 4.3.10).

Example 3.2.2.let g = gl, and Py (z) = tr(z"™!) or, in the polarized form,
1
Ptr(fﬁo, e ,,’L’n) = ﬁ Z tI‘([L"S(O) N xs(n))

In this case yp, is the image of the residue cocycle p € C}(A?) under the
composite map

1 oy tr¥ 1 ° GA;L 2 °
Ci(47) — Cx(gl(47)) — CE(gl.(A})),
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where tr* is dual to the trace map trys , from Proposition 2.1.5, and 4. is
dual to the map 64+ from Proposition 3.1.2. In particular, we see that vp,
is a Chevalley-Eilenberg cocycle satisfying all the conditions of part (a) of
Theorem 3.2.1.

Proof of Theorem 3.2.1: (a) Let ¢ : g — gl be a representation of g. Take
Py () = tr(¢(z)™ ™). In this case vp, , is induced from vp, € CE*(gl,(4}))
by ¢ and therefore satisfies the conditions of (a). Further, notice that ~p
depends on P in a linear way. Now, the statement follows from the next
lemma, to be proved further below.

Lemma 3.2.3. Fizm > 0. Any P € S™(g*)? is a linear combination of
polynomials of the form Py, : x — tr(é(x)™).

(b) Note that CE*(g;) is the total complex of a bicomplex CE**(g?) with
CE™(g;) = Homy (A'g;, k),

and with differentials dr;, and D. We consider the corresponding spectral
sequence

(3.2.4)  EY* = HY'(CE*(g;)) = Hom{ (A“H2(g}). k) = HY(g2).

Since g? has 0-cohomology only in degrees 0 and (n—1), the spectral sequence
is supported in the fourth quadrant, on the horizontal lines

q=0,p=I1-n),1>0.

Since vp is annihilated by both differentials, it gives a permanent cycle in
E;"H denote it (yp). For the class [vp] in HZ, (g°) to be zero, (yp) must
be killed by some differential of the spectral sequence. From the shape of it,
the only possible such differential is d,, : EX' — E "1 But, denoting
glz] = gz, ..., 2,], we have

B = HE(HYS) = Hilol=]) = (al=1/ (ol ol=1])"

and this vanishes for a semi-simple g. Therefore E%! = 0 and (vyp) cannot
be killed. Theorem 3.2.1 is proved.

Proof of the lemma 3.2.3: Consider the completion g’(g*), i.e., the ring of
formal power series on g near 0, with its natural adic topology. To any
representation ¢ of g we associate the invariant series

Qule) = t(e") = 3] L Pu(e) € (oY)

m=0
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By separating the series into homogeneous components, the lemma is equiv-
alent to the following statement.

Lemma 3.2.5. The k-linear space spanned by series Qu(x) for finite dimen-
sional representations ¢ of g, is dense in S*(g*)®.

Proof of Lemma 3.2.5: Let G be a reductive algebraic group with Lie algebra
g. The exponential map exp : g — G identifies S *(g*) with (’)G,l, the com-
pleted local ring of G at 1, in a way compatible with the adjoint g-action on
both spaces. Now, k[G], the coordinate algebra of G, is dense in O¢ ;. Let
® : G — GL, be an algebraic representation of G. Then the character tr(®)
is a g-invariant element in k[G]?, and such elements span k[G]9. Therefore
the space spanned by the tr(®), is dense in @%,1. If now ¢ is the representa-
tion of g tangent to ®, then the image of tr(®) under the above identification

o @?;,1 — S*(g*)9, is precisely the series Qs(x). So the space of such

series is dense in S*(g*), as claimed. O

Example 3.2.6 (Heisenberg dg-Lie algebra). Let g = gl; (abelian) and
P(x) = 2™, In this case the (2-)cocycle

Y for-oifu) = Res(foofr---0fn)

defines a central extension #,, of the abelian dg-Lie algebra g? = A;. The
dg-Lie algebra H,, is the n-dimensional analog of the Heisenberg Lie algebra
associated to the vector space k((z)) equipped with the skew-symmetric form

[fo, f1] = Res(fodf1).

4 The Tate extension and local Riemann-Roch

4.1 Background on Tate complexes

The concept of a Tate space being elementary, in this section we give an
equally elementary treatment of the corresponding derived category. Some
of the statementswe list, are particular cases of more general results, which
we indicate.

A. The quasi-abelian category of linearly topological spaces. We
will use the concept of a quasi-abelian category [Sch], a weakening of that of an
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abelian category. In particular, in a quasi-abelian category .4 any morphism
a: V — W has categorical kernel Ker(u), cokernel, image Im(a) = Ker{lWW —
Coker(a)} and the coimage Coim(a) = Coker{Ker(a) — V'} but the canonical
morphism Coim(a) — Im(a) need not be an isomorphism. If it is, a is called
strict.

As pointed out in [Sch], any quasi-abelian category A has an intrinsic
structure of exact category in the sense of Quillen.

Example 4.1.1. Let TopVect, be the category of Hausdorff linearly topo-
logical k-vector spaces with a countable base of neighborhoods of 0. Here k
is considered with discrete topology. See [Le], Ch. 2 for background; in this
paper we additionally impose the countable base assumption.

For a morphism a : V' — W, the kernel Ker(a) < V' is the usual kernel
with induced topology, Im(a) is the closure of the set-theoretic image, and
Coim(a) is the set-theoretical quotient of V' by Ker(a) with the quotient
topology.

The category TopVect, is analogous to several categories treated in the
literature [Prol] [ProS] [Pro2]. In particular, arguments similar to [Pro2]
Cor. 3.1.5 and Prop. 3.1.8, give:

Proposition 4.1.2. (a) The category TopVect, is quasi-abelian.

(b) A morphism a : V. — W in TopVecty is strict, if its set-theoretical
image is closed and a is quasi-open. That is, for any open subspace U < 'V
there is an open subspace U' < W such that a(U) 2 a(V) n U". O

Every quasi-abelian category A gives rise to the (bounded) derived cat-
egory D?(A) equipped with a canonical t-structure whose heart ¥ A (called
left heart in [Sch]), is a natural abelian envelope of A. It is equipped with a
fully faithful left exact embedding h : A — YA (so h preserves kernels but
not cokernels).

Objects of ¥ A can be thought of as formal “true cokernels” of monomor-
phisms a in A and in fact have the form Cokero 4(a) (actual cokernels in ¥ A).
See [Sch] Cor. 1.2.21 or, in the more general framework of exact categories,
[La], Def. 1.5.7.

Example 4.1.3. The formal quotient k[[¢]]/k[t] represents an object of the
abelian category “TopVect,. The short exact sequence

0 — k[t] — K[[t]] — K[[¢]]/k[t] =0

represents a nontrivial extension in ¥ TopVect,.
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One can identify D°(A) with the localization
(4.1.4) D*(A) ~ K°(A)[qis™"]

of K®(A), the homotopy category of bounded complexes over A, with respect
to quasi-isomorphisms (understood in the sense of complexes over ¥ A), see
[La] [Sch]. Further, the natural functor D°(A) — D!(YA) into the usual
bounded derived category of A, is an equivalence ([Sch| Prop. 1.2.32).

Remarks 4.1.5. (a) We note that K°(A) has a natural dg-enhancement: it
is the H%category of the dg-category of bounded complexes over A. There-
fore (4.1.4) can be used to represent D°(A) as the H°-category of a dg-
category, by using the Gabriel-Zisman localization for dg-categories ([To5],
§2.1) which is the dg-analog of the Dwyer-Kan simplicial localization for
categories [DK1|[DK2].

(b) The concept of a quasi-abelian category is self-dual. Therefore there
exist another abelian envelope AY = (Y(A°))°P (the right heart) whose
objects can be thought as formal “true kernels” of epimorphisms in A, and
a right exact embedding A — Y A. In our example A = TopVect,, the
categorical kernels coincide with set-theoretical ones so it is natural to use
the left heart to keep the kernels unchanged.

Proposition 4.1.6. Let A be quasi-abelian. A bounded complex V'* over A
has all H'(V*) e A < YA, if and only if all the differentials are strict. In
particular, for a monomorphism a :'V — W in A, the cokernel Cokero 4(a)
lies in A if and only if a is strict.

Proof: See [Prol], Cor. 1.13. O
B. Tate spaces and Tate complexes. For V e TopVect, we have the
topological dual V¥ = Hom, (V, k) (continuous linear functionals, with weak
topology). The functor V +— V'V is not a perfect duality on TopVect, ; how-

ever, the canonical morphism V — VvV is an isomorphism on the following
full subcategories in TopVect,:

(1) The category Vecty of discrete (at most countably dimensional) vector
spaces V ~ @,_, k.

(2) The category LCyx of linearly compact spaces V =~ [ [..; k.
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(3) The category Tay of locally linearly compact spaces ([Le], Ch. 2, §6)
which we will call Tate spaces. Each Tate space V' can be represented
as V ~ Vi@ Ve with V¥ e Vecty and V¢ e LCy.

Thus, the topological dual identifies
Vect” ~ LCy, LC® ~ Vecty, Ta ~ Tay.

In particular, since Vecty is abelian, so is LCy, while Tay is a self-dual quasi-
abelian (in particular, exact) category, cf. [Be2] [BGW1]. Let us add two
more examples to the above list:

(4) The quasi-abelian category ILCy formed by inductive limits of linearly
compact spaces.

(5) The quasi-abelian category PVecty formed by projective limits of dis-
crete vector spaces or, what is the same, objects in TopVect which,
considered as topological vector spaces, are complete.

Example 4.1.7. The space of Laurent series k((z2)) = k[[z]][z7!] is an object
of Tay. The localized ring k|[[z1, 22]][(2122) '] is an object of ILCy but not of
Tay. Similarly, the ring k[[z]][2*][(22*) '], see §1.2 C, is an object of ILCj,.

Proposition 4.1.8. We have
ILC}? ~ PVecty, PVecty” ~ILCy, Tay, = ILCx n PVecty,
the first two identifications given by forming the topological dual.

Proof: A more general statement appears in [BGHW] Prop. 2.1. For conve-
nience of the reader we give here a direct proof.
The first two statements are obvious. Let us prove the third statement.
It is clear that Tay < ILCy n PVecty. Let us prove the inverse inclusion.
Suppose
Vo= lim {--- 5V, 5V, 5V} e PVecty

is represented as the projective limit of a diagram (V;) of discrete vector
spaces and surjections ¢;. Then V is Tate, if and only if Ker(g;) is finite-
dimensional for all but finitely many 7. Suppose this is not so. Then we can,
without loss of generality, assume that all Ker(g;) are inifinite-dimensional,
by composing finite strings of the arrows in (V;) and getting a diagram with
the same projective limit.

44



With this assumption, suppose that V = li_r)nj L; where (L;)j>o is an
increasing chain of linearly compact subspaces. Then, for each j,

Lj = lin {_, ‘/2(1) N Vl(j) N Vo(j)}

where V;-(j ) is the image of L; in V;, a finite-dimensional subspace in V;. We
now construct an element v € V, i.e., a compatible system (v; € V;), by a
version of the Cantor diagonal process. That is, we take vy = 0, then take
vy from Ker(q;) (an infinite-dimensional space) not lying in Vl(l) (a finite-
dimensional space). Then take vy € Vo with ¢a(vy) = v in such a way that
vy ¢ V2(2) (this is possible since Ker(gs) is infinite-dimensional), and so on.
We get an element (v;) of the projective limit with v; ¢ Vi(i) for all i. Such
an element cannot lie in the union of the L;. O

Definition 4.1.9. (a) A Tate complex over k is a bounded complex V* over
ILCy whose cohomology groups H'(V*) € YILCy belong to ¥Tay. We denote
by Tatey the full dg-subcategory in C*(ILCy) formed by Tate complexes.

