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VIRTUAL TANGLES AND FIBER FUNCTORS

ADRIEN BROCHIER

Abstract. We define a category vT of tangles diagrams drawn on surfaces
with boundaries. On the one hand we show that there is a natural functor
from the category of virtual tangles to vT which induces an equivalence of
categories. On the other hand, we show that vT is universal among ribbon
categories equipped with a strong monoidal functor to a symmetric monoidal
category. This is a generalization of the Shum–Reshetikhin–Turaev theorem
characterizing the category of ordinary tangles as the free ribbon category.
This gives a straightforward proof that all quantum invariants of links extends

to framed oriented virtual links. This also provides a clear explanation of the
relation between virtual tangles and Etingof–Kazhdan formalism suggested by
Bar–Natan. We prove a similar statement for virtual braids, and discuss the
relation between our category and knotted trivalent graphs.

0. Introduction

Braids and framed oriented tangles can be interpreted as morphisms in certain
categories B and T respectively. These categories can be characterized by the
following universal property:

Theorem (Shum [Shu94], Reshetikhin–Turaev [RT90]). The categories B and T are
respectively the free braided monoidal category and the free ribbon category on one
object.

We stress the fact that we do not assume the underlying monoidal category to be
strict, so B and T are really the parenthesised versions of the categories of braids
and tangles as introduced in [BN98, BN97].

The main result of this paper is a similar description of an appropriate category
of virtual tangles. The notion of virtual knotted objects is due to Kauffman[Kau99].
It is a diagrammatic generalization of usual knotted objects in the following sense:
usual knots can be represented by knot diagrams, which are planar tetravalent
graphs whose vertices are positive and negative crossings, modulo the Reidemeister
relations. Virtual knot diagrams are simply obtained by dropping the planarity
condition. In other words, the edges of the graph are allowed to intersect. These
intersections are precisely the virtual crossings, usually depicted as follow:

.

One can instead choose an abstract punctured surface on which the non planar
graph representing a given virtual knot can be drawn without self-intersection [CdlC15,

Kup03, SCKS02]. This point of view leads naturally to a topological interpretation of
virtual knotted object, as link or tangle diagrams drawn on surfaces modulo homeo-
morphisms and certain additional relations (tearing and puncturing) which reflects
the fact that the choice of the surface is not unique. This leads to the following
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2 ADRIEN BROCHIER

alternative diagrammatic description of ordinary and virtual crossings

7−→ 7−→

where the blue strip is a piece of the underlying surface.
The main goal of this paper is to find a categorical interpretation of these pic-

tures, extending the one existing for usual tangles. As for the original result, it
provides both a natural framework for constructing virtual links invariants and a
clear connection with deformation-quantization, namely with the quantum Yang–
Baxter equation and Etingof–Kazhdan formalism.

It turns out that the answer is quite simple: in any graphical calculus for a certain
kind of categorical structure, objects are represented by points while morphisms are
depicted by string diagrams. On the other hand, functors between categories are
depicted by intervals, and the functoriality on morphisms is expressed by embedding
string diagrams into 2-dimensional strips (see e.g. [McC12]). Roughly speaking, the
main observation of this paper is the fact that the pictures above are part of a
graphical calculus for monoidal functors from a ribbon category to a symmetric
monoidal category.

Hence, we introduce a certain category vT whose objects are finite sequences of
non-associative words, and whose morphisms are punctured framed surfaces with
tangles diagrams drawn on them modulo certain relations. We first show:

Proposition. The category vT is a strict symmetric monoidal category. There
is a natural functor from the category of parenthesized tangles T to vT given by
“embedding a tangle into a blue rectangle”. This functor carries a canonical strong
monoidal structure.

We then prove a Reidemeister-like theorem for those objects, leading to a pre-
sentation of vT by generators and relations. This implies our main result (see
Theorem 2.3):

Theorem. The category vT is universal for the properties of the above Proposition.

