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Abstract: Fluidized bed spray agglomeration is a particle formation process in many industrial
applications, e.g. pharmaceutical and food processing. The properties of the formed agglomer-
ates, like characteristic volume, significantly affect the product quality and can be affected by
variation of certain operating parameters. Mathematical modeling not only provides an abstract
characterization of the effects of those on the product properties but also supports thorough
understanding of the underlying physical and chemical mechanisms. Moreover, it enables
application of advanced process analysis, control and intensification schemes. As characteristic
properties underlie variations within the ensemble of agglomerates the process can be described
as a distributed parameter system, where the resulting model equations are partial differential
equations. Adaption to experimental data requires the solution of inverse problems, which tend
to be ill-conditioned. As an alternative approach, in this contribution an adaptive identification
procedure is presented. Therefore, a modified plant model is run in parallel to the process
and adaption rates are chosen based on a Lyapunov-function. The approach is validated in a
parametric study for two scenarios: In the first, it is assumed that the structure of the dynamics
is fully known, while in the second, this assumption does not hold. It is shown that the proposed
approach allows to reconstruct unknown kinetic information of the process dynamics.
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1. INTRODUCTION

Agglomeration is a particle formation process in which at
least two primary particles are combined to form a new
one. This principle is often used in many industries, e.g.
pharmaceutical manufacturing and food processing. The
properties of the formed agglomerates, e.g. size, shape
and porosity, significantly affect its end-use properties,
e.g re-hydration behavior of food powders, processability
and storeability. In the industrial practice, agglomerates
are often formed in drums, pans or fluidized beds. The
advantages of the latter include good mixing and high
heat and mass transfer between particles, liquid and gas
phase. Compared to widely applied batch processes, the
additional benefits of operating in continuous mode are
constant product quality and higher flow rates which are
more attractive for chemical, food and pharmaceutical
industries. For those reasons focus in this contribution is
on continuous fluidized bed spray agglomeration, which
was not in the focus of research efforts so far.

The process scheme is shown in Fig. 1: Particles in the
the chamber are fluidized by a stream of hot air from the
bottom, liquid binder is sprayed on the particles in the
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form of small droplets to make them wet and sticky. Due
to random collisions liquid bridges between particles are
formed. These can become solid by drying and thereby
agglomerate particles consisting of different numbers of
individuals are formed. The formation of the agglomerates
and thereby the product properties can be influenced by
variation of different operating parameters and process
configurations, like feed rate, binder concentration and
temperature of the drying/fluidizing air.

Parameterization of process models is an important part
within the interplay of process analysis, model-based con-
trol and process intensification. It is well-known that the
individual properties, like characteristic size or porosity,
differ from particle to particle in the studied process.
The emerging heterogeneity significantly affects the overall
product properties. It can be accounted for in the frame-
work of population balance modeling (PBM) (Ramkr-
ishna, 2000). The resulting model equations generally
represent nonlinear integro partial differential equations,
which are usually discretized and numerically solved with
established techniques (see e.g. Kumar et al. (2006), Biick
et al. (2012) and the references therein). Commonly, reli-
able first principles models that include detailed models
on the underlying kinetic processes on the microscopic
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Fig. 1. Schematic representation of fluidized bed spray
agglomeration process

scale are rarely found and thus kinetics are described in
a more mechanistic fashion. This requires the estimation
of unknown parameters from experimental data. The re-
sulting inverse problems often tend to be ill-conditioned
(Chakraborty et al., 2015). In order to overcome these
problems a parameter identification based on the nonlinear
optimization (Golovin et al. (2018)) as well as an online
parameter estimation approach featuring a parallel model
can be applied (Diirr et al., 2015; Palis and Kienle, 2013,
2017).

In this contribution, a new adaptive online estimation
approach for fluidized bed spray agglomeration processes
is developed. In particular, focus is on identification of the
agglomeration kernel containing information on the effects
of process conditions and characteristic agglomerate size
on formation of new agglomerates.

Section 2 presents the modeling of the fluidized bed
spray agglomeration process. The proposed Lyapunov-
based adaptive approach applied for the agglomeration
kernel estimation is described in section 3. In section 4
the presented method is validated within two simulation
studies.

