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ABSTRACT: Thermoelectric materials are of imperative need on account of
the worldwide energy crisis. However, their efficiency is limited by the
interplay of high electrical and lower thermal conductivities, that is, the figure
of merit (ZT). Owing to their unique crystal structures, Cu−In−Te-based
chalcogenides are suitable for both and thus have attracted much attention
recently as potential thermoelectrics. Here we explore a newly developed
Cu−In−Te derivative compound Cu3.52In4.16Te8. With a proper adjustment
of Cu2Te doping, this material shows an ultralow lattice thermal conductivity
(κL) (0.3 WK−1m−1) and, consequently, a figure of merit (ZT) as high as
1.65(±0.15) at 815 K: the highest value reported for p-type Cu−In−Te to
date. The reduction in κL is directly related to the alteration of local
symmetry around the interstitial Te, resulting in an effectively optimized phonon transport through localized “rattling” of the
same. Although the Hall carrier concentration reduces upon Cu2Te addition due to the unpinning of the Fermi level (EFermi)
toward the conduction band minimum, the power factor remains stable. The knowledge depicted here not only demonstrates
the potential of Cu3.52In4.16Te8-based alloys as a promising TE, but also provides guidelines for developing further high-
performance thermoelectric materials by enhancing the electronic conductivity.
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■ INTRODUCTION
The conversion of thermal energy to electricity by thermo-
electric (TE) devices is believed to play a key role in solving
the future energy crisis. The efficiency of TE performance is
largely determined by the dimensionless figure of merit (ZT),
which is characterized by the equation: ZT= Tα2σ/κ, where T,
α, σ, κ are, respectively, the absolute temperature, Seebeck
coefficient, electrical conductivity, and total thermal con-
ductivity consisting of mainly lattice (κL) and electronic (κe)
parts. To maximize the ZT value, a high power factor (α2σ)
and low κ are essential requirements. Since the three
parameters α, σ, and κe are interrelated; it is very difficult to
decouple them. κL being the only independently tunable
parameter, many approaches viz. all-scale hierarchical nano-
mesostructuring,1,2 magnetoelectric or thermoelectromagnetic
interactions in the bulk matrix,3 explorations of liquid-like
compounds,4,5 and entropy driven enhanced point defects in
solid solution GeSe6 etc., have been extensively applied to
reduce it. Moreover, κL is closely related to the disturbances of
the lattice structure or unusual vibrational properties. For
example, the electrostatic repulsion between the lone s2 pair at

Sb sites in Cu(Ag)−Sb-Se compounds yields soft frequency
modes and high Grüneisen parameters, thus reducing the κL to
as low as 0.25 Wm−1K−1.7−9 In binary selenides, anisotropic
bonding in SnSe,10 bonding asymmetry in InTe11 and soft
localized vibrations of bismuth bilayer in BiSe12 are responsible
for their ultralow κL. The newly observed appearances, such as
hierarchical or multicenter chemical bonds in α-MgAgSb,13

CdSb,14 AgBi3S5,
15 and low sound velocity or cutoff frequency

of acoustic phonons in Ag8SnSe6,
16 Ag9GaSe6,

17 AgInSe2,
18

AgCuTe,19 and Bi13S18I2
20 make the phonon scattering

intensified enough for a low κL value and, hence, high TE
performance. Now, Te, being heavier than Se or S, not only
possesses a lower κL, but also tends to form weaker bonds
because of its lower electronegativity. Indeed, AgCuTe,19

CsBi4Te6,
21 and Zn doped GeSbTe22 etc. are reportedly few of

the many state-of-the-art TE telluride materials.
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The advantage of tunable band-structure in Te based TE
materials, however, has not yet been fully explored. Mainly, the
research lacks the investigations relating to the increased
phonon scattering, caused by inducing the dynamic disorder
due to interstitially residing anions in the lattice.
Owing to the inherent presence of cation vacancy and

unique crystal structures, Cu−In−Te ternary compounds with
a chalcopyrite structure (e.g. I4̅2d) have recently attracted
much attention in thermoelectrics.23−26 Examples include
experimentally prepared Cu0.95Ag0.05InTe2 (ZT = 1.07 at 823
K),27 Cu0.75Ag0.2InTe2 (ZT = 1.24 at ∼850 K),28 In2O3−
CuInTe2

