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Dávila e, and Christian Schubert f,d

aHelmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany

bDipartimento di Scienze Fisiche, Informatiche e Matematiche,
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Abstract

Tree-level scattering amplitudes for a scalar particle coupled to an arbitrary number N of

photons and a single graviton are computed. We employ the worldline formalism as the main

tool to compute the irreducible part of the amplitude, where all the photons and the graviton

are directly attached to the scalar line, then derive a “tree replacement” rule to construct the

reducible parts of the amplitude which involve irreducible pure N -photon two-scalar amplitudes

where one photon line emits the graviton. We test our construction by verifying the on-shell

gauge and diffeomorphism Ward identities, at arbitrary N .

Keywords: Scattering amplitudes, gravitons, Ward identities

To the memory of Corneliu Sochichiu

1 Introduction

The systematic computation of various classes of on-shell scattering amplitudes has become a

very active field of research in the past few decades, and several very efficient methods have
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been put forward, which involve spinor helicity formalism, on-shell recursion relations, Ward

identities, KLT relations, just to name a few—see [1] for a review. The main paradigm consists

in avoiding the use of lagrangian field theories with all their plethoric structures and rely instead

on more basic features (symmetries, kinematics,...) that allow to more efficiently compute the

amplitudes. One feature which is common to most of these very effective methods—particularly

those where the spinor helicity tricks are used as the main tool—is the masslessness of the

propagating particles. As a complementary method in the present manuscript we consider a

worldline approach, which instead ideally works with massive propagating particles.

Historically, the first pioneering work on the worldline approach to Quantum Field Theory is

due to Feynman, who proposed a particle path integral representation for the dressed propagator

of a scalar field coupled to electromagnetism [2]. However, this formulation was not taken

seriously as an alternative to the standard Feynman diagram method for the actual computation

of effective actions and scattering amplitudes until the early nineties, when Bern and Kosower [3,

4] derived novel rules for the construction of one-loop N - gluon amplitudes from first-quantized

open string theory, and similar rules were shortly later derived from the closed string for one-loop

N - graviton amplitudes [5].

For the gluonic case, these rules were then rederived from point particle path integrals by

Strassler [6], which established this “worldline formalism” as a serious alternative to Feynman

diagrams, and triggered a host of generalizations to other types of amplitudes and effective

actions —see Ref. [7] for an earlier account on the development of the method. So far, the

majority of developments and applications of the worldline approach have been at the loop level:

multiloop calculations [8,9], worldline methods with strong external fields [10–13], the worldline

formalism in curved spacetime [14], one-loop quantum gravity [15] and photon-graviton mixing

in an electromagnetic field [16], the worldline Monte-Carlo approach to the Casimir effect [17],

higher-spin field theory [18, 19], and applications to QFT on manifolds with boundary [20, 21],

noncommutative QFT’s [22] and form-factor decompositions of off-shell gluon amplitudes [23,24]

and many more.

On other hand, the worldline approach to dressed propagators and to the associated scat-

tering amplitudes is a much less developed subject of research, though the Bern-Kosower rules

for a scalar particle line coupled to electromagnetism in vacuum were found soon after their

one-loop counterparts [25, 26]. However, more recently, master formulas for a scalar particle in

a constant background field were derived [27], and the coupling to non-abelian fields in vacuum

was also studied [28]. Generalizations to propagators of fields with spin are even more rare.

The straightforward procedure would be to consider locally supersymmetric spinning particle

models on the wordline. However, there are technical difficulties to be overcome in the path

integral quantization of such models on the open line, since the gravitino present in the locally

supersymmetric model cannot be completely gauged away, and the coherent state boundary

conditions for the fermionic coordinates, responsible for providing the spinorial degrees of free-

dom to the particle, do not appear to be very convenient. A suitable alternative approach is

to employ the ‘Symb’ map developed in [29, 30] which reproduces the spin-factor potential in

terms of fermionic coordinates with antiperiodic boundary conditions, and the resulting particle

models are now globally supersymmetric. This approach allowed to compute some previously

neglected one-particle reducible contributions to the fermion propagator in a constant field [31].

Moreover, a derivation of a master formula for the tree level N -photon fermion propagator is

under completion [32].

In the present manuscript we instead take a path towards the derivation of tree level ampli-

tudes with gravitons, using as a main tool the worldline approach in curved space. In fact, at the
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level of one photon—i.e. for the gravitational photoproduction process—the amplitude displays

a very interesting factorization property [33–38], which is briefly reviewed below in a dedicated

subsection. However, this nice factorization property appears not to work beyond the N = 1

case since there are too few conservation laws—see [33, 34] for a detailed discussion. Here, we

consider a scalar particle line perturbatively coupled to electromagnetism and to gravity, and

provide a master formula which involves the inclusion of N photons and one graviton into the

scalar line, i.e. we add a graviton to Daikouji et al’s formula [25] which was also rederived in [26].

The inclusion even of a single graviton is by no means trivial for various reasons. Firstly, it boils

down to the application of the worldline formalism in curved space which, although being well

understood by now, is certainly trickier than its flat space counterpart. In fact, the coupling

to gravity, in the perturbative approach requires the use of regularization schemes and careful

treatment of the non-trivial path integral measure [39]. Moreover, the graviton can either couple

directly to the scalar line, but it may also be emitted from a photon line, since gravity couples

to the photon stress tensor. This second contribution involves diagrams that are one-particle

reducible in the photon lines, and akin to what occurs in the presence of a non-abelian gauge

field where, say, a gluon emitted from the scalar line can split in two or three gluons. Similar

issues were indeed already discussed, for instance in the worldgraph approach to Yang-Mills

amplitudes [40] and in worldline calculations [41].

A particularly elegant feature of the original Bern-Kosower and Bern-Dunbar-Shimada rules

for gluon and graviton amplitudes is that they provide a simple rule for constructing the re-

ducible contributions from the irreducible ones at the integrand level, instead of the usual

“sewing trees onto loops” procedure. Here, we provide a similar novel replacement rule, which

allows us to obtain the reducible part of the amplitudes with the graviton in terms of the scalar

lines with only photons attached, thus in terms of amplitudes for which a convenient generating

master formula exists.