2. POPULATION BALANCE MODELING OF
FLUIDIZED BED SPRAY AGGLOMERATION

In particle formation processes, significant heterogeneities
with respect to the individual particle properties like size
or shape emerge. Population balance modeling represents
an established concept to describe such distributed pa-
rameter systems. Instead of describing a large number of
particles and their interactions, PBM describes the dy-
namics of the particles via the number density distribution
function (NDF) n(t,x) representing information of the
number of particles within an infinitesimal section of the
particle property state space x € R™=. In the following,
it is assumed that individual particles do only differ w.r.t.
characteristic volume v such that x = v and N, = 1. In
course of the process, the particle distribution underlies
change, which is given by the solution of the so called
population balance equation (PBE)

on(t,v . . .

% = nfCCd(ta v) - nPFOd(t7 v) + nagg(t’ ’U) . (1)
The corresponding initial NDF is given as
exp(g(v Ufl) )

n(0,v) = Ny

I exp(w) dv’ ®

where Ny is the mass normalizing parameter.

The left hand side of (1) accounts for temporal evolution
while the first two elements of the right hand side describe
feeding new seed particles to and removal of the desired
product from the fluidized bed. Both are assumed to be
known and given as

Nprod (t, V) = Now K (v)n(t,v), (3)
. €xXp ( (2052) )
nfccd(tav) = Nin =~ —(v—p1a)? 5 (4)
For ()

where N,,; and N;,, denote the time-invariant removal and
feed rates of particles, respectively while K (v) represents
the separation function. The last element of the right hand
side denotes the formation of new particles of volume v by
agglomeration of two particles with volumes v and v — u

nagg(t ’U) agg ) agg(t U)

/ Bt w0 —wn(t, wn(t, v — u)du
_/O B(t, u,v)n(t,v)n(t,u)du. (5)

Here, the agglomeration kernel 5(t,u,v) contains informa-
tion about the probability of forming a new agglomerate
and is usually separated in volume and time-dependent
parts

ﬂ(t,v,u) = ﬂo(t)ﬂ(l},u) . (6)
For modeling of the volume-dependent part, called coa-
lescence kernel, different approaches exist (see e.g. (Eisen-
schmidt et al., 2017) and (Le Borne et al., 2015)). Two
possibilities are the Brownian kernel, which is derived from
the Brownian motion,

Blu,v) = (u!/? + v ) (7)
or a more general kernel structure approximation using a
Laurent-polynomial

1)1/3)(7171/3 +

N
Z Z kijo'u (8)
—Np j=—N

where N, € N denotes the rank of the polynomial and &; ;
are the associated polynomial coefficients.

In contrast, the time dependent part 8y(t), also called the
agglomeration efficiency, mirrors the effects of the process
conditions and operating parameters and is mostly not
known beforehand. Moreover, it is frequently assumed that
the time dependency of the agglomeration efficiency can
be neglected, such that 5y(t) = const.

3. LYAPUNOV-BASED ADAPTIVE
IDENTIFICATION

In this section the online parameter identification of the
agglomeration kernel is introduced. In order to derive an
adaptation law for the unknown parameters the Lyapunov-
based approach is applied (Krstic, 2006; Palis and Kienle,
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Fig. 2. Adaptive online parameter identification scheme

2013; Diur et al., 2015; Palis and Kienle, 2017). The
parameter identification scheme consisting of a modified
plant model, which runs parallel to the actual plant
and the parameter adaptation algorithm is represented in
Fig. 2.

In this work two scenarios for the parameter estimation
are studied. In the first scenario, the modified plant model
includes the volume-dependent Brownian kernel function
with unknown agglomeration efficiency By, which should
be estimated. In the second scenario, it is considered
that the structure of the coalescence kernel [(u,v) is
also unknown. In order to approximate it, the Laurent
polynomial with its unknown coefficients is included in the
modified plant model.