It means that the data of a ribbon category C, an object V ∈ C, a strict symmetric
monoidal category S and a strong monoidal functor from C to S gives rise to
representations of vT extending the representations of T attached to (C, V ), i.e. to
a functor GV : vT → S fitting in the following commutative diagram:

T vT

C S

ι

FV GV

G

Let vT0 be the category whose objects are associative words on {+,−} and mor-
phisms are equivalence classes of framed oriented virtual tangles (see Definition 3.1
for a precise definition), then the above topological interpretation induces a functor
vT0 ⊂ vT . We show that this is an equivalence of categories (Proposition 3.3).
We stress the fact that this is, however, not an isomorphism of categories. This is
because vT contains morphisms of the form
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which are not virtual tangles, yet plays an important role in our story since they
are precisely the structure maps of the monoidal structure on the functor T → vT .
This relates to the basic observation that the ordinary crossings once interpreted
as diagrams on a surface as above are not elementary and can be decomposed into
smaller pieces. We note that there is a strict monoidal functor from the strict
version T str of the category of tangles to vT0. It is well known that T and T str are
equivalent as ribbon categories, and formally the above universal property could
be equivalently stated for the pair (T str, vT0) instead. Yet, this would make its
proof much less natural and would completely hide its relation with the graphical
calculus of functors. Also, some of the most important examples of ribbon categories
arising “in nature” are non-strict and it turns out that many results are much more
natural and transparent when stated in terms of T . In some sense one goal of this
paper is to advocate vT as a better replacement of vT0 which account for a certain
non-strictness which naturally arises in examples.

In fact, additional morphisms in vT have a natural interpretation as virtual
knotted trivalent graph (vKTG). It also gives a clean interpretation of the relation
between usual long knotted trivalent graphs and parenthesised tangles and of some
natural operations defined on vKTG’s. This is discussed in Section 3.2.

The Shum–Reshetikhin–Turaev theorem is the basic ingredient tying quantum
algebra and low-dimensional topology. In one direction, it shows that ribbon cate-
gories provide well-behaved links invariants, i.e. invariants which can be computed
by cutting links into elementary pieces, and which are compatible with certain
natural operations. The main examples of explicit ribbon categories comes from
representation theory of quantum groups, leading to vast generalizations of the
Jones polynomial. Our result implies in particular that links invariants derived
from quantum groups extends naturally to virtual links (Proposition 4.2). It also
provides a graphical calculus for those categories, allowing to do algebraic compu-
tation by drawing pictures.

In the other direction, this result is crucial in explaining the topological back-
ground of deformation-quantization: roughly speaking, certain analytically-defined
topological invariants, inspired by conformal and quantum field theories, can be
used to produce quantization of interesting structures. The main example of this sit-
uation is the Drinfeld-Kontsevich invariant [Dri90, Kon93] (see also [BN97, Car93, KT98]):
this is a functor from the category of tangles to a certain category of Feynman di-
agrams (so-called chord diagrams) constructed by formally integrating a universal
version of the KZ connection. This functor therefore induces a ribbon structure
on the category of diagrams; such structures are in one-to-one correspondence with
Drinfeld associators. This construction is the key technical point of the proof of the
formality of the little 2-discs operad which plays a prominent role in the modern
approach to deformation-quantization.

Representations of the category of chord diagrams diagrams can be obtained
from the category of modules over a finite-dimensional Lie algebra g equipped with
an element t ∈ S2(g)g. The Drinfeld–Kontsevich invariant then induces a highly
non-trivial ribbon structure on the category g -mod[[ℏ]]. There is a precise sense
in which t turns the symmetric monoidal category of g-modules into some sort
of Poisson category (see e.g. [PTVV11]) of which this procedure gives a canonical
quantization.

A fundamental theorem of Drinfeld [Dri90] asserts that if g is simple, then the
ribbon category obtained this way is equivalent as a ribbon category to the category
of modules over the corresponding quantum group. It gives a conceptual explana-
tion of why the invariants attached to quantum groups exist but does not quite
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recover the quantum groups themselves. This question has been solved by Etingof–
Kazhdan: any pair of a Lie algebra g and a solution r of the classical Yang-Baxter
equation leads to a pair (g, t) as above, hence to a ribbon structure on g -mod[[ℏ]].
The main result of [EK96] is that this ribbon category can be realized as the category
of modules over a quasi-triangular Hopf algebra quantizing the pair (g, r). Then, if
g is simple there is a standard choice for r whose quantization recovers the quantum
group attached to g. The main technical point of the proof is the construction of a
certain strong monoidal structure on the forgetful functor from the ribbon category
g[[ℏ]] -mod to the category of vector spaces. This is “Bar–Natan’s dream” [BN11] that
this construction should come from an analog of the Drinfeld-Kontsevich invariant
for virtual tangles. Our result is one step in that direction.

