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DERIVED EQUIVALENCES OF FUNCTOR CATEGORIES

JAVAD ASADOLLAHI, RASOOL HAFEZI AND RAZIEH VAHED

Abstract. Let Mod-S denote the category of S-modules, where S is a small category.
In the first part of this paper, we provide a version of Rickard’s theorem on derived
equivalence of rings for Mod-S. This will have several interesting applications. In the
second part, we apply our techniques to get some interesting recollements of derived
categories in different levels. We specialize our results to path rings as well as graded
rings.

Contents

1. Introduction 1
2. Preliminaries 3
3. Derived equivalences of functor categories 6
3.1. Applications 17
3.2. Infinitely generated n-tilting modules 25
4. Existence of recollements 27
4.1. Recollements of path rings 32
4.2. Recollements of Graded rings 33
References 35

1. Introduction

Tilting theory is initiated from representation theory of finite dimensional algebras, with
origins in the work of Bernštĕin, Gel’fand and Ponomarev [BGP]. It is known that tilting
theory can be viewed as a generalization of classical Morita theory; see e.g. [Ha1, CPS, Ric,
Kel].

In this direction, one of the most beautiful results is the Rickard’s theorem [Ric, Theorem
6.4] that characterizes all rings that are derived equivalent to a given ring A by determining
all tilting complexes over A.

On the other hand, functor categories were introduced in representation theory by Aus-
lander [Aus1, Aus2]. He used this kind of categories to classify artin algebras of finite repre-
sentation type [Aus1] as well as to prove the first Brauer-Thrall conjecture [Aus3].

Let S be a small category. We denote by Mod-S the category of all additive contravariant
functors from S toAb, the category of abelian groups. Mod-S, known also as functor category,
will be called the category of modules on S. It is known that it is an abelian category having
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enough projective object. Our first attempt in this paper is to get a generalization of Rickard’s
theorem for Mod-S. To this end, we fix a set of objects T of K(Mod-S) satisfying the following
properties:

(P1) HomK(Mod-S)(T,⊕Xi) ∼= ⊕HomK(Mod-S)(T,Xi), for all T,Xi ∈ T ;
(P2) HomK(Mod-S)(T, T

′[i]) = 0, for all i 6= 0 and all T, T ′ ∈ T ;

(P3) There exists a fixed integer n such that for each T ∈ T , T i = 0, for |i| > n.

Theorem 3.20, then shows that there is an equivalence of triangulated categories

D(Mod-T ) ≃ DT (Mod-S),

where DT (Mod-S) is the relative derived category of S with respect to T , defined in 3.18.
This has several interesting applications. Let us explain some of them in this introduction.

A small category S is called R-flat, where R is a commutative ring, if S(x, y) is flat R-
module, for every x, y ∈ S. Keller [Kel, 9.2, Corollary] proved that two R-flat categories
S and S ′ are derived equivalent, i.e. D(Mod-S) ≃ D(Mod-S ′), if and only if there exists a
special subcategory T of Kb(prj-S), called tilting subcategory for S, such that T is equivalent
to S ′.

Using Theorem 3.20 we provide a sufficient condition for derived equivalence of functor
categories without flatness assumption on the categories involved. In fact, we show that if T
is as above and moreover we know that a complex X in K(Mod-S) is acyclic if and only if it
is T -acyclic, then there exists the following equivalence of triangulated categories

D(Mod-T ) ≃ D(Mod-S).

A complex X in K(Mod-S) is called T -acyclic, if for every object T ∈ T the induced complex
HomT (T,X) is acyclic.

Neeman [N4] proved that if A is a left coherent ring, then K(Prj-A), the homotopy category
of projective (right) A-modules, is compactly generated and is an infinite completion of
Db(mod-Aop)op. This in turn implies that if A and B are two right and left coherent rings
such that K(Prj-A) ≃ K(Prj-B), then A and B are derived equivalent, i.e. Db(Mod-A) ≃
Db(Mod-B). As another application of our results, we prove the converse of this fact, without
any assumption on A and B, see Theorem 3.24 below. As a corollary of this equivalence, we
get that if A and B are derived equivalent virtually Gorenstein algebras, then Gp-A ≃ Gp-B,
where Gp-A is the stable category of finitely generated Gorenstein projective A-modules
modulo projectives, see preliminaries section for details. This result should be compared
with [Ka, Theorems 3.8 and 4.2] and [Be1, Theorem 8.11].

The next application we shall explain here is based on Theorem 3.1.10, that shows that if A
and B are two noetherian rings that are fGd-derived equivalent, then there is an equivalence
D(Mod-Gp-A) ≃ D(Mod-Gp-B) of triangulated categories. For definition of an fGd-derived
equivalence see Definition 3.1.3. Such equivalences have been studied by Kato [Ka].

Recently, infinitely generated tilting modules over arbitrary rings has received consider-
able attention. In this connection, the notion of good tilting modules is introduced. We
apply our results to show in Theorem 3.2.2 that every good n-tilting module TA provide
an equivalence between the derived category D(Mod-A) and the relative derived category
DT (Mod-EndA(T )

op). Again we refer the reader to Subsection 3.2 for definition of good
n-tilting modules and their properties.

Recollements of triangulated categories are ‘exact sequences’ of triangulated categories,
which describe the middle term by a triangulated subcategory and a triangulated quotient
category. Recollements were introduced by Beilinson, Bernstein and Deligne [BBD] in a
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geometric context, in order to decompose derived categories of sheaves into two parts, an
open and a closed one, and thus providing a natural habitat for Grothendieck’s six functors.

A necessary and sufficient condition for the existence of recollements of (bounded) de-
rived module categories of rings has been given by Koenig [Ko]. This result was extended
to differential graded rings and unbounded derived categories [J, NS]. All these criterions
characterize the existence of a recollement by determining two exceptional objects.

If the quotient or the subcategory, in an arbitrary recollement, vanishes, then one excep-
tional object will be vanish and the other one is a tilting complex, that is, one recovers Morita
theory of derived categories.

Section 4 is devoted to investigate the existence of D−(Mod-), resp. D(Mod-), level rec-
ollements of functor categories. Let S be a small category. We prove that if B and C are
sufficiently nice full triangulated small subcategories of Kb(Prj-S), then D(Mod-S) admits a
recollement

D(Mod-B) // D(Mod-S) //
gg

ww
D(Mod-C).

gg

ww

Then it is shown that the above recollement can be restricted to a recollement

D−(Mod-B) // D−(Mod-S) //
gg

vv
D−(Mod-C).

gg

vv

Here, we plan to provide a sufficient condition for the existence of recollements of functor
categories. Using this, it will be proved that if there is a D−(Mod-) level recollement of
rings, then we have a D−(Mod-) level recollement of their path rings, incidence rings and
monomial rings over any locally finite quiver. This result can be considered as an extension
of Asashiba’s result [As] that states if A and B are algebras that are derived equivalent, then
their path algebras, incidence algebras and monomial algebras are derived equivalent.

It is known that the category of complexes over ring A is equivalent to the category of
graded modules over a graded ring A[x]/(x2), gr-A[x]/(x2), see [GH]. A similar argument
implies that Rep(A+∞

−∞, A) is equivalent to gr-A[x]. Using these facts, in the last subsection
of the paper we specialize our result to get D−(gr-) level recollements of graded rings.

2. Preliminaries

In general A denotes an associative ring with identity. We let Mod-A, resp. A-Mod,
denote the category of all right, resp. left, A-modules. We also, consider the following full
subcategories of Mod-A.

Prj-A = projective (right) A-modules,
mod-A = finitely presented A-modules,
prj-A = finitely generated projective A-modules.

2.1. Let C be an additive category. We denote by C(C) the category of complexes in C. We
grade complexes cohomologically, so every complex X in C(C) is of the form

· · · −→ Xn−1 ∂n−1

−→ Xn ∂n

−→ Xn+1 −→ · · · .
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Let X = (X i, ∂i) be a complex in C(C) and n,m be integers. We define the following
truncations of X:

⊏n
X : 0 −→ Xn ∂n

−→ Xn+1 ∂n+1

−→ Xn+2 −→ · · ·

X
m⊐ : · · · −→ Xm−2 ∂m−2

−→ Xm−1 ∂m−1

−→ Xm −→ 0

⊂n
X : 0 −→ Coker∂n−1 ∂̄n

−→ Xn+1 ∂n+1

−→ Xn+2 −→ · · ·

X
m⊃ : · · · −→ Xm−2 ∂m−2

−→ Xm−1 ∂m−1

−→ Ker∂m −→ 0

The differential ∂̄n is the induced map on residue classes.

We denote the homotopy category of C by K(C); the objects are complexes and morphisms
are the homotopy classes of morphisms of complexes. The full subcategory of K(C) consisting
of all bounded above, resp. bounded, complexes is denoted by K−(C), resp. Kb(C). Moreover,
we denote by K−,b(C), the full subcategory of K−(A) formed by all complexes X such that
there is an integer n = n(X) with Hi(X) = 0, for all i ≤ n.

Let A be an abelian category. The derived category of A will be denoted by D(A). Also,
D−(A), resp. Db(A), denotes the full subcategory of D(A) formed by all homologically
bounded above, resp. homologically bounded, complexes.

2.2. Total acyclicity. Let X be an additive category. A complex X in C(X ) is called X -
totally acyclic if for every object Y ∈ X , the induced complexes HomX (X, Y ) and HomX (Y,X)
of abelian groups are acyclic.

Let A be an abelian category having enough projective, resp. injective, objects and X =
Prj-A, resp. X = Inj-A, be the class of projectives, resp. injectives. In this case, an X -totally
acyclic complex is called totally acyclic complex of projectives, resp. totally acyclic complex
of injectives. An object G in A is called Gorenstein projective, resp. Gorenstein injective,
if G is a syzygy of a totally acyclic complex of projectives, resp. totally acyclic complex
of injectives. We denote the class of all Gorenstein projective, resp. Gorenstein injective,
objects in A by GP-A, resp. GI-A. In case A = Mod-A, we abbreviate the notations to
GP-A and GI-A. We set Gp-A = GP-A ∩mod-A and Gi-A = GI-A ∩mod-A.

2.3. Localizing and thick subcategories. Let D be a triangulated category. A tri-
angulated subcategory L of D is called thick, if it is closed under direct summands. The
smallest full thick subcategory of D containing a class L of objects is denoted by thick(L).
A triangulated subcategory L of D is called localizing if it is closed under all coproducts al-
lowed in D. If L is a subclass of objects of D, we denote by LocL, the smallest full localizing
subcategory of D containing L.

We have the following constructions.

Construction 2.4. (see [Kr, Lemma 3.3]) Given a class L of objects of a triangulated
category D, we take L to be the class of all X [i] with X ∈ L and i ∈ Z. Define a full
subcategories 〈L〉n, for n > 0, inductively as follows.

• 〈L〉1 is the subcategory of D consisting of all direct summands of objects of L.

• For n > 1, suppose that Ln is the class of objects X occuring in a triangle

Y → X → Z  
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with Y ∈ 〈L〉i and Z ∈ 〈L〉j such that i, j < n. Let 〈L〉n denote the full subcategory

of D formed by all direct summands of objects of Ln.
It can be easily checked that thick(L) =

⋃
n∈N 〈L〉n.

Let α be a regular cardinal. A coproduct in D is said to be α-coproduct, if it is indexed
by a set of cardinality less than α. A full thick subcategory of D is called α-localizing if it
is closed under α-coproducts. For a subcategory L of D, LocαL is the smallest α-localizing
subcategory of D containing L. In fact, LocL =

⋃
α LocαL.

The construction of LocαL will be used throughout the paper and deserves more attention.

Construction 2.5. For a class L of objects of D, we let Lα be the class of all objects X [i],
with X ∈ L and i ∈ Z, together with their α-coproducts.

• Loc1αL is the full subcategory of D whose objects are direct summand of objects of
Lα.

• For n > 0, L
n

α denotes the class of all objects X such that there is a triangle

Y → X → Z  

with Y ∈ LociαL and Z ∈ LocjαL such that i, j < n. We define LocnαL to be the full

subcategory of D formed by all direct summands of α-coproducts of objects of L
n

α.

Now, it can be easily checked that LocαL =
⋃

n∈N LocnαL.