29 and ZnX-CuInTe2.
30 Since the cation vacancy

engineering in these compounds can be used to tune the
density of carrier (n) (or mobility μ),31,32 similar to those
observed in many Cu−Ga−Te compounds,33−36 the TE
performance can get vastly improved. However, the versatility
of these Cu−In−Te chalcogenides as TE candidates has not
been explored to the fullest until now. Nevertheless, the
endless possibilities of tuning the structural parameters, viz.
doping or vacancy concentrations, allows one to optimize the
electronic and vibrational properties of Cu−In−Te-based
chalcopyrite compounds to further achieve better TE perform-
ance.
Inspired by the above-mentioned pioneering works, we aim

to tune the lattice anharmonicity and additional phonon
modes in an another newly developed ternary Cu−In−Te
chalcogenide Cu3.52In4.16Te8 compound, in addition to
Cu1.15In2.29Te4

37 and Cu2.5+δIn4.5Te8.
38 Besides, this compound

with inherent Cu-poor and In-rich comparing with the pristine
CuInTe2 may have more room to regulate the band structures
by adjusting the doping concentration of Cu2Te. For an
intermediate doping amount (x = 0.08), we observe an
ultralow lattice thermal conductivity and a subsequent high ZT
value of 1.65 ± ∼ 0.15 at 815 K. By a combined experimental
and density functional approach based theoretical under-
standing, we demonstrate that local structural disorder caused
by an interstitial Te atom provides additional “rattling” modes
for phonon scattering, which leads to the high n or μ and low
κL features in the material.

■ EXPERIMENTAL SECTION
Syntheses and Preparation of Samples. To achieve the

desired doping concentrations in (Cu2Te)x(Cu3.52In4.16Te8) (x = 0,
0.03, 0.05, 0.08, 0.11), the mixtures of three elements (Cu, In, and Te
with the purity of more than 99.999%, Emei Semicon. Mater. Co.,
Ltd. Sichuan, CN), are loaded into five different silica vacuum tubes
for melting. The melting is conducted at 1123 K for 24 h, followed by
800 K annealing for 72 h. During the melting process, the samples are
rocked for 30 s every 1 h to minimize segregation. After cooling down
to room temperature (RT), the ingots are ball milled at a rotation rate
of 350 rpm for 5 h in stainless steel bowls that contain benzinum. The
dried powders are then rapidly sintered using spark plasma sintering
apparatus (SPS-1030) at a peak temperature of ∼900 K and a
pressure of 50 MPa. The densities (d) of the polished bulks, ranging
from 6.0−6.2 × 10−3 kg/cm3, are measured using Archimedes’
method.
The bulk samples with sizes of about 2.5 × 3 × 12 mm3 and 2 × 2

× 7 mm3 are prepared for electrical property and Hall coefficient
measurements respectively, and those of ϕ10 × 1.5 mm2 for thermal
diffusivity measurement.
Analyses and Measurements. Powder X-ray diffractions for all

synthesized samples are recorded on a powder X-ray diffractometer
(D8 Advance) operating at 40 kV and 40 mA at Cu Kα radiation (λ =
0.15406 nm) in the range from 10° to 110° with a step size of 0.02°.
Besides, X’Pert Pro, PANalytical code is used to do the Rietveld

refinement of the XRD patterns of the pristine Cu3.52In4.16Te8 and
Cu2Te-alloyed samples. This refinement is conducted with a step size
of 0.01°, ranging from 10° to 100° using the same operating voltage
and current, as shown in Supporting Information (SI) Table S2.

