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Abstract: Biotechnological processes are urged to become more flexible and sustainable in
order to meet the challenges of modern society. Using renewable feed stocks for the production
of value added products is one strategy to achieve sustainability. The challenges arising from
the use of renewables are large compared to the commonly used resources. The concentration of
nutrients in renewable feed stocks varies between batches and is not optimal in respect to the
demands of the cells. The biological system adapts to this situation by changing the metabolic
growth modes in dependence of the availability of nutrients in the media. Consequently, the
process can run through multiple modes. Each switch of the mode results in a change of the
system dynamics which effects the process performance. To overcome the challenges, we propose
a model predictive control approach combined with a moving horizon estimator that takes
directly the multi-mode nature of the process into account. It ensures optimal performance
while guaranteeing that the constraints are met in each phase of the process. The approach is
motivated by and applied to a sustainable biopolymer production from juice waste.
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1. INTRODUCTION

Limited resources are a major challenge of modern so-
ciety. In order to meet the requirements of the increas-
ing world population biotechnological processes have to
become more sustainable. Using renewable feed stocks,
such as side products and wastes, for the production of
value added products has been identified as a promis-
ing way to address these challenges (Jain and Tiwari
(2015); Patel et al. (2006)). However, the uncertainties
and constraints arising from the use of renewable feeds
as nutrients sources are large compared to the commonly
used designed media with defined amounts of nutrients
and pure carbon sources. Waste streams like whey, juice
waste, algae biomass, or starch, are natural complex me-
dia. Each of these resources contains a unique mixture of
nutrients, which concentrations vary between batches and
are uncertain. Depending on the availability of all growth
influencing nutrients, the biotechnological process eventu-
ally runs through different metabolic growth modes. Each

Fig. 1. Depending on the renewable feed composition,
different growth modes can be triggered (I = cell
division, IT = product synthesis), leading to significant
changes in the process dynamics.

Fig. 1. These switches can be triggered by many events,
e.g. the depletion of a growth required nutrients. Due

metabolic mode corresponds to different system dynamics,
and thus is represented by a different model structure, c.f.
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the complex and uncertain composition of the feed and
the versatility of the biological system a switch in the
mode can not be predicted. Clearly, applying a recipe-
based open loop control approach, which is commonly
used in biotechnological industry, would very likely result
in bad reproducibility, product off-specifications and poor
production rates. Here we propose a model-based process
control approach which accounts for the switches of the
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system dynamics. The approach combines moving horizon
estimation (MHE), a trust update policy and model and
predictive control (MPC). The multi-mode MHE gives
an estimate of the current system state using the lim-
ited online measurements considering model uncertainties,
measurement noise and process constraints. The MPC
uses the state estimate to predict future process evolution
and to compute the optimal input trajectory (see Fig.2).
The trust update policy weights the effect of the different
models in both MPC and MHE cost functions, while the
constraints for each of the models are enforced. Doing
so optimizes the performance for the active mode while
guaranteeing robust constraints satisfaction also in the
case of an undetected mode switch. In Bethge et al. (2018)

Multi-mode MPC

Multi-mode MHE

@
®
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Fig. 2. Illustrative representation of the coupling between
MPC and MHE.

we developed a tube-based multi-mode, machine learning
supported MPC scheme for linear systems with guaranteed
stability. Constraints are enforced for all possible modes,
while performance is optimized for one learned model.
In this work we expand the work considering the output
feedback problem for nonlinear systems and using a multi-
mode moving horizon estimator. Various MPC approaches
using multiple models have been proposed, spanning from
average multiple model based MPC (Kuure-Kinsey and
Bequette, 2007; Rao et al., 2003; Ferramosca et al., 2014),
fault-tolerant (Camacho et al., 2010; Scott et al., 2014),
scenario-based MPC (Bernardini and Bemporad, 2009;
Lucia and Engell, 2012), and discrete event based MPC
formulations (Lazar et al., 2006; Seatzu et al., 2012),
such as max-plus predictive control (De Schutter and Van
Den Boom, 2001). In average multi-model based MPC
predictions from different models are used to compute a
single averaged output prediction and in general no states
constraints are considered, while we compute different
output predictions and we assume state constraints. Fault-
tolerant predictive control (see e.g. Camacho et al. (2010);
Scott et al. (2014) and references therein) considers that
the system has a nominal (normal) operational mode and
a set of known faulty modes, which can occur at any time.
Our approach differs from fault-tolerant control as we do
not assume to know the currently active mode, the system
modes are not necessarily faulty modes, and the controller
could take advantage of the modes to improve overall
performances. Scenario-based MPC approaches typically
focuses on disturbances and parametric uncertainties, not
structural changes in the mode, while we allow the differ-
ent modes to be structurally different. Discrete event based