2.6. Recollements and stable t-structures. Let T , T ′ and T ′′ be triangulated cat-
egories. T is called a recollement of T ′ and T ′′ if there exists a diagram consisting of six
triangulated functors as follows

T ′ i∗=i! // T
j∗=j! //

i!ee

i∗

xx
T ′′

j∗ee

j!

yy

satisfying the following conditions:

(i) (i∗, i∗), (i!, i
!), (j!, j

!) and (j∗, j∗) are adjoint pairs.
(ii) i!j∗ = 0, and hence j!i! = 0 and i∗j! = 0.
(iii) i∗, j∗ and j! are full embeddings.
(iv) for any object T ∈ T , there exist the following triangles

i!i
!(T ) → T → j∗j

∗(T ) and j!j
!(T ) → T → i∗i

∗(T ) 

in T .

Let T1 and T2 be triangulated categories that admit the following recollements

T ′
1

i1∗ // T1
j∗1 //

i!2
cc

i∗1

{{
T ′′
1 ,

j1∗
cc

j1!

{{

T ′
2

i2∗ // T2
j∗2 //

i!2
cc

i∗2

{{
T ′′
2 .

j2∗
cc

j2!

{{
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A triangle functor F : T1 −→ T2 is called a morphism of recollements, if there are triangle
functors F ′ : T ′

1 −→ T ′
2 and F ′′ : T ′′

1 −→ T ′′
2 make the following diagrams commutative, up

to natural isomorphism

T
′
1OO

F ′

?�

T1OO

F

?�

i∗1

��
T

′′
1OO

F ′′

?�

j1!

��

T
′
2 T2

i∗2

��
T

′′
2

j2!

��

T
′
1

i1∗ //
OO

F ′

?�

T1

j∗1 //
OO

F

?�

T
′′
1OO

F ′′

?�

T
′
2

i2∗ //
T2

j∗2 //
T

′′
2

T
′
1OO

F ′

?�

T1OO

F

?�

i!1

^^ T
′′
1

j1∗

^^ OO

F ′′

?�

T
′
2 T2

i!2

^^ T
′′
2 .

j2∗

^^

Let D be a triangulated category. A pair (U ,V) of full subcategories of T is called an
stable t-structure, if the following conditions are satisfied

(i) U = ΣU and V = ΣV ,
(ii) HomT (U ,V) = 0,
(iii) For every X ∈ T , there is a triangle U → X → V  with U ∈ U and V ∈ V .

Following proposition provides a connection between the above two notions.

Proposition 2.7. [M1] Let (U ,V) and (V ,W) be stable t-structures in T . Then there is a

recollement

V
i∗ // T

j∗ //
i!

dd

i∗

zz
T /V

j∗
ee

j!

yy

in which i∗ : V −→ T is a canonical embedding, Imj! = U and Imj∗ = W.

3. Derived equivalences of functor categories

In this section we provide a sufficient condition for derived equivalences of functor cate-
gories. Then we present a version of Rickard’s Theorem in terms of functor categories.

Let S be a skeletally small category. We denote by Mod-S the category of contravariant
functors from S to the category of abelian groups. Mod-S is called the category of modules
over S, or the category of (right) C-modules. It is known that Mod-S is an abelian category
with arbitrary coproducts.

For an object S ∈ S, one may apply Yoneda lemma to show that the representable functor
HomS(−, S) is a projective object in Mod-S. Moreover, for a functor F ∈ Mod-S, there is
an epimorphism

∐
iHomS(−, Si) −→ F −→ 0, where Si runs through isomorphism classes

of objects in S. So the abelian category Mod-S has enough projective objects. The full
subcategory of Mod-S consisting of all projective objects will be denoted by Prj-S.

An object F of Mod-S is called finitely presented if there exists an epimorphism

HomS(−, S1) −→ HomS(−, S0) −→ F −→ 0,

for some objects S1 and S0 of S. The category of all finitely presented S-modules is denoted by
mod-S. Note that a finitely presented S-module F is projective if and only if it is isomorphic
to a direct summand of a finite direct sum of representable functors. We denote by prj-S the
full subcategory of mod-S consisting of all finitely presented projective functors.

Let S be a small category which is closed under finite direct sums and every idempo-
tent splits. Then, in this case, every finitely presented projective S-module is of the form
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HomS(−, S), for some S ∈ S.

3.1. Let S be a small category. Let T be a set of objects in K(Mod-S) satisfying the following
properties:

(P1) HomK(Mod-S)(T,⊕Xi) ∼= ⊕HomK(Mod-S)(T,Xi), for all T,Xi ∈ T ;
(P2) HomK(Mod-S)(T, T

′[i]) = 0, for all i 6= 0 and all T, T ′ ∈ T ;

(P3) There exists a fixed integer n such that for each T ∈ T , T i = 0, for |i| > n.

Let KK(Mod-S) := K(K(Mod-S)) denote the homotopy category of K(Mod-S). Thus
every object of KK(Mod-S) is a complex of complexes over Mod-S together with a sequence
of homotopy classes of maps between them such that composing every two consecutive maps
is null homotopic. By [Ric], for every object X in KK(Mod-S), we have:

(a) a bigraded object X∗∗ of Mod-S;
(b) a graded endomorphism d of degree (1, 0), obtained from the differentials in the

complexes over Mod-S;
(c) a graded endomorphism δ of degree (0, 1), obtained from the original complex.

Setup 3.2. Throughout the paper, unless otherwise specified, S denotes a small category
and T is a set of objects in K(Mod-S) satisfying the properties defined at 3.1. Also, Let T
denote a class of objects of KK(Mod-S) consisting of all shiftings of stalk complexes T with
T in degree zero, where T ∈ T .

Note that the same property as (P1) holds true for every complex T in T, i.e.

HomKK(Mod-S)(T,⊕iTi) ∼= ⊕iHomKK(Mod-S)(T,Ti),

where Ti ∈ T.
Let KKT(Mod-S) be the smallest full triangulated subcategory of KK(Mod-S) that con-

tains T and is closed under coproducts.

Lemma 3.3. Let X be a complex in KKT(Mod-S). Then for every j, (X∗j , d) is a direct

sum of objects of T.

Proof. By definition, KKT(Mod-S) = LocT =
⋃

α LocαT. So, if X ∈ KKT(Mod-S), then
X ∈ LocαT for some regular cardinal α. By Construction 2.5, LocαT =

⋃
n∈N LocnαT and so

we prove the statement by induction on n. It is clearly true for n = 1. Assume that n > 1.
By construction, there is a triangle

Y → X → Z ,

where Y ∈ LoclαT and Z ∈ Locmα T, where m, l < n. Induction hypothesis implies that for
every j, (Y∗j , d) and (Z∗j , d) are direct sums of objects of T. So, by the above triangle,
(X∗j , d) is a direct sum of objects of T, for every j ∈ Z. �

3.4. In the following, our aim is to construct a functor from KKT(Mod-S) to K(Mod-S). A
complex X = (X∗∗, d, ∂) ∈ KKT(Mod-S) is of the following form:

(i) Xij is zero for large i or large j;
(ii) d2 = 0;
(iii) for every j, (X∗j , d), considered as a single complexes, is a direct sum of objects of

T ;
(iv) dδ = δd;
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(v) for every j, δ2 : X∗j −→ X∗(j+2), considered as a chain map of complexes, is homo-
topic to zero.

Hence, as it is mentioned in [Ric, p. 439], if we want to follow the natural way, i.e. consider
X as a double complex over Mod-S and then form its total complex, a technical problem will
arise. In fact, we shall required ∂2 to be zero, but our assumption only implies that ∂2 is
homotopic to zero. In order to fix the problem, the differentials d0 = d, d1 = (−1)i+jδ will
be extended to a sequence {di : i = 0, 1, · · · } of maps of degree (1 − i, i) such that for every
n,

d0dn + d1dn−1 + · · ·+ dnd0 = 0.

Now, one can deduce that the total complex of X∗∗ with Σdi, as differentials, is a complex
over Mod-S.

Lemma 3.5. Let X∗∗ and Y∗∗ be graded objects of Mod-S that are equipped with a graded

endomorphism d of degree (1, 0) with d2 = 0. Suppose also that for every j, (X∗j , d) and

(Y∗j , d), regarded as single complexes are isomorphic to direct sums of objects of T. Then

for every graded map α : X∗∗ −→ Y∗∗ of degree (p, q), p 6= 0 and dα = αd, there is a graded

map h of degree (p− 1, q) such that α = dh+ hd.

Proof. This can be obtained by straightforward modification of the argument of the proof of
Lemma 2.3 of [Ric]. �

3.6. Let G(S) denote the category that is defined as follows. An object is a system {X∗∗, di |
i = 0, 1, · · · }, where X∗∗ is a bigraded object of Mod-S satisfying the conditions as an object
in KKT(Mod-S) and, for every i, di is a graded endomorphism of X∗∗ of degree (1− i, i) such
that for every n,

d0dn + d1dn−1 + · · ·+ dnd0 = 0.

The morphisms between two systems {X∗∗, di} and {Y∗∗, di} are collections {αi | i =
0, 1, · · · } of graded maps X∗∗ −→ Y∗∗ of degrees (−i, i) satisfying

α0dn + α1dn−1 + · · ·αnd0 = d0αn + d1αn−1 + · · ·+ dnα0,

for each n.

Proposition 3.7. There is a functor

Φ : KKT(Mod-S) −→ K(Mod-S)

of triangulated categories that preserves coproducts.

Proof. Let X be an object of KKT(Mod-S). There is already the bigraded object X∗∗ of
K(Mod-S). Hence to construct the desired functor, what is required to be defined is the
graded endomorphism di. We have to choose d0 = d and d1 = (−1)i+jδ : X i,j −→ X i,j+1.
Then other di’s are defined inductively by applying Lemma 3.5. In a similar way, for any
map α : X −→ Y in KKT(Mod-S), we can assign a morphism {αi} : X∗∗ −→ Y ∗∗ of G(S).
For more details, see [Ric, Propositions 2.6 and 2.7].

Altogether, we can now define a triangulated functor

Φ : KKT(Mod-S) −→ K(Mod-S)

by going first to G(S) and then taking total complex. The method that is used in [Ric,
Proposition 2.11] can carry over verbatim to show that Φ is in fact a triangulated functor.
Also, definition of Φ implies that it preserves coproducts. �
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In the following, we plan to prove that the functor Φ defined above is fully faithful.

Lemma 3.8. There exists an equivalence

ψ : Add-T
∼
−→ Prj-T

of categories, where Add-T denotes the full additive subcategory of KK(Mod-S) formed by all

direct summands of direct sums of objects of T.

Proof. In view of Yoneda lemma, there is a bijection between T and the class of representable
functors HomKK(Mod-S)(−,T), where T ∈ T. Each object T of T satisfies the same property
as (P1). We use this fact to show that this bijection can be extended to the equivalence
ψ : Add-T −→ Prj-T. Indeed, for two families {Ti}i∈I and {Tj}j∈J of objects of T, there
exist the following isomorphisms
HomKK(Mod-T)(⊕i∈ITi,⊕j∈JTj) ∼=

∏
i∈I HomKK(Mod-S)(Ti,⊕j∈JTj)

∼=
∏

i∈I ⊕j∈JHomKK(Mod-S)(Ti,Tj)
∼=

∏
i∈I ⊕j∈JHomMod-T(Hom(−,Ti),Hom(−,Tj))

∼=
∏

i∈I HomMod-T(Hom(−,Ti),⊕j∈JHom(−,Tj))
∼= HomMod-T(⊕i∈IHom(−,Ti),⊕j∈JHom(−,Tj))
∼= HomMod-T(Hom(−,⊕i∈ITi),Hom(−,⊕j∈JTj)).

Now, since every object of Add-T, resp. Prj-T, is a direct summand of some objects of the
form ⊕Ti, resp. ⊕iHom(−,Ti), we get that ψ is fully faithful. Moreover, it follows directly
from the definition of ψ that ψ : Add-T −→ Prj-T is dense. �

Let D be a triangulated category with coproducts. Recall that An object X of D is called
compact if for every set {Yj}j∈J of objects of D, every map X →

∐
j∈J Yj factors through a

finite coproduct. The full triangulated subcategory of D consisting of all compact objects is
denoted by Dc.

Let L be a set of objects of D. Then L generates D provided an object X of D is zero
if for all L ∈ L, D(L,X) = 0. A triangulated category D is called compactly generated, if
there is a set of compact objects generating D.

Proposition 3.9. The triangulated category KKT(Mod-S) is compactly generated with T as

a compact generating set.