Hall coefficients (RH) are measured by using a four-probe
configuration in PPMS (Model-9) with a magnetic field up to ±2
T. The Hall mobility (μ) and carrier concentration (nH) are
calculated according to the relations μ = |RH|σ and nH = 1/(e RH)
respectively, where e is the electron charge.

Electrical conductivity and Seebeck coefficients are measured
simultaneously under a helium atmosphere from RT to ∼815 K in a
ULVAC-RIKO ZEM-3 instrument system with an uncertainty of
<6.0% each. The thermal diffusivities (λ) are measured by TC-
1200RH instrument in a vacuum with an uncertainty of <10.0%. The
Dulong−Petit rule is used to estimate the heat capacities (Cp) above
RT. The thermal conductivities are then calculated based on the
equation κ = dλCp. The three physical parameters (α, σ, κ) are
finalized by taking the average values of several samples tested by the
same method. The lattice contribution (κL) is the total κ minus the
electronic contribution (κe). Here, κe is expressed by the
Wiedemann−Franz (W−F) relation, κe = L0σT, where L0 is the
Lorenz number, estimated using the formula L0 = 1.5+exp(−|α|/
116)39 (where L0 is in 10−8 WΩK−2 and |α| in μVK−1). The TE figure
of merits (ZTs) are then calculated using the three parameters
mentioned above with the total uncertainty of about 18%.

Differential scanning calorimeter (DSC) is conducted in a Netzch
STA 449 F3 Jupiter equipped with a TASC414/4 controller. The
instrument is calibrated from a standard list. The sample of the
powder (x = 0.08) is loaded into an open alumina crucible. The
measurement is performed between ∼305 K to ∼827 K with a heating
rate of 5 K min−1 in Ar atmosphere.

Methodology. First-principles calculations are carried out with
FHI-aims,40,41 an all-electron, full-potential electronic-structure code
under the framework of density-functional theory (DFT).42 FHI-aims
uses numeric atom-centered basis sets, where numerical settings are
so chosen for the present study that a convergence in energy
differences better than 10−3 eV/atom is achieved. Both the atomic
coordinates and lattice vectors are fully relaxed for all structures
Generalized gradient approximation is used for electronic exchange
and correlation as per Perdew Burke Enzerhof (PBE).43 We have
calculated the electronic structure with more advanced Heyd-
Scuseria-Ernzerhof hybrid functional (HSE06),44 which takes into
account the fraction of exact exchange.

For phonon dispersion calculations, we have used the finite
displacement method within the harmonic approximations, as is
implemented in the Phonopy code.45 The mode-resolved phonon
group velocity vg

i (=dωi/dk), and Grüneisen parameters γi (=1/
ωidωi/dV) are extracted from the phonon dispersions. For calculating
g, the lattice is strained by 2%. The chosen numerical settings are
indicated in the Supporting Information.

■ RESULTS AND DISCUSSION
SEM and XRD Analyses. A SEM image of a freshly

fractured surface for the sample with x = 0 is shown in SI
Figure S1. The sample is dense with no observable pores or
cracks. The EDS mappings of the selected area (highlighted by
the yellow box in SI Figure S1a) demonstrate that all three
elements Cu, In, and Te (SI Figure S1b−d) are slightly
segregated. The average chemical compositions of Cu, In, and
Te in (Cu2Te)x(Cu3.52In4.16Te8) (x = 0, 0.08) are roughly the
same as those of the nominal ones, see SI Table S1, where the
numbers of Te moles are normalized to 8.0 (x = 0) and 8.08 (x
= 0.08). These results indicate that the materials have been
synthesized as intended.
The refinements of the powder X-ray diffraction (XRD)