(b) A Tate complex V* is called strict, if all the H'(V'*) belong to Tay <
“Tay or, what is the same, if its differentials are strict (Prop. 4.1.6).

Note that Tatey is a perfect dg-subcategory, i.e., [Tatey], the correspond-
ing cohomology category, is triangulated and closed under direct summands,
see Appendix A.C.

Example 4.1.10. The Jouanolou complex A? is a strict Tate complex. More
precisely, the topology on each AP is given by the convergence of series. An
explicit representation of AP as an inductive limit of linearly compact spaces
is given by the filtration of Corollary 1.2.8. Thus A? is a complex over ILC.
As we have seen, its cohomology groups are Tate vector spaces. Forn > 0, we
have only two cohomology spaces: H°, linearly compact and H"~!, discrete.

More generally, for any finite dimensional vector bundle E on D;, the
complex A?(F) is naturally made into a strict Tate complex.

C. Tate complexes, algebraically. For a category C we denote by Ind(C)
and Pro(C) the category of countable ind- and pro-objects in C, see [AM], [KS]
for general background. In particular, we will use the notation “lim ” w10
for an object of Ind(C) represented by a filtering inductive system (C;)es
over C. Similarly for “lim” C;, an object of Pro(C).
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Assume C is abelian. Then so are Ind(C) and Pro(C). In this case we
denote by Ind*(C), Pro®(C) the full subcategories formed by ind- and pro-
objects which are essentially strict i.e., isomorphic to objects “h_I)n”ie[Ci,
resp. “lim” C; where (C;) is an filtering inductive (resp. projective) system
formed by monomorphisms (resp. epimorphisms). These are quasi-abelian
but not, in general, abelian categories.

Let Vectﬁ be the category of finite-dimensional k-vector spaces.

Proposition 4.1.11. (a) We have
Ind®(Vect]) = Ind(Vect]) ~ Vecty, Pro®(Vect]) = Pro(Vect]) ~ LCy.

(b) Further, the taking of inductive or projective limits in TopVect, gives
identifications

Ind*(LCy) ~ ILCy, Pro®(Vecty) ~ PVecty.

(¢) The abelian envelopes of the semi-abelian categories in (b) are identi-
fied as
“ILCy ~ Ind(LCy), YPVecty ~ Pro(Vecty)

(the categories of all, not necessarily strict, ind- and pro-objects).

Proof: (a) This is well known. For instance, because of the Noetherian
and Artinian property of Vectﬁ, and ind- or pro-object in this category is
essentially strict. Part (b) is also clear.

(c) Let us prove the first statement, the second one is dual. Consider the
abelian category A of arbitrary chains of morphisms (inductive systems)

(4.1.12) V={Vp—Vi—Vy— -}

in LCy, ie., of graded k[t]-modules in LCy. Let A° < A be the semi-
abelian subcategory formed by chains of monomorphisms, i.e., torsion-free
k[t]-mod-ules. Every object V' of A can be represented as the cokernel of a
monomorphism ¢ in A®. More precisely, we have a short exact sequence

(4.1.13) 0K -5 Veuk[t] -V —0.

Here V®yk|[t] is the free k[t]-module generated by V" as a graded vector space,
¢ is the canonical map given by the k[t]-module structure and K = Ker(c).

This implies that any object in Ind(LCy) is the cokernel of a monomorphism
in Ind*(LC). O
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Proposition 4.1.14. (a) The objects of ILC, < VILC) = Ind(LC}) are
projective. In particular, Tate spaces are projective objects in the abelian
category ¥ Tay.

(b) The abelian categories Ind(LCy), Pro(Vecty) have homological dimen-
sion 1 (i.e., the Ext™? in these categories vanish,).

Proof: We start with three lemmas. As in the proof of Proposition 4.1.11(c),
let A be the category of diagrams as in (4.1.12). We have a functor

“lim” @ A — Ind(LCy), V — “lim”V;.

Lemma 4.1.15. “lim 7 s an ezact, essentially surjective functor. Further-
more, any epimorphism in Ind(LCy) is isomorphic (in the category of arrows)
to an image of an epimorphism in A.

Proof of the lemma: Exactness of “lim” and the statement about epimor-
phisms are general properties of ind-categories of abelian categories, see [KS],
Lemmas 8.6.4 and 8.6.7. Next, any countable filtering category admits a co-
final map from the poset Z, = {0,1,2,...}. This means that any countably
indexed ind-object is isomorphic to the object of the image of “lim” as
above. O

Lemma 4.1.16. Objects of A° are projective in A.

Proof of the lemma: A diagram V' as in (4.1.12) formed by embeddings, is a
free graded k[t]-module in LCy. Indeed, since LCy = Vecty” is a semisimple
abelian category, the embedding V;_; — V; admits a direct sum complement
W;. Considering W = (W) as a Z,-graded object in LCy, we see that
V ~ W ®x k[t] is free. This, and semisimplicity of LCy, implies projectivity
of V.

]

Let us call an object V' € A essentially strict, if “lim” (V') is an essentially
strict object of Ind(LCy), i.e., is isomorphic to “lim " (M) where M e A°.

Lemma 4.1.17. If V € A is essentially strict, then there is M € A° and
an epimorphism q : V. — M in A such that “lim "(q) is an isomorphism in
IHd(LCk)

Proof of the lemma: For each i consider the diagram of epimorphisms

Vi — Im{V; = Vi — Im{V; = Vi) — -
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If V is essentially strict, these epimorphisms eventually become isomor-
phisms, so the terms of the diagram stabilize to some M; € LCy, and we
get the diagram of monomorphisms

M == {M0—>M1—>}

We see that M € A° equipped with a natural epimorphism ¢ : V' — M in A
which induces an isomorphism on the “lim”. O

We now prove part (a) of Proposition 4.1.14. Let f : A — B be an
epimorphism in Ind(LCy) with B essentially strict. We prove that f splits.
By Lemma 4.1.15, f is isomorphic to f' = “lim”(g) where g : N — V
is a surjection in A. It is enough to prove that f’ splits. Now, V € A is
essentially strict, so by Lemma 4.1.17, there is a surjection ¢ : V. — M in
A with M € A® and such that “lim”(g) is an isomorphism. It is enough
therefore to prove that the epimorphism f” = “lim”(gg) splits in Ind(LCy).
But qg : N — M is a surjection in A with M projective. So qg splits in A
and therefore f” splits in Ind(LCy). This proves part (a).

Part (b), follows by considering the 2-term resolution (4.1.13). Proposi-
tion 4.1.14 is proved.

Corollary 4.1.18. (a) Every object of D*(ILCy) ~ D*(YILCy) is quasi-
isomorphic to its graded object of cohomology equipped with zero differential.
(b) The triangulated category [Tatey] is equivalent to the D°(¥Tay).

(c) Any strict Tate complex V* can be split (in ILCy ) into a direct sum
of complexes V* = H* @ E*, where E* is exact and H® has zero differential
(and is thus a graded Tate space isomorphic to H*(V'*).)

Proof: Part (a) follows from Proposition 4.1.14(b) and the following well
known fact that can be proved by induction on the length of the complex.

Lemma 4.1.19. Let B be an abelian category of homological dimension 1.
Any object V* € D*(B) is quasi-isomorpic to H*(V*) with zero differential.
]

Let us prove part (b) of Corollary 4.1.18. For a strictly full abelian subcat-
egory B in an abelian categpry C let D%(C) < D®(C) be the full subcategory
formed by complexes over C with cohomology in B. We use the following.

Lemma 4.1.20. If both B and C have enough projective, then the natural
functor D*(B) — D%(C) is an equivalence. O
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To continue with the proof of part (b) of Corollary 4.1.18, we notice
that Proposition 4.1.14(a) means that [Tatey]| is the full category in the
homotopy category of complexes over YILCy formed by complexes of strict
(hence projective) objects with cohomology lying in ¥ Tay. For two complexes
of projective objects, their Hom in the homotopy category is the same as their
Hom in the derived category. Because of this and of the 2-term projective
resolution of every object of ILCy, we conclude that [Tatey] is identified with
D%Tak(ILCk). Now, “Tay has enough projectives (the actual Tate spaces),
so our statement follows from Lemma 4.1.20.

Finally, let us prove part (c¢) of Corollary 4.1.18. A strict Tate complex
is a complex of projective objects in YILCy whose cohomology objects are
projective in “Tay and in “ILCy. Therefore it has a splitting as claimed.
Corollary 4.1.18 is proved.

Inside Tatex we have the full dg-subcategories: Perfy, complexes with
finite-dimensional cohomology; Dy, complexes with discrete cohomology; Cy,
complexes with linearly compact cohomology. Thus Perfy, = Cyx n Dy and
the associated cohomology categories are identified as

[Perfy | ~ D°(Vect]), [Dy]~ D"(Vecty), [Ck]~ D*(LCy).

Proposition 4.1.21. [Tatey|is the smallest strictly full triangulated sub-
category in DP(ILCy) which contains [Dy], [Cyx] and is closed under direct
summands.

Proof: Let T be the smallest subcategory in question. Then [Tatex| < T,
because any object of the quasi-abelian category Tay is a direct sum of an
object from Cy and an object from Dy. Conversely, ¥ Ta, = YILCy is closed
under extensions. Therefore forming cones and direct summands, starting
with Ob(Cx) u Ob(Dy) will always give complexes whose cohomology objects
lie in YTay. O

4.2 Tate objects in dg-categories

A. Ind- and pro-objects in dg-categories. For background on ind-
and pro-objects in a (stable) co-category C we refer to [Lub], §5.3. In this
paper we consider only ind- and pro-objects represented by countable filtering
diagrams. Such objects form new oo-categories Ind(C), Pro(C). Thus, objects
of Ind(C) can be represented by symbols “holimj.; =; where I is a countable
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filtering co-category and (x;)es is an co-functor I — C. Similarly, objects of
Pro(C) can be represented by symbol “holimj.; y;, where I is as before and
(yi)ier is an co-functor 1°? — C.

We apply these concepts to dg-categories by converting them to k-linear
oo-categories by using the dg-nerve construction [Cl|[Fao]. The resulting
(countable) ind- and pro-categories associated to a dg-category A will be
denoted Ind(A) and Pro(A). They are still k-linear co-categories that we
can and will see as dg-categories. We note that, with this understanding,
the dg-categories Ind(.A) and Pro(A) are perfect, whenever A is perfect (see
Appendic A.C for the meaning of “perfect”). Let us point out the following
more explicit description.

Proposition 4.2.1. Let A be a dg-category. Then:

(10) Ind(A) is quasi-equivalent to its full dg-subcategory whose objects are
“holim” x;, where

() = {xoﬂxlﬂ:@&---}

is a diagram consisting of objects x; € A, © = 0 and closed degree 0
morphisms fi i1 1 T = Tigp1.

(11) We have quasi-isomorphisms (“e-0 formula”):
Homfnd(A)(“holim”l'i, “holim”y;) =~ holim, h_)olimj Hom’ (25, y;),

where the homotopy limits on the right are taken in the model category
dgVect, of complezes.

Remarks 4.2.2. (a) The holimj in (I1) is the same as the naive inductive
limit in dgVect,, see Proposition A.3(a).
(b) By duality we get a description of Pro(A) = Ind(.A°)° in terms of

symbols “holim”z; where (x;) is a diagram of objects and closed degree 0
morphisms in the order opposite to that of (10).