Proof. Let (−,T) denote the class of all representable functor HomKK(Mod-S)(−,T), where T
runs through objects of T. Then the equivalence ψ : Add-T −→ Prj-T induces an equivalence

ψ̄ : LocT
∼
−→ Loc(−,T).

It is known that Loc(−,T) ≃ D(Mod-T) and hence KKT(Mod-S) = Loc(−,T) is compactly
generated with T as a compact generating set. �

Remark 3.10. Assume thatKT (Mod-S) is the smallest full localizing subcategory ofK(Mod-S)
containing T . The same argument as above works to show that KT (Mod-S) ≃ D(Mod-T )
and so KT (Mod-S) is compactly generated with T as a compact generating set.

Let K−,T b
T (Mod-S) denote the full triangulated subcategory of K−

T (Mod-S) consisting of
all complexes X , in which there is an integer n = n(X) such that HomKT (Mod-S)(T,X [i]) = 0

for all i < n and every T ∈ T . Also, we denote by KK−
T(Mod-S) the full subcategory of

KKT(Mod-S) formed by all bounded above complexes. Moreover, KK
−,Tb
T (Mod-S) denotes

the full triangulated subcategory of KK−
T(Mod-S) formed by all complexes X in which there



10 ASADOLLAHI, HAFEZI, VAHED

is an integer n = n(X) such that HomKKT(Mod-S)(T,X[n]) = 0 for all i < n and every T ∈ T.

We have the following characterizations of subcategories ofKKT(Mod-S), resp. KT (Mod-S).

Lemma 3.11. (i) Let X be a complex in KKT(Mod-S). Then X lies in KK−
T(Mod-S),

up to isomorphism, if and only if there exists an integer N > 0 such that

HomKK(Mod-S)(Q[−n],X) = 0,

for all n ≥ N and every complex T in T.

(ii) Let X be a complex in KT (Mod-S). Then X lies in K
−
T (Mod-S), up to isomorphism,

if and only if there exists an integer N > 0 such that

HomK(Mod-S)(Q[−n],X) = 0,

for all n 6= N and every complex T in T .

Proof. These statements follow directly from the facts that KKT(Mod-S) = LocT and
KT (Mod-S) = LocT , respectively. �

Lemma 3.12. (i) An object X ∈ KK−
T(Mod-S) lies in KK

−,Tb
T (Mod-S), up to isomor-

phism, if and only if for each complex Y ∈ KK−
T(Mod-S) there exists an integer N

such that HomKKT(Mod-S)(Y,X[n]) = 0, for all n < N .

(ii) An object X ∈ K
−
T (Mod-S) lies in K

−,T b
T (Mod-S), up to isomorphism, if and only

if for each complex Y ∈ K−
T (Mod-S) there exists an integer N such that

HomKT (Mod-S)(Y,X[n]) = 0, for all n < N .

Proof. We just prove (i). A similar argument works to prove (ii). First note that a modifica-
tion of the proof of [Ric, Lemma 6.1] works to prove that, for a small category A, a complex
X in K−(Prj-A) lies in K−,b(Prj-A), up to isomorphism, if and only if for every complex
Y ∈ K−(Prj-A) there is a natural number N such that Hom(Y,X [n]) = 0, for all n < N .
Now, the equivalence

ψ̄ : LocT −→ Loc(−,T)

of triangulated categories yields the result. �

Lemma 3.13. (i) An object X ∈ KK
−,Tb
T (Mod-S) lies in thick(⊕T), up to isomor-

phism, if and only if for each complex Y ∈ KK
−,Tb
T (Mod-S) there is an integer N

such that HomKKT(Mod-S)(X,Y[n]) = 0, for all n > N .

(ii) An object X ∈ K
−,T b
T (Mod-S) lies in thick(⊕T ), up to isomorphism, if and only

if for each complex Y ∈ K
−,T b
T (Mod-S) there is an integer N such that

HomKT (Mod-S)(X,Y[n]) = 0, for all n > N .

Proof. (i) Let A be a small category. One should apply an argument similar to [Ric, Lemma
6.2] verbatim to show that a complex X in K−,b(Prj-A) lies in Kb(Prj-A), up to isomorphism,
if and only if for every complex Y ∈ K−,b(Prj-A), Hom(X,Y [n]) = 0, for large n. Now, the
equivalence

ψ̄ : LocT −→ Loc(−,T)

implies the desired characterization and completes the proof.
The statement (ii) can be obtained from the same argument as above. �
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Remark 3.14. Consider a bijection φ : T −→ T which takes any complex T in T to the stalk
complex T given by the complex T . The map φ induces an equivalence Mod-T ≃ Mod-T
and hence an equivalence D(Mod-T ) ≃ D(Mod-T). Consequently, we have the following
equivalence of triangulated categories

KKT(Mod-S)
∼
→ Loc(−,T)

∼
→ D(Mod-S)

∼
→ D(Mod-T ).

According to the characterizations that are given in Lemmas 3.11, 3.12 and 3.13, one can
deduce that the above equivalence is restricted to the following equivalences

(3.1) KKT(Mod-S)
∼ //

OO

?�

D(Mod-T )
OO

?�

KK
−
T(Mod-S)

∼ //
OO

?�

D−(Mod-T )
OO

?�

KK
−,Tb
T (Mod-S)

∼ // Db(Mod-T ).

Proposition 3.15. The triangulated functor Φ : KKT(Mod-S) −→ K(Mod-S) is full and

faithful. Moreover, it induces the equivalence

Φ : KKT(Mod-S) −→ KT (Mod-S),

of triangulated categories.

Proof. In view of Proposition 3.9 and Remark 3.10, KKT(Mod-S) and KT (Mod-S) are com-
pactly generated with compact generating sets T and T , respectively and by Lemma 2.2 of
[N1], KKT(Mod-S)c = thick(T) and KT (Mod-S)c = thick(T ). So, by [M2, Proposition 6], it
suffices to show that the restriction of Φ to compact objects is an equivalence. According to
Construction 2.4, thick(T ) =

⋃
n∈N〈T 〉n. Now, we show that Φ| : thick(T) −→ thick(T ) is

full and faithful, using induction on n
First assume that n = 1. Properties (P1) and (P2) imply that if X and Y belong to 〈T〉1,

then

HomKKT(Mod-S)(X,Y) ∼= HomKT (Mod-S)(Φ(X),Φ(Y)).

Now let n > 1 and X and Y belong to 〈T〉n. Hence there exist triangles

X′ → X → X′′
 ,

Y′ → Y → Y′′
 ,

where X′ ∈ 〈T〉m,Y
′ ∈ 〈T〉′m,X

′′ ∈ 〈T〉l′ and Y′′ ∈ 〈T〉l such that m,m′, l, l′ < n. So, by
induction hypothesis, we have the following isomorphism

HomKKT(Mod-S)(X,Y) ∼= HomKT (Mod-S)(Φ(X),Φ(Y)).

Consequently, Φ| : KKT(Mod-S)c −→ KT (Mod-S)c is full and faithful. Clearly, Φ| is also
dense and so is an equivalence. �

Let D be a triangulated category with direct sums. Let L be a set of objects of D. Then
⊕L denotes the set of all direct sums of objects of L.
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Proposition 3.16. There is a commutative diagram

KKT(Mod-S)
Φ
∼ //

OO

?�

KT (Mod-S)
OO

?�

KK
−
T(Mod-S)

∼ //
OO

?�

K
−
T (Mod-S)

OO

?�

KK
−,Tb
T (Mod-S)

∼ //
OO

?�

K
−,T b
T (Mod-S)

OO

?�

thick(⊕T)
OO

?�

∼ // thick(⊕T )
OO

?�

thick(T)
∼ // thick(T )

of triangulated categories whose rows are triangle equivalences.

Proof. First observe that every triangle equivalence induces an equivalence on the compact
objects. Hence, in view of Proposition 3.9 and Remark 3.10, we have the last induced
equivalence.

The other induced equivalences follow directly from Lemmas 3.11, 3.12 and 3.13. �

Remark 3.17. Observe that the condition (P3) of 3.1 has been used to define the functor
Φ. Indeed, let X be a complex in KKT(Mod-S). Then we can associate an object {X∗∗, di}
of G(S) to X. Now, condition (P3) guarantees that the sum Σdi is well-defined. So, we can
form the total complex of X∗∗, with Σdi as the differentials. Furthermore, to construct the
functor Φ : KKT(Mod-S) −→ K(Mod-S) it is not necessary to assume that T ⊆ K(Prj-S).
We have just needed properties (P1), (P2) and (P3) to define Φ and to prove that it is full
and faithful.

3.18. Relative derived category. Let S be a small category and X be a full subcategory
of K(Mod-S). A complex Y in K(Mod-S) is called X -acyclic, if for every object X of X
and all i ∈ Z, HomK(Mod-S)(X,Y[i]) = 0. Let KX -ac(Mod-S) denote the full triangulated
subcategory of K(Mod-S) consisting of all X -acyclic complexes. Clearly, KX -ac(Mod-S) is a
thick subcategory of K(Mod-S). So we get the triangulated category

DX (Mod-S) := K(Mod-S)/KX -ac(Mod-S)

which is called the relative derived category of Mod-S with respect to X .

Recall that if D′ is a triangulated subcategory of D, then the left and right orthogonal of
D′ in D are given by

⊥D′ = {X ∈ D | HomD(X,Y ) = 0, for all Y ∈ D′},

D′⊥ = {X ∈ D | HomD(Y,X) = 0, for all Y ∈ D′}.

Lemma 3.19. There is an equivalence

DT (Mod-S) ≃ KT (Mod-S)
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of triangulated categories.

Proof. Consider the following sequence of functors

KT (Mod-S)
ι
→֒ K(Mod-S)

Q
→ DT (Mod-S),

where ι is the inclusion andQ is the canonical functor. SinceKT (Mod-S) = LocT , KT (Mod-S) ⊆
⊥KT -ac(Mod-S). Hence, by Lemma 9.1.5 of [N3], the composition functorQ◦ι : KT (Mod-S) −→
DT (Mod-S) is full and faithful. So to complete the proof, it remains to show that Q ◦ ι is
dense.

Since, by Remark 3.10, KT (Mod-S) = LocT is compactly generated, Theorem 4.1 of [N2]
implies that the inclusion

KT (Mod-S)
ι
→֒ K(Mod-S)

has a right adjoint. So, for every complex X in K(Mod-S) there is a triangle

X′ → X → X′′
 ,

in K(Mod-S), where X′ ∈ KT (Mod-S) and X′′ ∈ (KT (Mod-S))⊥. Since T is contained
in KT (Mod-S), X′′ is a T -acyclic complex. Therefore, if we consider the above triangle in
DT (Mod-S) under the canonical functor Q, we get that X is isomorphic to X′. This means
that Q ◦ ι is dense. �

Theorem 3.20. As above, let T be a set of objects in K(Mod-S) satisfying conditions (P1),
(P2) and (P3) of 3.1. Then there is the following commutative diagram of triangulated cate-

gories with equivalence rows

D(Mod-T )
∼ //

OO

?�

DT (Mod-S)
OO

?�

D−(Mod-T )
∼ //

OO

?�

D−
T (Mod-S)

OO

?�

Db(Mod-T )
∼ //

OO

?�

Db
T (Mod-S)

OO

?�

Kb(Prj-T )
OO

?�

∼ // thick(⊕T )
OO

?�

Kb(prj-T )
∼ // thick(T )

Proof. By Remark 3.14 there is an equivalence D(Mod-T ) ≃ KKT(Mod-S). Moreover, Propo-
sition 3.15 implies that KKT(Mod-S) ≃ KT (Mod-S). Hence, there exists the first equiva-
lence thanks to Lemma 3.19. For the second equivalence, consider the canonical functor

K−
T (Mod-S)

Q|
−→ D−

T (Mod-S). As above, [N3, Lemma 9.1.5] implies that Q| is full and faith-
ful. Hence, we just need to prove that Q| is dense as well.