and max-plus predictive control approaches are typically
limited to linear system and it is often assumed that the
transition rules, switching between the modes are explic-
itly known. The following notation is used throughout
the paper: the system states of model m at time k are
represented as z}' € R", while the inputs as u; € R™.
In some cases, which will be clear from the context, the
subscript will be use to indicate specific metabolites or
substrates concentration. The notation a;; refers to the
variable a at time j computed at time ¢ while {a} is the
sequence {a;|;, @i|i+1, - @i N } Where i and N will be clear
from the context. ||a|% is the weighted norm a” Aa where
a € R™ and A € R"*"™. g is the estimated variable while
4 = argmin, f(a).

2. MODELLING MULTI-MODES

As an example process we consider the biotechnological
production of poly-S-hydroxybutyrate (PHB), a biodegrad-
able and biocompatible polymer, using the bacteria Cupri-
avidus necator (C.necator) in a fed-batch bioreactor. Un-
der the given condition we consider that C.necator can
operate in three different metabolic modes in dependence
on the availability of the two main nutrients, the nitrogen
and carbon source: optimal growth (mode I), optimal PHB
productivity (mode IT), optimal PHB yield (mode III) (see
Fig.3). PHB production occurs under an excess of carbon
and when nitrogen is depleted. In this conditions, the
bacteria starts to store the excess carbon in form of PHB
granulas. Thus, for this system switches in the mode are
triggered by the availability of nitrogen. Mode III is active
when ammonium is depleted, mode I when it is available in
large concentrations and mode II in the transition zone of
mode I and III, 4.e. for small concentrations of ammonium.
We use an hybrid modelling approach to represent the
different growth modes of the system. We do this by com-
bining a simple ODE formulation which describes the mass
balances of a bioreactor with constrained-based modeling
approach of the cellular metabolism.

2.1 State equations

The evolution of the system states (concentration of the
carbon source fructose zy. and the nitrogen source ammo-
nium zan, in [g/l], the total biomass concentration xp;,
in [g/1] and the PHB content zpyp [g PHB/g bio]) for a
fed-batch reactor are described by a continuous-time ODE
system of the following form:

iy = Yir/biol " Thio + F/V (Trep — 21y), (1a)
X = Yam/bio " Thio + F/V(Tamr — 2iw),  (1b)
Ipyp = YI;?IB/biorm - Ybﬁ/biormxgHBa (1c)
Ihio = Yl bio” Thio — F/V i, (1d)
V=F (1e)

Here, Yj/; refers to the yields of component i over com-
ponent j in [g/g], ™ are the reaction rates in [1/h],
F is the feed rate in [I/hr], V is the reactor volume in
(Il and z{;,  is the substrate composition of the feed.
Notice that yield coefficients and reaction rates (4) of
the metabolic reactions are different for each mode. In
this work we obtain these information by analyzing the
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Fig. 3. Schematic representation of multi-mode modelling. Cells use different parts of their metabolism in order to
adjust to changes in their environment and thus survive. Here the availability of fructose (Fr) and ammonium
(AM) triggers these switches in the growth mode(left). From metabolic network analysis we obtain a finite set
of metabolic routes which represent the three different growth modes (I,IL,III). These so called active elementary
modes shown are shown in the yield space (middle). These modes are reflected in the time domain (right) by models
with different parameter and structure. Note that mode IT has maximum productivity (p(¢)) since both biomass

growth and PHB production are encouraged.