Proof of Proposition 4.2.1: By definition, objects of Ind(.A) are represented
by co-functors I — A where [ is a filtering oco-category. In our setting we
assume that Ob(7) is at most countable. As in the classical case, any filtering
I admits a cofinal co-functor from a filtering poset ([Lu5|, Prop. 5.3.1.16),
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and in the countable case we can take this poset to be Z,. Now, the category
corresponding to the poset Z,, is freely generated by the elementary arrows
1 — i + 1. Therefore any co-functor = : Z, — A can be replaced by an
honest functor obtained by extending x from these elementary arrows. Such
functors are precisely the data in (I0). Finally, the appearance of the “e-0
formula” in (I1) from conceptual properties of Ind(A) is explained in [Lub],
p-378. O

B. Tate A-modules. Let A be a Z<p-graded commutative dg-algebra. For
any m € Z we then have the full dg-category Perf5™ < Perf 4 formed by those
perfect dg-modules over A which, as complexes, are situated in degrees < m.
Recall that the duality functor M — MY = RHomx (M, A) identified Perf 4
with its dual. We define the full subcategories in Perf 4:

Perf5' = (Perf$™)Y, Perfg’m] = Perf3! A Perf§™, 1< m.
We define then the oo (or dg-) categories

D, = | JInd(Perfy™) = Ind(Perf ), Ca = | JPro(Perfl{"™!) = Pro(Perf )
lm lym

formed by ind- or pro-diagrams of which all terms belong to Perf%m] for some

[,m (depending on the diagram). These categories are dual to each other.

The category D4 is tensored over the category Vecty of all (possibly
infinite-dimensional) k-vector spaces. In particular, with each object M it
contains k[2|@ M = @]~ , M, the direct sum of infinitely many copies of M.
The category C 4 is tensored over the category of linearly compact topological
k-vector spaces. In particular, with each object M it contains k[[2]|®M =
[ 1,2, M, the direct product of infinitely many copies of M.

We define the dg-category Tate, of Tate A-modules as the perfect enve-
lope of the full dg-subcategory in Ind(Pro(Perf 1)) whose class of objects is
Ob(C4) U Ob(Dy4). Since Ind(Pro(Perf 4)) is a perfect dg-category, we can
view Tates as the minimal dg-subcategory in Ind(Pro(Perf,)) containing
C4,D4 and closed under forming shifts, cones and homotopy direct sum-
mands.

Remark 4.2.3. This is a slight modification of the definition in [He3] in that,
besides restricting to countable ind- or pro-diagrams, we force all objects to
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be “bounded complexes”. In particular, an infinite resolution of a non-perfect
A-module M (and thus such an M itself) would be an object in Ind(Perf 4)
but not in D 4. In particular, it is, a priori, not an object of Tate4.

Proposition 4.2.4. Let A = k. Then, in comparison with the constructions

from §4.1:
(a) Dy is quasi-equivalent to Dy ~ C°(Vecty) and Cy to Cy ~ C*(LCy);
(b) Tatey (for A = k) is quasi-equivalent to the category of Tate com-
plexes from §4.1.

Proof: (a) Let us show the first identification, the second one follows by
duality. It is known that Ind(Perfy) = dgVect,. (Both homotopy limits in
the RHS of (I1) can be replaced by the ordinary projective resp. inductive
limits because of Proposition A.3(b1).) Then Dy and C°(Vecty) are full
subcategories of dgVect, and have the same objects.

We now prove part (b). Let us denote temporarily by Tates—j the dg-
category obtained by specializing the above definition of Tates to A =k, as
distinguished from the dg-category Tatey defined in §4.1. Let

[P = | JInd(Pro(Perfy™)) = Ind(Cy).
Lm

Then Tates—y is the perfect envelope of CDy, the full dg-subcategory in I P
on the class of objects Ob(Cy) u Ob(Dy). Similarly, since C*(ILCy) is a
perfect dg-category, Proposition 4.1.21 implies that Tatey is identified with
the perfect envelope of C'Dy, the full subcategory in C*(ILCy) on the class
of objects Ob(Cx) U Ob(Dx). Let us denote both identifications Dy — Dy
and Cyx — Cx from part (a) by the same letter A (taking the limit). Then it
is enough to prove the following,

Lemma 4.2.5. Let V = “holim” V;* be an object of Dy and W = “holim” W?
be an object of Cy, with V.*, resp. WS being an inductive resp. projective
system over PerfE’m]. Then the natural morphisms of complexes

Homjp, (V, W) — Hom'cb(ILck)(A(V), AW)),
Homjp (W, V) — Homéb(ILck)(MW)v A(V))

are quasi-isomorphisms.

52



Proof of the lemma: We can assume that (V,*) consists of injective morphisms
and (W) consists of surjective morphisms of perfect complexes. Then, apply-
ing the formula (I1) from Proposition 4.2.1 twice, we realize Homjp, (V, W)
as double holim of a diagram of perfect complexes and surjective maps. Ap-
plying Proposition A.3(b) once, we replace the first holim by lim and get a
holim of a diagram of complexes and surjective maps. Applying Proposition
A.3(b) once again, we replace the second holim by lim. After this the result
reduces to the set of continuous morphisms of complexes (V') — A(W).
Similarly, we realize Homjp, (W, V') as double holim of a diagram of per-
fect complexes and injective maps. Applying Proposition A.3(a), we reduce
it to double lim which again gives the space of continuous morphisms of
complexes A(W) — A(V'). This proves the lemma and Proposition 4.2.4.
O
Proposition 4.2.6. The construction E — A?(E) = r(J, Q}/Do ® T*E)
defines an exact functor !

RI': Perfp. — Tatey,.

This statement, as well as the stronger Proposition 5.5.1 later, can be
seen as analogs, in our setting, of Theorem 7.2 of [Dr].

Proof. The functor I" (j , 25 pe ® —) is naturally made into a (strict) functor

Modpg — Ind Pro Perfy,

where B is the ring of function of the affine scheme J. Deriving this functor,
we get an exact dg-functor

~

Dycon(J) ~ dgModz — Ind Pro Perfy
which restricts along 7* to the announced functor

RI': Perfp. — Tatey.
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4.3 The Tate class, the residue class and the local
Riemann-Roch

A. The Tate class in cyclic cohomology. We start with a delooping
result.

Theorem 4.3.1. There is a canonical isomorphism
HC\,(Tatey) ~ HC,_1(Perfy) ~ HC,_1(k).

Proof. This is essentially a corollary of the main result of Saito [Sai] except
in our definition of Tatex we “first derive” and then topologize while Saito
deals with exact categories such as Tay and with K-theory rather than cyclic
homology. For convenience of the reader we give a direct prove which uses
the same approach as [Sai.

Let us consider the morphism of localization sequences (of perfect dg-
categories):

Perfy Cx Ck/ Perfy
Dy Tatey Tatey /Dy

It follows from [He3, Proposition 4.2] that the functor « is an equivalence.
We will deduce the result from the following lemma.

Lemma 4.3.2. If A is a perfect dg-category with infinite direct sums, then
the cyclic complex CC(A) is acyclic. In particular HC,(A) ~ 0.

Let us postpone the proof of the lemma for now. The categories Cy and
Dy both admit infinite sums, and therefore have vanishing cyclic homology.
Using the localization invariance of HC' (see Theorem 2.1.8), we get quasi-
isomorphisms

C’C’(Tatek) - C’C(Tatek/Dk) — CC(Ck/ Perfk) - CC’(Perfk)[l]
This concludes the proof of Theorem 4.3.1. O

Proof (of Lemma 4.3.2): We use the following fact (see [Ke2]): if f,g are
two functors from A to B and B is perfect (in particular, has direct sums),
then the action of f @ g on HC' is the sum of the action of f and of g.
Specifying to the case f = @f:o Id and g = Id, then f® g ~ f and we get
HC(g) = HC(Id) = 0. O
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Definition 4.3.3. Let us denote by 7 the class 7 € HC!(Tatey) given by the
image of the trace class through the isomorphism HC?(k) ~ HC'(Tatey).
For any object V € Tatey, we have a class 7y € HC'(End(V)) induced by 7.

Remark 4.3.4. The class 7y vanishes (by construction) as soon as V' belongs
to either Cy or Dy.

B. Comparison with the residue class and local Riemann-Roch.
The Tate complex A? is, as the same time, a commutative dg-algebra. We
note that (left) action of A? on itself gives rise to a morphism of associative
dg-algebras which we call the reqular representation

[: A, —> Endrate, (A)).

In other words, for each p and each a € AP, the multiplication operator
l(a): A2 — Ar[p], is a continuous morphism of graded objects of ILCy. This
follows from the fact that the filtration on A? from Corollary 1.2.8 which, by
Example 4.1.10, gives the inductive limit representation of A, is compatible
with multiplication.

Theorem 4.3.5. There exists a non-zero constant A € k with the following
property. The pullback I*Tgq(as) of the Tate class Tgnacas) with respect to
is a class in HCY(A?) equal to X\ - p, where p is the residue class, see §2.3.

This theorem is close to the main result of Braunling [Bra] Thm. 2.6
which deals with n-fold local fields (and n-fold Tate objects) . For n = 1,
the theorem reduces to the cited result which also implies that A = 1 in
that case. For m > 1, Theorem 4.3.5 highlights the essence of our derived
adelic approach: we get higher-dimensional residues from usual (1-fold) Tate
objects but work in the derived category.

Proof of Theorem 4.3.5: For any associative dg-algebra R°® let us denote
by BR® the corresponding dg-category with one object. The global section
functor

RI': Perf 4o ~ Perfp. — Tatey

from Proposition 4.2.6 is compatible with the map /. In other words, we have
a commutative diagram of dg-categories

BA;L PerfA%
ll lRP
B(End(A;)) —— Tatey
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where the horizontal functors map the one object onto A?. In particular we
have
*Tend(as) = RU*1 € HC' (Perf(A))) ~ HC(A}).

Recall that the dg-category Perf 4o ~ Perfp. is the dg-quotient of Perfp,
by the full subcategory Perfp, 0y spanned by perfect complexes supported
at 0 (see [TT, §5]). The global section functor I'p, : Perfp, — Cy hence
induces a functor G and a commutative diagram

Perf gy (D) — Perf(D) —— Perf(D°)

lr{o} lFDn la

Perf, Cx Cy/ Perfy

L

Dk Tatek —Q> Tatek/Dk.

Lemma 4.3.6. The composite functor (Q o RI' is equivalent to the composite

ao(.

Proof: From the universal property of Perf(Dy) as a quotient of Perf(D,,),
it suffices to compare Q o RI'o P and aoGo P ~ Q) oiol'p . The inclusion
H°(A?) — A? induces a canonical natural transformation aol'p, — R['o P.
In turn, it induces the required equivalence (as the pointwise kernel of the
natural transformation is killed by the projection Q). O

It follows from this lemma that RI'*7 equals the composite

F{O

HCy (Perf(DS)) = HCy(Perfp, (0y) —= HCy(Perfy).

Let us write z, for the coordinate system z1,..., z, on D, and denote, as in
§1.4, by V = @ kz; the space spanned by the z;. In what follows we will pay
attention to the GL,-action on various spaces arising.

The dg-category Perfp, (o is generated by k (considered as a trivial
k[[2.]]-module), and we have a G L,-equivariant identification

(4.3.7) REndy..(k) ~ Extyp.(kk) ~ S*(VF[-1])

with the exterior algebra of V' graded by its degree. Using [SS|, we get a
Morita equivalence between Perfp, oy and R Endyp..jj(k) (a version of the
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classical S—A duality [GM]). Under this Morita equivalence, the functor Iy
amounts to the augmentation morphism S*(V*[—1]) — k. The induced map
HCy(Perfp, (0y) — HCy(Perfy) is thus non-trivial. It is also G'L,-invariant.

Lemma 4.3.8. HCy(Perfp, (0y) admits a unique G L, -coinvariant class.