Let X be a complex in K−(Mod-S). As in the proof of Lemma 3.19, there exists a triangle

X′ → X → X′′
 ,

where X′ ∈ KT (Mod-S) and X′′ is a T -acyclic complex.
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Since X ∈ K−(Mod-S), for each complex T in thick(T ), there is an integer N = N(T ) such
that HomK(Mod-S)(T [−n],X) = 0, for all n ≥ N . Also, HomK(Mod-S)(T [n],X) = 0, for all n ∈
Z and all T ∈ thick(T ). Thus, for every complex T ∈ thick(T ) there is an integer N = N(T )
such that HomK(Mod-S)(T [−n],X

′) = 0, for all n ≥ N . Hence, by Lemma 3.11, X′ belongs

to K−
T (Mod-S). The image of the above triangle in D−

T (Mod-S) implies that X ∼= X′ in

D−
T (Mod-S) and so Q| : K−

T (Mod-S) −→ D−
T (Mod-S) is an equivalence. Now, Diagram 3.1 in

Remark 3.14 and Proposition 3.16 yield the desired equivalence D−(Mod-T ) −→ D−
T (Mod-S)

that commutes the first square.
The same argument as above together with Lemma 3.12 can be applied to show that the

canonical functor Q| : K−,Tb
T (Mod-S)

∼
−→ Db

T(Mod-S) is an equivalence. Thus the second
square follows from Diagram 3.1 and Proposition 3.16.

Similarly, the characterization of thick(⊕T ), Lemma 3.13, in conjunction with Proposition
3.16 imply the equivalence Kb(Prj-T ) −→ thick(⊕T ) making the diagram commutative.

The last equivalence follows from the fact that every equivalence between triangulated
categories can be restricted to the equivalence between their compact objects. �

Let R be a commutative ring. A small category S is called R-flat, if S(x, y) is flat R-
module, for every x, y ∈ S. Keller [Kel, 9.2, Corollary] proved that two R-flat categories
S and S ′ are derived equivalent, i.e. D(Mod-S) ≃ D(Mod-S ′), if and only if there exists a
special subcategory T of Kb(prj-S), called tilting subcategory for S, such that T is equivalent
to S ′.

In the following theorem we provide a sufficient condition for derived equivalences of func-
tor categories without flatness assumption on the categories involved in the derived equiva-
lence.

Theorem 3.21. As in setup 3.1, let T be a set of objects of K(Mod-S) satisfying properties

(P1), (P2) and (P3). Assume that a complex X in K(Mod-S) is acyclic if and only if it is

T -acyclic. Then there exists the following commutative diagram

D(Mod-T )
∼ //

OO

?�

D(Mod-S)
OO

?�

D−(Mod-T )
∼ //

OO

?�

D−(Mod-S)
OO

?�

Db(Mod-T )
∼ //

OO

?�

Db(Mod-S)
OO

?�

Kb(prj-T )
∼ // Kb(prj-S)

in which rows are equivalences of triangulated categories.

Proof. Definition of the relative derived category in conjunction with our assumption on
acyclic complexes imply that DT (Mod-S) coincides with D(Mod-S). Hence, in view of The-
orem 3.20, we have the desired diagram. �

Remark 3.22. Our proofs show that the above results in this section can be extended to a
skeletally small category S.
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3.23. Let A be an artin k-algebra, where k is a commutative artinian ring. Then A is called
Gorenstein if id AA < ∞ and id AA < ∞. For a class X of A-modules, the left and right
orthogonals of X are defined as follows

⊥Y := {M ∈ Mod-A | Ext1A(M,Y ) = 0, for all Y ∈ Y}

and
X⊥ := {M ∈ Mod-A | Ext1A(X,M) = 0, for all X ∈ X}.

The artin algebra A is called virtually Gorenstein if (GP-A)⊥ = ⊥(GI-A).

Let A and B be two rings. Then A and B are called derived equivalent if there exists a
triangle equivalence Db(Mod-A) ≃ Db(Mod-B). If A and B are right coherent, then A and B
are derived equivalent provided there exists a triangle equivalence Db(mod-A) ≃ Db(mod-B).

Let A be a left coherent ring. It is known, by [N4, Theorem 1.1], that K(Prj-A) is
compactly generated and Kc(Prj-A) ≃ Db(mod-Aop)op. Moreover, every equivalence between
triangulated categories can be restricted to an equivalence between their compact objects.
Hence, if A and B are two right and left coherent rings such that K(Prj-A) ≃ K(Prj-B), then
A and B are derived equivalent. In the following theorem we plan to prove the converse for
general rings.

Theorem 3.24. Let A and B be two rings that are derived equivalent. Then there is a

commutative diagram

K(Prj-B)
α1 //

55
(
�
❧❧❧

❧❧❧
❧ OO

?�

K(Prj-A)
66

(
�
❧❧❧

❧❧❧
❧ OO

?�

K(prj-B)
OO

?�

� � α2 // K(prj-A)
OO

?�

Ktac(Prj-B)
β1 //

55
(
�
❧❧❧

❧❧❧
❧

Ktac(Prj-A)66
(
�
❧❧❧

❧❧❧
❧

Ktac(prj-B)
� � β2 // Ktac(prj-A)

in which α1 and β1 are triangulated equivalences. Moreover, if A and B are virtually Goren-

stein algebras, then β2 is also an equivalence of triangulated categories.

Proof. By Theorem 4.6 of [Ric] there is a tilting complex T in Kb(prj-A) such that
EndK(prj-A)(T ) ∼= B. Consider the full subcategory K(Add-T ) of KK(Mod-A). Observe that
an object (X∗∗, d, δ) of K(Add-T ) is a complex in KK(Mod-A) such that for each j ∈ Z,
(X∗j , d) is a direct summand of ⊕i∈ITi, where Ti ∼= T . In a similar way as in Proposition 3.7,
we can construct a triangle functor Φ : K(Add-T ) −→ K(Prj-A) that preserves coproducts.

On the other hand, the functor HomK(prj-A)(T,−) provides an equivalence K(Add-T ) ≃
K(Prj-B). Hence K(Add-T ) is a compactly generated triangulated category. Moreover, by
[N4, Proposition 7.12], a complex in K(Add-T ) is compact if and only if it is isomorphic to
a complex X satisfying

(i) X is a complex with terms in add-T ,
(ii) Xn = 0, for n≪ 0,
(iii) HomK(Add-T )(X, T [n]) = 0, for n≪ 0.

It is known that if T is a tilting complex over a ring A, then T ∗ := HomA(T,A) is a tilting
complex over Aop. Similarly, we have a triangulated functor Φ∗ : K(Add-T ∗) −→ K(Prj-Aop)
that preserves coproducts.
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Now, one just should use definitions of the functors Φ and Φ∗ to obtain the following
commutative diagram of triangulated categories

K(Add-T )c
Φ| //

Ĥom(−,A)
��

K(Prj-A)c

K−,T∗b(Add-T ∗)
Φ∗| // K−,b(Prj-Aop).

Hom(−,A)

OO

Note that the functor Ĥom(−, A) : K(Add-T )c −→ K−,T∗b(Add-T ∗) maps any complex
(X∗∗, d, δ) of K(Add-T )c to the complex ((X∗∗, A), d∗, δ∗) of K−,T∗b(Add-T ∗).

Since Φ∗, Ĥom(−, A) and Hom(−, A) are equivalences, Φ| must be an equivalence. More-
over, Proposition 6 of [M2] implies that Φ : K(Add-T ) −→ K(Prj-A) is an equivalence.
Consequently, there exists an equivalence

α1 : K(Prj-B)
∼
−→ K(Prj-A).

To prove that β1 = α1| is an equivalence, it is enough to show that α1 maps any complex in
Ktac(Prj-B) to a complex of Ktac(Prj-A) and moreover, show that β1 is dense. First observe
that by Theorem 3.20, the equivalence α1 can be restricted to the triangle equivalence

α1| : K
b(Prj-B) −→ Kb(Prj-A).

So, if P is a projective A-module, then there is a bounded complex Q of projective B-modules
such that α1(Q) ∼= P .

Let X be a complex in Ktac(Prj-B). Then for each P ∈ Prj-A and each i ∈ Z, there is the
following isomorphisms

HomK(Prj-A)(P, α1(X)[i]) ∼= HomK(Prj-A)(α1(Q), α1(X)[i])
∼= HomK(Prj-B)(Q,X[i])

and
HomK(Prj-A)(α1(X)[i], P ) ∼= HomK(Prj-A)(α1(X)[i], α1(Q))

∼= HomK(Prj-B)(X[i],Q),

where Q ∈ Kb(Prj-B). Since X ∈ Ktac(Prj-B), for every Q ∈ Prj-B and all i ∈ Z

HomK(Prj-B)(Q,X[i]) = 0 = HomK(Prj-B)(X[i], Q).

So, using an induction argument on the length of Q one can deduce that

HomK(Prj-A) (P , α1(X)[i]) = 0 = HomK(Prj-A)(α1(X)[i], P ),

where P ∈ Prj-A and i ∈ Z. A similar argument as above implies that β2 is dense.
Furthermore, it is clear that there exist the induced functors α2 and β2 that are full and

faithful. In case A and B are virtually Gorenstein algebras, then, by [Be1, Theorem 8.2],
Kc

tac(Prj-A) ≃ Ktac(prj-A) and Kc
tac(Prj-B) ≃ Ktac(prj-B). Therefore, β2 is an equivalence.

�

Remark 3.25. Let A and B be two right and left coherent rings that are derived equiva-
lent. By [Ric, Proposition 9.1], there is an equivalence Ψ : Db(mod-Aop)

∼
−→ Db(mod-Bop),

and so Ψop : Db(mod-Aop)op
∼
−→ Db(mod-Bop)op is an equivalence. The equivalence Φ :

K(Prj-A) −→ K(Prj-B), that is proved in Theorem 3.24, can be viewed as an extension of
the equivalence Ψop. In fact, by a result of Neeman [N4, Theorem 1.1], K(Prj-A), resp.
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K(Prj-B), is compactly generated and Kc(Prj-A) ≃ Db(mod-Aop)op, resp. Kc(Prj-B) ≃
Db(mod-Bop)op. Moreover, these maps fit into the following commutative diagram

Kc(Prj-A)
Φ| //

≀

��

Kc(Prj-B)

≀

��
Db(mod-Aop)op

Ψop

// Db(mod-Bop)op.

Let Gp-A denote the stable category of Gp-Amodulo the full subcategory prj-A. Beligiannis
[Be1, Theorem 8.11] proved that if A and B are derived equivalent finite dimensional alge-
bras, then there is a triangle equivalence Gp-A ≃ Gp-B. Also, Kato [Ka, Theorem 3.8] showed
that if A and B are derived equivalent right and left coherent rings, and if inj dimAA < ∞
or inj dimAA <∞, then there is an equivalence Gp-A ≃ Gp-B of triangulated categories.

By using Theorem 3.24, we can prove this result for virtually Gorenstein algebras that are
derived equivalent.

Corollary 3.26. Let A and B be two rings that are derived equivalent. Then there is a

triangle equivalence GP-A ≃ GP-B. If A and B are virtually Gorenstein algebras, then

Gp-A ≃ Gp-B as triangulated categories.

Proof. The result follows from the known equivalencesKtac(Prj-A) ≃ GP-A andKtac(prj-A) ≃
Gp-A. �

An artin algebra Λ is said to be of finite Cohen-Macaulay type (finite CM-type, for short),
if there are only finitely many indecomposable finitely generated Gorenstein projective Λ-
modules, up to isomorphism. Let A and B be Gorenstein artin algebras that are derived
equivalent. Then A is of finite CM-type if and only if B is so; see [Ha2, Theorem 4.6] and [P,
Propostion 3.10]. The following corollary extends this result to virtually Gorenstein algebras.

Corollary 3.27. Let A and B be two virtually Gorenstein algebras that are derived equivalent.

Then A is of finite CM-type if and only if B is so.

Remark 3.28. In [J2] Jørgensen proves that if A is a commutative noetherian ring with
a dualizing complex, then the inclusion functor Ktac(Prj-A) →֒ K(Prj-A) admits a right
adjoint. This result was generalized in [MS] to commutative noetherian rings of finite Krull
dimension. Moreover, it is easy to check that, for an arbitrary ring A, the existence of a
right adjoint for the inclusion Ktac(Prj-A) →֒ K(Prj-A) implies the existence of Gorenstein
projective precovers over A. For instance, it is proved for commutative noetherian rings with
a dualizing complex by Jørgensen [J2].

On the other hand, Theorem 3.24 implies that if A and B are two rings that are derived
equivalent, then the inclusion functor Ktac(Prj-A) →֒ K(Prj-A) has a right adjoint if and
only if the inclusion functor Ktac(Prj-B) →֒ K(Prj-B) has a right adjoint. Hence, if A is a
commutative noetherian ring of finite Krull dimension and B is a ring such that Db(Mod-A) ≃
Db(Mod-B), then Gorenstein projective B-modules is a precovering class of Mod-B.