metabolic network of the organism with constrained-based
methods and thus extracting the elementary modes which
represent each mode. Metabolic networks are composed
of metabolites and metabolic reactions (pathways) which
describe the synthesis of biomass and products (outputs)
from substrate (inputs). Note that all states of (1) are part
of the metabolites of the metabolic network. According to
Klamt and Stelling (2006) all metabolites of the network
Zmet (In [g/g bio]) can be represented by the simplified
ODE of the following form:
jf‘met(t) = Sv. (2)
Here, the stoichiometric coefficients, which represent the
input-output relation of the metabolic network, are con-
densed in the stoichiometric matrices S € R™metX"v and
the reaction rates of the metabolic network are condensed
in vector v. It is a general assumption in metabolic mod-
elling that the reaction rates of the network are in a
quasi-steady state (Stephanopoulos et al. (1998); Carius
et al. (2018)). It follows that the metabolic network can
be represented by a homogeneous linear algebraic system:
Tmet (t) = Sv = 0. (3)
The solutions of (3) are the steady-state rate distributions,
and span the infinite solution space of the whole network.
To reduce the computational cost, (3) is decomposed into
a finite set of unique solutions which can be viewed as
a minimal functional sub unit of the network (Song and
Ramkrishna (2009)). These so called elementary modes
(EMs) describe all possible metabolic growth modes of
the system. To select the EMs (metabolic routes) which
describe the operation modes of our system we have to
analyze all EMs in the 2D yield-space. Here, EMs are
represented by the stoichiometry of the net reactions
SZv = 0. The matrix Z € R"*"EMs represents the EMs,
where ngps is the number of EMs. By solving a least-
square optimization problem (Franz et al. (2011)) a set of
minimal number of EMs can be found, whose non-negative
combination represents the operation modes of our system,
so called active elementary modes (aEMs). These can be
represented in the yield space (c.f. Fig.3). Finally, the
information contained in the aEMs is combined with the
ODE description of the modes. To do so Z, now represents
the aEMs with the dimension of n, X n,gars and the yields

Krru Kamec Kpusp k} k2 K2
0.06 0.01 0.05 0.8414  0.5211 0.2110

Table 1. Estimated kinematic constants. See
Franz (2015); Franz et al. (2011)

of mode m can be obtained from the m-th column of SZ,
that we indicate as SZ,[m]. The structure of the reaction
rates r, which states if a certain input contributes to a
reaction rate of each mode r™, is the following

=R, . H Kj 4 gm . ( )
JEI(SZa[m]) J

Where I(SZ,[m]) is the set of indices of non-zero ele-
ments of SZ,[m], k" and K, are parameters that need
to be estimated from experimental data. We used the
parameters estimated in Franz (2015) which are reported
in Tab. 1. Due to (4) the modes have not only different
parameters but also different structures, therefore methods
considering only parameter uncertainty are not suitable for
this system. According to the model (1), model parameters
(Tab.1) and experimental data available from Franz (2015)
we can approximate the nitrogen concentrations for which
the system eventually enters mode II and mode IIT (see
section 4). However, due to the uncertainties in the feed
and medium composition, and in the biological system the
switching time of the modes remains unknown.

2.2 Measurement Equations

Three online measurements are available. The UV /VIS ab-
sorbance of the culture broth at a wavelength A = 600 nm
(5a) (Franz (2015)), the residual biomass reconstructed
from the amount of corrective agent used for pH control
(5b) and the volume (5¢):

Yya = (I;ill‘PHB + ]52(1 - l‘PHB)) Thios

Yres = Lres = (1 - fPHB):Ebio = h2(pH)a
yv =V. (5¢)
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Fig. 4. Schematics of the proposed multi-mode MPC/MHE
scheme.

3. MULTI-MODE MPC & MHE

The proposed approach is composed by a multi-mode
MPC and a multi-mode MHE, c.f. Fig. 2 and 3 . Both
use trust factors valuing the contribution of the differ-
ent modes to the cost function, which are adapted at
every time step by an update policy to improve per-
formance. The constraints are enforced simultaneously
for all modes. For the remaining of the paper, without
loss of generality, we summarize the model (1) and mea-
surement equations (5) in discrete-time form as 7', =
flx,uk) and yr = h(xrk,ur) respectively, where z =
[T Fr, T Ams TPHB, Thio, V] and u = F'.