Proof: Consider the Hodge decomposition of HC,(S*V*). The part of weight
p is computed by the complex S*(V*[—1]) ® ASP(V*[—1])[2p] with the de
Rham differential. The de Rham differential is G L,,-equivariant. Therefore,
to compute the GL,-coinvariant elements in the cyclic homology at hand, it
suffices to understand the action on each degree of the graded vector space

S* (VI [-1]) @ ASP(VF[-1])[2p] = ET—) éAjV* ® S'V*[2p — (2i - j)]

j=0 i=0

The G L,-representation A/V*® S*V* has simple spectrum and admits coin-
variants if and only if « = 5 = 0. We get

k ifm=2
HOP(S (V- Der, =1, 0
0 else.
In particular HCy(S*(V*[—1])) has exactly one invariant 1-dimensional sub-

space.
O

We now finish the proof of Theorem 4.3.5. The residue HC\(A,) —
HCy(k) is GL,-invariant and vanishes when restricted to HC)(k[[z.]]). By
Theorem 2.3.5, HC,(A?) containes a unique GL,-invariant line. The long
exact sequence

> HOy(K[[2]]) — HCy(Ay) > HCy(S*(V[-1])) — -+

implies that 6 maps isomorphically the unique invariant line of HC(A,,) onto
the unique invariant line of HC,(S*(V*[—1])). This concludes the proof of
Theorem 4.3.5.

Remark 4.3.9. Since k is allowed to be an arbitrary field of characteristic 0,
we have A € Q*. We expect A = £1. This can be possibly proved either by
direct calculation or by upgrading some of the considerations of this paper
to fields of arbitrary characteristic.
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Recall (Proposition 3.1.2) that the class 7y € HC'(End(V)), V € Tatey
gives a Lie algebra cohomology class %7y, in HZ, (End(V)). We will also call
0*1y the Tate class. Let us consider the following particular case.

Let r = 1and V = (A2)¥". As before, we have then the regular represen-
tation (morphism of dg-algebras) [, : Mat,(A?) — Endrage, ((A%)®") which
we can also see as a morphism of dg-Lie algebras.

Corollary 4.3.10 (Local Riemann-Roch). The pullback I} (6*T(as)or) is equal
to the class of the cocycle \-vyp., where X is the same as in Theorem 4.3.5 and
vp, is the special case, for P(x) = P.(z) = tr(z™™)/(n + 1)!, of the cocycle
defined in Theorem 3.2.1. O

Remarks 4.3.11. (a) We note that P.(x) is the degree (n + 1) component
of tr(e”), the “Chern character” of x. Corollary 4.3.10 can be therefore seen
as a simplified version of a local Riemann-Roch-type theorem where we take
into account the infinitesimal symmetries of a vector bundle but not of the
underlying manifold.

(b) Combined with Theorem 5.5.9 below, this result determined explicitly
the nature of the higher Kac-Moody algebra acting on the determinantal
bundles.

5 Action on derived moduli spaces

In the rest of the paper we will relate the dg-Lie algebra g? and its central
extensions, with derived moduli spaces of principal bundles on n-dimensional
manifolds. We start with recalling the general setup.

5.1 Background on derived geometry

A. General conventions. We will work in the framework of derived al-
gebraic geometry. For general results on the subject, we refer to [TV]. For a
comprehensive survey, the reader may look at [To2].

Derived algebraic geometry can be though as algebraic geometry, where
rings are being replaced by “homological rings”. Namely, the category of
k-algebras will be replaced the category Cdgalf0 formed by Z<-graded com-
mutative dg-algebras over k (up to quasi-isomorphisms). It is naturally made
into a model category. Moreover, the usual notions of Zariski open or closed
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immersions, flat, smooth or étale morphisms extend to morphisms in Cdgafo.
In particular, one can form an étale Grothendieck topology.

Given any commutative algebra, one can consider it as an object in
Cdga® concentrated in degree 0. On the other hand, for any object A €
Cdgafo, the cohomology space HYA is a commutative algebra. We also get
a canonical morphism A — HYA.

Let also sSet be the category of simplicial sets. Given two objects A, B €
Cdgas’, we get a simplicial set of morphisms Map(A, B). In particular, we get
a Yoneda functor mapping A to a covariant functor Spec A: Cdgalfo — sSet.

A derived prestack is a covariant functor Cdgay” — sSet. A derived stack
is a derived prestack satisfying the natural homotopy étale descent condition.
A derived stack representable by a cdga is called a derived affine scheme. We
will denote by dAffy the category of derived affine schemes. It is equivalent
to the opposite category of Cdga;".

B. Derived stacks and derived categories. The category of derived
stacks will be denoted by St. It will be considered either as a model category,
or as an oo-category. Given A € Cdgag’, the category of A-dg-modules is
endowed with a standard model structure. We denote by dgMod, the (k-
linear) dg-category of fibrant-cofibrant A-dg-modules. Given a derived stack
Y, we define, following [To3]
Dyeen(Y) = holim_~ dgMod,,

(homotopy limit in the model category of dg-categories). An object in
Dyeon(Y') can be informally described as the data of a A-dg-module M4 4
for any A € Cdgay” and any map ¢ : Spec A — Y, together with natu-
ral homotopy glueing data. We also define the Z<g-graded derived category
DE0 (V) & Dyeon(Y) formed by (M ) consisting of Zp-graded dg-modules.

qcoh

Example 5.1.1. Any M € ch?)h(Y) gives rise to the dual number stack'Y [ M]

defined by gluing Spec(A @ M, ,) (the trivial square zero extension).

Note that for any map f: Y — Z, one gets an adjunction
L.f*: choh(Z) = choh(Y) . Rf*

For example, for ¢ : Spec(A) — Y and M € Dgeon(Y'), the object Lo*M is
just the structure datum My, , (we identify Dycon(Spec A) with dgMod ).
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Another example: if Z = Speck and f is the canonical projection, then
Rf: Dgeon(Y) — dgMod,, computes the cohomology of Y with values in a
given object in Dgeon(Y).

We will also need not necessarily quasi-coherent sheaves. The functor
A — dgMod, lands in dg-categories, hence in (k-linear) oco-categories. Let
¢: {dgMod — dAffy denote the associated Cartesian Grothendieck construc-
tion (see [Lub, Chap. 3]).

Definition 5.1.2. Let Y be a derived stack. We define its derived category
of Oy-complexes D(Y) as the co-category of sections dAffy /Y — {dgMod of
& over Y.

Note that by [Lub, 3.3.3.2], the oo-category Dgeon(Y') is the full sub-
category of D(Y') spanned by Cartesian sections. Informally, an object in
M e D(Y) is the data of A-dg-modules My, for any map ¢: Spec A —
Y, together with coherence maps (;: May ®4 B — Mp 4y for any map
f: Spec B — Spec A and higher coherence data. The module M is then
quasi-coherent if and only if all the maps ¢y are quasi-isomorphisms.

The category D(Y") admits internal homs that we will denote by R Homo,, .

C. Geometric objects and tangent complexes. For the definition of
geometric derived stacks (or, what is the same, derived Artin stacks) we refer
to [TV].

This class includes, first all derived schemes, that is, derived stacks that
are Zariski locally equivalent to derived affine schemes. Following [Lul],
one can represent derived schemes in terms of "homotopically” ring spaces.
Namely, a derived scheme X is a topological space together with a sheaf (up
to homotopy) of Z<g-graded cdga’s Ox such that (X, H°(Ox)) is a scheme.

In fact, a derived Artin stack is a derived stack that can be obtained from
derived affine schemes by a finite number of smooth quotients.

The cotangent complex Ly of a derived stack Y is an object of Dgcon(Y)
defined (when it exists) by the universal property

Ma“qucoh(Y) (Ly,M) = Mapy/St(Y[M]uy)v M e DSO <Y>

qcoh

Here Y/St is the comma category of derived stacks under Y. The object Ly
is known to exist [TV] when Y is geometric (no smoothness assumption).
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The tangent complex Ty is defined as the dual
Ty = RHOHIOY (Ly, Oy) € D(Y)

If Y is locally of finite presentation [TV], then Ly is a perfect complex and
hence so is Ty. In particular Ty is an object of Dyeon(Y').
For a k-point 7, : y — Y we will write

Ty’y = L’LZ (Ty) = ‘RI‘IOIHOy (Ly, Oy)

for the tangent complex of Y at y. This is a complex of k-vector spaces.

D. Derived intersection: Given a diagram X — Z <« Y we have the
derived (or homotopy) fiber product X x% Y. If XY, Z are affine, so our
diagram is represented by a diagram A < C' — B in Cdga;’, then

X x%Y = Spec(A®¢ B).

We will be particularly interested in the following situation. Let f: X — Y
be a morphism of derived stacks, and y € Y be a k-point. Then we have the

derived stack (a derived (affine) scheme, if both X and Y are derived (affine)
schemes)

Rf7'y) = X x¥ {y}.

It will be called the derived preimage of y. It is the analog of the homotopy
fiber of a map between spaces in topology.

5.2 The Kodaira-Spencer homomorphism

A. Group objects and actions. By a group stack we will mean a stack G
together with simplicial stack G, such that Gg ~ Speck, G; ~ GG and which
satisfies the Kan condition: the morphisms corresponding to the inclusions
of horns are equivalences. Intuitively, GG, is the nerve of the group structure
on G, see [Lud, §4.2.2] for more details.

Similarly, an action of a group stack G (given by G,) on a stack Y is a sim-
plicial stack Y, together with a morphism ¢ : Y, — G, with an identification
Yo ~ Y such that, for any m, the morphism

(Qm, a{m}H{O,l ..... m}) Yy — G x Yy
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is an equivalence. In this case Y, satisfies the Kan condition. Intuitively,
Y, is the nerve of the “action groupoid”. The “realization” of Y, i.e., the
derived stack associated to the prestack A — |Y,(A)], is the quotient derived
stack [Y/G]. In particular, we have the stack BG = [+/G], the classifying
stack of G.

Examples 5.2.1. (a) Let Y be a derived stack and y € Y be a k-point. The
pointed loop stack

QY = {y} <y {y} : A> QY (A),y)

is a group stack. The corresponding simplicial stack (£2,Y"), is the (homo-
topy) nerve of the morphism {y} — Y, i.e.,

Q) = {y} >y {y} x5y xy {y} = (QY)"
((m + 1)-fold product).
(b) Let Y be any derived stack. Its automorphism stack is the group stack
RAut(Y): A Mapgi/specA(Y x Spec A, Y x Spec A)

Here the superscript “eq” means the union of connected components of the
mapping space formed by vertices which are equivalences. Alternatively, we
can describe it as the functor

A — Q(St/Spec A, Y x Spec A),

the based loop space of the nerve of the category of derived stacks over Spec A
with the base point being the object Y x Spec A. By construction, we have
an action of RAut(Y) on Y; an action of a group stack G on Y gives a
morphism of group stacks G — RAut(Y).

Proposition 5.2.2. Let f: X — Y be a map of derived stacks and y € Y
be a k-point. Then the group stack ,Y has a natural action on the derived
preimage Rf~(y).

Proof: We define the simplicial stack Rf~*(y). as the nerve of the morphism
Rf Yy — X, ie.,

Rf "y)m = Rf'(y) xx Rf () xx - XX RfF '(y) ~
~ {y} <3 {y} x5 X3 X~ (QY)" x RfFY(y).
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All the required data and properties come from contemplating the commu-
tative diagram, obtained as the nerve of the RHS horizontal morphisms

o == Rf 'y —=Rf My —X

| |

e ==Q,Y {y} Y.

O

Example 5.2.3 (Eilenberg-MacLane stacks). Let II be a commutative
algebraic group (in our applications Il = G,,). For each r = 0 we then have
group stack EM(IL, n), known as the Eilenberg-MacLane stack. It is defined
in the standard way using the Eilenberg-MacLane spaces for abelian groups
IT1(A) for commutative k-algebras A.