3.1 Estimation of the agglomeration efficiency

In the first scenario, the estimation of the agglomeration
efficiency [y is considered. For this reason, the modified
parallel plant model with an additional observer term can
be represented as follows

aﬁf;g v) = Tfeed (tv 'U) - hPrOd(t7 ’U) + ﬁagg(t, 'U)
+1(h—n), (9)

Nagg(t,v) / BoB(u, v — w)n(t,u)n(t,v — u)du
_/o ﬁoﬁ(u,v)n(t,v)n(t,u)du (10)

where n and 30 are the particle size distribution and the
agglomeration efficiency estimated from the modified plant
model and [ is an additional tuning parameter.

The related estimation errors are given by
Bo = Bo — Bo - (11)
Taking into account the plant model equations (1), (5)

and the modified parallel model equations (9), the error
dynamics can be derived as

1 [Y <
=5 /o BoBu, v —u)n(t, u)n(t,v — u)du

e=n—n,

- /000 Boﬁ(u, v)n(t, v)n(t,u)du +le. (12)

For the adaptation of the model parameters the following
Lyapunov functional is chosen

vt [Ty B2
== e“dv+ —

2 o 2,y 0>
where v is a positive real tuning parameter. It can be
easily seen that the Lyapunov functional V is positive

(13)

definite and it vanishes if the considered estimation errors
(11) are zeros. According to the Lyapunov stability theory
the stability of the proposed identification scheme can be
achieved if the first time derivative of the Lyapunov func-
tional is negative semi-definite along the state trajectories.
This time derivative can be derived as follows

dv o
T /O le*dv
+/O e(%/o BoB(u, v — w)n(t,uw)n(t,v — u)du
- /00 Boﬂ(u,v)n(t,v)n(t,u)du)dv
0
+ oo (1)

Therefore, choosing the adaptation law BO as follows

50 = —y /000 e(% /OU Blu,v —u)n(t,u)n(t,v —u)du
- /OOO B(u,v)n(t,v)n(uu)du)dv

yields in the negative semi-definiteness of the time deriva-

tive of V
d oo
—V = / le2dv
dt 0

for the observer parameter [ < 0.

(15)

(16)

3.2 Estimation of the Laurent polynomial

In the second scenario, the estimation of the volume-
dependent agglomeration kernel function is proposed. In
general, the aggregation kernel 5(u,v) is a non-negative
symmetric function of two variables. In order to approx-
imate such types of functions, Laurent polynomials (8)
can be used (Eisenschmidt et al., 2017). A reasonable
approximation can be achieved with the rank Ny, = 1
resulting in
Best(u,v) = ky +kov ™t + ksvu+ kg (v Fuh)

+ ks (vu™t o ) + ke (v +u). (17)
Here, k1 to kg are unknown polynomial coefficients that
should be identified. The modified parallel model with the
polynomial is given by

on(t, ) ) .
((915 v) = Nfeed (ta U) — Nprod (t, U) + ﬂagg(t, ’U)
+1 (ﬁ - TL) ) (18)
where
Tagg(t,v) / Best(u,v — w)n(t, u)n(t,v — u)du

— /0 Best (w, v)n(t, v)n(t, u)du (19)

Analogous to the aforementioned design procedure, the
adaptation law for the polynomial coefficients can be

derived as
/ filu

iy
- /0 filu,v)n(t, v)n(t, u)du) dv,

where f;(u,v) is the volume dependent part associated
with 4-th coefficient of (17).

n(t,w)n(t,v —u)du

(20)
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Table 1. Model parameters used for simulation

Parameter Value Parameter Value

11 3.6-10"12 o1 1-10~12
Ny, 7.5-108 o2 1-10712
12 3.6-10"12 Nout 5-10—%
N; 4-10°

4. RESULTS

The proposed parameter estimation approach has been
implemented for numerical computations in MATLAB.
For the solution of the population balance equations the
method of lines is applied. Here, the internal coordinate,
i.e. the particle volume, is lumped using the cell-average
method (Kumar et al., 2006) on a logarithmic grid with
n, = b5 grid points. In order to solve the set of the
ordinary differential equations and to overcome the stiff-
ness problems the odelds solver has been used. For the
simulations the actual plant model with the Brownian
motion coalescence kernel (7) and the scalar agglomeration
efficiency By = 5- 10712 is considered. The model param-
eters used for simulations are represented in Table 1.