3.1 Multi-mode MPC

Multi-mode MPC considers all modes in the prediction,
solving the following dynamic optimization problem:

min Linpe({z}, {u}) (6a)
st apyy =M (@ ur), (6b)
xgl =2, (60)

TP EX, wup €U. (6d)
X and U are respectively state and input constraints. Tg
represent the state estimate. Notice that the constraints
must be satisfied from all modes at all times. It is also
important to stress that in general the different modes
can have different state dimensions, which is the case if
different metabolic pathways are activated or deactivated.
The solution of the dynamic optimization will be an opti-
mal control sequence {u*} = {ugq, ug; -, US\Nmpc—l}' We
define also the optimal state sequence associated with u* as
{z*} = {x0|0 ,xou ,...,xéiﬁmm} and optimal measurement
sequence as {y"} = {Y/g" s Yoi1 > Yo Ny
the problem (6) is solved at every time step and only the
first term uao is applied to the plant, c.f. Rawlings and

11+ Generally,

Mayne (2012) for details. The objective function is chosen

as
Lappe( Z A" <Zl xi,ug) + 6(%\7)) (7)
where [(2]", u;) and e(xN) are chose as
o ) = o7 — @0l[g + Juillg, (8)
e(ay) = llziy — 2%

Where @, FE and R are square matrices and x, is the
reference system state. The cost functions are multiplied

by trust factors 3*. In the case considered, the trust factor
of model m is a function of the measured output at the
current time yg and the predicted output ;&Tllo i.e.

B = Bly" T vo)- ©)
The B(-) function is computed as follows: firstly, for
each mode, the distance between predicted output and

measured output is computed
dm A

W™ 0) (10)
where d could be any definition of distance. We use the

2-norm dij* = ||y"i;’|1O — yol|. Secondly, a score function

A . . .
sgt = s(dy, ™). This score function rewards one point

to the mode which at the previous time step predicted
better the measured output and penalizes by one point all
the other modes. Finally, the trust factors are computed
for each mode using a logistic function and are then
normalized

~ ~ 1

56”‘ ¢ sg 56n :Ban 2i’ (11)

bte i B

where a,b and c are tuning parameters. The scores s{’
are bounded to the an interval [Smin, Smaz] to limit the
maximum and minimum value of the trust factors. The
smaller the score of the mode, the less its model will be
weighted in (6). This will make sure that the optimal
control sequence is tailored more towards the mode which
is better representing the current system dynamics.

Remark (switching between modes):  In the current for-
mulation the prediction and estimation trajectories of
MPC and MHE do not branch except at the beginning of
the MPC horizon (Fig. 2). In case of slow system dynamics
and relatively short horizon length this is a reasonable
simplification. This challenge can be overcome considering
a scenario tree approach for the estimation and control.

Recursive feasibility — Following the idea of Maiworm
et al. (2015), feasibility for the MPC can be established by
assuming a common control invariant terminal region for
every mode. Here only the general idea is given. Assuming
that the functions (8) are continuous, and f™(0,0) = 0,
1(0,0) = 0,e(0) =0 Vm € [1,..., M] and assuming U is
compact, X is closed and both contain the origin. Let €1
be a common control invariant region. then the MPC is
recursively feasible.

3.2 Multi-mode MHE

For state (and parameter) estimation we use a optimiza-
tion based moving horizon estimator considering different
modes, c.f. (Rawlings (2013); Findeisen (1997) for a ba-
sic introduction to MHE). Compared to other estimation
techniques, the MHE has the advantage to easily imple-
ment constraints and usually shows better performance,
c.f. Haseltine and Rawlings (2005); Bavdekar et al. (2013).
The multi-mode MHE solves a dynamic optimization span-
ning over past measurements similar to the multi-mode

MPC:
Iglir}l Lne({z}, {w}) (12a)
st al =" (e ue) + wil, (12b)
ye  =h(x ug) + o, (12¢)
rpeX, wil'eW. (12d)
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Fig. 5. Simulation results. Fr: fructose, Am: ammonium.
PHB content is represented as a fraction of the
biomass.