1. The category vT

1.1. The tangle category. Recall the following definitions from [BN97] to which
we refer for details.

Definition 1.1. A parenthesised word on a set S is an element of the free non-
associative monoid generated by S.

If w is a parenthesised word, denote by w̄ the word obtained by forgetting the
parenthesis.

Definition 1.2. Let T be the category whose objects are parenthesised words on
the set {+,−}, and morphisms from w to w′ are isotopy classes of framed, oriented
tangles whose source is w̄ and target is w̄′. Let B be the category whose objects are
parenthesised words on {•} and morphisms are isotopy classes of braids.

Theorem 1.3. The category T is a ribbon category: the tensor product is given by

(w, w′) 7→ ww′,

the associativity constraint by the identity tangle from (w1w2)w3 to w1(w2w3), the
braiding by the obvious braid diagram from ww′ to w′w. Objects + and − are dual to
each other with structure maps given by the cup and the cap diagram. This category
is the universal ribbon category in the following sense: for any ribbon category C
and any object V ∈ C, there exists a unique strict monoidal functor

FV : T −→ C

preserving the braiding and the ribbon structure, and such that FV (+) = V and
FV (−) = V ∗.

The category B is a braided monoidal category, the braiding being defined simi-
larly, and for every pair of a braided monoidal category C and an object V ∈ C there
is a unique strict braided monoidal functor F : B → C such that F (•) = V .

1.2. The virtual knotted objects category.

Definition 1.4. Let vT be the category defined as follow: objects are finite se-
quences of parenthesised words on {+,−}, which we denote by words enclosed in
square bracket to avoid confusion with the concatenation:

[w1] . . . [wk].

Morphisms between two objects

W = [w1] . . . [wk] W ′ = [w′
1] . . . [w′

l]

are non necessarily connected, framed compact surfaces with at least one circle
boundary component on each connected component, together with:
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Figure 1. A morphism from [++][−][−] to [+][−]

• a choice of a marked open interval on the boundary for each wi and each w′
i.

We impose that near each interval marked by some wi (resp. some w′
i) the

surface is locally framed-diffeomorphic to R×R≤0 (resp. R×R≥0) equipped
with its standard framing.

• a framed oriented tangle diagram drawn on the surface, whose endpoints are
attached to the marked intervals in a way consistent with the word written
on the said interval in the obvious sense.

Here “drawn on the surface” means embedded in a small thickening of the surface.
Morphisms are considered up to:

• homeomorphisms of the underlying surface which preserves the boundaries,
the framing and the diagrams

• isotopies of framed oriented tangles
• addition or removal of a connected component without any marked interval

or diagram
• “tearing” and “puncturing” as explained below.

Composition is given by gluing matching intervals and tangles endpoints.

Tearing means cutting the surface along a line joining two boundary components
which does not intersect the tangle diagram. Conversely, given two intervals distinct
from the marked intervals, on two non necessarily distinct boundary components
of the surface we allow those intervals to be glued together, if it can be done in a
way compatible with the framing.

←→ .

Puncturing means removing a disc which does not contains nor intersect a diagram.
Conversely, we allow any non distinguished boundary component to be sealed by
gluing a disc, if it can be done in a way compatible with the framing.

←→

A typical morphism in vT is shown on Figure 1.2.

Remark 1.5. When we draw such a morphism, it is assumed that the framing of
the surface is the blackboard framing, and that the framing of a tangle diagram is
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the one induced by the framing of the surface, that the marked interval associated
with W and W ′ appears on the top and the bottom of the pictures respectively, in
the correct order. The direction of a morphism is from top to bottom. To clarifies
pictures, we will denote by a single strand whose endpoints are labelled by the same
word w, the identity diagram joining w with itself in the unique way consistent with
the orientation. For example, if w = + +− then:

w

w

:=

2. A universal property for vT

In this section we define a symmetric strict monoidal structure on vT and con-
struct a strong monoidal functor

T −→ vT .

We then show the main result of this paper, namely that vT is universal for these
properties.