patterns of (Cu2Te)x(Cu3.52In4.16Te8) (x = 0, 0.05, 0.08, 0.11)
are shown in SI Figure S2. The results involving the Wyckoff
positions, atomic coordinates, and site occupancy factors
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(SOFs) are listed in SI Tables S2−S6, where the SOFs of Cu
(4a), In (4b), and Te (8d) are all 1.0. It can be seen that the
main peaks of the patterns are indexed to the existing
chalcopyrite CuInTe2 (PDF: 65−0245) with no impurities
precipitated. Figure 1 and SI Table S2 present the lattice

constants as a function of Cu2Te content, where we observe
that lattice constant (a) tends to increases, whereas the c value
tends to decrease as x value increases. This is indicative of the
expansion tendency of the crystal. However, the tetragonal
distortion parameter η value (η = c/2a) reduces from 1.008 to
1.005, suggesting that the crystal structure distortion tends to
weaken.
In order to gain a deep understanding of thermal stability of

the materials, the DSC analysis of the material (x = 0.08)
reveals an exothermic effect at 333.7 °C (∼607 K)
corresponding to a phase transition (SI Figure S3a). Besides,
from the high temperature XRD patterns (623 K-823 K) (SI
Figure S3b), we attain the same value of the lattice constants
(a = b = c = 6.1654−6.2005 Å) for each temperature (see SI
Table S7), even though the main diffraction peaks in SI Figure
S3b do not change. The above analyses confirm that the
ordered chalcopyrite structure has already been transformed
into the disordered sphalerite structure (η = 1) above 623 K,
since the disordered phase is indeed stable at high temper-
atures. The driving force for the order−disorder phase
transition is likely due to the Cu−In antisite occupancy
starting in the critical temperature range.46−48 After the
transition, the crystal structure distortion diminishes, which
thereby weakens the phonon scattering from the crystal
structure point of view. However, the local disorder created by
the point defects, such as copper vacancy and interstitial Te,
still remains.
Lattice Thermal Conductivities and Phonon Spectra.

Figure 2a presents the lattice thermal conductivities (κL) as a
function of temperature, where the lattice parts overall show a
mixed trend. At temperatures lower than ∼650 K, the lattice
parts enhance with increasing Cu2Te content, as shown in
Figure 2a inset. However, at higher temperatures than ∼650 K,
the κL value generally reduces as Cu2Te content increases. It is
notable that the sample at x = 0.08 gives an ultralow κL value
(0.30 WK−1m−1) at 815 K, which is about a 40% drop in
comparison to that at x = 0. However, the κL values at x = 0.11
are a little higher than those at x = 0.08.
Such a mixed trend has also been observed in MnTe-SnTe,49

Mg2(Si, Sn)
50 systems and is usually related to the complex

phonon scattering mechanisms.
In this work, we did not detect any impurity phases at high

temperatures from the high temperature XRD, nor did we
observe them using the high resolution TEM (HRTEM), see

SI Figure S4. The measured density of the materials ranges
from 6.0 × 10−3 kg/cm−3 to 6.2 × 10−3 kg/cm−3, which is
comparable to the theoretical density (6.087 × 10−3 kg/cm−3)
of CuInTe2. Therefore, the effects of the morphology, density
and microstructures etc. on phonon scattering can be ruled out
in different materials. Therefore, it is the interplay of Cu
vacancy (VCu) and interstitial Te at different concentrations
that leads to the above anomalous behavior in the present
work. The VCu concentration is reduced as Cu2Te content
increases, which weakens the phonon scattering at Cu
vacancies. However, at high temperatures, the local strain
created by the interstitial Te seems to play a dominant role in
affecting the phonon transport, as is also observed in Sb-
CuCr2S4,

51 Cu2ZnGeSe4−xSx,
52 and CsAg5Te3

53 systems.
Besides, the dominant effect of interstitial Te unravels the
rapid reduction in κL at high temperatures as Cu2Te content
increases. An enhancement in κL at x = 0.11 originates from a
dual effect: saturation of the interstitial Te in the lattice and
reduction in Cu vacancy with increased Cu2Te content.
The measured low lattice thermal conductivities (0.43