In the following we first rederive the N -photon scalar propagator and the associated master

formula, since it is one of our main tools. Then we consider the insertion of a graviton and single

out the irreducible part of the amplitudes—by using a helpful parametrization of the graviton

polarization, and the reducible part through the aforementioned replacement rule. This allows

us to give a compact formula for the full tree level amplitude with N photons, one graviton and

two-scalar. We thus test our master formula by checking the transversality on the photon lines

and graviton lines. In the graviton case, this requires a conspiration between the reducible and

irreducible contributions that becomes rather transparent in our approach. Some computational

details, concerning amplitudes with N ≤ 2, are relegated to the appendix.

2 N-photon scalar propagator from the wordline for-

malism

The photon-dressed propagator in scalar QED can be efficiently obtained using the line path

integral of a scalar particle in the presence of an external electromagnetic field,〈
φ(x′)φ̄(x)

〉
A

=

∫ ∞
0

dTe−m
2T

∫ x(T )=x′

x(0)=x
Dx e−

∫ T
0 dτ

(
1
4
ẋ2+ieẋ·A(x)

)
. (2.1)

The N -photon scalar propagator, i.e. the scalar propagator with the insertion of N photons

can be obtained with the straightforward recipe that we briefly review here. Firstly, write the
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external field as a sum of N photons

Aµ(x(τ)) =

N∑
l=1

εl,µe
ikl·x , (2.2)

then extract from (2.1) the multi-linear part, in the various polarizations εl, and Fourier trans-

form in the two external scalar lines. This leads to

D(N)(p, p′; ε1, k1, . . . , εN , kN ) = (−ie)N
∫ ∞
0

dTe−m
2T

∫
d4x

∫
d4x′ei(p·x+p

′·x′)

×
∫ x(T )=x′

x(0)=x
Dx e−

∫ T
0 dτ 1

4
ẋ2

N∏
l=1

∫ T

0
dτl εl · ẋ(τl)e

ikl·x(τl) . (2.3)

It is thus convenient to split the particle path in terms of a background x̄µ(τ) = xµ+(x′µ−xµ) τT
and fluctuations qµ(τ) with vanishing boundary conditions. One thus gets

D(N)(p, p′; ε1, k1, . . . , εN , kN ) = (−ie)N
∫ ∞
0

dTe−m
2T

∫
d4x

∫
d4x′ei(p·x+p

′·x′)− 1
4T

(x−x′)2

× e
∑
l

(
ikl·x+

εl
T ·(x

′−x)
) ∫ q(T )=0

q(0)=0
Dq e−

∫ T
0 dτ 1

4
q̇2

N∏
l=1

∫ T

0
dτl e

ikl·
(
(x′−x) τlT +q(τl)

)
+εl·q̇(τl)

∣∣∣∣∣
m.l.

, (2.4)

where ’m.l.’ indicates that we are only meant to pick out the multilinear part in all the polar-

izations. The latter path integral thus provides the correlation function of the product of N

photon vertex operators

VA[ε, k] = eik·x+
ε
T ·(x

′−x)
∫ T

0
dτ eik·

(
(x−x′) τT +q(τ)

)
+ε·q̇(τ)

∣∣∣∣∣
lin

, (2.5)

with respect to the Gaussian measure
∫
Dq e−

1
4

∫
q̇2 , which has normalization 1

(4πT )D/2
and yields

the Green’s functions 〈
qα(τ)qα

′
(τ ′)

〉
= −2δαα

′
∆(τ, τ ′) , (2.6)

∆(τ, τ ′) =
ττ ′

T
+

1

2
|τ − τ ′| − 1

2
(τ + τ ′) . (2.7)

Thus, after some straightforward algebra one finds the Bern-Kosower-like master formula orig-

inally obtained by Daikouji et al [25] and later in the worldline formalism in [26], i.e.

D̃(N)(p, p′; ε1, k1, . . . , εN , kN ) = (−ie)N
∫ ∞
0

dTe−T (m
2+p′2)

N∏
l=1

∫ T

0
dτl

× exp
{

(p′ − p) ·
N∑
l=1

(−klτl + iεl) +
N∑

l,l′=1

(
kl · kl′∆l−l′ − 2iεl · kl′∆̇l−l′ + εl · εl′∆̈l−l′

)}∣∣∣∣∣
m.l.

,

(2.8)

where

∆l−l′ :=
1

2
|τl − τl′ | , (2.9)

is the translation-invariant part of (2.7). Above we have also stripped off the overall momentum-

conservation delta function. The Feynman amplitude for the tree-level scattering of two scalars
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and N photons can thus be obtained from (2.8) by truncating the external scalar lines, i.e.

multiplying by (p2 +m2)(p′2 +m2),

M(N)(p, p′; ε1, k1, . . . , εN , kN ) = (p2 +m2)(p′2 +m2)D̃(N)(p, p′; ε1, k1, . . . , εN , kN ) . (2.10)

The latter is on-shell transversal in all the photon lines, upon the replacement εl(kl) → kl, as

will be reviewed below.

3 Insertion of a graviton

The computation of scattering amplitudes of the scalar particle with photons and gravitons,

can be performed by considering the worldline representation in curved space [42]. For the

propagator of a scalar particle minimally coupled to gravity, we have〈
φ(x′)φ̄(x)

〉
A,g

=

∫ ∞
0

dTe−m
2T

∫ x(T )=x′

x(0)=x
DxDaDbDc e−

∫ T
0 dτ

(
1
4
gµν(x)(ẋµẋν+aµaν+bµcν)+ieẋ·A(x)

)
,

(3.1)

where the fields aµ, and bµ and cµ are commuting, respectively anti-commuting, auxiliary fields

(Lee-Yang ghosts) which were found to suitably represent the Einstein-invariant path integral

measure, and have vanishing boundary conditions. By expanding the metric about the flat

background

gµν(x) = δµν + κεµνe
ik0·x , (3.2)

and using the same split described above for the particle paths—we can read off the graviton

vertex operator

Vg[ε, k0] = eik0·x+
1
T2 (x

′−x)·ε·(x′−x)
∫ T

0
dτ eik0·

(
(x′−x) τ

T
+q
)
+εµν

(
2
T
(x′−x)µq̇ν+q̇µq̇ν+aµaν+bµcν

)∣∣∣∣∣
lin

,

(3.3)

along with auxiliary fields propagators〈
aµ(τ)aν(τ ′)

〉
= 2δµνδ(τ, τ ′) , (3.4)〈

bµ(τ)cν(τ ′)
〉

= −4δµνδ(τ, τ ′) . (3.5)

Hence, the irreducible part of the tree-level scalar propagator with the insertion of N photons

and one graviton reads

D(N,1)(p, p′; ε1, k1, . . . , εN , kN ; ε, k0) = (−ie)N
(
−κ

4

)∫ ∞
0

dTe−m
2T

∫
d4x

∫
d4x′ei(p·x+p

′·x′)− 1
4T

(x−x′)2

× 1

(4πT )
D
2

〈
N∏
l=1

VA[εl, kl]Vg[ε, k0]

〉
, (3.6)

where only the part linear in all the polarizations (ε’s and ε) has to be retained. In the next

sections we provide a specific recipe to handle this task and obtain a useful master formula for

the full Feynman amplitude.