Where Nyp,pe is the horizon length and wy' is state noise
which lies in a convex set W containing the origin. This
term represents possible model uncertainty and it is often
assumed to enter the model linearly. This can be a limi-
tation when the model uncertainty is large. Considering
multiple models in the MHE allow us to account for
model uncertainties that cannot be represented merely by
a additive linear term. The objective function is

M 0 M
Lonne() = > B @y )+ > D BN,
m=1

i=—Nphe m=1
(13)

As in the MPC case, we consider quadratic cost functions:
p(ng—the) = ”xo\—the - j_the||2P7 (14)

o wi) = I, + i = v %, (15)
Where £_y,,,. is the the best guess available of the state
at time —Ny,pe ¢.f. Rawlings and Mayne (2012) for details.
As in the multi-mode MPC, in multi-mode MHE the trust
factors play a fundamental role. But while in the MPC case
the last available value of trust factors is kept constant
for the entire prediction horizon (because we have no
information on future measurements) the past values of
the trust factors enter the MHE objective function at the
corresponding times. The solution of Problem (12) will
be the estimate of the state for each mode at time 0 .e.
Zg, ¥m = [1,..,M]. To obtain the estimate %, needed
by the multi-mode MPC in Problem (6), the estimated
weighted mean is used:

M
~ m ~m
To = E Jor
i=1

This means that at every MPC iteration, all mode predic-
tions start from the same state estimate o (Fig.2). In the
following we outline the use of the proposed approach for
PHB production from fruit waste.

(16)
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6. Upper graph: trust factors, middle graph: real
ammonium concentration, lower graph: liquid volume
in the reactor.

Fig.

4. MULTI-MODE PREDICTIVE CONTROL FOR
FRUIT WASTE BASED PHB PRODUCTION

In the considered process fruit waste with an uncertain
composition is used as feed and medium source, c.f. Section
2 and Fig. 3. Firstly, the concentration of the substrates
in the feed is estimated during a short batch phase (with
no feed) with an MHE with a single model. This is a
reasonable simplification, since estimator converges while
nitrogen concentration is still high. Thus, there is no risk
of incurring a mode switch (for brevity, results are not
shown). After that the composition of the renewable source
are estimated we proceed with the fed-batch production
phase where the proposed multi-mode approach is used.
In a fed-batch process, substrates are fed into a reactor
but no product is extracted. The process stops when
the volume reaches the maximum reactor capacity. Our
objective is maximizing productivity, therefore the goal
is to keep the system as long as possible in mode II
during the process. From the data of Franz (2015) we
know that the system eventually enters PHB production
(mode II) for zap < 1.0 g/I, and reaches the maximum
yield (mode IIT) for zan < 0.1 g/l. Thus, we used
x, = 0.5 as a reference point in (8). By doing so the
MPC will compute a control action that leads the system
to this concentration regardless of the system’s active
mode. Notice that, if mode II is active at a different x 4s
the reference can be adjusted online when more precise
information is available. In Fig.5 simulation results show
the estimated and simulated concentrations for the entire
fed-batch time. A measurement noise of 2% is added to
the simulated measurements. We used time steps of 0.1
hours and horizon lengths of N = N5 = 10. In Fig. 6
the trust factors and the real ammonium concentration are
shown. The real system switches from mode I to mode II
at 6.3 hours when a concentration of ammonium of 1g/I
is reached, the trust factors of mode II reflects the switch
and the objective functions (6) and (12) are adapted to
the new estimate. The controller keeps the system in the
proximity of the reference point in the region where mode
I is active. At time 21.7 hours, the maximum volume is
reached. At this point the controller stops feeding. This
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terminates the supply of ammonium. Consequently, due
to ammonium depletion, the system switches to mode III.

5. CONCLUSIONS

Often models of dynamical systems are effected by struc-
tural, state and parametric uncertainties, therefore the de-
sign of a model-based robust control system is a challeng-
ing task. Examples of such systems are biotechnological
processes using renewable feed stocks. In these processes
uncertainties can trigger different bacterial growth modes,
causing abrupt changes in system dynamics. To maintain
optimal process performances, a close loop controller must
account for these changes. In this work, we proposed an
flexible approach which uses MPC and MHE and considers
different growth modes exploiting diffent corresponding
models. By doing so we can facilitate constraints satisfac-
tion and rapid adaptation of the controller to new process
conditions. By applying the proposed method to a PHB
production process, we showed in simulations that, when
a switch in the metabolic mode occurs, the controller suc-
cessfully adapts to new process conditions, and maintains
optimal performance.

In the current formulation branching of the state trajec-
tories is considered only at the initial point of the predic-
tion horizon. To increase robustness, the approach can be
expand allowing the models to branch in the prediction
and estimation horizon in a scenario tree. We furthermore
plan to investigate new trust update policies and their
performance.
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