WK−1m−1 for x = 0 and 0.30 WK−1m−1 for x = 0.08) at 815
K are a little higher than those of the state-of-the-art TE
materials, such as AgBi3S5 (0.25 WK−1m−1),15 AgCuTe (0.2
WK−1m−1),19 n-BiSe,12 CsAg5Te3 (0.18 WK−1m−1),53

Tl2Ag12Te7+δ (0.25 WK−1m−1),54 SnSe (0.11−0.23
WK−1m−1),10 ,55 Ag5−δTe3 (0.2 WK−1m−1),56 and
Ge0.55Pb0.45Te (0.23 WK−1m−1),57 but lower than those of
PbTe−SrTe (0.5 WK−1m−1),1 Ba0.3In0.3Co4Sb12 (0.6
WK−1m−1),3 and Sn0.97Mn0.03Te (0.5 WK−1m−1),49 see Figure
2b.
On the other hand, these measured κL values at 815 K are

comparable to or even a little lower than the estimated κL,min
values (0.42 Wm−1K−1 for x = 0 and 0.33 Wm−1K−1 for x =
0.08, respectively), see horizontal dashed lines in Figure 2a,
based on the glass limit model of Cahill et al.,58

i
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here the νT and νL values are the average velocities displayed in
Table 1, which are directly calculated using the phonon spectra
discussed below.
The unexpectedly low lattice part κL can be observed in

many systems, such as Cu−Sb−Se9 and Ge1−xMnxTe,
59 due to

the fact that the Cahill model does not take into account the
effect of a periodic boundary condition on the phonon
dispersion, thus overestimating the group velocity for high-
frequency phonons.60 Chen et al. reported that in some

Figure 1. Relationship between the lattice constants and Cu2Te
content. It is observed that the lattice parameter a increases almost
linearly, and follows the Vegard’s law.

Figure 2. (a) Experimentally determined lattice thermal conductiv-
ities (κL) of (Cu2Te)x(Cu3.52In4.16Te8) (x = 0, 0.03, 0.05, 0.08, 0.11)
as a function of temperature. The estimated minimum κL,min for
Cu27In33Te64 and Cu29In33Te65 is 0.42 and 0.33 WK−1m−1,
respectively, symbolized by dashed lines. (b) Comparison of the κL
values in this work with others.
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material systems the κL,min values could be ∼40% lower than
those estimated by Debye-Cahill model.60

Although the XRD refinements reveal that the elements Cu
and Te totally reside at the 4a and 8d sites, respectively, the
first-principles calculation indicates that Cu is energetically
favorable to the Cu vacancy site, rather than the interstitial site,
as the energy is ∼0.3 eV higher than that at the Cu vacancy if
Cu resides at the interstitial site. In addition, we also calculate
the possibility of Te residing at the Cu vacancy, but find it is
not possible either because such an occupation is not stable
and Te is inclined to diffuse to its neighbor interstitial site
during the geometry relaxation processes. Therefore, the
atomic occupations in the present material system are different
from those in Cu2Se-doped PbSe61 and Cu2Te-doped PbTe
systems,62 in which the element Cu interstitially resides at the
lattice structures.
Based on the above analyses relating to the atomic

occupations, we present a comparative analysis of phonon
spectra of Cu3.52In4.16Te8 with and without interstitial Te in the
crystal structure, determined from first-principles calculations
to unravel the underlying reason for low κL. Figure 3a and b are

the crystal structures of Cu27In33Te64 (corresponding to
Cu3.52In4.16Te8) without interstitial Te and Cu29In33Te65
(corresponding to (Cu2Te)0.11(Cu3.52In4.16Te8) with interstitial
Te, respectively. It is observed that the In−Te bond length
changes around the interstitial Te, which is highlighted in a red
dotted circle (Figure 3b).
The phonon spectra corresponding the above crystal