5



3.1 Irreducible part of the amplitude

In order to explicitly compute the irreducible part of the N -photon one-graviton amplitude (see

Fig. 1) we find it convenient to parametrize the graviton polarization as

εµν := λµρν , (3.7)

ε0,µ := λµ + ρµ , (3.8)

where, in Eq. (3.7), symmetrization between indices is implied. Such parametrization has

k2

+
x x′

+

k1 k0 k2 kN

· · ·
· · ·

+
x x′

+

k1 k0 k2 kN

· · ·
· · ·

x x′

k0 k1 k2 kN

· · ·

x x′

k0 k1 kN

· · ·

...
...

+ +

+ +

x′

x x′

k0 k2 kN

· · · x x′· · ·

k1 k2k1 k0

+

k3 kN

+ · · ·

Figure 1: The Feynman diagram representation (in configuration space) for irreducible contri-

butions to N -photon one-graviton amplitude. The diagrams in the second and third lines involve

quartic vertices that in the worldline approach come from delta functions, e.g. the first one is given

by δ(τ0 − τ1) etc.

to be understood as a simple book-keeping device to combine photon and graviton insertions

together; at the end the graviton polarization is reconstructed from the term simultaneously

linear in λ and ρ. In fact, with a single graviton insertion, the ghost contribution cancels against

the singular part of the 〈q̇µ(τ0)q̇
ν(τ0)〉 propagator that appears in the graviton vertex operator.

We can thus neglect the ghost contributions, provided we take 〈q̇µ(τ0)q̇
ν(τ0)〉 ∼= − 2

T δ
µν in the

graviton sector. The graviton vertex operator can thus be written as

Vg[ε, k0] = eik0·x+
ε0
T
·(x′−x)

∫ T

0
dτ0 e

ik0·
(
(x′−x) τ0

T
+q(τ0)

)
+ε0·q̇(τ0)

∣∣∣
lin. λ, ρ

, (3.9)

which has the same form as the photon counterpart, with the only subtlety that the linear part

in λ and ρ comes from the quadratic part in ε0. We thus get the “N -photon one-graviton scalar

propagator”

D̃(N,1)(p, p′; ε1, k1, . . . , εN , kN ; ε, k0) = (−ie)N
(
−κ

4

)∫ ∞
0

dTe−T (m
2+p′2)

N∏
l=0

∫ T

0
dτl

6



× exp
{

(p′ − p) ·
N∑
l=0

(−klτl + iεl) +
N∑

l<l′=0

(
kl · kl′ |τl − τl′ |+ i(εl′ · kl − εl · kl′)sgn(τl − τl′)

+ 2εl · εl′ δ(τl − τl′)
)}∣∣∣

m.l.
, (3.10)

where ‘m.l.’ stands for ‘multilinear’ i.e. linear in all εl, l = 1, ..., N and linear in λ and ρ,

and with ∆̈0−0′ = 0. On the mass shell of the scalar particle, upon truncation of the external

scalar lines, the latter provides a contribution to the tree-level amplitude with N photons, one

graviton and two scalars that we will refer to as ‘irreducible’

M(N,1)
irred (p, p′; ε1, k1, . . . , εN , kN ; ε, k0) = (p2 +m2)(p′2 +m2)D̃(N,1)(p, p′; ε1, k1, . . . , εN , kN ; ε, k0) ,

(3.11)

meaning that it cannot be parted into two subdiagrams by cutting a photon line or the graviton

line.

Let us single out some special cases of the previous formula which will be helpful later. Let

us begin considering the case N = 0, i.e. the the ‘graviton-scalar’ vertex,

D̃(0,1)(p, p′; ε, k0) =
(
−κ

4

)∫ ∞
0

dT e−T (m
2+p′2)

∫ T

0
dτ0 e

(p′−p)·(−k0τ0+iε0)
∣∣∣
m.l.

, (3.12)

which, using momentum conservation, can be reduced to

D̃(0,1)(p, p′; ε, k0) =
κ

4
(p′ − p)µεµν(p′ − p)ν 1

(p′2 +m2)(p2 +m2)
, (3.13)

and, upon truncation, leads to the amplitude (vertex)

M(0,1)(p, p′; ε, k0) =
κ

4
(p′ − p)µεµν(p′ − p)ν . (3.14)

For N = 1, the irreducible part of the gravitational photoproduction amplitude can be easily

obtained from

D̃(1,1)(p, p′; ε1, k1; ε, k0) = (−ie)
(
−κ

4

)∫ ∞
0

dTe−T (m
2+p′2)

∫ T

0
dτ0

∫ T

0
dτ1

× e(p′−p)·(−k0τ0−k1τ1+iε0+iε1) ek0·k1|τ0−τ1|+i(ε1·k0−ε0·k1)sgn(τ0−τ1)+2ε0·ε1δ(τ0−τ1)
∣∣∣
m.l.

, (3.15)

where the δ(τ0 − τ1) part yields the seagull diagram, whereas the time ordered parts (τ0 > τ1
and τ0 < τ1) yield the diagrams where photon and graviton are singly emitted by the scalar

line. We thus get the following irreducible contribution to the Feynman amplitude

M(1,1)
irred(p, p

′; ε1, k1; ε, k0) = (p′2 +m2)(p2 +m2)D̃(1,1)(p, p′; ε1, k1; ε, k0)

= eκ
[
(p− p′) · ε · ε1 +

ε1 · p′p · ε · p
p · k0

− ε1 · p p′ · ε · p′
p · k1

]
. (3.16)