Thus EM(IL,0) = II as a group stack, i.e., the corresponding simplicial
stack EM(II, 0), = II, is the simplicial classifying space of II. Similarly (the
underlying stack of the group stack) EM(II, 1) is identified with BII. In
general, if we denote EM(II, n), the simplicial stack describing the group
structure on EM(II, n), then |[EM(II, n)| = EM(II,n + 1).

Definition 5.2.4.Let G be a group stack and II a commutative algebraic
group. A central extension of G by Il is a morphism of group stacks ¢ : G —
BII or, what is the same, a morphism of stacks BG — EM(II, 2).

A central extension ¢ gives, in a standard way, a fiber and cofiber sequence
of group stacks N
l->1T—G—G-—1,

where G is the fiber of 0.

B. Formal moduli problems.  We recall Lurie’s work [Lu2| on formal
moduli problems which serve as infinitesimal analogs of derived stacks.

Definition 5.2.5. A cdga A € Cdga’ is called Artinian, if:
e The cohomology of A is finite dimensional (over k);

e The ring H"A is local and the unit induces an isomorphism between k
and the residue field of H°A.
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In particular, any Artinian cdga admits a canonical augmentation (the
unique point of Spec A). Artinian cdga’s form an oco-category which we will
denote by dgArt,.

Definition 5.2.6. A formal moduli problem is a functor (of co-categories)
F: dgArt, — sSet
such that:
(1) F(k) ~ * is contractible.

(2) (Schlessinger condition): For any diagram A — B <« C' in dgArt,
with both maps surjective on H’, the canonical map F(A x% C) —
F(A) Xz F(C) s an equivalence.

We denote by Fun,(dgArt,, sSet) the (co-)category of functors from dgArt,
to simplicial sets satisfying the condition (1) of Definition 5.2.6, and by FMP
the full subcategory of formal moduli problems. General criteria for repre-
sentability of functors imply (see [Lu2|, 1.1.17) that we have a left adjoint
(the “formal moduli envelope”)

(5.2.7) L : Fun,(dgArt,, sSet) — FMP

to the embedding functor.

For a formal moduli problem F' we define its tangent complez Tr (at the
only point = of F'). This is a complex of k-vector spaces defined as follows.
First, we define

TP = F(k[e,)/é?), degl(e,) = —p, p=0.

These simplicial sets are actually simplicial vector spaces, forming a spectrum
in the sense of homotopy theory, that is, connected by morphisms (in fact,
by equivalences) 7;2‘” ) Q7;£p 1 We define the complex Tf to correspond
to the spectrum (7;,97 )) by the Dold-Kan equivalence.

Theorem 5.2.8 (Lurie). For any formal moduli problem F', the complex
Tr[—1] has a homotopy Lie structure. Moreover, the data of F is equivalent
(up to homotopy) to the data of a complex T = Tg[—1] and of a dg-Lie
structure on this complex.
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For future reference we recall from [Lu2] §2, the characterization of the
Lie algebra structure on Tr[—1]. For a graded k-vector space M* let FL(M*)
be the free graded Lie algebra (with zero differential) generated by M®. De-
note by FLieg! be the full (cc-) subcategory in dglie, whose objects are
FL(M*®) where M* is finite-dimensional and situated in degrees > 1. For
any L € FLieg' the Chevalley-Eilenberg cochain algebra CE*(L) is an object
of dgArt,. In fact, CE*(L) is quasi-isomorphic to the dual number algebra
k@ (M*)*[—1], see [Lu2] (2.2.15). We then have

(5.2.9) Mapygpie, (L, Tp[—1]) = F(CE*(L)), L€ FLieg'

(identification of functors on FLieg'). Note that this defines the dg-Lie al-
gebra structure uniquely.

We will also need the following global analog of the Schlessinger condition,
see [TV, Def. 1.4.2.1].

Definition 5.2.10. A derived stack Y is infinitesimally cartesian if the fol-
lowing condition holds. Let A € Cdgaz’, M € dgMod5 ™" and

M — B —> A% MJ1]

be a square zero extension of A by M. Then the square

F(B) F(A)
l lp(”‘”
F(A) —— F(A® M[1])

F(1)
18 cartesian.

It is known that any derived Artin stack is infinitesimally cartesian [TV,
Prop. 1.4.2.5].

Example 5.2.11. Any infinitesimally cartesian stack Y and any k-point y €
Y defines a formal moduli problem

Yy A Y(A) <% )

Its tangent complex "JI‘Qy is identified with Ty, = Hom(Ly, k,), if Ly exists
(e.g., if Y is geometric). In other cases it can be considered as the definition of
Ty,. By Theorem 5.2.8, the shifted complex Ty, [—1] carries a homotopy Lie
structure. It is an analog of the fundamental group 7 (Y, y) of a topological
space Y at a point y.
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For any derived stacks Y and X we define the mapping stack
RMap(Y, X) : A — Mapg;/gpec a(Y x Spec A, X' x Spec A).

Notice that RAut(Y) is an open substack in RMap(Y,Y’), that is, the pull-
back of it under any morphism U — RMap(Y,Y) from an affine derived
scheme U, is an open subscheme in U.

Proposition 5.2.12. (a) If Y is an infinitesimally cartesian derived stack,
then so is RMap(X,Y) for any X. Moreover, suppose Y is geometric and
f X = Y is any morphism, representing a k-point [f] of RMap(X,Y).
Then the tangent complex Trmap(x,v),[f] (defined as the tangent complex of
the associated formal moduli problem) is identified with RI'(X, f*Ty).

(b) Further, if Y is infinitesimally cartesian, then so is RAut(Y'). In this
case Traug(x)1a %5 RI(X, Tx).

Proof. (a) Consider the full subcategory C of St spanned by those X € St
such that RMap(X,Y') is infinitesimally cartesian. Since Y is infinitesimally
cartesian, C contains all derived affine schemes. The category C is moreover
stable by (homotopy) colimits. We get C = St. To identify the tangent
complex, we consider the universal properties of both sides. Let us fix a
perfect complex E over k. We have

Map, (E, RI'(X, f*Ty)) ~ Mapy (E Qk Ox, f*Ty)
~ Map ys;,(X x Spec(k® E"),Y)
~ Mapg,eq()/st (Spec(k @ EV), RMap(X,Y))
~ Mapy (£, Temap(x.v).[1])-

This equivalence being functorial in E (since every individual step is), we
find the announced equivalence Trmap(x,v),[;] =~ RI(X, f*Ty).

(b) Follows from (a) because RAut(X) is a open in RMap(X, X) and so
their completions are identified. O

C. The Lie dg-algebra of a group stack. Let G be a group stack (rep-
resented by a simplicial stack G, as in part A). Assume that the completion
@1 is a formal moduli problem (this is true, for example, if G is infinitesi-
mally cartesian). In this case we have the tangent complex Lie(G) = Tgq g,
naturally made into a dg-Lie algebra. Explicitly, we form the “classifying
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formal moduli problem” B(G}) as the formal moduli envelope (5.2.7) of the
functor N
A — holim (G,,); (4), dgArt, — sSet.

Then Lie(G) is, as a dg-Lie algebra, identified with Ty g, [-1].
Examples 5.2.13. (a) This construction extends the classical correspon-
dence between group schemes and Lie algebras. Further, if II is a com-

mutative algebraic group, then Lie(EM(II,n)) ~ Lie(Il)[n], an abelian Lie
algebra Lie(II) put in degree n.

(b) For the group stack €y, of loop spaces, we have Lie(Q2,Y") = Ty,,[—1],
because B((Qy,,);) is identified with Y,.

(c) Let G be a group stack such that G, is a formal moduli problem,
and g = Lie(G). A central extension of G by G,,, i.e., a morphism of group
stacks ¢ : G — B(G,,) gives, after passing to Lie dg-algebras, a morphism
Lie(¢) : g — k[1], since Lie(G,,) = k. By Proposition 3.1.1, Lie(¢) gives rise
to a cohomology class v, € Hi, (g, 7).

D. The Kodaira-Spencer morphism. Let f: X — Y be a morphism
of derived stacks and y € Y be a k-point. Assume that Y), is a formal moduli
problem and the homotopy fiber Rf~!(y) is geometric. In particular, we
have the cotangent complex Lpgs-1(,).

Definition 5.2.14. The Kodaira-Spencer morphism of f is the morphism of
homotopy Lie algebras

ki : Tyy[—1] — RO(Rf ™' (y), Trp-1(y)
obtained as the differential, at the identity element, of the action
(5.2.15) a:Q,Y — RAut(Rf'(y))

from Proposition 5.2.2. Here we use Proposition 5.2.12(c) to identify the
tangent to RAut.

Proposition 5.2.16. Assume X is geometric, so we have the normal fiber
sequence in D(Rf(y))

Tri-1) — Tx ®6y Orp-1(y) — Tyvy @k Orp1(y)-
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Let 6 be the coboundary map of this triangle. Then k is identified, as a
morphism of complexes, with the composite of §[—1] with the adjunction map
Ty’y — RF(Rf_l(y), Ty@ () ORffl(y)).

Proof: We deduce the claim from a more general local statement. Let 7 :
F' — X be any morphism of geometric stacks. We then have the relative
tangent complex Tr/x on X fitting into the exact triangle

Let us form the “groupoid stack” Z, with Z, = F x% ... x% F ((n + 1)
factors). Thus Zy = F (the objects), Z, = Z := F x"% F (the morphisms)
and so on. The second projection py : Z — F defines an action of the
groupoid Z, on F' which we write as

a:/ZxpF— F.

The tangent, at the identities of the groupoid (which are represented by the
diagonal embedding e : F' — Z) of a is a map

d@ . 6*(T2/F> —> TF

of which the source is identified, via the projection p, : Z — F, with Tg/x.
The following is then obvious.

Lemma 5.2.18. In the above situation, da is identified with the canonical
morphism ¢ : Tp/x — Tp.

Proof. The pullback Z := F x x F gives on tangents at e a pullback square

da
e*Ty ——Tp

L

Tr——i*Tx.

In particular, it identifies the fibers of the vertical morphisms e*(Tz/p) ~
Tr/x. It also identifies the morphisms da: e*(Tz/p) — Tp and ¢: Tp/x —
Tp. O

We now deduce Proposition 5.2.16 from the lemma. Let F = Rf~'(y) >
X be the inclusion of the homotopy fiber. By definition, the action a from
(5.2.15) comes from the action a, while §[—1] class from the normal sequence,
as in the proposition. We now note that the normal sequence is canonically
identified with the shift of the triangle (5.2.17), that is, Ty, ® Op (the
“normal bundle” to F') is the same as Tp/x[1]. This finishes the proof.
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5.3 Derived current groups and moduli of G-bundles

A. Derived moduli spaces. Let G be a reductive algebraic group over
k with Lie algebra g. Let X be a smooth irreducible algebraic variety over
k and z € X be a k-point. Recall the notations * = Spec Ox, ~ D,, and
7° =7 — {x} ~ D;, for the (punctured) formal neighborhood of x in X.

Recall that principal G-bundles are classified by the 1-stack BG = [+/G]:
for any scheme Y, the (nerve of the) groupoid of principal G-bundles on
Y is equivalent to the simplicial set of maps ¥ — BG. This allows us to
define the notion of principal G-bundles over a derived scheme Y: first, we
denote by RBung(Y') the simplicial set of morphisms Y — BG. A vertex in
that simplicial set is called a principal G-bundle on Y. We then define the
derived moduli stack of principal G-bundles over Y as the following functor
from Cdga’ to simplicial sets:

RBung(Y) = RMap(Y, BG): A — RBung(Y x Spec A).
Fundamental for us will be the derived stack RBung(X).

Proposition 5.3.1. Let P be a principal G-bundle on X and [P] € RBung(X)
be the corresponding k-point. Then

Typ RBung(X) ~ RI(X,Ad(P))[1].