The tensor product on vT is given both on objects and morphisms by juxtapo-
sition, and the unit is the empty word ∅1. The symmetric braiding is by successive
applications of the virtual crossing, i.e. it is defined on the tensor product [w1]⊗[w2]
of two intervals by

σ[w1],[w2] =

w1 w2

w2 w1

(using the conventions of Remark 1.5) and then defined iteratively in such a way
that the hexagon axioms hold, e.g.

σ[w1],[w2][w3] =

w1 w2 w3

w2 w3 w1

.

Proposition 2.1. Equipped with the above defined tensor product and symmetry,
vT is a strict symmetric monoidal category.

Proof. Clear. �

As explained in the introduction, we want to relate the surfaces entering the
definition of vT with the calculus of functor. This can be made precise as follow:

Proposition 2.2. There is a functor ι from T to vT defined on objects by

w 7−→ [w]

1Not to be confused with [∅]: these are isomorphic but different objects.
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and on morphisms by embedding a tangle diagram into a blue rectangle. This functor
is strong monoidal, with monoidal structure given by

(2.1)

Proof. The fact that ι is indeed a functor, i.e. that it is well defined and compat-
ible with composition, is true by the very definition of T and vT . Now again by
definition the above picture is a morphism in vT

ι(w ⊗ w′)→ ι(w) ⊗ ι(w′).

The fact that it is natural is clear by sliding pieces of tangles diagrams on the
picture. This also imply that it is compatible with tensor products of morphisms
since the latter is just given by concatenation.

This morphism is invertible, with inverse given by

.

Indeed, the puncturing relation implies that

=

and the tearing relation implies

= .

The monoidal structure correspond to the following equality:

( )

( )

=

( )

.

Finally, the following pictures

,

are the unit ∅ → [∅] and the counit [∅] → ∅. The defining relation of vT implies
that

= = id[∅]
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and

= = id∅ .

�

The main result of this paper is essentially that Proposition 2.1 and 2.2 charac-
terize the category vT .

Theorem 2.3. Let C be a ribbon category and V ∈ C. Let S be a strict symmetric
monoidal category and

G : C −→ S

a strong monoidal functor. Then there exists a unique strict symmetric monoidal
functor

GV : vT −→ S

such that GV ([+]) = G(V ) and such that the following diagram of functor is strictly
commutative:

T vT

C S

ι

FV GV

G

Proof. Assuming that GV is well defined, the above conditions determines it com-
pletely, e.g.

GV ([+−]) = G(V ⊗ V ∗)

and

GV ([+][−]) = G(V )⊗G(V ∗).

Hence we need to show that GV is well defined. It follows from the following
presentation of vT :

Theorem 2.4. Morphisms in vT are generated under composition and tensor prod-
uct by the following elementary morphism:

, , , (2.2)

, (2.3)

, , , (2.4)

and the following relations:

• relations stating that the generators (2.3) induce a symmetric monoidal
structure, i.e. the fact that they are natural in both variable and that they
satisfies the hexagon axioms together with

=
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• relations stating that ι is a well defined strong monoidal functor, i.e. the
axioms of ribbon categories for generators (2.2) except that we require nat-
urality only with respect to morphisms which are images of morphisms in T
through ι, and relations appearing in the proof of Proposition 2.2.

Remark 2.5. Here we again follow the convention explained in Remark 1.5, i.e. in
addition to all the generators above, we consider all morphisms obtained from those
by either erasing or doubling a strand and with all possible orientations.

Proof. First of all observe that we did not include the following morphisms as
generators:

because they can be obtained by composing other generators, e.g.

= .

Including the morphisms above, that this set is generating is clear: forgetting about
the tangles diagrams, every oriented surface with boundaries and marked intervals is
homeomorphic to the thickening of a uni-trivalent fat graph (the univalent vertices
accounting for the marked intervals), and adding curls if necessary one can arrange
so that the framing match the blackboard framing and so that the top and bottom
marked interval are at the right position (i.e. as in Figure 1.2). This gives a way
of writing every morphism in vT as a composition of the elementary morphisms
above. Note that putting the marked interval at the correct position may force
a part of the surface to overlap another but this can be done using (2.3). The
tearing and puncturing relation and the removal of connected components without
diagrams follows from the monoidal structure on ι. The equality

=

follows from the well-known fact that strong monoidal functors are in particular
Frobenius monoidal functors. The fact that diagrams can slide on the underlying
surface is either the functoriality of ι, the fact that it is also monoidal with respect to
tensor products of morphisms or the naturality of the symmetric braiding depending
on the situation. Then the theorem follows from a combination of Theorem 1.3 and
the well known classification of surfaces.