structures are presented in Figure 4a and b. Upon doping of
Cu2Te, that is, interstitial occupation of Te, the neighboring
framework Te atoms shift from their crystallographic sites, thus
providing“rattling” sites for phonon scattering. The rattling

modes near the low frequency acoustic branches (around 25
cm−1) in Figure 4b can be clearly seen. This localized mode of
Te defects hybridize with the low frequency acoustic modes
and plays a crucial role in scattering phonons, leading to a
significant reduction of the lattice thermal conductivity.
Besides, a tiny overall down-shift of the modes are observed
in the Cu2Te doped system as compared to the undoped one.
This is due to the increase in In−Te bond distance after
doping, thus weakening the bond strength and subsequently
further reducing the lattice thermal conductivity of the system.
The calculations in this work is in agreement with our
experimental findings.
Moreover, the zone center group velocities of acoustic

phonon branches are calculated for the Γ−X, Γ−W, and Γ−L
directions, respectively, and the average sound velocities
(average for the three directions) are estimated according to
the phonon spectra, as shown in Table 1. The average sound
velocity for each branch of Cu27In33Te64 (vTA1 = 1783 (m/s),
vTA2 = 2051 (m/s), vLA = 3926 (m/s)) is much higher than
that of Cu29In33Te65 (vTA1 = 1504 (m/s), vTA2 = 1696 (m/s),
vLA = 2951 (m/s)). The Debye Temperatures of Cu27In33Te64
for three branches, calculated on the basis of the above sound
velocities, are a little higher than those of Cu29In33Te65 either,
see Table 2. Besides, the average Debye temperatures (201°
and 165°) in these two compounds are comparable to that of
α-MgAgSb (201 K),13 CuAgTe (179 K),19 BiSe (195 K),12

and CuInTe2 (197.5 K),
63 but are lower than that of CuGaTe2

(229 K).64 The Grüneisen parameters are shown in Figure 5.
The average values of 3.069, 1.956, and 1.258 for γTA1, γTA2,
and γLA, respectively are indicative of the high anharmonicity
of the doped compound. The reduced sound velocity and

Table 1. Phonon Velocities in the Vicinity of Brillouin Zone Center (vLA, vTA1, vTA2) for Longitudinal (LA) and Transverse
(TA1, TA2) Acoustic Phonon Branches Along the Γ−X, Γ−W, and Γ−L Directions Based on the Phonon Spectraa

Cu27In33Te64 (v in m/s) Cu29In33Te65 (v in m/s)

directions v TA1 (m/s) v TA2 (m/s) v LA (m/s) directions v TA1 (m/s) v TA2 (m/s) v LA (m/s)

Γ-x 1232 1425 2294 Γ−x 1165 1374 2424
Γ-w 1777 1777 3633 Γ−w 1885 2042 3532
Γ-L 2341 2951 5852 Γ−L 1464 1673 2898
average νm 1783 2051 3926 average νm 1504 1696 2951

aThe average phonon velocities are taken as the average values of the three directions.

Figure 3. Crystal structures of (a) Cu27In33Te64 (corresponding to
Cu3 . 52 In4 . 1 6Te8); (b) Cu29In33Te65 (corresponding to
(Cu2Te)0.11(Cu3.52In4.16Te8) with interstitial Te in the lattice.

Figure 4. Phonon spectra. (a) without Cu2Te-doped system
(Cu27In33Te64), (b) with Cu2Te-doped system (Cu29In33Te65).
Upon doping of Cu2Te, that is, occupation of interstitial Te, the
neighboring framework Te atoms shift from their crystallographic
sites, thus providing “rattling” sites for phonon scattering. The rattling
modes near the low frequency acoustic branches (around 25 cm−1)
can be clearly seen.
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Debye Temperature along with high Grüneisen parameters
upon Cu2Te addition reflect overall weakening of chemical
bonds, thus further elucidating the reason behind exper-
imentally determined reduction of lattice part of κL.
Band Structures and Electrical Properties. Upon

residing of interstitial Te, the electronic structure gets
modified. It is evident from the total density of states (DOS)
of Figure 6a and b that the additional Cu2Te causes a shift in