Proof: Follows from Proposition 5.2.12 with Y = BG.

We then define RBung () as the functor
A — RBunG(Spec(A @k @X,x))a A @k @X,gc = hOhIIl(A A OX/In) <
Here 7 is the ideal of x.

Remark 5.3.2. Note that the definition of RBung (%) is not the result of
applying the construction RBung(Y') to the scheme Y = Z. More precisely,
for any integer n, denote by 2™ = Spec(Ox/I"), the n' infinitesimal neigh-
borhood of z in X. Then

RBung(7) ~ holim RBung(z™) = RBung(Spf Ox.,)

is a particular case of RBun construction but for a formal scheme.
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We have the restriction map
A : RBung(X) — RBung(Z).

Definition 5.3.3. The derived stack of G-bundles on X rigidified at z is
defined to be

RBung#(X,z) = RBung(X) xpgung {Trivy = RA™'(Triv),

T

where Triv = X x G denotes the trivial bundle. For any cdga A, the simplicial
set of A-points of RBung# (X, ) is

h .
RBung (X x Spec A) X B Bunc (Spec(AGOx 1)) {Triv}.

In other words, this is the groupoid formed by G-bundles on X x Spec A
endowed with a trivialization on Spec(A ® Ox ).

Proposition 5.3.4. (a) The derived stack RBung#(X, x) is represented by
a derived Artin stack.

(b) If X is projective, then ]RBuanig(X, x) 1is represented by a derived

scheme of amplitude [0,n — 1].
Proof: Using the smooth atlas Spec(k) — BG, we deduce from [Hel, Lemma
3.2.4] that the inclusion of the trivial bundle {Triv} — RBung(Z) is a smooth
atlas. In particular, we get that the derived stack RBung®(X,x) is repre-
sentable by a derived Artin stack.

Using Lurie’s representability criterion for derived schemes (see [Lu3,
Theorem 3.1.1], or [TV, Appendix C]), we can hence reduce to the non-
derived moduli problem. It is known that Bung(X) is a geometric stack of
amplitude [—1, n—1], which locally is represented as the quotient of a scheme
of finite type by an algebraic group. When we introduce the rigidification,
we kill the stack structure. O

We next define the derived stack RBung(2°) as the functor
A — RBung (Spec(A ®ne @Xx) - (Spec(A) X {x})) )
Let us fix the notations X° = X — {xz}.
Proposition 5.3.5. The natural morphisms
RBunl#(X,z) — RBung(X°®) X]}IZQBunG(ﬂACO) {Triv}
18 an equivalence

This is proved in [HPV, Theorem 6.20].
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B. Derived current groups and their action. We define G(z°) as the
functor

A — Map (Spec(A@@)gm) — (Spec(A) x {x}), G).
This is group object in derived stacks.

Proposition 5.3.6. (a) G(Z°) is a derived affine ind-scheme, identified with
the group of automorphisms of the point Triv in the derived stack RBung(Z°).

(b) The Lie algebra of G(Z°) is identified with
Lie(G(2°)) = T.G(z°) = g® RI'(2°,0) ~ g; ~ g,
studied earlier.

Proof:
(a) The first claim follows from Lemma 1.4.5 and the proof of Lemma
3.3.6 in [Hel]. The second is obvious.

(b) We use (a) and compare RBung(z°) with the mapping stack
RMap (z°, BG) : A — Map (z° x Spec A, BG) .

The group of automorphisms of Triv in RMap (z°, BG) has Lie algebra iden-
tified with g ® RI'(z°, O) by Proposition 5.2.12(a).

We now consider the morphism of derived stacks
f : RMap (z°, BG) — RBung(z°)
induced by the canonical maps
(5.3.7) A®k Ox, — A&k Ox,.

We note that (5.3.7) is a quasi-isomorphism whenever A has finite dimen-
sional cohomology. This implies that f is formally étale at the point Triv
and therefore the induced morphism of tangent Lie algebras at Triv is a
quasi-isomorphism.

O

Consider the projection of derived stacks
g : RBung(X°) — RBung(2°).
Proposition 5.3.5 identifies RBungg(X, x) with the homotopy fiber Rg~1(Triv).
Therefore Propositions 5.3.6 and 5.2.2 imply:
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Theorem 5.3.8. (a) The derived group stack G(2°) acts on RBuny$(X, x)
by changing the trivialization.

(b) The Kodaira-Spencer map of g gives rise to a morphism of dg-Lie
algebras .
B g — RU(RBun/ #(X, ), T).
O

Remark 5.3.9. In particular, # induces a morphism on the (n — 1)-st coho-
mology of the dg-Lie algebra g3:

H2 ' (gy) — H" ' (RBungf (X, ), T).

Consider the first non-classical case n = 2, when X is a surface. In this case
we are dealing with H! of the tangent complex which has the meaning of the
space of deformation of RBung?(X, z). Theorem 5.3.8 produces therefore a
class of deformations of the rigidified derived moduli space labelled by the
space of “polar parts” Hx(g;) = H{,, (9 ® Ox).

A natural way of deforming the moduli space would be to “twist” the
cocycle condition g;'g;rgi; = 1 defining G-bundles by replacing it with
gijclgjkgij = \ijr with some “curvature data” A = (\;;;). Considering such
twisted bundles is standard when G = G L, and A consists of scalar functions
(we then get modules over an Azumaya algebra). In our case, elements of
H ?m}(g ® Ox) can be seen as providing infinitesimal germs of more general
(non-abelian) twistings and thus deformations of the rigidified moduli space.

5.4 Central extensions associated to Tate complexes

A. The group stack GL(V) and its Lie algebra. The categories of Tate
modules assemble into two prestacks

Tate : A — Tatey, Tate: A — Tate™"

where “equiv”’ means the maximal co-groupoid in the co-categorical envelope
(nerve) of the dg-category.

In particular, for any object V of Tatey we have a group prestack of
automorphisms GL(V') = Qy Tate.

Example 5.4.1.If V is the Tate space k((2)) in degree 0, then GL(V) is the
non-derived group ind-scheme GL(c0) studied in [Ka]. For a general V', we
get a derived analog of GL().
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Proposition 5.4.2. (a) Each prestack GL(V') is an infinitesimally cartesian
stack.

(b) The Lie algebra Lie(GL(V')) is identified with End(V'), the algebra of
endomorphism of V' in Tatex made into a Lie algebra.

Proof: (a) let A — B be a homotopy étale cover in Cdgay". Denote B, =
B%", so that B, = (B,) is a cosimplicial object in Cdgag’. The natural
functor F' : Tatey — holim Tatep, is fully faithful by embedding into the
functor

Ind(Pro(Perf,)) — holim Ind(Pro(Perfg, )).

Fully faithfulness of this last functor follows from étale descent for the cate-
gories of dg-modules. Now, fully faithfulness of F' implies that each GL(V)
is a stack.

Next, we show that GL(V') is infinitesimally cartesian. We will prove
that GL(V) is actually cartesian: it preserves any pullback of cdga’s. Let
D := A xp C € Cdgas’. The canonical base change functor

a: dgMod,, — dgMod, x dgMod.
dgMod g
admits a right adjoint 8. For any M € dgMod,, the unit M — fa(M) ~
(M ®p A) Xuep,s (M ®p C) ~ M is an equivalence and « is thus fully
faithful. It follows that the induced functor Tatep — Tates Xmae, Tates is
fully faithful, and therefore that GL(V') preserves fiber products of cdga’s,
whatever V € Tatey is

(b) We construct a morphism of dg-Lie algebras
(5.4.3) ¢ : Lie(GL(V)) — End(V).
For this we construct a natural transformation ® of the functors represented
by both Lie algebras on L € FLieg".

Given such an L, we denote by Repr,.(L) the category of Tate complexes
over k endowed with an action of L. By definition, the Lie algebra End(V)
represents the functor

L — Repryie(L) Xmate, {V}-

We also denote by Reppe(L) the category of perfect k-complexes endowed
with an action of L. The functors Repr,,. and Repp,,; come with a pointwise
fully faithful natural transformation Repp.; — Reppye-
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Koszul duality between L and its Chevalley-Eilenberg cochains gives a
functorial equivalence Reppe,(L) =~ Perfcge() (see for instance [He2, Lemma
3.38]). Moreover, both Repp, (L) and Perfcge(z) have a natural functor to
Perfy (namely forgetting the action and taking the fiber at CE*(L) — k),
and the above equivalence commutes with those functors. Composing with
the inclusion, we find a natural transformation v¢: Perfcge—) — Repr,, over
Tatey. From the universal property of the category of Tate objects (see [He3,
Theorem 2.7]), the transformation ¢ extends to a natural transformation
Tatecge(—) — Repry, over Tatey.

By taking the fiber over V', we find a natural transformation

U: Tate, (CE*(—)) — Map(—, End(V)).

We get a natural transformation between the induced formal moduli prob-
lems, and thus the announced dg-Lie algebra map ¢: Lie(GL(V')) — End(V).

We now prove that ¢ is an equivalence or, what this the same, that ¥, is
an equivalence whenever L is free on one generator of degree d > 1. In this
case CE®(L) = k|e] is the algebra of dual numbers with generator € = ¢,
of degree 1 — d.

We include ¥, into an adjunction

Yr : Ind(Pro(Perfyq)) < {Representations of L in Ind(Pro(Perfy))} : nr
V(W) =k@q W, no(V.f:V - V[d]) = CE*(L,V) ~ Cone(f)[-1].

Here f is the action of (the generator of) L on V. We note that Cone(f)[—1]
can be written as V]e] = V ®x k[e] (free k[e]-module) with an additional
differential given by f.

Note that 1y, is fully faithful. This is a formal consequence of the fact
that

Eerf : Perfyp <> Representations of L in Perfy

is fully faithful. In fact, ¥F®" is an equivalence (Koszul duality).

Therefore U, is fully faithful. Let us prove that it is essentially surjective.

Lemma 5.4.4. Let (V, f) be a representation of L in Tatex. Then n(V, f) €
Tatek[e].

Proof: We can assume that V' is a graded Tate space with a zero differential,
and so f is a morphism of graded Tate spaces. So V' has two lattices V|* < Vi
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so that f induces a morphism of pro-finite-dimensional spaces f¢ : V| —
Vy[d]. We make Cone(f¢)[—1] into a (pro-perfect) k[e] module by making ¢
acts by the embedding V* — V.

Similarly, f induces a morphism of ind-finite-dimensional spaces f¢ :
Vi — Vi where V& = V/Ve. Note that we have the quotient map V& — Vi
and so Cone(f?)[—1] is made into an (ind-perfect) k[e]-module. Now we
have a short exact sequence

0 — Cone(f°)[~1] — Cone(f)[—1] — Cone(f4)[~1] — 0

which implies that 7. (V, f) = Cone(f)[—1] € Tateyq. O

We now prove that the canonical map ¢ : ¢p(n.(V, f)) — (V. f) is a
quasi-isomorphism in the category of representations of L. i.e., that C' =
(Cone(c), g) is contractible. By the above, 7. (c) is a quasi-isomorphism, i.e.,
n.(C,g) = Cone(g) is contractible. So g is a degree d quasi-isomorphism of
C to itself. But C' is bounded by our assumption. So C'is contractible. This
finishes the proof of Proposition 5.4.2. O

B. K-theoretic extensions. Recall the stack of categories Perf defined
by
Perf(A) = Perf,

for any A e Cdgay’.

For a perfect dg-category A we denote by K(A) the space of K-theory
of A, so that m; K (A) = K;(A). Explicitly, we can define K(A) = Q|S,(A)|
as the loop space of the Waldhausen S-construction (in which all S, (A) are
understood as co-groupoids).