Finally, let us consider the irreducible contribution to the two-photon one-graviton amplitude,

which is obviously trickier than the previous ones, though the worldline approach allows to

obtain a quite compact representation. We report here the final result (the interested reader

will find details of the computation to the Appendix A) which reads

M(2,1)
irred(p, p

′; ε1, k1, ε2, k2; ε, k0) = κe2

{
2(ε1εε2)− 2

ε1 · ε2 (p′εp′)

m2 + (p′ + k0)2
− 2

ε1 · ε2 (pεp)

m2 + (p+ k0)2

7



+ 2
ε1 · p (ε2ε(p

′ − p− k1))
m2 + (p+ k1)2

+ 2
ε1 · p′ (ε2ε(p− p′ − k1))

m2 + (p′ + k1)2

+ 2
ε2 · p (ε1ε(p

′ − p− k2))
m2 + (p+ k2)2

+ 2
ε2 · p′ (ε1ε(p− p′ − k2))

m2 + (p′ + k2)2

+ 4
(p′εp′) ε1 · (p+ k2) ε2 · p

((p+ k2)2 +m2)((p′ + k0)2 +m2)
+ 4

(p′εp′) ε2 · (p+ k1) ε1 · p
((p+ k1)2 +m2)((p′ + k0)2 +m2)

+ 4
(pεp) ε1 · (p′ + k2) ε2 · p′

((p+ k0)2 +m2)((p′ + k2)2 +m2)
+ 4

(pεp) ε2 · (p′ + k1) ε1 · p′
((p+ k0)2 +m2)((p′ + k1)2 +m2)

+ 4
((p+ k1)ε(p

′ + k2)) ε1 · p ε2 · p′
((p+ k1)2 +m2)((p′ + k2)2 +m2)

+ 4
((p+ k2)ε(p

′ + k1)) ε2 · p ε1 · p′
((p+ k2)2 +m2)((p′ + k1)2 +m2)

}
. (3.17)

In the next section we tackle the reducible part of the amplitude.

3.2 Reducible part of the amplitude

The external graviton can couple directly to the scalar line, as reproduced by the formulas

described in the previous section, but it can also couple to the photon lines—see Fig. 2 for

the diagrammatic representation of these contributions. From a field theory view point this is

encoded in the vertex

k2

+
x x′

+

k1 k0 k2 kN

· · ·
· · ·

+
x x′

+

k1 k0 k2 kN

· · ·
· · ·

x x′

k0
k1 k2 kN

· · ·

x x′

k0 k1 kN

· · ·

......

+ +

+ +

Figure 2: Feynman diagram representation of the reducible contribution to N -photon one-graviton

amplitude.

V[A, h] =
κ

2

∫
d4xhµνT

µν =
κ

2

∫
d4xhµν

(
FµαF να −

1

4
δµνFαβFαβ

)
, (3.18)

which, using the tracelessness of the on-shell graviton, leads to the following tree-level amplitude

between two photons and one graviton

Γgγγ [ε, k, ε′, k′; ε, k0] = κ
[
(kεk)ε · ε′ + (εεε′)k · k0 − (εεk)k · ε′ − (kεε′)ε · k0

]
, (3.19)

where (aεb) := aµε
µνbν , and we have used the transversality conditions k0µε

µν = kµε
µ = 0 and

conservation law k′ = −(k + k0). The latter can be used to construct the reducible part of the

amplitude with the following recipe. Let us start from the one-photon two-scalar amplitude

M(1)(p, p′; ε′, k′) = eε′ · (p′ − p) , (3.20)

8



which can be easily read off from (2.10). It yields the reducible part of the one-photon one-

graviton two-scalar amplitude by simply multiplying expressions (3.19) and (3.20), and using

the replacement rule

ε′αε′β −→ δαβ

k′2
, (3.21)

which is the photon propagator in the Feynman gauge. By renaming photon polarization and

momentum as ε1 and k1, we thus get

M(1,1)
red (p, p′; ε1, k1; ε, k0) = eκ(p′ − p)µ

εµ1 (k1εk1) + (ε1ε)
µk1 · k0 − kµ1 (ε1εk1)− (k1ε)

µε1 · k0
2k1 · k0

.

(3.22)

In other words we can obtain the latter as

M(1,1)
red (p, p′; ε1, k1; ε, k0) =M(1)(p, p′; υ1, k1 + k0) , (3.23)

i.e., by starting from (3.20) and performing the replacement

εµ1 → υµ1 := κ
εµ1 (k1εk1) + (ε1ε)

µk1 · k0 − kµ1 (ε1εk1)− (k1ε)
µε1 · k0

2k1 · k0
, (3.24)

kµ1 → kµ1 + kµ0 , (3.25)

note that (3.24) is transversal upon the replacement ε1 → k1. The rule above can be obviously

extended to the N -photon two-scalar amplitude constructed above in (2.10), which thus yields

the following reducible contribution

M(N,1)
red (p, p′; ε1, k1, . . . , εN , kN ; ε, k0) =

N∑
i=1

M(N)(p, p′; ε1, k1, . . . , υi, ki + k0, . . . εN , kN ) .

(3.26)

Thus, the full tree-level amplitude with N photons, one graviton and two scalars reads

M(N,1)(p, p′; ε1, k1, . . . , εN , kN ; ε, k0) =M(N,1)
irred (p, p′; ε1, k1, . . . , εN , kN ; ε, k0)

+
N∑
l=1

M(N)(p, p′; ε1, k1, . . . , υl, kl + k0, . . . εN , kN ) , (3.27)

where M(N,1)
irred is given by eq. (3.10) ‘truncated’ on the external scalar lines. For completeness,

let us give the explicit expression for the reducible part of the amplitude with two photons.

Let us start from the scalar Compton scattering amplitude, which can be easily obtained from

(2.10) and reads

M(2)(p, p′; ε1, k1, ε2, k2) = (−ie)2
{

2ε1 · ε2 −
ε1 · (p′ − p− k2)ε2 · (p′ − p+ k1)

(p′ + k1)2 +m2

− ε1 · (p′ − p+ k2)ε2 · (p′ − p− k1)
(p′ + k2)2 +m2

}
. (3.28)

By applying the replacement rule given above we get

M(2,1)
red (p, p′; ε1, k1, ε2, k2; ε, k0) =M(2)(p, p′; υ1, k1 + k0, ε2, k2) +M(2)(p, p′; ε1, k1, υ2, k2 + k0)
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= κ(−ie)2
{

2

(k1 + k0)2
(
εµ1 (k1εk1) + (ε1ε)

µ k1 · k0 − kµ1 (ε1εk1)− (k1ε)
µ ε1 · k0

)
ε2µ

− ε2 · (p′ − p+ k1 + k0)

(p′ + k1 + k0)2 +m2

εµ1 (k1εk1) + (ε1ε)
µ k1 · k0 − kµ1 (ε1εk1)− (k1ε)

µ ε1 · k0
(k1 + k0)2

(p′ − p− k2)µ

− ε2 · (p′ − p− k1 − k0)
(p′ + k2)2 +m2

εµ1 (k1εk1) + (ε1ε)
µ k1 · k0 − kµ1 (ε1εk1)− (k1ε)

µ ε1 · k0
(k1 + k0)2

(p′ − p+ k2)µ

+ (1↔ 2)

}
. (3.29)

Below, in Section 4, we test the master formula (3.27) by checking the on-shell transversality

conditions in the photon lines and graviton line. However, to conclude the present section,

let us briefly review a factorization property that links graviton-photon amplitudes to photon

amplitudes.