3.1. Applications. As an application of our results, in this subsection, we show that over
noetherian rings, certain derived equivalences imply Gorenstein derived equivalences. Through-
out this subsection, all rings are noetherian. To present our results we need to fix some
notations.
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Let us first recall briefly the definition of Gorenstein derived categories. Let A be an
artin algebra. A complex X of finitely generated A-modules is called Gp-acyclic if for every
G ∈ Gp-A, the induced complex HomA(G,X) is acyclic. We denote by Kb

Gp-ac(mod-A) the

class of all Gp-acyclic complexes in Kb(mod-A). The bounded Gorenstein derived category of
mod-A, denoted by Db

Gp(mod-A), is the quotient category Kb(mod-A)/Kb
Gp-ac(mod-A). The

Gorenstein derived category was studied by Gao and Zhang [GZ]. Recently this category has
been studied more in [ABHV, AHV1].

3.1.1. A complex X in D−(mod-A) is called of finite projective dimension if the functor
HomD(mod-A)(X[i],−) vanishes on mod-A, for i ≪ 0. The full subcategory of D−(mod-A)

consisting of all complexes of finite projective dimension is denoted by Db(mod-A)fpd. It is
known that there exists an equivalence

Q : K−(prj-A)
∼
−→ D−(mod-A),

where Q is the canonical functor. Moreover, this equivalence induces the equivalence

Kb(prj-A)
∼
−→ Db(mod-A)fpd

of triangulated categories.
The singularity category of A, denoted by Db

sg(A), is then the Verdier quotient

Db(mod-A)/Db(mod-A)fpd.

A complex X in Db(mod-A) is called of finite Gorenstein projective dimension if the
functor HomD(mod-A)(X[i],−) vanishes on prj-A for i≪ 0. The full triangulated subcategory

of Db(mod-A) consisting of all complexes of finite Gorenstein projective dimension is denoted
by Db(mod-A)fGd.

Let K
−,b
t (prj-A) denote the full triangulated subcategory of K−,b(prj-A) formed by all

complexes X such that there is an integer m = m(X) in which Ker∂i
X

∈ Gp-A, for all i ≤ m.

Lemma 3.1.2. Let A be a noetherian ring. Then for a complex X ∈ Db(mod-A) the following
statements are equivalent

(i) X ∈ Db(mod-A)fGd.

(ii) There exists a complex Y ∈ Kb(Gp-A) such that X ∼= Y in D(mod-A).

(iii) X lies in K
−,b
t (prj-A), up to isomorphism.

Proof. (i) ⇔ (ii). It follows from [Ka, Proposition 2.10].
(ii) ⇒ (iii). Note that for every Gorenstein projective A-module, there exists a projective

resolution that belongs to K
−,b
t (prj-A). Now, the assertion follows by an induction on the

length of Y.
(iii) ⇒ (ii). First we assume that X i = 0 for all i > 0. Let m = m(X) be an integer such

that Ker∂i
X

∈ Gp-A for all i ≤ m. Then X is quasi-isomorphic to the complex

0 −→ Ker∂m
X

→֒ Xm ∂m

−→ Xm+1 −→ · · · −→ X−1 ∂−1

−→ X0 −→ 0

that belongs to Kb(Gp-A) �
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Let A be a noetherian ring. By [Ha2], there is a full and faithful functor H : Gp-A −→

Db
sg(A) such that the diagram

Gp-A

inc

��

can // Gp-A

H

��
Db(mod-A)

can // Db
sg(A)

is commutative.
It is proved in [Av] that the functor H : Gp-A −→ Db

sg(A) induces an equivalence

Gp-A ≃ Db(mod-A)fGd/D
b(mod-A)fpd

of triangulated categories.

Definition 3.1.3. Let A and B be noetherian rings. We say that A and B are fGd-derived
equivalent, if there exists an equivalence F : Db(mod-A) −→ Db(mod-B) inducing an equiv-
alence F | : Db(mod-A)fGd −→ Db(mod-B)fGd making the following diagram commutative

Db(mod-A)fGd
� � //

F |

��

Db(mod-A)

F

��
Db(mod-B)fGd

� � // Db(mod-B).

Kato [Ka] constructed examples of such derived equivalences. Let A and B be left and
right coherent rings that are derived equivalent. He proved that if either inj dimAA <
∞ or inj dimAA < ∞, then Db(mod-A)fGd is equivalent to Db(mod-B)fGd as triangulated
categories. Also, if A and B are derived equivalent finite dimensional k-algebras over field
k, then Db(mod-A)fGd ≃ Db(mod-B)fGd as well. Using Theorem 3.24, we have the following
result that gives another example of such equivalences.

Proposition 3.1.4. Let A and B be virtually Gorenstein algebras that are derived equivalent,

via say Φ. Then Φ is a fGd-derived equivalence.

Proof. By Lemma 3.1.2, a complex X belongs to Db(mod-A)fGd if and only if X belongs

to K
−,b
t (prj-A), up to isomorphism. So it is enough to show that there exists the following

commutative diagram

K
−,b
t (prj-A) �

� //

Φ|

��

Db(mod-A)

Φ

��
K

−,b
t (prj-B) �

� // Db(mod-B),

such that vertical maps are equivalences. Let X be a complex in K
−,b
t (prj-A). Then there

exists an integer m such that Hi(X) = 0 and Ker∂i
X

∈ Gp-A for all i ≤ m. We may assume
that m < 0.

Consider the triangle

(∗) ⊏m
X → X → X

m−1⊐
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in K(prj-A). Since Ker∂m
X

∈ Gp-A, there is a complete projective resolution

Q : · · · // Q−2 // Q−1 //

##●
●●

●●
●●

●●
Q0 // Q1 // · · ·

Ker∂m
X

<<①①①①①①①①①

Let P be the totally acyclic complex

P : · · · // Xm−2 // Xm−1 //

$$■
■■

■■
■■

■■
■ Q0 // Q1 // · · ·

Ker∂m
X

<<①①①①①①①①①

of finitely generated projective A-modules. We have the following triangle in K(prj-A)

X
m−1⊐

[−m] → P → ⊏0
Q .

Now, apply functor Φ on the above triangle to obtain a triangle

(∗∗) Φ(X
m−1⊐

[−m]) → Φ(P) → Φ(⊏0
Q) ,

in K(Prj-B), see Theorem 3.24. Since P ∈ Ktac(prj-A), Theorem 3.24 implies that Φ(P) lies
in Ktac(prj-B). Also, by [N4, Proposition 7.12], ⊏0

Q is a compact object of K(Prj-A) and so
Φ(⊏0

Q) will be a compact object of K(Prj-B). Hence Φ(⊏0
Q) lies in K+(prj-B).

Therefore, it follows from triangle (∗∗) that Φ(X
m−1⊐[−m]) belongs to K

−,b
t (prj-B). Con-

sequently, triangle (∗) implies that Φ(X) belongs to K
−,b
t (prj-B).

Let Ψ be the quasi-inverse of the equivalence

Φ : K(Prj-A) −→ K(Prj-B).

Then the same argument as above can be applied to prove that Ψ sends any complex in

K
−,b
t (prj-B) to a complex in K

−,b
t (prj-A), up to isomorphism. So, we have an equivalence

Φ| : K−,b
t (prj-A) −→ K

−,b
t (prj-B). The proof is hence complete. �

For a noetherian ring A, it is known that there is a full and faithful functor H : Gp-A −→

Db
sg(A). Moreover, if A is a Gorenstein ring, then H is an equivalence, see [Bu, Ha2]. Bergh,

Jørgensen and Oppermann [BJO], introduced the notion of the Gorenstein defect category
as the verdier quotient Db

defect(A) := Db
sg(A)/ImH . The Gorenstein defect category measures

‘how far’ A is from being Gorenstein in the sense that Db
defect(A) = 0 if and only if A is

Gorenstein.
Kong and Zhang [KZ, Theorem 6.8] give the following description of the Gorenstein defect

category, when A is a coherent ring

Db
defect(A) ≃ K−,b(prj-A)/K−,b

t (prj-A).

As a direct consequence of Proposition 3.1.4, we have the following corollary.

Corollary 3.1.5. Let A and B be two virtually Gorenstein algebras that are derived equiva-

lent. Then there is an equivalence

Db
defect(A) ≃ Db

defect(B)

of triangulated categories.
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Proof. In view of Theorem 3.21 and Proposition 3.1.4, the equivalence Φ : K−(Prj-A) −→
K−(Prj-B) induces equivalences

K−,b(prj-A) ≃ K−,b(prj-B) and K
−,b
t (prj-A) ≃ K

−,b
t (prj-B)

of triangulated categories. Thus we have an equivalence

K−,b(prj-A)/K−,b
t (prj-A) ≃ K−,b(prj-B)/K−,b

t (prj-B)

of triangulated quotient categories. That is

Db
defect(A) ≃ Db

defect(B).

�

Let F : Db(mod-A) −→ Db(mod-B) be a derived equivalence with the quasi-inverse G.
Suppose that T ∈ Kb(prj-A), resp. T′ ∈ Kb(prj-B), is the tilting complex associated to F ,
resp. G. By [HX1, Lemma 2.1], we assume that T and T′ are complexes of the form

T : 0 −→ T−n −→ T−n+1 −→ · · · −→ T−1 −→ T 0 −→ 0,

T′ : 0 −→ T ′0 −→ T ′1 −→ · · · −→ T ′n−1 −→ T ′n −→ 0.

We fix these notations towards the end of this subsection.

We need the following lemma, that is quoted from [HX1, Lemma 2.2].

Lemma 3.1.6. Let X be a bounded above and Y be a bounded below complex over a ring A.
If there is an integer m, such that X i is projective for all i > m and Y j = 0 for all j < m,

then HomD(Mod-A)(X,Y) ∼= HomK(Mod-A)(X,Y).

Lemma 3.1.7. Let A and B be two noetherian rings that are fGd-derived equivalent. Let

F : Db(mod-A) −→ Db(mod-B) be an equivalence with the quasi-inverse G.

(i) Assume that X is a finitely generated Gorenstein projective B-module. Then G(X)
is isomorphic in Db(mod-A) to a complex of the form

TX : 0 −→ T−n
X −→ T−n+1

X −→ · · · −→ T−1
X −→ T 0

X −→ 0

where T−n
X is Gorenstein projective and T i

X is projective, for −n+ 1 ≤ i ≤ 0.
(ii) Assume that X is a finitely generated Gorenstein projective A-module. Then F (X)

is isomorphic in Db(mod-B) to a complex of the form

T′
X : 0 −→ T ′0

X −→ T ′1
X −→ · · · −→ T ′n−1

X −→ T ′n
X −→ 0

where T ′0
X is Gorenstein projective and T ′i

X is projective, for 1 ≤ i ≤ n.

Proof. We just prove statement (i). Statement (ii) follows similarly. In view of Lemma 3.3
of [P], G(X) is isomorphic in Db(mod-A) to a complex of the form

0 −→ T−n
X −→ T−n+1

X −→ · · · −→ T 0
X −→ 0

where T−n
X ∈ ⊥A and for −n+ 1 ≤ i ≤ 0, T i

X ∈ prj-A.
On the other hand, the commutative diagram

Db
fGd(mod-B)

� � //

G|

��

Db(mod-B)

G

��
Db

fGd(mod-A) �
� // Db(mod-A)
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and Proposition 2.10 of [Ka] imply that G(X) is quasi-isomorphic to a bounded complex of
finitely generated Gorenstein projective A-modules.

Take a K-projective resolutionP of G(X). By induction on the length of G(X), one can see

that P can be chosen in K
−,b
t (prj-A). So there is an integer m = m(P) such that Hi(P) = 0

and Ker∂i
P

∈ Gp-A for all i ≤ m. Consider the images of G(X) and P in Db
sg(A) under

the quotient functor Q : Db(mod-A) −→ Db
sg(A). Then there is an isomorphism T−n

X [n] ∼=

Ker∂m
P
[m] in Db

sg(A). If we set Y := Ker∂m
P
[m], there exists a roof fs−1 : Y −→ T−n

X [n]

in which both f and s can be completed into triangles in Db(mod-A) such that their cones
belong to Kb(prj-A). More precisely, there is a complex Z ∈ Db(mod-A) and triangles

Z
s
→ Y → W ,

Z
f
→ T−n

X [n] → W′
 ,

such that W and W′ belong to Kb(prj-A). Let PY , resp. Q, PZ, be a K-projective resolution
of Y , resp. T−n

X [n], Z. So the above triangles can be written of the form

PZ

s
→ PY → W ,

PZ

f
→ Q → W′

 .