Fermi level (EFermi) (defined as EFermi = 0) toward the
conduction band minimum (CBM). Alternatively, for the
convenience of understanding, we could also replot the DOS
without shifting the Fermi level(s), as shown in SI Figure S5,
where the Fermi energy (EFermi) is at ∼ −5.5 eV for the
undoped system (top panel) and is at ∼ −5.1 eV for the doped
one (bottom panel). Based on this calculation, it can be seen
that the Fermi energy still shifts toward the CBM after doping.
It is noted that after doping, the new states create within the
gap (see zoomed view of the “near-Fermi” region). These new
states not only originate from the interstitial Te atoms, but also

are hybridized with states of In, Te, and Cu. This modifies the
local crystal structure and changes the electronic structure of
the system. The movement of EFermi toward CBm would
suppress the number of p-type carriers. The creation of new
states, however, has a dual effect: acting as an e−h
recombination center65 and/or reducing the band gap that
promotes the transport of carriers.66

In order to further elucidate the origin of the variation in
transport properties upon doping, the Hall coefficients at room
temperature (RT) are measured. The carrier density (nH) and
mobility (μ) are extracted and shown in Figure 7. The Hall

carrier concentration decreases from 1.56 × 1019 cm−3 at x = 0
to 1.01 × 1018 cm−3 at x = 0.05, and then increases slightly,
while the mobility increases from 29.7 cm2V−1s−1 (x = 0) to
80.4 cm2V−1s−1 (x = 0.03), and then decreases. It is, therefore,
concluded that the dominant reduction in nH is due to the
movement of EFermi toward the CBM, while the slight
enhancement in nH at x > 0.05 might be caused by the
reduction of the band gap, which promotes the acceptor-type
carriers from the valence band to the new states.66

The temperature-dependent Seebeck coefficients (α) and
electrical conductivities (σ) of (Cu2Te)x(Cu3.52In4.16Te8)
compounds are shown in Figure 8a,b, respectively. The
positive α values are indicative of p-type semiconducting
behavior. It is noted that the α value at low temperatures
increases with increasing x value until x = 0.05 is reached.
However, the σ value at high temperatures gradually increases
with x value increasing in all the composition range. The
variation of the σ value with composition is opposite to that of

Table 2. Debye Temperatures (ΘLA, ΘTA1, ΘTA2) for
Longitudinal (LA) and Transverse (TA1, TA2) Acoustic
Phonon Branchesa

system ΘTA1(K) ΘTA2(K) ΘLA(K) Θave.(K)

Cu27In33Te64 136 196 272 201
Cu29In33Te65 131 204 162 165

aThe mode Debye temperatures are calculated using Θ = ℏωm/2πkB,

where
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ω π= , and kB is the Boltzmann constant, V is

the volume per atom, N atomic numbers in a unit cell.

Figure 5. Mode Grüneisen dispersions for Cu29In33Te65. The average
values of 3.069, 1.956, and 1.258 for γTA1, γTA2, and γLA, respectively,
are indicative of the high anharmonicity of the doped compound.

Figure 6. Electronic density of states of (a) undoped and (b) doped
system. Inset in (b) shows the zoomed view near the Fermi level
(EFermi).

Figure 7. (a) Hall carrier densities (nH) and mobility (μ) of the
(Cu2Te)x(Cu3.52In4.16Te8) measured at RT.