�

�

Remark 2.6. One can define a variant vB as the category whose objects are finite
sequences of parenthesised words on {•} and morphisms are defined as in Defini-
tion 1.4 but with oriented surfaces and braid diagrams instead (what we mean by
“braid diagram” here can be made precise along the same line as in [CdlC15]). Then
the analog of Theorem 2.3 holds with B instead of T and for C a braided monoidal
category.
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3. Virtual tangles and virtual knotted trivalent graphs

3.1. Virtual tangles. Tangles can be understood combinatorially as a certain set
of planar uni-tetravalent graphs modulo the Reidemeister relations. Virtual tangles
are defined the same way but without the planarity condition: the edges of the
graph can intersect, and those intersections are called virtual crossings. In the
previous sections we used the fact that tangles, more precisely parenthesised tangles
diagrams, form a category. Here we define a similar structure for virtual tangles.
Since morphisms in categories are represented by planar graphs we need, even if it
is slightly less natural, to consider the virtual crossing as an extra generator and
add extra relations.

Definition 3.1. Let vT0 be the strict monoidal category whose objects are asso-
ciative words on {+,−} and morphisms are compositions of the following diagrams
(with all possible orientation and the usual rule of compatibility between the orien-
tation and the objects attached to the endpoints):

, , , ,

modulo the following relations

• planar isotopy
• the Reidemeister moves for framed oriented tangles
• the virtual Reidemeister moves

= =

• the mixed relation

=

Remark 3.2. Note that we do not mod out by the virtual analog of the first Reide-
meister move. This notion is called “rotational virtual tangle” in [Kau99].

Proposition 3.3. The category vT0 has a natural symmetric monoidal structure.
The functor vT0 → vT defined on objects by

ǫ1ǫ2 . . . ǫn 7−→ [ǫ1][ǫ2] . . . [ǫn]

and on morphisms by

7−→ 7−→ (3.1)

7−→ 7−→ (3.2)
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is strict monoidal and induces an equivalence of categories vT0 ≃ vT .

Proof. The symmetric monoidal structure is once again induced by concatenation
and the virtual crossing. The fact that this functor is well defined i.e. that the
defining relations of vT0 are satisfied is easily checked with pictures. Let V be the
full sub-category of vT whose objects are sequences of intervals containing exactly
one letter. We need to show that this functor is surjective on morphisms. Given
a morphism in V one can detach every handle which does not contain a diagram
thanks to the tearing relation, then remove every empty component. View the
tangle diagram at hand as a graph whose vertices are either positive and negative
crossings or endpoints of an open component. Then by tearing and puncturing if
necessary one can arrange so that the underlying surface is a deformation-retract
of this graph. Note that here we use in a crucial way the fact each marked interval
contains exactly one endpoint of a tangle diagram: the previous statement is clearly
not true for an arbitrary morphism in vT . This shows that the morphism we started
with is the image of a virtual tangle, i.e. that the morphisms in V are generated
under composition and tensor product by the pictures images of the generators of
virtual tangles as shown in the Proposition.

Using Theorem 2.3 one can show that the defining relations of V are equivalent
to the virtual Reidemeister moves, hence the functor is fully faithful. On the other
hand, by repeated use of

,

every object in vT is isomorphic to an object in V , so that this functor is essentially
surjective. �

Remark 3.4. There is an obvious analog of this Proposition leading to an equivalence
from the category of virtual braids and the category vB of Remark 2.6.

3.2. Knotted trivalent graphs. The goal of this section is to relate morphisms in
vT with certain virtual knotted trivalent graphs (KTG) [BND14, BND13, Thu02]. This
comparison will be mostly informal, since KTG’s are described in the language of
planar algebras, and unlike what happen for tangles the author is not aware of an
appropriate categorical definition of those, or rather this section should be thought
of as a proposal for such a definition.