Since W ∈ Kb(prj-A), the first triangle implies that there is an integer d, such that ΩjPZ ∈
Gp-A, for j < d.

Now, the same argument, applying this time to Q in the second triangle, implies that T−n
X

has finite Gorenstein projective dimension. Therefore, by [Ho, Theorem 2.10] there is a short
exact sequence 0 −→ L −→ G −→ T−n

X −→ 0, where G ∈ Gp-A and L has finite projective

dimension. The fact that T−n
X ∈ ⊥A, implies that this short exact sequence splits and so

T−n
X lies in Gp-A. �

Lemma 3.1.8. Using the same notations as in Lemma 3.1.7, for each pair X,Y ∈ Gp-B
and i 6= 0, we have HomKb(mod-A)(TX ,TY [i]) = 0.

Proof. The result can be obtained from a simple modification of the proof of [P, Lemma 3.7].
For the convenience of the reader, we include the sketch of the proof here.

Lemma 3.1.6 implies that HomKb(mod-A)(TX ,TY [i]) = 0, for i < 0. For i > 0, consider

the following triangles in Kb(mod-A)

T̄X −→ TX −→ T−n
X [n] −→ T̄X [1],

T̄Y −→ TY −→ T−n
Y [n] −→ T̄Y [1],

where T̄X , resp. T̄Y , denotes the complex ⊏−n+1
TX , resp. ⊏−n+1

TY .

The second triangle implies that Hi(F (T̄Y )) = 0, for all i > 1. So F (T̄Y ) is isomorphic in
Db(mod-B) to a complex Q of the form

· · · −→ Q−1 −→ Q0 −→ Q1 −→ 0.

Now, apply the cohomological functors HomK(mod-A)(−, T̄Y [i]) and HomD(mod-A)(−, T̄Y [i])
on the first triangle and the homological functor HomK(mod-A)(TX ,−) on the second one. One
can deduce that HomK(mod-A)(TX ,TY [i]) = 0 for i > 1.

To prove that HomKb(mod-A)(TX , TY [1]) = 0, it is enough to show that the induced map

HomKb(mod-A)(TX , T
−n
Y [n]) −→ HomKb(mod-A)(TX , T̄Y [1])
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is surjective. Consider the commutative diagram

Q
α //

∼=
��

Y //

∼=
��

cone(α) //

∼=
��

Q[1]

∼=
��

F (T̄Y ) // F (TY ) // F (T−n
Y [n]) // F (T̄Y [1]).

Apply Lemma 3.1.6 to get the following commutative diagram whose vertical maps are iso-
morphisms

HomKb(mod-A)(TX , T
−n
Y [n]) //

∼=
��

HomKb(mod-A)(TX , T̄Y [1])

∼=
��

HomDb(mod-B)(X, cone(α)) // HomDb(mod-B)(X,Q[1]).

So, it is enough to prove the following isomorphisms

HomDb(mod-B)(X,Q[1]) ∼= HomKb(mod-B)(X,Q[1]),

HomDb(mod-B)(X,Cone(α)) ∼= HomKb(mod-B)(X,Cone(α)).

The first isomorphism can be proved by induction on the length of Q, and the second one is
obtained by applying the homological functors HomDb(mod-B)(X,−) and HomKb(mod-B)(X,−)
on the triangle

cone(α)0 −→ cone(α) −→ cone(α)
−1⊐

−→ cone(α)0[1]

in Kb(mod-B). Note that in the above triangle, cone(α)0 denotes the stalk complex with the
zeroth term of the complex cone(α) in degree zero. �

Lemma 3.1.9. Let A be a ring. Then there exists an equivalence

Kb(Gp-A) ≃ Kb(prj-(Gp-A))

of triangulated categories.

Proof. Consider the functor

ϕ : Gp-A −→ prj-Mod(Gp-A)

given by ϕ(X) = HomA(−, X). Every object of prj-Mod(Gp-A) is of the form HomA(−, X) for
some X ∈ Gp-A. So, by using Yoneda lemma one can easily deduce that ϕ is an equivalence.
This equivalence can be extended, in a natural way, to the desired equivalence

ϕ̄ : Kb(Gp-A)
∼
−→ Kb(prj-(Gp-A))

of triangulated categories. �

Theorem 3.1.10. Let A and B be two noetherian rings that are fGd-derived equivalent.

Then there is an equivalence D(Mod-Gp-A) ≃ D(Mod-Gp-B) of triangulated categories.

Proof. Let F : Db(mod-A) −→ Db(mod-B) be the derived equivalence with the quasi-inverse
G. Let E be the set of all G(X), where X runs through isomorphism classes of finitely
generated Gorenstein projective B-modules. We claim that E has the following properties:

(i) HomKb(Gp-A)(E,E
′[i]) = 0, for all E,E′ ∈ E and i 6= 0.

(ii) E generates Kb(Gp-A) as a triangulated category.
(iii) E is equivalent to Gp-B.



24 ASADOLLAHI, HAFEZI, VAHED

By Lemma 3.1.7, E is a subcategory of Kb(Gp-A). Also, Lemma 3.1.8 implies that condition
(i) holds true. Moreover, two categories E and Gp-B are equivalent via G. Indeed, let X and
Y be modules in Gp-B. Then there exist the following isomorphisms

HomB(X,Y ) ∼= HomD(mod-A)(G(X), G(Y ))
∼= HomK(mod-A)(G(X), G(Y )).

Note that the last isomorphism follows from Lemma 3.1.6. This means that the functor
G : Gp-B −→ E is full and faithful. Also, clearly G is dense and hence is an equivalence.

Therefore, we just need to prove that E generates Kb(Gp-A) as a triangulated category.
First note that, since G is a derived equivalence, add-G(B) generates Kb(prj-A) as a

triangulated category. Now, assume that Y is a finitely generated Gorenstein projective
A-module that is not projective. By Lemma 3.1.7, F (Y ) is isomorphic in Db(mod-B) to a
complex

0 −→ T ′0
Y −→ · · · −→ T ′n

Y −→ 0

with T ′0
Y Gorenstein projective and T ′i

Y projective for every 1 ≤ i ≤ n. Consider the triangle

⊏1
F (Y ) → F (Y ) → T ′0

Y  and apply the functor G on it, to get the triangle

(∗) G(⊏1
F (Y )) → GF (Y ) → G(T ′0

Y ) .

Since ⊏1
F (Y ) is a bounded complex of finitely generated projective A-modules, G(⊏1

F (Y ))
is also a bounded complex of finitely generated projective B-modules. Moreover, by Lemma
3.1.7, G(T ′0

Y ) is isomorphic in Db(mod-A) to a complex

0 −→ G−n −→ P−n+1 −→ · · · −→ P 0 −→ 0

with G−n ∈ Gp-A and P i ∈ prj-A for all −n+1 ≤ i ≤ 0. Now, consider the image of triangle
(∗) in Db

sg(A). We have an isomorphism G(T ′0
Y ) ∼= G−n[n] ∼= Y = GF (Y ) in Db

sg(A).
On the other hand, since Y is Gorenstein projective, there is a complete projective reso-

lution

· · · // Q−n ∂−n

// · · · // Q−1 ∂−1

//

!!❈
❈❈

❈❈
❈❈

❈
Q0 // · · · // Qn ∂n

// · · ·

Y

>>⑦⑦⑦⑦⑦⑦⑦⑦

of Y with Qi ∈ prj-A. Set Y ′ := Ker∂n. Since Y ′ ∈ Gp-A, one may apply the same argument
as above, to Y ′, to get that there exists an A-module X ′ ∈ Gp-B such that G(X ′) ∼= Y ′

in Db
sg(A). Moreover, G(X ′) is isomorphic in Db

sg(A) to a complex G[n] for some finitely
generated Gorenstein projective A-module G. Also, there is a triangle

Q→ G(X ′) → G[n] 

in Kb(Gp-A), where Q is a bounded complex of projectives. This implies that G[n] belongs
to thick(E).

Consider the triangle

Y → Q′ → Y ′[−n] ,

where Q′ is the truncated complex

0 −→ Q0 −→ · · · −→ Qn−1 −→ 0.

Thus, Y ′ ∼= Y [n] in Db
sg(A). Therefore, there is an isomorphism G[n] ∼= Y [n], and then

G ∼= Y , in Db
sg(A). The full and faithful functor H : Gp-A −→ Db

sg(A) implies that G ∼= Y in
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Gp-A. So there exist projective modules P and Q such that G⊕ P ∼= Y ⊕Q in Gp-A. Now,

since G, P and Q all belong to thick(E), Y also belongs to thick(E). This finishes the proof
of the claim.

By Lemma 3.1.9, there is an equivalence ϕ̄ : Kb(Gp-A) −→ Kb(prj-(Gp-A)). Let T be the
subcategory of Kb(prj-(Gp-A)) that corresponds to E via ϕ̄. The properties of E, mentioned
above, imply that T satisfies all conditions (P1), (P2) and (P3) of 3.1. Moreover, property
(ii) of E implies that a complex X in K(Mod-Gp-A) is acyclic if and only if it is T -acyclic.
So DT (Mod-(Gp-A)) ≃ D(Mod-(Gp-A)).

Now Theorem 3.21 comes to play to give an equivalence D(Mod-T ) ≃ D(Mod-(Gp-A))
of triangulated categories. Hence, by property (iii) of E, we get that D(Mod-(Gp-B)) ≃
D(Mod-(Gp-A)) as triangulated categories. The proof is hence complete. �

3.1.11. Let R be a ring. By [AHV1, Theorem 3.3], for a ring R, we have an equivalence

Db
Gp(Mod-R) ≃ K−,Gpb(Add-(Gp-R)),

where K−,Gpb(Add-(Gp-R)) is the subcategory of K−(Add-(Gp-R)) consisting of all complexes
X in which there exists an integer n = n(X) such that Hi(Hom(G,X)) = 0 for all i ≤ n and
all G ∈ Gp-R.

Corollary 3.1.12. Let A and B be noetherian rings that are fGd-derived equivalent. Then

they are Gorenstein derived equivalent, i.e.

Db
Gp(Mod-A) ≃ Db

Gp(Mod-B).

Proof. By Theorem 3.1.10, there is an equivalence

Db(Mod(Gp-A))
∼
−→ Db(Mod(Gp-B))

of triangulated categories.
Also, the same argument as in the proof of Lemma 3.1.9 works to prove equivalences

K−,Gpb(Add-(Gp-A)) ≃ K−,b(Prj-(Gp-A)) and K−,Gpb(Add-(Gp-B)) ≃ K−,b(Prj-(Gp-B))

of triangulated categories. Now, the result follows from 3.1.11 and the known triangulated
equivalences Db(Mod(Gp-A)) ≃ K−,b(Prj-(Gp-A)) and Db(Mod(Gp-B)) ≃ K−,b(Prj-(Gp-B))

�

Corollary 3.1.13. Let Λ and Λ′ be finite dimensional algebras that are derived equivalent.

Then there exists an equivalence

Db
Gp(Mod-Λ) ≃ Db

Gp(Mod-Λ′)

of triangulated categories.

Proof. Theorem 4.2 of [Ka] guarantees that Λ and Λ′ are fGd-derived equivalence. Now,
Corollary 3.1.12 implies the result. �

3.2. Infinitely generated n-tilting modules. Infinitely generated tilting modules arise
naturally to extend some aspects of the classical tilting theory to infinitely generated modules
over arbitrary rings. The first instance of a generalization of Brenner and Butler’s theorem
for infinitely generated tilting modules was given by Facchini [F1] and [F2].

Recently, infinitely generated tilting modules over arbitrary rings has received considerable
attention towards knowing derived categories and equivalences of general rings, see [B, BMT,
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NS]. Also, Chen and Xi [CX] studied a relation between two concepts of good tilting modules
and recollements of derived categories of rings.

Let A be a ring. A (right) A-module T (possibly infinitely generated) is called n-tilting if
the following conditions hold true

(i) pdAT ≤ n;

(ii) for all i > 0 and every cardinal α, ExtiA(T, T
(α)) = 0;

(iii) there exists an exact sequence

0 −→ A −→ T 0 −→ T 1 −→ · · · −→ Tm −→ 0,

with T i ∈ Add-T for 0 ≤ i ≤ m.