3.3 Factorization property for M(1,1)

For a mixed scattering with one graviton and one photon, i.e. for the graviton photoproduction

process, the full amplitude involving both the irreducible contributions (3.16) and the reducible

contribution (3.22), factorizes in terms of the corresponding QED Compton amplitude. It can

be easily seen by adopting the decomposition

εµν → εµεν , (3.30)

which yields,

M(1,1)(p, p′; ε1, k1; ε, k0) =
κe

k0 · k1

[
ε · p′ k0 · p− ε · pk0 · p′

] [ε1 · p′ ε · p
p′ · k1

+
ε1 · p ε · p′
p′ · k0

+ ε · ε1
]

= HM(2)(p, p′; ε, k0, ε1, k1)|on−shell , (3.31)

where

H = − κ

2e

ε · p′ k0 · p− ε · pk0 · p′
k0 · k1

, (3.32)

and M(2)(p, p′; ε, k0, ε1, k1) is the on-shell scalar QED Compton scattering given in Eq. (3.28).

This factorization property was already studied in [33–35,37,38], and seems to be universal for

four-body amplitudes with massless gauge bosons. However, beyond the four-particle level, such

factorization property is not expected to hold due to the lack of enough conservation laws [33].

4 Ward identities and on-shell transversality

The dressed propagator described above in (3.1) is covariant upon U(1) gauge transformations

and invariant under diffeomorphisms. The former is described by〈
φ(x′)φ̄(x)

〉
A,g
→

〈
φ̃(x′) ˜̄φ(x)

〉
Ã,g̃

= eie(α(x)−α(x
′))
〈
φ(x′)φ̄(x)

〉
A,g

. (4.1)

Using that δAµ = ∂µα, the infinitesimal part of (4.1) becomes the electromagnetic Ward identity

generator [
∂yµ

δ

δAµ(y)
+ ie(δ(y − x)− δ(y − x′))

]〈
φ(x′)φ̄(x)

〉
A,g

= 0 , (4.2)
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which holds off-shell. In momentum space, it yields an infinite set of Ward identities

D̃(N,1)(p, p′;−ik, k, ε1, k1, . . . ; ε, k0) = −ie
[
D̃(N−1,1)(p+ k, p′; ε1, k1, . . . ; ε, k0)

− D̃(N−1,1)(p, p′ + k; ε1, k1, . . . ; ε, k0)
]
, (4.3)

which can be easily tested with the special cases singled out in the section 3.1. On the other

hand, on the scalar mass-shell the contact terms present in (4.2) do not have the correct pole

structure and drop out upon truncation, whereas the first term leads to the on-shell transver-

sality condition

M(N,1)
irred (p, p′; ε1, k1, . . . ,−ikl, kl, . . . ; ε, k0) = 0 , (4.4)

which holds for any photon line. Moreover, the gauge invariance of scalar QED (in curved

space) ensures that the full amplitude is transversal, i.e. the reducible part of the amplitude

must result separately transversal. Indeed, given that (3.24) vanishes upon the replacement

ε1 → k1, this is enough to prove the transversality of the reducible part of the amplitude (3.2),

as it can easily be checked for the expression (3.29).

Under infinitesimal diffeomorphisms, xµ to xµ− ξµ(x), the dressed propagator transforms as〈
φ̃(x′) ˜̄φ(x)

〉
Ã,g̃

=
〈
φ(x′)φ̄(x)

〉
A,g

+

∫
d4y
(
δ(4)(y − x)∂µ + δ(4)(y − x′)∂′µ

)〈
φ(x′)φ̄(x)

〉
A,g

.

(4.5)

However, using the worldline representation (3.1), one can as well get〈
φ̃(x′) ˜̄φ(x)

〉
Ã,g̃

=
〈
φ(x′)φ̄(x)

〉
A,g

+

∫
d4y
[
2∇µξν(y)

δ

δgµν(y)
+
(
ξα∂αAµ(y) + ∂µξ

αAα(y)
) δ

δAµ(y)

]〈
φ(x′)φ̄(x)

〉
A,g

, (4.6)

which, after some straightforward algebra and using expression (4.2), can be reduced to[
−∇yµ

2gνα√
g

δ

δgµν(y)
+

1√
g

(
Fαµ

δ

δAµ(y)
− δ(4)(y − x)D̄α − δ(4)(y − x′)D′α

)]〈
φ(x′)φ̄(x)

〉
A,g

= 0 ,

(4.7)

which is the diffeomorphism Ward identity generator. Once again there are contact terms which

drop out on the scalar particle mass-shell. The two left-over terms both contribute on-shell and

thus the irreducible part of the N -photon one-graviton amplitude is not, by itself, transversal on

the graviton line; rather it fulfills, even on-shell, an inhomogeneous Ward identity. Introducing

the field strength tensor fµνi := kµi ε
ν
i − εµi kνi for each photon leg, and an “effective” photon

polarization vector

ε̃i := κfi · ξ , (4.8)

this identity can be written concisely as follows (the same identity holds for the closed-loop

case [36])

D̃(N,1)(p, p′; ε1, k1, . . . ; k0ξ, k0) =

N∑
i=1

D̃(N,0)(p, p′; ε1, k1, . . . , ε̃i, ki + k0, . . . , εN , kN ) . (4.9)
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Here we have written the transformation of the (transverse traceless) polarization tensor as

εµν → εµν + k0µξν + k0νξµ , k0 · ξ = k20 = 0 , (4.10)

and used k0ξ just a shortcut notation for the symmetrized product of the two vectors. However,

the full amplitude is expected to be transversal on-shell, i.e.,

M(N,1)(p, p′; ε1, k1, . . . , εN , kN ; k0ξ, k0) = 0 . (4.11)

Using the “tree replacement” rule (3.24), it can be seen quite easily how this comes about:

applying the transformation (4.10) to υµi , the result can be written as

υµi → −ε̃
µ
i + κ

k0 · fi · ξ
2ki · k0

(k0 + ki)
µ . (4.12)

The second term in brackets will drop out when inserted into the photon amplitude because of

the transversality in the photon polarizations. The first one will cancel the contribution of the

ith term on the right-hand side of (3.26) to the Ward identity. In the Appendix B we single

out a few detailed examples.