Figure 8. TE performance of (Cu2Te)x(Cu3.52In4.16Te8) with different
Cu2Te contents. (a) Seebeck coefficients (α) as a function of
temperature; (b) Electrical conductivities (σ) as a function of
temperature; (c) Power factors (PF) as a function of temperature;
and (d) Total thermal conductivities (κ) as a function of temperature.
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the Seebeck coefficient. The highest σ value at x = 0.08 reaches
1.81 × 104 Ω−1m−1 at 727 K (see Figure 8b), which gives the
highest power factor PF = 10.60 μWcm−1K−2 (Figure 8c).
Besides, the temperature and composition dependence of total
thermal conductivity (κ) bear resemblance to those of the
lattice part κL (Figure 2a), indicating that the phonon transport
plays a dominant role in heat carrying. The lowest κ for the
sample at x = 0.08 is 0.49 WK−1m−1 at 815 K, see Figure 8d.
Combined with the above three parameters (α, σ, and κ), we

attained the ZT values as a function of temperature, which are
calculated and shown in Figure 9a. We note that the sample at

x = 0.08 gives the highest ZT value of 1.65 (±0.15) at 815 K,
which is a 1.5 fold enhancement as compared with x = 0
compound. Although the highest ZT value is lower than those
of state-of-the-art TE materials, such as, p-PbTe (ZT = 2.2),1

SnSe (ZT = 2.6),10 and p-Cu2Se1.9Te0.1 (ZT = 1.9),67 but
comparable to or higher than those of p-Cu4‑δGa4Sb0.6Te8 (ZT
= 1.51),68 p-CuGaTe2 (ZT = 1.4),64 p-(Bi,Sb)2Te3 (ZT =
1.3),69 and p-β-Zn4Sb3 (ZT = 1.3),70 as shown in Figure 9b.
This indicates that the studied material has great potential for
industry.
In order to check the thermal stability of the samples, the

measurements of the TE performance in cooling cycle have
been conducted at x = 0.08, and the results are shown in SI
Figure S6a−d. It is observed that the electrical conductivities
(σ) and thermal conductivities (κ) are a little higher than those
in the heating process, whereas the Seebeck coefficients (α) are
a little lower over the entire temperature range. The resultant
ZT values are ∼12% lower than those in the heating process,
probably due to the evaporation of the element Te according
to the TG signal in Cu2.5In4.5Te8 reported in ref 28. However,
this error is still within the measurement uncertainty.
Nevertheless, we find that the improved TE performance in

this work does not rely much on the enhancement in power
factor (PF), since the highest PF value at x = 0.08 is
comparable to that at x = 0 (10.48 μWcm−1K−2) (see Figure
8c). Therefore, we can conclude that the improvement in TE
performance is largely driven by the reduction in lattice
thermal conductivity. As such, it can be understood that the
localized “rattling” of interstitial Te through Cu2Te doping
effectively optimizes the phonon transport in p-type
Cu3.52In4.16Te8 system, and responsible for the remarkable
improvement in TE performance.
In this work it should be pointed out that the Hall carrier

concentration (1.1 × 1018 cm−3) at which the ZT value gets
the highest does not reach the optimal one (1019 ∼ 1020

cm−3),71 which implies that the TE performance of current
materials (Cu2Te)x(Cu3.52In4.16Te8) still has room to be

improved if one synergistically optimizes the electronic
properties.

■ CONCLUSIONS
A new p-type Cu−In−Te derivative Cu3.52In4.16Te8 is
synthesized and studied in detail with different Cu2Te doping.
The highest ZT value of 1.65 (±0.15) has been attained for the
sample with a proper Cu2Te (x = 0.08) doping at 815 K, which
makes the performance of this material stand tall in the current
state-of-the-art TE community. The origin of the high TE
performance is demonstrated to be mainly due to the
significant reduction in lattice contribution κL, caused by the
localized “rattling” of interstitial Te that weakens the chemical
bonds, reduces the Debye temperature and effectively
optimizes the phonon transport in the system. Although the
transport property of carrier does not optimize simultaneously
in the present work, yet, this work demonstrates the
importance of introduction of localized “rattling” mode for
exploring novel cation-deficient thermoelectric materials.
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