We now make K-theory into a prestack

K = K o Perf : A— K(Perf(A)).
By composing K with Tate we get the prestack
KTate : A — K(Tateyu).
We have the morphism of prestacks

Tate — KTate
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induced by the identification
Tateirp —> Sl (TateA).

The following is proven in [He3] (see also [Sai] for a result about the exact
category Tay).

Theorem 5.4.5. KTate is identified with B(K) = |S,(Perf)| (after stack-
ification on Nisnevich topology). O

Remark 5.4.6. Theorem 5.4.5 is a geometric analog of Theorem 4.3.1. In
particular, as Theorem 4.3.1 allows us to build central Lie algebra extensions,
Theorem 5.4.5 gives us group central extensions. The construction goes as
follows.

We have the determinantal G,,-torsor Det — K or, equivalently, a group
morphism K — BG,,. Applying the classifying stack on both ends, we get
the determinantal gerbe

(5.4.7) Det® : KTate — EM(G,,, 2).
This gerbe gives, for any V' € Tatey, a central extension of group prestacks
15 Gy, — Aut(V) — Aut(V) — 1.

Recall that using Theorem 4.3.1, we built in Definition 4.3.3 a cyclic class
Ty € HCY(End(V)) for each V' € Tate,. With Loday’s map from Proposition
3.1.2, we get Lie algebra cohomology classes 0(ry) € HE, (End(V)). Those
classes give central extensions of Lie algebras

0 —» k — End(V) — End(V) — 0.

Theorem 5.4.8. Let V' be a strict Tate complex. The Lie algebra of@(‘/)
is identified with End(V).

Remark 5.4.9.1t is very natural to expect that the cyclic homology of a
dg-category A can be recovered from its K-theory by some functorial pro-
cedure (“taking the tangent space”) so that, in particular, the trace class
tr € HC%(k) corresponds to the determinantal character (the identification
det : Kq(k) — k*). Then one could argue that the Tate class (the delooping
of tr) is similarly “tangent” to the determinantal gerbe (the delooping of
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det), thus obtaining a very natural proof of Theorem 5.4.8. This would also
justify the name “additive K-theory” for cyclic homology.

However, such a direct construction seems to be unknown. The clos-
est statement in this direction is the recovery (due to L. Hesselholt) of the
Hochschild homology of a (dg-)algebra R in terms of the rational K-theory
of the ring of dual numbers R[¢|/€?, see [DGM].

We therefore dedicate the rest of this section to a proof of Theorem 5.4.8
by a series of reductions.

C. Primitivity of the Lie cohomology classes. For V' € Tatex we
denote by vy € HZ, (End(V)) the class corresponding to the Lie algebra of
Aut(V). We need to prove the equality

(5.4.10) o= 0"(rv)

where 7y € HC'(End(V)) is induced by the Tate class 7 € HC!(Tatey) and
6 is the Loday homomorphism, see §3.1B.

Note that the statement is known (and classical) in the case when V =
k((2)) is the most standard example of a Tate space. We will now reduce

to this case by showing that the system of classes vy satisfies compatibilities
that hold for the system of 6* (7).

Definition 5.4.11.Let ny € HZ, (End(V)), V € Tatex be a system of Lie
algebra cohomology classes. We say that (ny) is a primitive system if, for
any direct sum decomposition V ~ V; @ V5, in the abelian category of strict
Tate complexes we have

N |End(vi)@End(va) = PIMvi + D7
Here p, : End(V}) ® End(V2) — End(V,) is the projection.

We note that direct sum decompositions with V5, = 0 are given by iso-
morphisms ¢ : V' — Vi, so a primitive system satisfies, in particular, the
compatibility condition: Ad}(ny,) = ny. Here

Adg : End(V) — End(V}), uw> gouop .

Lemma 5.4.12. The classes vy form a primitive system.
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Proof: This is because the determinantal gerbe, being a K-theory datum, is
“group-like”, i.e., gives a local system on the Waldhausen space of Tate, for
any A. That is, for any triangle (simplest cell on the Waldhausen space)

ViV -1,
in Tates we have an isomorphism of G,,-gerbes over Spec(k)
Det® (V1) @ Det® (14) — Det®@ (V)

satisfying coherent compatibilties. In particular, for V ~ V; @ V5, a direct
sum decomposition in Tatey, we have

Aut(V; @ Va) Aut(vi)xAut(vy) = Aut(V1) * Aut(V%)

(Baer sum). This, by differentiation (passing to the Lie algebras of group
stacks), implies that the system (/) is primitive. O.

Lemma 5.4.13. The classes 0* 1y, form a primitive system as well.

Proof: This is a general property of cyclic homology. Let A = End(V') and
A; = End(V;). We then have the enbedding of dg-algebras A; @ Ay — A.
It is enough to prove that the restriction of the Loday homomorphism 64
to H5'°(A; @ Ay) is equal to the sum of the restrictions on HZ, (A;) and
HZ2. (Ay). This restriction is the left path in the commutative diagram

9A1DA2

HY(A; @ Ay) ——=HC,—1(A1 @ Ay)

| |

HYe(A) — 2~ HC,_,(A).

Looking at the right path we see that HC;(A; @ As) being identified with
HCy(A)) ®@ HC (A,), the composition splits into the direct sum of the two
restrictions, as claimed. U

D. Comparison of Lie cohomology classes. It remains now to prove
the following statement.

Proposition 5.4.14. Let n and n' be two primitive system of classes in
H,.(End(V)), V € Tatex. Suppose that mi(z) = A - () for some A € k.
Then ny = X -ny, for any strict Tate complex V.
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We notice first:

Proposition 5.4.15. Let (ny) be a primitive system. If V ~ Vi @ Vy as
before, then the pullback of ny to End(Vy) < End(V), is equal to ny, . O

Let now V* be a strict Tate complex. Decomposing it as V* = H* @ E*
as in Corollary 4.1.18(c), we have an isomorphism of associative dg-algebras
(and hence of dg-Lie algebras) End(H*) — End(V*). It implies an iso-
morphism Hf, (End(V*)) ~ H;, (End(H*®)). Since H® has no differential,
End(H*) is a graded Lie algebra without differential.

Proposition 5.4.16. Let H be a graded Tate space (situated in finitely
many degrees) which is neither discrete nor linearly compact. Assume the

graded components of H are of dimension either 0 or oco. Then we have
H2,, (End(H)) ~ k.

Proof: This is a modification of the result of [FT1] which can be considered
as corresponding to V being k((2)) in degree 0. We first relate HC'(End(H))
with HC'(Tatey) ~ k. More precisely, we note:

Lemma 5.4.17. Let H be as above.
(a) The functor

p = RHom(H,—) : Tate), — dgModp,q(s) -

takes values in perfect dg-modules over End(H).

(b) This functor gives a quasi-equivalence between Tatex and Perfpuq(m).
In particular, HC,(End(H)) ~ HC,(Tatey) is spanned by generators in de-
grees 1,3,5,....

The lemma is very close to being a consequence of Th. 17 of [BGW2]
which identified ezact categories of (higher) Tate objects with the categories
of projective modules over appropriate endomorphism rings. In our case
we deal with objects not lying in the heart of the t-structure and consider
perfect dg-modules over dg-algebras which are, of course, derived analogs of
projective modules. O
Proof: (a) Since H is neither linearly compact nor discrete, it decomposes as
C®D, where C € Cy and D € Dy have at least one graded component infinite-
dimensional. That is, D admits a shift of (, k as a direct summand, while
C admits a shift of HZ+ k as a direct summand. It follows that any Tate
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complex W can be obtained, up to a quasi-isomorphism, by a finite number
of extensions and retracts from H. This means that R Hom(H, W) can be
obtained by a finite number of extensions and retracts from R Hom(H, H) =
End(H), so it is perfect.

(b) Denote A = End(H ). We first prove that p is fully faithful in the dg-
sense, i.e., induces quasi-isomorphisms on Hom-complexes. This is certainly
true for the complex Hom(H, H) which is sent by p to Homa(A, A) = A.
Further, p is exact and takes direct summands (retracts) to direct summands.
So p induces a quasi-isomorphism on Hom(Wy, Ws), where W, and W, are
any Tate complexes obtained from H by a finite number of extensions and
retracts. But by the above, all Tate complex are obtained in such a way.

Next, we show that p is essentially surjective. This is immediate since
Perf 4 is generated, under extensions and retracts by A = p(H) itself. O

We now prove Proposition 5.4.16 by the same arguments as in [FT1]. We
keep the notation A = End(H ) and apply the dg-algebra analog of the Loday-
Quillen-Tsygan theorem [Bur] which gives that HY (gl (A)) is the symmetric
algebra on the graded space HC,_1(A). Next, because each component of
H is infinite-dimensional, H ~ (H)®" and therefore A ~ gl.(A) for each
r = 1. This allows us to pass from gl (A) to A itself and conclude that
H?..(A) ~ HC'(A) = k. Proposition 5.4.16 is proved.

We now finish the proof of Proposition 5.4.14. If n(z)) = A - 771;((2))7 we
have ny = X - nj, for any V = k((2)) ®k F, where F' is a finite-dimensional
graded k-vector space. In other words, V' is a direct sum of shifts of k((z)).
Indeed, up to a shift k((z)) is a direct summand of V' and so the statement
follows from Proposition 5.4.15. Further, if V' is any strict Tate complex, then
there exists an F' as above such that V' is a direct summand of k((z)) ®x F,
and so the statement again follows from Proposition 5.4.15. Proposition
5.4.14 and Theorem 5.4.8 are proved.

5.5 Action on determinantal torsors

A. Global sections on D;. Let us denote by Perfp. the derived prestack
in categories
Perfp; : A= Perfspec(afar,...2al) 10}

It is actually a stack [HPV, Theorem 6.10].
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Proposition 5.5.1. The global section functor RI' from Proposition 4.2.6
naturally extends to a morphism of prestacks

RI': Perfp. — Tate.

Proof. For any A € Cdgalfo and p > 0, denote by A, the Koszul resolution
associated to (z7,...,22) in Alz,...,2,]. The cdga A[[z]] is the homotopy
limit of the diagram q — A[z]/I,, where I, is the ideal generated by degree ¢
monomials. For any p, we have (z7,...,22) c I, and I,,, < (2},...,2%). We
get

A[[2]] ~ holimA,.

Let Perfp, denote the functor A — Perf 4.} and Perf pw be the functor
A~ Perf,,. The canonical morphism of stacks

Perf, — holimpPerf D

is pointwise fully faithful. Indeed, for any cdga A, the functor a: Perf 4] —
Mp Perf,, admits a right adjoint 8 computing the inverse limit. For
E € Perfupy, the unit map £ — pa(E) ~ MP(E ®a Ay) ~ E is an
equivalence and « is fully faithful.

For any A € Cdgalfo and any p € N, the category Perf,, is canonically
equivalent to the category of A,-modules in Perf, (as A, is perfect on A).

In particular, it embeds fully faithfully into the category of A,-modules in
Ind Pro Perf ;. We get

Perfp, holimpModg;P,

where Modg;P is the functor A — holimp Mody, (Ind Pro Perf 4). Denote

by Modgﬁf;ﬂ the functor A — Mod e (Ind Pro Perf 1) where A[[z]]*P
is "holim” A, considered as a commutative algebra in ProPerf,. The base
change natural transformation

Modgy(zy — holim Modg™

admits a pointwise right adjoint ¢). However 1 is not a natural transformation
as it does not commute with base change. It does once restricted to Perfp,
though and we get a natural transformation

PerfDn — MOd%Ql:E[P;]]
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We now consider A8 = RI'(D;,O) as a k[[z]]**P-module in Ind Pro Perfy.
Tensoring with 2> defines an endotransformation of Modgﬁf;”. We then

deduce the proposition from the following lemma.