The construction is similar to the proof of Proposition 3.3 but starting with an
arbitrary morphism in vT . By tearing and puncturing appropriately, every such
morphism can be seen as a virtual tangle, composed on the top and the bottom by
a (possibly empty) succession of tensor products of

,

and identities, in an order dictated by the parenthesization of the words on the
marked intervals. Then one reverse the map of Proposition 3.3 on the middle
tangle, and replace the successive compositions of the above pieces by trees.

Here is an illustration of this process ; the first equality is by puncturing. Now
the top-left piece of the figure, say, is the composition of the monoidal structure
and its inverse. The first one turns into a trivalent vertex, while the second one is
absorbed when “reversing” the map of Proposition 3.3. The trees are determined
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by the parenthesization of the top and bottom object.

( )

=

( )

→

Note that we could allow inner trivalent vertices as well, but they can all either be
simplified or pushed on the top or the bottom of the diagram. Under this iden-
tification, composition corresponds to gluing the endpoint and applying the unzip
operation of [Thu02] which in our setting corresponds to the tearing. We stress the
fact that in our setting tearing gives equal morphisms, while in [Thu02] this is a trans-
formation between isomorphic but different spaces of KTG’s on different skeletons
which cannot be directly compared. In the same way, puncturing corresponds to
“bubble cancellation” as in [BND14]. Hence, we claim that every morphism space in
vT can be identified with a space of equivalence classes of virtual KTG’s under the
unzip and bubble cancellation moves.

Applying this construction to the image of parenthesised tangles under ι, this
recovers Bar-Natan’s observation that they are in bijection with long KTG’s, i.e.
KTG’s without virtual crossings and only one end point at the top and at the
bottom.

4. Applications

4.1. Quantum invariants for virtual links. In this section we explain how the
formalism developed in the previous section allows one to extend quantum invari-
ants of links to virtual links. Namely, let H be a ribbon Hopf algebra. The main
example, of course, is the quantum group Uq(g) associated to a semi-simple Lie
algebra g. The following is well known:

Proposition 4.1. The category H -mod of finite dimensional H-modules is a ribbon
category. The forgetful functor which to an H-modules attaches the underlying
vector space is strong monoidal, with monoidal structure the identity.

Therefore, an immediate application of Theorem 2.3 implies:

Proposition 4.2. Each finite dimensional H-module V gives rise to a numerical
invariant for framed oriented virtual link whose restriction to classical links coincide
with the Reshetikhin–Turaev invariant attached to V .

Remark 4.3. Note that Theorem 2.3 also implies that this constructions gives an
End(V )-valued invariant of long virtual links, but this will not be an H-module
endomorphism in general, hence it cannot be identified with a scalar even if V is
simple.

Remark 4.4. As for the classical case, the categorical formalism implies that those
invariants are compatible with composition. In particular the above virtual links
invariant is multiplicative on disjoint unions.
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4.2. Etingof–Kazhdan formalism. Let (g, r) be a finite-dimensional quasi-triangular
Lie bialgebra. This means that r ∈ g

⊗2 is such that t = r + r2,1 is g-invariant and
such that r satisfies the classical Yang-Baxter equation

[r1,2, r1,3] + [r1,2, r2,3] + [r1,3, r2,3] = 0.

Let U(g)[[ℏ]] -mod be the symmetric monoidal category of topologically free
U(g)[[ℏ]]-modules of finite type. Together with t, the choice of a Drinfeld asso-
ciator Φ turns this category into a ribbon category U(g)[[ℏ]] -modΦ. If one choose
the so-called KZ associator [Dri90] this recovers the Drinfeld–Kontsevich universal
finite type invariant.

Let F : U(g)[[ℏ]] -modΦ → vectℏ be the forgetful functor which sends a module
to its underlying K[ℏ]]-module. The is a natural algebra isomorphism End(F ) ∼=
U(g)[[ℏ]]. One of the main result of [EK96] is the construction, for each choice of Φ,
of a strong monoidal structure J on F which satisfies J = 1 + ℏr + O(ℏ2).

Therefore Theorem 2.3 implies the following topological interpretation of the
element J :

Proposition 4.5. Let (g, r) be a finite dimensional quasi-triangular Lie algebra.
Each choice of a Drinfeld associator Φ and a g-module V gives rise to a functor

vT → vectℏ

which extends the Drinfeld-Kontsevich invariant attached to the same data.
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