4.1 Estimated agglomeration efficiency

In the first instance, the performance of the proposed
online identification approach is shown for the scenario
of agglomeration efficiency estimation. Here, the modified
plant model with Brownian kernel runs simultaneously
with the actual process plant. The same initial conditions
from (2) are applied for the particle size distributions in
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Fig. 5. Particle size distributions q3 of the actual plant
(solid, red), parallel plant model with (points, black)
and without online estimation (dotted, grey)

the parallel model. The initial value for the estimate is
chosen BO = 5-1071%. Both tuning parameters v and [ have
a strong impact on the estimation dynamics. Therefore,
assigning of their values is an iterative procedure where
trade-offs between different design specifications, e.g. fast
parameters convergence rates, oscillating behaviour and
attenuation of possible measurements noise, should be
taken into account. For this scenario the tuning parameters
are chosen as follows

y=1-10"1%, l=-0.1. (21)
The obtained simulation results are represented in Fig. 3,
Fig. 4 and Fig. 5. Here, in Fig. 3 the convergence of the
estimated BO and actual By is depicted. It can be seen that
the unknown parameter converges within approximately
three minutes, which is sufficiently fast related to the
process dynamics. It is also clear from the Fig. 4 that
corresponding Ly - norm of the estimation error between
particle size distributions n and n converges towards zero
within the same time. In order to compare the process
dynamics the additional particle size distributions

x3n(t, x)
q&(t;x) fooo x?’n(t,x)dx
of the actual plant, the parallel model with and without
online parameter estimation for different time points are
depicted in Fig. 5. A significant divergence of the process
dynamics with and without online parameter estimation,
i.e. with roughly known initial guesses, can be observed

already in a short period of time.

(22)

4.2 Estimated Laurent polynomial parameters

In the second scenario, the proposed method is applied
to estimate the agglomeration kernel. Here, the modified
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Table 2. Initial estimates and tuning parame-
ters for identification of Laurent-kernel

Parameter Value Parameter Value

k1(0) 8-1077 " 5.10~41

k2(0) 0 2 1104

k3(0) 0 3 5.10741

k4(0) 0 4 7.10741

ks (0) 1-1010 75 7.10746

ke (0) 0 6 5.10741
l —0.022

plant model, which includes the Laurent polynomial with
six unknown parameters (17), runs simultaneously to
the actual process plant. In this case, the same initial
conditions for the parallel model and the actual plant are
used. The initial values for the polynomial parameters and
chosen tuning parameters are given in Table 2.

The corresponding simulations results are shown in Fig. 6,
Fig. 7, Fig. 8 and Fig. 9. From Fig. 6 it is clear that param-
eters converge with a different rate. Moreover, the simula-
tion studies indicated that only two polynomial addends
associated with parameters k; and ks make a significant
contribution in the overall estimation dynamics. In the
Fig. 7 a corresponding Lo - norm of the estimation error
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Fig. 8. Particle size distributions g3 of the actual plant
(solid, red), parallel plant model with (points, black)
and without online estimation (dotted, grey)

between particle size distributions n and n is depicted. It
can be seen that a sufficient convergence is achieved within
approximately 10 minutes, which is reasonably fast related
to the slow process dynamics. However, from the Fig. 8,
the sufficient accuracy of the distributions can be observed
after approximately 6 minutes.

The estimate of the Brownian kernel using the proposed
Laurent polynomial and the relative error between both
kernels are shown in Fig. 9. It can be seen that the relative
error is below 5 %.
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5. CONCLUSION

In this work the online parameter estimation for the con-
tinuous fluidized bed spray agglomeration process has been
demonstrated. For the identification of the agglomeration
kernel the Lyapunov-based adaptive approach has been
proposed. The presented methodology has been studied for
two different identification scenarios. In the first scenario,
this method has been applied for the agglomeration effi-
ciency estimation assuming that the agglomeration kernel
is perfectly known. In the second scenario, the proposed
approach has been applied for the volume-dependent ag-
glomeration kernel estimation. For the kernel structure
approximation a low-order Laurent polynomial has been
used. It has been shown that this approach allows a suffi-
ciently fast parameter estimation for both cases in the case
of noiseless measurements. Future work will be concerned
with the robustness analysis in presence of measurement
noise and parameter uncertainties as well as application of
this approach to real plant measurements.
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