Lemma 5.5.2. The composite natural transformation
—@2As, Forget
n: Perfp, — Modg [ —" Modgy; —> Ind ProPerf

has values in Tate and is null-homotopic once restricted to perfect complexes
supported at 0 € D,,.

Proof. Let A € Cdga’. The functor n4 has by construction values in Tate.
It now suffices to prove that the image 74(A) vanishes (where A is seen as a
A[[z]]-modules with the trivial action). Using base-change, we can assume
A=k

The k[[z]]*P-complex 2A* is, by Cech descent, the homotopy limit of
modules of the form k[[2]]*°P[2; '] for a none empty I = {1,...,n}. Resolving
k as a k[[z]]-module using the natural Koszul complex, we get

k @uapyer Kl[2]][27 '] ~ 0
for any I # . The functor 7y therefore maps k£ to an acyclic complex. [

We now finish the proof of Proposition 5.5.1. Notice that for any A €
Cdgay’, the category Perfpo (A4) is a quotient of the category Perfp, (4) by
the stable full subcategory of perfect complexes supported at 0. It follows
from the lemma that 7 factors through the morphism of prestacks

RI': Perfp, — Tate

which coincides with the functor from Proposition 4.2.6 over k-points. This
concludes the proof of Proposition 5.5.1. O

Remark 5.5.3. Note that the above construction can be mimicked to define
a global section morphism

RT': Perf;. — Tate

for any k-point z in a variety of dimension n.
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B. Determinantal torsors and determinantal gerbes. Let ¢ : G —
GL, be a representation of G. Each G-bundle E on any derived stack Z
induces a vector bundle ¢, FE € Perf.

As before, X is a smooth projective variety, dim(X) = n. We construct
a G,,-torsor det? € Pic(RBung (X)) as the morphism RBung(X) — BG,,
defined as the composition

det

RBunc(X) -2 Perf, 25 Perf, —> KPerf 2% BG,,.

We also denote by det? the pullback of this torsor to ]RBungg (X, z).
The determinantal gerbe Det? : RBung(2°) — K(G,,,2) is the compo-
sition
RBung(7°) -2 Perf.. 5 Tate — KTate 2% K(G,n, 2)
where Det® defined in (5.4.7).

Proposition 5.5.4. (a) The determinantal gerbe Det® comes with canonical
trivializations T and 7° over RBung(Z) and RBung(X°).

(b) The determinantal torsor det® is equivalent to Homp (7, 7°).

Proof. (a) Let us first deal with 7. We have a canonical natural transforma-
tion

a: RT; = RT3, —) —> RT3 = RI(Z°, —)

of maps Perf; — Tate. For any A € Cdga;’, the K-theory of Tate, is equiv-
alent to that of the quotient Tates4/D 4. In particular, the natural transfor-
mation & induces an equivalence of morphisms between the two composites

Perf ™5 Tate —> KTate and Perf . "% Tate —> KTate.

The LHS composite factors through KC: A — K(C,4) which vanishes, as the
categories of compact complexes admit infinite sums. The RHS composite
appears in the restriction of Det? to RBung/(Z) and this identification induces
the trivialization 7.

The case of 7° is done similarly, using the natural transformation

a’: RT'(X°, —) — RI'(Z°, —).
This concludes the proof of (a).
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(b) Consider the equivalence

Perfy — Perfy. x Perf;
Perfio

from [HPV, Corollary 6.13]. Its inverse simply computes the fiber products
of the given perfect complexes. In particular, once composed with the global
section functors, we find that for any family of perfect complexes E over X,
the canonical morphism

RD(X, E) — hoeq (RF(XO, E) @ RT(%, E) = RT(3°, E)>

is an equivalence, where hoeq computes the homotopy equalizer. By con-
struction, the torsor Homp (7, 7°) is the determinant of the above homo-
topy equalizer. O

C. The action of central extensions. Let X be a projective variety of
dimension n, and x € X (k) a k-point. Let ¢: G — GL, be a represen-
tation. Pulling back the Tate class from Definition 4.3.3 along the functor
RI': Perfzo — Tatey, we get a class

7. € HOY(Z°) ~ HC'(2A2).
Recall the definition 25 = RI'(z°, O).

Definition 5.5.5. The class 7, induces a central extension of g} = g ®
that we will denote by g3 ,

k — ﬁ;qﬁ — g5

This extension has a geometric counterpart. Recall the determinantal
gerbe Det?: RBung(2°) — K(G,,,2). We denote by [Det?] its total space

[Det?] = RBung(2°) x}[‘{(Gm’z) {+}.
The diagonal map and the trivial bundle define a k-point d € [Det?] (k).

Definition 5.5.6. Let é(fc’\o)¢ denote the group stack Qg[Det?]. It comes
with a natural projection 7: é(fo)(z, — G(2°) = Qmiy RBung(z°). The
homotopy fiber of 7 at the unit is the group scheme G,,, so that we have a
central group extension

G — G(7°), — G(7°).
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Remark 5.5.7.Note that the extension é(§°)¢ is classified by the group
morphism G(z°) — BG,, obtained by taking the pointed loops of the map
Det?: RBung(2°) — K(G,,,2).

The following is a direct consequence of the above definitions and of
Proposition 5.4.2. and Theorem 5.4.8.

Proposition 5.5.8. The Lie algebra extensions Lie(é(f°)¢) and g5, of
Lie(G(z°)) ~ g2 are equivalent.

We denote by [det?] the total space of the determinantal torsor det? on
RBun"®(X, z).

Theorem 5.5.9. (a) The group CNJ(EO)(z) acts on [det®] in a way compatible
with the projections G(7°)s — G(7°) and [det’] — RBung?(X, x), and with
the action from Proposition 5.3.8.

(b) The dg-Lie algebra @, 5 acts infinitesimally on [det?] in a way com-
patible with the infinitesimal action of g% on RBun"® (X, z).

Proof. (a) By construction the group G (2°)4 is the pointed loop group of the
point d in [Det?]. Moreover, the trivialization 7° and Proposition 5.5.4 give
a homotopy cartesian square

[det?] — RBung(X°)

(d} [Det?].

Furthermore, the inclusion {d} — [Det?] factors as
{d} = Speck = {Triv} —> RBung(z) —— [Det].

In particular, Proposition 5.2.2 defines the announced action of é(fo)d) on
[det?]. The above diagram being compatible with the various projections,

we see that the action is indeed compatible with the one from Proposition
5.3.8.

(b) It follows from (a), from Corollary 4.3.10 identifying the extension
and from the Kodaira-Spencer morphism. O
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A Model categories of dg-algebras and dg-
categories

(A.A) Conventions on complexes.  We recall that k is a field of char-
acteristic 0. We follow the usual sign conventions on (differential) graded
k-vector spaces, their tensor products, Koszul sign rule for symmetry and so
on. The degree of the differential is always assumed to be +1. The degree
of a homogeneous element v will be denoted |v|. Note, in particular, the
convention

(A.1) (f®g)wew) = (=) f)® g(w)
for the action of the tensor product of two operators f : V. — V' and ¢ :
W - Ww.

The shift of grading of a graded vector space V* is defined by V*[n| =
k[n]® V*, where k[n] is the field k put in degree (—n). So the basis of k[n]
is formed by the vector 1{n]. For v € V* we denote v[n] = (1[n])®v € V*[n].
This gives the suspension morphism (an “isomorphism” of degree n)

s":V—V][n], v~ ov[n].
With respect to tensor products, we have the decalage isomorphism (of degree
0)
dec : VP[] @ VZ[1] @ @ V[ = (V@ Vy @+ @ V) [n]
given by:

n

dec(s(v1) ® - ® s(v,)) = (_1)Zi:1(nfi)\vilsn(vl ® - @ up)
This isomorphism induces an isomorphism of graded vector spaces

(A.2) dec, : S™(V*[1])) —> (A"V*)[n].

(A.B) Model structures and categories of dg-algebras. We will
freely use the concept of model categories, see, e.g., [Lub] for background.
For a model category M we denote by [M] = M[W '] the corresponding
homotopy category obtained by inverting weak equivalences.

We denote by dgVect, the category of differential graded vector spaces
(i.e., cochain complexes) over k with no assumptions on grading. This is a
symmetric monoidal category.
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Let P be a k-linear operad. By a dg-algebra of type P we will mean a P-
algebra in dgVect, . They form a category denoted dgAlg”. Thus, for P being
one of the three operads As, Com, Lie, describing associative, commutative
and Lie algebras, we will speak about associative dg-algebras, resp. com-
mutative dg-algebras, resp. dg-Lie algebras (over k). The categories formed
by such algebras will be denoted by dgAlg,, Cdga, and dgLie, respectively.
They have products, given by direct sums over k, and coproducts given by

free products of algebras, denoted A = B. For commutative dg-algebras,
A x B = A ®k B.

The category dgAlg” carries a natural model structure [Hi], in which:

e Weak equivalences are quasi-isomorphisms.

e Fibrations are surjective morphisms of dg-algebras.

Cofibrations are uniquely determined by the axioms of model categories. In
particular, any dg-algebra A of type P and any graded vector space V' we can
form Fp(V'), the free algebra of type P generated by V', and the embedding
A — A« Fp(V) is a cofibration.

As usual, the model structure allows us to form homotopy limits and
colimits in the categories dgAlg”. They will be denoted by holim and holim.
In particular, if F is a sheaf of algebras of type P on a topological space S,
then

RI(S,F) = holim, s F(U)

open

is canonically defined as an object of the homotopy category [dgAlg”]. An
explicit way of calculating the homotopy limit of a diagram of algebras rep-
resented by a cosimplicial algebra (this includes RI'(S, F)) is provided by the
Thom-Sullivan construction, see [HiS].

The above includes (for P being the trivial operad) the category dgVect,
itself. In particular, let us note the following fact about homotopy limits in
dgVect,, indexed by Z, = {0,1,2,---}.

Proposition A.3. (a) Let (E?) be an inductive system over dgVect,, in-
dezed by Z.. Then the natural morphism holim Ef — lim EY is a quasi-
isomorphism.

(b) Let (E?) be a projective system over dgVect,, indexed by Z.. Then
the natural morphism lim E? — holim E? is a quasi-isomorphism in each of
the following two cases:
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(b1) Each E? is a perfect complex.
(b2) The morphisms in the projective system (E?) are termwise surjective.

Proof: (a) holim is the left derived functor of lim). Therefore part (a) follows

from the fact that the functor li_r)nveCtk is exact on the category of inductive
systems of vector spaces indexed by Z, .

(b) holim is the right derived functor of lim. Therefofe we have the
spectral sequence

(R'lim )(E]) = Hp+q(holimiEi’).

As well known, the functors R?lim_for countable filtering diagrams can be
nonzero only for ¢ = 0,1. Further, R! lim  vanishes for diagrams of finite-
dimensional spaces as well as for any diagrams formed by surjective maps. [

(A.C) Model structure on category of dg-categories. We denote by
dgCat, the category of k-linear dg-categories. For a dg-category A we denote
by [A] the corresponding H%-category: it has the same objects as A, while
Homgj(z,y) = H”Hom%(z,y). This notation, identical with the notation
for the homotopy category of a model category, does not cause confusion:
when both meanings are possible, the result is the same.

We equip dgCat, with the Morita model structure of Tabuada [Tab].
Weak equivalences in this structure are Morita equivalences. Fibrant objects
are perfect dg-categories, i.e., dg-categories quasi-equivalent to Perfz where
B is some small dg-category. We recall two additional characterizations of
perfect dg-categories.

First, A is perfect, if and only if the Yoneda embedding A — Perf 4 is a
quasi-equivalence.

Second, A is perfect, if and only if A is pre-triangulated and [A] (which
is then triangulated) is closed under direct summands.
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