An n-tilting module T is called a good n-tilting, if there exists an exact sequence

0 −→ A −→ T 0 −→ T 1 −→ · · · −→ T n −→ 0,

where for every i, T i is isomorphic to a direct summand of finite direct sums of copies of T .
Bazzoni et al. [BMT] proved the following important results on good n-titling modules.

Proposition 3.2.1. [BMT, Proposition 1.4] Let TA be a good n-tilting module and B =
EndA(T )

op. Then

(i) TB admits a projective resolution

0 −→ Qn −→ · · · −→ Q0 −→ TB −→ 0,

in which for every 0 ≤ i ≤ n, Qi is finitely generated projective B-module;

(ii) ExtiB(T, T ) = 0 for all i > 0;
(iii) there exists a ring isomorphism EndB(T ) ∼= A.

We use this result to prove that every good n-tilting module TA provide an equivalence be-
tween the derived categoryD(Mod-A) and the relative derived categoryDT (Mod-EndA(T )

op).

Theorem 3.2.2. Assume that T is a good n-tilting module and B = EndA(T )
op. Then there

exists an equivalence

D(Mod-A) ≃ DT (Mod-B),

where DT (Mod-B) := Dadd-T (Mod-B).

Proof. In view of Proposition 3.2.1, there exists an exact sequence

0 −→ Qn −→ · · · −→ Q0 −→ T −→ 0,

with Qi finitely generated projective B-modules,for every 0 ≤ i ≤ n. Let T be the truncated
complex

0 −→ Qn −→ · · · −→ Q0 −→ 0

of left finitely generated B-modules.
It can be easily checked, using Proposition 3.2.1, that T = {T} satisfies Conditions (P1),

(P2) and (P3) of 3.1. So there is a triangulated equivalence

Φ : KKT(Mod-B) −→ KT (Mod-B).

Now, observe that KKT(B-Mod) is equivalent to Kprj(Mod-End(T)) via the functor
HomKK(Mod-B)(T,−). Also, Lemma 3.19 implies that KT (Mod-B) ≃ DT (Mod-B). Therefore,
we have an equivalence

D(Mod-EndB(T))
∼
−→ DT (Mod-B)

of triangulated categories.
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Since End(T) ∼= EndB(T ) in D(Mod-B) and EndB(T ) ∼= A by Proposition 3.2.1, there is
the desired equivalence

D(Mod-A) ≃ DT (Mod-B)

of triangulated categories. �

4. Existence of recollements

Our aim in this section is use techniques of the previous section to provide sufficient
conditions for the existence of recollements of derived categories of functor categories.

Let A be an abelian category and Prj-A be the class of projective objects in A. A complex
T ∈ Kb(Prj-A) is called a partial tilting complex if it satisfies the following two properties.

(i) HomKb(Prj-A)(T,T[i]) = 0, for all i 6= 0.
(ii) If {Ti}i∈I is an index family of copies of T, then

HomKb(Prj-A)(T,⊕i∈ITi) ∼= ⊕i∈IHomKb(Prj-A)(T,Ti).

For any X ∈ D−(A), X⊥ is a full triangulated subcategory of D−(A) formed by all
complexesY ∈ D−(A) in which HomD−(A)(X,Y[i]) = 0, for all i ∈ Z. Let T be a subcategory

of D−(A). We set T ⊥ =
⋂

X∈T X⊥.
Let A, B and C be rings that are associative with identity. Koenig proved that derived

category D−(Mod-A) of A admits a recollement

D−(Mod-B) // D−(Mod-A) //
gg

vv
D−(Mod-C)

gg

vv

relative to D−(Mod-B) and D−(Mod-C) if and only if there exist partial tilting complexes
B ∈ Kb(Prj-A) and C ∈ Kb(prj-A) satisfying the following properties

(i) EndA(B) ∼= B,
(ii) EndA(C) ∼= C,
(iii) HomD−(Mod-A)(C,B[i]) = 0, for all i ∈ Z,

(iv) B⊥ ∩ C⊥ = 0.

In the following, we obtain a sufficient conditions for the existence of recollements of
functor categories. It also provide a different proof for the one direction of Koenig’s result
stated above.

Theorem 4.1. Let S be a small category. Let B, resp. C, be a full triangulated small

subcategory of Kb(Prj-S), resp. Kb(prj-S), satisfying conditions (P1), (P2) and (P3), defined
in 3.1. Assume further that

(P4) HomD(Mod-S)(T, T
′[i]) = 0, for every T in C and T ′ in B, and

(P5) B⊥
⋂
C⊥ = 0.

Then there exists the following recollement

D(Mod-B) // D(Mod-S) //
gg

ww
D(Mod-C)

gg

ww
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Proof. By Proposition 3.15, there are the following triangulated functors

ΦB : KKX(Mod-S) −→ K(Mod-S),

ΦC : KKY(Mod-S) −→ K(Mod-S),

where X, resp. Y, denotes the class of objects of KK(Mod-S) formed by all shifting of stalk
complexes B, resp. C, with B, resp. C, in degree zero, for every object B ∈ B, resp. C ∈ C.
Set U = ImΦC, V = ImΦB and W = (ImΦB)⊥. We show that (U ,V) and (V ,W) are stable
t-structures in D(Mod-S). In view of Proposition 3.15, ImΦC = LocC and ImΦB = LocB.
Since C ⊂ Kb(prj-S), every object of C is compact. By property (P4), HomD(Mod-S)(C,B[i]) =
0, for every C ∈ C and every B ∈ B. Now, the argument as in the proof of Lemma 3.3
shows that HomD(Mod-S)(C,B[i]) = 0 for every C ∈ C and every B ∈ LocB. Now, using
this argument again, one can deduce that HomD(Mod-S)(C,B[i]) = 0, for every C ∈ LocC,
B ∈ LocB and all i ∈ Z.

Now, suppose that X is an object of D(Mod-S). By the proof of Lemma 3.19, there exists
a triangle

X′ → X → X′′
 ,

where X′ ∈ U and X′′ ∈ U⊥. Moreover, in a similar way, there exists a triangle

Y′ → X′′ → Y′′
 ,

in which Y′ ∈ V and Y′′ ∈ V⊥. Assume that C ∈ V and apply the homological functor
Hom(C,−) to the above triangle, to get that Hom(C,Y′′[i]) = 0 for all i ∈ Z. Condition
(P5) yields that Y′′ vanishes in D(Mod-S). So X′′ is isomorphic to Y′ in D(Mod-S) and
then belongs to V .

Therefore (U ,V) and (V ,W) are stable t-structures in D(Mod-S). Hence, by Proposition
2.7, we have the following recollement

V
i∗ // D(Mod-S)

j∗ //

i!
dd

i∗

zz
D(Mod-S)/V ,

j∗
gg

j!

ww

such that Imj! = U and Imj∗ = W . By Remark 3.14, V is equivalent to D(Mod-B) and U
is equivalent to D(Mod-C). Furthermore, definition of recollement implies that j! induces an
equivalence U ≃ D(Mod-S)/V . Hence, there is an equivalence

D(Mod-S)/V ≃ D(Mod-C)

of triangulated categories. Consequently, we have the desired recollement. �

Proposition 4.2. With the assumptions as in the above theorem, we have a recollement

D−(Mod-B) // D−(Mod-S) //
gg

vv
D−(Mod-C).

gg

vv

Moreover, the inclusion functor ι : D−(Mod-S) −→ D(Mod-S) is a morphism between the

above recollement and the recollement in Theorem 4.1, i.e. there is the following commutative

diagram of recollements
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D(Mod-B) //
OO

?�

D(Mod-S) //
OO

?�

gg

ww
D(Mod-C)

gg

ww

OO

?�

D−(Mod-B) // D−(Mod-S) //
gg

vv
D−(Mod-C)

gg

vv

Proof. Consider the following subcategories of D−(Mod-S)

• U = ImΦC

⋂
D−(Mod-S),

• V = ImΦB

⋂
D−(Mod-S),

• W = ImΦ⊥
B

⋂
D−(Mod-S),

where, ΦB : KKX(Mod-S) −→ K(Mod-S) and ΦC : KKY(Mod-S) −→ K(Mod-S) are in-
troduced in the proof of above theorem. First we prove that (U ,V) and (V ,W) are stable
t-structures in D−(Mod-S). In view of the proof of above theorem, HomD−(Mod-S)(U ,V) =
0 = HomD−(Mod-S)(V ,W).

Now, let X be a complex in D−(Mod-S). By the proof of Theorem 4.1, there is a triangle

X′ → X → X′′
 

in which X′ ∈ ImΦC and X′′ ∈ ImΦB. In view of condition (P4) we may proved that
HomD(Mod-S)(C,X

′′[i]) = 0, for every C ∈ C and all i. On the other hand, since X ∈

D−(Mod-S), for each complex C ∈ C there exists an integer N such that HomD(Mod-S)(C,X[i]) =
0, for all i ≥ N . Therefore, the above triangle implies that

HomD(Mod-S)(C,X
′[i]) = 0,

for every C ∈ C and all i > N . Since X′ ∈ LocC, X′ is isomorphic in KC(Mod-S) to a
bounded above complex. This implies that X′ lies in D−(Mod-S). By the above triangle, X′′

lies in D−(Mod-S), up to isomorphism, as well. Consequently, (U ,V) is a stable t-structure.
Moreover, as it is shown in the proof of Theorem 4.1, (ImΦB, ImΦ⊥

B) is a stable t-structure.
So we have a triangle

Y → X → Z ,

in D(Mod-S) with Y ∈ ImΦB and Z ∈ ImΦ⊥
B. Now, the same argument as above works to

show that Y, and hence Z, lies in D−(Mod-S), up to isomorphism. So (V ,W) is a stable
t-structure.

Now, Proposition 2.7 implies the following recollement

V
i∗ // D−(Mod-S)

j∗ //

i!
dd

i∗

zz
D−(Mod-S)/V .

j∗
hh

j!

vv

such that Imj! = U and Imj∗ = W .
We claim that V ≃ D−(Mod-B) and U ≃ D−(Mod-C). In fact, in view of the argument

above, ImΦC

⋂
D−(Mod-S) = K

−
C (Mod-S) and ImΦB

⋂
D−(Mod-S) = K

−
B(Mod-S). Now,

Proposition 3.16 and Remark 3.14 yield the desired equivalences.
Altogether, we get the following recollement
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D−(Mod-B) // D−(Mod-S) //
gg

vv
D−(Mod-C)

gg

vv

Furthermore, the inclusion functor ι : D−(Mod-S) −→ D(Mod-S), takes stable t-structures
(U ,V) to (ImΦC, ImΦB) and (V ,W) to (ImΦB, ImΦ⊥

B). Now Corollary 1.13 of [IKM2] implies
the desired diagram. �

Remark 4.3. As it is mentioned in Remark 3.22, our proofs also work to generalize the
above results to a skeletally small category S.

The authors of [AKL3] compared recollements of different levels. They proved that
Db(Mod-) level recollements of rings can be lifted to D−(Mod-) and D(Mod-) levels recolle-
ments; see [AKL3, Sec. 4]. In the following corollary we prove this result using our previous
corollaries. Moreover, we show that these recollements fit into a commutative diagram of
recollements.

Corollary 4.4. Let A be a ring admitting a Db(Mod-) level recollement

Db(Mod-B)
i∗ // Db(Mod-A)

j∗ //

i!
gg

i∗

vv
Db(Mod-C).

j∗
gg

j!

vv

Then there exist the following inclusion morphisms of recollements

D(Mod-B) //
OO

?�

D(Mod-A) //
OO

?�

gg

ww
D(Mod-C)

gg

ww

OO

?�

D−(Mod-B) //
OO

?�

D−(Mod-A) //
OO

?�

gg

vv
D−(Mod-C)

OO

?�

gg

vv

Db(Mod-B) // Db(Mod-A) //
gg

vv
Db(Mod-C)

gg

vv

Proof. Denote by B, resp. C, the image of B, resp. C, under the functor i∗, resp. j!. In
view of Theorem 1 of [Ko], B ∈ Kb(Prj-A) and C ∈ Kb(prj-A) are complexes satisfying the
following conditions

(i) End(B) ∼= B;
(ii) End(C) ∼= C;
(iii) HomK(Prj-A)(C,B[i]) = 0, for all i ∈ Z;

(iv) B⊥
⋂
C⊥ = {0}.