5 Conclusions and Outlook

We described a novel worldline approach to the computation of the tree level scattering am-

plitudes associated to the scalar line coupled to electromagnetism and gravity. In particular,

we provided a convenient parametrization for the graviton polarization and a replacement rule,

which allowed us to easily compute amplitudes with an arbitrary number of photons and one

graviton. The on-shell transversality of the amplitudes was explicitly checked.

A priori, our technique can be as well implemented to compute amplitudes with an arbitrary

number of gravitons. However, in that case more care is needed in the treatment of chains of

contractions between the Lee-Yang ghost fields that represent the non trivial measure.

On the other hand amplitudes with gravitons have always been the subject of extensive

studies. In particular, theorems which involve gravitons with low momentum have long been

analyzed [43] and, in the recent past, various soft-graviton theorems—see e.g. Ref. [44]—have

been studied, due to their connections to the infrared structure of gauge theory and gravity [45].

The present manuscript wishes to provide a novel approach towards the computation of ampli-

tudes with gravitons, which may shed new light on the structure of such quantities. In fact,

our approach does not, a priori, require gravitons to have low-momentum. However, it would

be helpful to reconstruct soft graviton theorems from the worldline view point, by suitably

implementing from the beginning the low-momentum condition into the graviton vertex op-

erators (3.3). Yet, the parametrization described in Section 3.1, which allows to simplify the

computation of the worldline correlators, keeps holding for each graviton vertex operator.
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A Two-photon one-graviton scalar propagator

We use the master formula (3.10) to compute the two-photon one-graviton scalar propagator,

and the related (irreducible) part of the two-photon one-graviton two-scalar amplitude, whose

Feynman diagrams are depicted in Fig 3.

k1 k2
k0

p −p′

k2k1k0

p −p′

+ +

p −p′

k2k1k0

+

k2k1k0

−p′p
+ perms.

Figure 3: Irreducible contributions to the amplitude with two-photon one-graviton, which are

shown here in momentum space. ’Perms’ refers to permutations between the photon lines and

among the emission points. The last type of diagram, where photons and graviton are all emitted

at the same point, is obviously unique.

It reduces to,

D̃(2,1)(p, p′; ε1, k1, ε2, k2; ε, k0) = (−ie)2
(
−κ

4

)∫ ∞
0

dT e−T (m
2+p′2)

∫ T

0
dτ0

∫ T

0
dτ1

∫ T

0
dτ2

× e(p′−p)·(−k0τ0−k1τ1−k2τ2+iε0+iε1+iε2) ek0·k1|τ0−τ1|+k0·k2|τ0−τ2|+k1·k2|τ1−τ2|

× ei(ε1·k0−ε0·k1)sgn(τ0−τ1)+i(ε2·k0−ε0·k2)sgn(τ0−τ2)+i(ε2·k1−ε1·k2)sgn(τ1−τ2)

× e2
[
ε0·ε1δ(τ0−τ1)+ε0·ε2δ(τ0−τ2)+ε1·ε2δ(τ1−τ2)

]∣∣∣
m.l.

. (A.1)

Firstly, let us consider contributions involving delta functions, which are linked to seagull dia-

grams. We find it convenient to ‘grade’ the different contributions in terms of how many delta

functions occur. There is only one double-delta term (see the last diagram in Fig. 3), namely

e2κ

∫ ∞
0

dT e−T (m
2+p′2)

∫ T

0
dτ0 e

τ0(p′2−p2) ε0 · ε1ε0 · ε2|m.l. , (A.2)

which, using (3.7) and (3.8), reduces to

1

(p2 +m2)(p′2 +m2)
e2κ 2(ε1εε2) , (A.3)

whose numerator is the Feynman amplitude of the diagram where two photons and one graviton

are emitted at the same point of the scalar line. Note that, also for an arbitrary number N of

photons—and a single graviton—this is the largest number of particles that can be emitted at

the same point of the scalar line.

There are three terms with a single delta function (see the second and third diagrams and

their permutations in Fig. 3), that correspond to the six Feynman diagrams where there is the

emission of a pair of particles (either two photons or one photon and the graviton) from the
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same point of the scalar line, and the remaining particle emitted from another point on the

line. Let us, for example consider the term that involves δ(τ1 − τ2) (the third diagram in Fig.

3), which yield the diagrams where two photons are emitted at the same point. The integrand

reads

(−ie)2
(
−κ

4

)
ε1 · ε2

[
iε0 · (p′ − p− (k1 + k2)sgn(τ0 − τ1))

]2
× e(p−p′)·(k0τ0+(k1+k2)τ1)+k0·(k1+k2)|τ0−τ1| , (A.4)

which provides two diagrams, according to whether τ1 < τ0 or τ0 < τ1. After some straightfor-

ward algebra that corresponds to the Schwinger integral parametrization of the diagrams, we

obtain

1

(m2 + p2)(m2 + p′2)
(−2e2κε1 · ε2)

[ (p′εp′)

m2 + (p′ + k0)2
+

(pεp)

m2 + (p+ k0)2

]
. (A.5)

Similarly, the other terms with single delta funnctions δ(τ0 − τ1) and δ(τ0 − τ2) give

1

(m2 + p2)(m2 + p′2)
2e2κ

[ε1 · p (ε2ε(p
′ − p− k1))

m2 + (p+ k1)2
+
ε1 · p′ (ε2ε(p− p′ − k1))

m2 + (p′ + k1)2

+
ε2 · p (ε1ε(p

′ − p− k2))
m2 + (p+ k2)2

+
ε2 · p′ (ε1ε(p− p′ − k2))

m2 + (p′ + k2)2

]
. (A.6)

The term without delta functions corresponds to the leftover six Feynman diagrams where

the two photons and the graviton and emitted singly by the scalar line (the first diagram in Fig.

3 and its permutations), six being the number of permutations of the three particles, which in

the present worldline representation correspond to the different orderings of the three times τi.

The integrand in this case reads

(−ie)2
(
−κ

4

)∫ ∞
0

dT e−T (m
2+p′2)

∫ T

0
dτ0

∫ T

0
dτ1

∫ T

0
dτ2

× e(p′−p)·(−k0τ0−k1τ1−k2τ2+iε0+iε1+iε2) ek0·k1|τ0−τ1|+k0·k2|τ0−τ2|+k1·k2|τ1−τ2|

× ε1 · (p′ − p+ k0sgn(τ0 − τ1)− k2sgn(τ1 − τ2)) ε2 · (p′ − p+ k0sgn(τ0 − τ2) + k1sgn(τ1 − τ2))

× 1

2

[
ε0 · (p′ − p− k1sgn(τ0 − τ1)− k2sgn(τ0 − τ2))

]2
, (A.7)

and yields

1

(m2 + p2)(m2 + p′2)
4e2κ

[ (p′εp′) ε1 · (p+ k2) ε2 · p
((p+ k2)2 +m2)((p′ + k0)2 +m2)

+ (1↔ 2)

+
(pεp) ε1 · (p′ + k2) ε2 · p′

((p+ k0)2 +m2)((p′ + k2)2 +m2)
+ (1↔ 2)

+
((p+ k1)ε(p

′ + k2)) ε1 · p ε2 · p′
((p+ k1)2 +m2)((p′ + k2)2 +m2)

+ (1↔ 2)
]
. (A.8)

Thus,

M(2,1)
irred(p, p

′; ε1, k1, ε2, k2; ε, k0) = κe2

{
2(ε1εε2)− 2

ε1 · ε2 (p′εp′)

m2 + (p′ + k0)2
− 2

ε1 · ε2 (pεp)

m2 + (p+ k0)2

+ 2
ε1 · p (ε2ε(p

′ − p− k1))
m2 + (p+ k1)2

+ 2
ε1 · p′ (ε2ε(p− p′ − k1))

m2 + (p′ + k1)2
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+ 2
ε2 · p (ε1ε(p

′ − p− k2))
m2 + (p+ k2)2

+ 2
ε2 · p′ (ε1ε(p− p′ − k2))

m2 + (p′ + k2)2

+ 4
(p′εp′) ε1 · (p+ k2) ε2 · p

((p+ k2)2 +m2)((p′ + k0)2 +m2)
+ 4

(p′εp′) ε2 · (p+ k1) ε1 · p
((p+ k1)2 +m2)((p′ + k0)2 +m2)

+ 4
(pεp) ε1 · (p′ + k2) ε2 · p′

((p+ k0)2 +m2)((p′ + k2)2 +m2)
+ 4

(pεp) ε2 · (p′ + k1) ε1 · p′
((p+ k0)2 +m2)((p′ + k1)2 +m2)

+ 4
((p+ k1)ε(p

′ + k2)) ε1 · p ε2 · p′
((p+ k1)2 +m2)((p′ + k2)2 +m2)

+ 4
((p+ k2)ε(p

′ + k1)) ε2 · p ε1 · p′
((p+ k2)2 +m2)((p′ + k1)2 +m2)

}
, (A.9)

is the irreducible part of the two-scalar two-photon one-graviton amplitude.

B Transversality of the amplitudes with one graviton

and N ≤ 2 photons

Let us here check how the transversality of the graviton line explicitly works for N ≤ 2. For

the N = 0 amplitude of eq. (3.14) we have

M(0,1)(p, p′; k0ξ, k0) =
κ

2
(p′ − p) · k0 (p′ − p) · ξ , (B.1)

which vanishes on-sell because k0 = −(p + p′). For N = 1, using on-shellness, the momentum

conservation and the transversality conditions k0µε
µν = kµε

µ = 0, we have

M(1,1)
red (p, p′; ε1, k1; k0ξ, k0) = −M(1,1)

irred(p, p
′; ε1, k1; k0ξ, k0) = eκ(p′ − p)µ

(
εµ1k1 · ξ + kµ0 ε1 · ξ

)
,

(B.2)

so that

M(1,1)(p, p′; ε1, k1; k0ξ, k0) = 0 , (B.3)

as expected.

The computation for the N = 2 case is of course more complicated. However, let us sketch

some details. An useful way to proceed is to identify different kind of terms in both the reducible

and irreducible parts of the amplitude, that must sum up to zero separately.

Let us first consider the part of the amplitude proportional to the product ε1 · ε2. After

performing the substitution described in Eq.(4.10), and denoting the corresponding reducible

and irreducible contributions as M̃ε1ε2
red and M̃ε1ε2

irred, we obtain

M̃ε1ε2
irred =− 2ε1 · ε2

p · k0
(p · k0p · ξ)−

2ε1 · ε2
p′ · k0

(
p′ · k0p′ · ξ

)
= −2ε1 · ε2ξ · (p+ p′) , (B.4)

M̃ε1ε2
red =− 2ε1 · ε2

k1 · k0
(k1 · k0k1 · ξ)−

2ε1 · ε2
k2 · k0

(k2 · k0k2 · ξ) =

=− 2ε1 · ε2ξ · (k1 + k2) = 2ε1 · ε2ξ · (p+ p′) = −M̃ε1ε2
irred, (B.5)

where in the last line we have used the conservation of total energy-momentum together with

the transversality condition given in Eq. (4.10). Thus, we get

M̃ε1ε2
irred + M̃ε1ε2

red = 0, (B.6)

as expected.