Hence by the proof of Theorem 4.1, there are two stable t-structures (ImΦC, ImΦB) and
(ImΦB, (ImΦB)⊥) inducing a recollement
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D(Mod-B) // D(Mod-A) //
gg

ww
D(Mod-C).

gg

ww

On the other hand, it follows from [M1] that assigned to the recollement

Db(Mod-B)
i∗ // Db(Mod-A)

j∗ //

i!
gg

i∗

vv
Db(Mod-C).

j∗
gg

j!

vv

there are stable t-structures (Imj!, Imi∗) and (Imi∗, Imj∗).
In addition, by Proposition 4.2, we have the following diagram of recollements

D(Mod-B) //
OO

?�

D(Mod-S) //
OO

?�

gg

ww
D(Mod-C)

gg

ww

OO

?�

D−(Mod-B) // D(Mod-S) //
gg

ww
D−(Mod-C).

gg

vv

Note that by the proof of Proposition 4.2, the second recollement is obtained by stable t-
structures

(ImΦC

⋂
D−(Mod-A), ImΦB

⋂
D−(Mod-A)) and (ImΦB

⋂
D−(Mod-A), ImΦ⊥

B

⋂
D−(Mod-A)).

Now, to complete the diagram, it is enough to prove that inclusion functor i : Db(Mod-A) −→
D−(Mod-A) sends stable t-structures (Imj!, Imi∗) to (ImΦC

⋂
D−(Mod-A), ImΦB

⋂
D−(Mod-A))

and (Imi∗, Imj∗) to (ImΦB

⋂
D−(Mod-A), ImΦ⊥

B

⋂
D−(Mod-A)).

Let X belong to Imj!. So, there is a complex Y ∈ Db(Mod-C) such that X = j!(Y). The
stable t-structure (ImΦC, ImΦB) gives us a triangle

X′ → X → X′′
 ,

in D−(Mod-A) in which X′ ∈ ImΦC

⋂
D−(Mod-A) and X′′ ∈ ImΦB

⋂
D−(Mod-A). One

should apply the cohomological functor Hom(−, i∗(B)) to see that Hom(X′′[i], i∗(B)) = 0,
for all i ∈ Z. Since X′′ ∈ 〈B〉

⋂
D−(Mod-A), this implies that X′′ = 0. Thus, X is isomorphic

to X′.
Now, assume that X ∈ Imi∗. Consider the stable t-structure

(ImΦB

⋂
D−(Mod-A), ImΦ⊥

B

⋂
D−(Mod-A)).

One should use a similar argument as above and condition (iv) to show that X is isomorphic
to a complex in ImΦB

⋂
D−(Mod-A).

Finally, the adjoint pair (i∗, i
!) yields that Hom(i∗(B), Imj∗[i]) = 0 for every i ∈ Z. Thus,

since ImΦB = Loc(i∗(B)), a standard argument implies that Hom(B, Imj∗[i]) = 0, for each
B ∈ ImΦB and for all i ∈ Z. Therefore, Imj∗ is contained in ImΦ⊥

B

⋂
D−(Mod-A).

Now, Corollary 1.13 of [IKM2] completes the proof. �
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4.1. Recollements of path rings. Asashiba [As] proved that if A and B are algebras that
are derived equivalent, then their path algebras, incidence algebras and monomial algebras
are derived equivalent. Motivated by this result, we show that if we have a D−(Mod-) level
recollement of rings, then there are both D−(Mod-) and also D(Mod-) level recollements of
their path rings, incidence rings and monomial rings over any locally finite quiver. This
result should be compared with Theorem 4.6 of [AHV2], that we proved similar result but in
D−(Mod-) level and for finite acyclic quivers. We need to recall some preliminaries.

4.1.1. A quiver Q is in fact a directed graph. The set of vertices and arrows of Q are denoted
by Q0 and Q1, respectively. A quiver Q is said to be locally finite, if the set of paths between
every two vertices is finite.

A relation is an A-linear combination ρ = Σm
i=0aiγi, where ai ∈ A and γi are paths of Q

of length at least 2 having the same source and target. If m = 1, the relation ρ is called a
monomial relation. Also, ρ is called a commutativity relation, provided that it is of the form
γ1 − γ2. Let Ic denote the set of all commutativity relations of Q and Im denotes the set of
monomial relations of Q. By convention, I0 means no relations.

Let A be a ring. The category of all representations of Q over Mod-A will be denoted
by Rep(Q, A). Let I be a set of relations of a quiver Q. We denote by Rep(QI , A) the full
subcategory of Rep(Q, A) consisting of all representations M such that Mρ = 0, for any
relation ρ ∈ I.

4.1.2. Evaluation functor and its adjoint. Let Q be a quiver and I∗ be a set of
relations, with ∗ ∈ {0, c,m}. Assigned to any vertex v ∈ Q0, there is an evaluation func-
tor ev : Rep(QI∗ , A) −→ Mod-A, mapping any representation M of Q to its module at
vertex v, denoted by Mv. It is known that in the above cases, ev has both a left and a
right adjoint, denoted by evλ and evρ, respectively. For details on the construction of these
adjoints, see [EH] for ∗ = 0, [Mit] for ∗ = c and [E] for ∗ = m. The evaluation functor
ev : Rep(QI∗ , A) −→ Mod-A and its adjoints can be extended naturally to the homotopy
category level kv : K(Rep(QI∗ , A)) −→ K(Mod-A) with adjoints kvλ and kvρ . For details see
[AEHS].

Let A be a ring and Q be a quiver. The path ring AQ is defined to be a free A-module
with basis all paths of Q.

Now, assume that I is a set of relations of a quiver Q. Let SA
QI

denote the category, whose
objects are vertices of Q and for any v, w ∈ Q0, HomSA

QI

(v, w) = ⊕Q(v,w)A + I/I, where I

is an ideal of the path ring AQ, generated by all relations in I. It can be easily checked that
the category Rep(QI , A) is equivalent to the functor category (SA

QI
,Ab), or equivalently, to

Mod((SA
QI

)op). Observe that under this equivalence every object HomSA
QI

(v,−) in (SQA
I
,Ab)

is assigned to an object evλ(A) in Rep(QI , A).
With this consideration, we have the following result as a consequence of the above theo-

rem.

Theorem 4.1.3. Let Q be a locally finite quiver with relation I∗, where ∗ ∈ {0, c,m}. If a

ring A has a D−(Mod-) level recollement as follows

D−(Mod-B)
i∗ // D−(Mod-A)

j∗ //

i!
gg

i∗

vv
D−(Mod-C),

j∗
hh

j!

vv
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then there exists the following recollement of path rings

D(Rep(QI∗ , B)) // D(Rep(QI∗ , A)) //
hh

vv
D(Rep(QI∗ , C)).ii

vv

Proof. For every v ∈ Q0, set Bv = kvλ(i∗(B)) and Cv = kvλ(j!(C)). Now, let B = {Bv | v ∈
Q0} and C = {Cv | v ∈ Q0}. Using Theorem 1 of [Ko] and the adjoint pair (kvλ, k

v), one can
easily check that B and C satisfy Conditions (P1), (P2), (P3), (P4) and (P5). So Theorem
4.1 implies the following recollement

D(Mod-B) // D(Mod-S) //
gg

ww
D(Mod-C).

gg

ww

On the other hand, there is an equivalence (SB
QI∗

)op
∼
−→ B, that assigns every vertex v to

kvλ(i∗(B)). Indeed, let v and w be vertices of Q. Then

HomKb(Prj-AQ/〈I∗〉)(k
v
λ(i∗(B), kwλ (i∗(B)))) ∼= HomKb(Prj-A)(i∗(B),⊕QI∗ (w,v)i∗(B))

∼= ⊕QI∗ (w,v)End(i∗(B))
∼= ⊕QI∗ (w,v)B.

Hence the category Mod(B) is equivalent to Mod((SB
QI∗

)op) and so to Rep(QI∗ , B). Similarly,

there is an equivalence between Mod(C) and Rep(QI∗ , C). �

4.2. Recollements of Graded rings. Methods that are used in this section can be applied
to get recollements of derived categories of graded modules over graded rings. Recall that a
ring A with identity is called graded if there is a direct sum decomposition A = ⊕i∈GAi (as
additive subgroups) such that AiAj ⊆ Aij , for all i, j ∈ G. A left graded A-module is a left
A-module M together with an internal direct sum decomposition M = ⊕i∈GMi, where Mi

is a subgroup of the additive group M in which AiMj ⊆Mij for all i, j ∈ G. We denote the
category of all graded left A-modules by gr-A. Moreover, let gr≥0-A, resp. gr<0-A denote
the category of positively, resp. negatively, graded A-modules, that is Mi = 0 for i < 0, resp.
i ≥ 0.

Let A+∞
−∞, A−∞ and A+∞ denote quivers

· · · −→ −2 −→ −1 −→ 0 −→ 1 −→ 2 −→ · · · ,
· · · −→ −3 −→ −2 −→ −1,
and 0 −→ 1 −→ 2 −→ · · · ,

respectively.
Let A be an abelian category. C≥0(A), resp. C<0(A), denotes the full subcategory of

C(A) consisting of complexes X with X i = 0 for all i < 0, resp. i ≥ 0.

Theorem 4.2.1. For a ring B, the following statements hold true.

(i) The path ring BA+∞
−∞ admits a D−(Mod-) level recollement of the form

D−(Mod-BA−∞) // D−(Mod-BA+∞
−∞) //

ii

uu
D−(Mod-BA+∞).

ii

uu
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(ii) The category C(Mod-B) admits a D−(Mod-) level recollement of the form

D−(C<0(Mod-B)) // D−(C(Mod-B)) //
ii

uu
D−(C≥0(Mod-B)).

ii

uu

Proof. (i) Consider A−∞ and A+∞ as subquivers of A+∞
−∞. For every v ∈ (A−∞)0 and

w ∈ (A+∞)0, set Bv = evλ(B) and Cw = ewλ (B) in Mod-BA+∞
−∞. The same argument as in

the proof of Theorem 4.1.3, implies that Bv and Cw satisfy all conditions (P1), (P2), (P3),
(P4) and (P5). So by Theorem 4.1, we have gets the desired recollement

D−(Mod-BA−∞) // D−(Mod-BA+∞
−∞) //

ii

uu
D−(Mod-BA+∞).

ii

uu

(ii) It can be easily seen that the category of complexes C(Mod-B) coincides with the
category of all representations of the quiver

· · · // i− 1
αi−1

// i
αi

// i+ 1
αi+1

// · · ·

bound by the zero relations αi+1αi = 0, for all i ∈ Z. Let, for every i ∈ Z+, resp. j ∈ Z−,
Bi, resp. Cj , be the complex

· · · −→ 0 −→ B −→ B −→ 0 −→ · · · ,

with B on the left hand side sits on the i-th, resp. j-th, term. It can be easily seen, using
a simple modification of the proof of Theorem 4.1.3, that Bi and Cj satisfy all the required
conditions to apply Theorem 4.1. Hence there is the desired recollement. �

Observe that for a ring B, Mod-BA+∞
−∞ is equivalent to gr-B[x], when B[x] is considered

as a Z-graded ring, with a copy of B, generated by 1, in degree 0 and a copy of B, generated
by xn, in degree n, for every n ∈ N. Also, it is known that the category of complexes over B
is equivalent to gr-B[x]/(x2), where B[x]/(x2) is viewed as a Z-graded ring with a copy of B,
generated by 1, in degree 0 and a copy of B, generated by x, in degree 1 and zero elsewhere;
see also [GH].

Therefore, in view of Theorem 4.2.1, we have the following recollements of graded modules
over graded rings

D−(gr<0-B[x]) // D−(gr-B[x]) //
hh

vv
D−(gr≥0-B[x])),

hh

vv

D−(gr<0-B[x]/(x2)) // D−(gr-B[x]/(x2)) //
ii

uu
D−(gr≥0-B[x]/(x2))).

ii

uu

The notion of N -complexes are introduced and studied in [E]. A similar argument as above
can be applied to see that there exists an equivalence between the category of N -complexes

and gr-B[x]/(xn). So as above, we can show that for every positive integer n, D−(gr-B[x]
(xn) )

admits a recollement
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D−(gr<0-B[x]/(xn)) // D−(gr-B[x]/(xn)) //
ii

uu
D−(gr≥0-B[x]/(xn)))

ii

uu

relative to D−(gr<0-B[x]/(xn)) and D−(gr≥0-B[x]/(xn))).
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