Similarly we could consider the part in the total amplitude proportional to ε1 · ξ, and we
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indicate with M̃ε1ξ
red and M̃ε1ξ

irred respectively the reducible and irreducible contributions. After

some manipulations, we obtain

M̃ε1ξ
irred =

ε2 · p′
k2 · p′

p · k0ε1 · ξ + 2ε1 · ξε2 · k0 +
ε2 · p′
k2 · p′

(p+ k1) · k0ε1 · ξ

+
ε2 · p
k2 · p

p′ · k0ε1 · ξ +
ε2 · p
k2 · p

(p′ + k1) · k0ε1 · ξ

=
ε2 · p′
k2 · p′

p · k0ε1 · ξ + 2ε1 · ξε2 · k0 −
ε2 · p′
k2 · p′

p · k1ε1 · ξ + ε1 · ξε2 · p′

+
ε2 · p
k2 · p

p′ · k0ε1 · ξ −
ε2 · p
k2 · p

p′ · k1ε1 · ξ + ε1 · ξε2 · p

=
ε2 · p′
k2 · p′

ε1 · ξp · (k0 − k1) +
ε2 · p
k2 · p

ε1 · ξp′ · (k0 − k1) + ε1 · ξε2 · (k0 − k1). (B.7)

Notice that in the last equality we have exploited the conservation of total energy-momentum,

while in the second equality we have used the relations

k0 · (p+ k1) = −p · k1 + p′ · k2,
k0 · (p′ + k1) = −p′ · k1 + p · k2. (B.8)

The contribution coming from the reducible part of the amplitude is obtained as

M̃ε1ξ
red =

ε2 · p′
p′ · k2k0 · k1

ε1 · ξ(p · k1k0 · k1 − p · k0k0 · k1) + 2

(
ε1 · ξ

2k0 · k1
(k0 · k1ε2 · k1 − k0 · k1ε2 · k0)

)
+

ε2 · p
p · k2k0 · k1

ε1 · ξ(p′ · k1k0 · k1 − p′ · k0k0 · k1)

= −ε2 · p
′

k2 · p′
ε1 · ξp · (k0 − k1)−

ε2 · p
k2 · p

ε1 · ξp′ · (k0 − k1)− ε1 · ξε2 · (k0 − k1), (B.9)

and the sum of the reducible and irreducible contribution vanishes, that is

M̃ε1ξ
irred + M̃ε1ξ

red = 0. (B.10)

By Bose symmetry the contributions proportional to ε2 · ξ can be obtained from the latter with

the replacements ε1 ↔ ε2 and k1 ↔ k2. Now we are ready to write down all the remaining

terms that enter in the transversality expression for the total amplitude. We find it convenient

to organize them in terms of their different denominators, which are scalar product of momenta.

We thus use the notation M̃pk
rem to indicate those terms that have the common denominator

p · k and similarly with others. We have,

M̃p′k2
rem =− ε2 · p′

p′ · k2
2p · ξε1 · (p+ k0) +

ε2 · p′
p′ · k2

ε1 · k0p · ξ +
ε2 · p′
p′ · k2

ε1 · k0ξ · (p+ k1)

+
ε2 · p′
p′ · k2

2ε1 · pξ · (p+ k1)−
ε2 · p′
p′ · k2

2p · ε1ξ · k1 −
ε2 · p′
p′ · k2

ε1 · k0ξ · k1 = 0 , (B.11)

M̃pk1
rem =− ε1 · p

p · k1
ε2 · k0ξ · (p+ k1)−

ε1 · p
p · k1

2p′ · ξε2 · (p′ + k0) +
ε1 · p
p · k1

ε2 · k0ξ · p′

− ε1 · p
p · k1

2ε2 · p′ξ · (p+ k1) +
ε1 · p
p · k1

2(p+ k1) · ε2ξ · k2 +
ε1 · p
p · k1

ε2 · k0ξ · k2

=
ε1 · p
p · k1

ε2 · k0ξ · (p′ + k2)−
ε1 · p
p · k1

2p′ · ξε2 · (p′ + k0) +
ε1 · p
p · k1

ε2 · k0ξ · p′

+
ε1 · p
p · k1

2ε2 · p′ξ · (p′ + k2)−
ε1 · p
p · k1

2(p′ + k0) · ε2ξ · k2 +
ε1 · p
p · k1

ε2 · k0ξ · k2 = 0 , (B.12)
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M̃pk1
rem =− ε1 · p′

p′ · k1
2p · ξε2 · (p+ k0) +

ε1 · p′
p′ · k1

p · ξε2 · k0 −
ε1 · p′
p′ · k1

ε2 · k0ξ · (p′ + k1)

− ε1 · p′
p′ · k1

2ε2 · pξ · (p′ + k1) +
ε1 · p′
p′ · k1

2(p′ + k1) · ε2ξ · k2 +
ε1 · p′
p′ · k1

ε2 · k0ξ · k2

=− ε1 · p′
p′ · k1

2p · ξε2 · (p+ k0) +
ε1 · p′
p′ · k1

p · ξε2 · k0 +
ε1 · p′
p′ · k1

ε2 · k0ξ · (p+ k2)

+
ε1 · p′
p′ · k1

2ε2 · pξ · (p+ k2)−
ε1 · p′
p′ · k1

2(p+ k0) · ε2ξ · k2 +
ε1 · p′
p′ · k1

ε2 · k0ξ · k2 = 0 , (B.13)

M̃pk2
rem =− ε2 · p

p · k2
2p′ · ξε1 · (p′ + k0) +

ε2 · p
p · k2

ε1 · k0ξ · p′ +
ε2 · p
p · k2

ε1 · k0ξ · (p′ + k1)

+
ε2 · p
p · k2

2ε1 · p′ξ · (p′ + k1)−
ε2 · p
p · k2

2p′ · ε1ξ · k1 −
ε2 · p
p · k2

ε1 · k0ξ · k1 = 0 , (B.14)

M̃k0k1
rem =

ε1 · k0ξ · k1
k0 · k1

ε2 · (k0 + k1) +
ε1 · k0
k0 · k1

ε2 · p′ξ · k1 +
ε1 · k0
k0 · k1

ε2 · pξ · k1

=
ε1 · k0
k0 · k1

ξ · k1ε2 · (p+ p′ + k0 + k1) ∝ ε2 · k2 = 0 , (B.15)

M̃k0k2
rem =

ε2 · k0ξ · k2
k0 · k2

ε1 · (k0 + k2) +
ε2 · k0
k0 · k2

ε1 · pξ · k2 +
ε2 · k0
k0 · k2

ε1 · p′ξ · k2

=
ε2 · k0
k0 · k2

ξ · k2ε1 · (p+ p′ + k0 + k2) ∝ ε1 · k1 = 0 . (B.16)

Thus, all the different contributions sum up to zero and the transversality of the total amplitude

is proven, i.e.,

M(2,1)
(
p, p′; ε1, k1; ε2, k2; k0ξ, k0

)
= 0 . (B.17)

What we described above is similar to what happens in flat space scalar QCD, for which a

worldline approach to the computation of the N -gluon scalar propagator was studied in [28]:

it yields the irreducible part of the N -gluon two-scalar amplitude. However, the non-Abelian

nature of the theory implies that in order to compute the full amplitude—which is guaranteed

to be transversal on the gluon lines—the latter must be completed with reducible parts [41].
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