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Unconventional quantum optics in topological
waveguide QED
M. Bello1, G. Platero1, J. I. Cirac2, A. González-Tudela2,3*

The discovery of topological materials has motivated recent developments to export topological concepts into
photonics to make light behave in exotic ways. Here, we predict several unconventional quantum optical
phenomena that occur when quantum emitters interact with a topological waveguide quantum electrodynamics
bath, namely, the photonic analog of the Su-Schrieffer-Heeger model. When the emitters’ frequency lies within the
topological bandgap, a chiral bound state emerges, which is located on just one side (right or left) of the emitter. In
the presence of several emitters, this bound statemediates topological, tunable interactions between them, which
can give rise to exotic many-body phases such as double Néel ordered states. Furthermore, when the emitters’
optical transition is resonant with the bands, we find unconventional scattering properties and different super/
subradiant states depending on the band topology. Last, we propose several implementations where these
phenomena can be observed with state-of-the-art technology.
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INTRODUCTION
Even though the introduction of topology in condensed matter was
originally motivated to explain the integer quantum Hall effect (1), its
implicationsweremore far-reaching than expected. On a fundamental
level, topological order resulted in a large variety of new phenomena,
as well as new paradigms for classifying matter phases (2). In practical
terms, topological states can be harnessed to achieve more robust elec-
tronic devices or fault-tolerant quantum computation (3). This spec-
tacular progress motivated the application of topological ideas to
photonics, for example, to engineer unconventional light behaviors.
The starting point of the field was the observation that topological
bands also appearwith electromagneticwaves (4). Soon after that,many
experimental realizations followed using microwave photons (5),
photonic crystals (6, 7), coupled waveguides (8) or resonators (9–11),
exciton-polaritons (12), or metamaterials (13), to name a few [see (14)
and references therein for an authoritative review]. Nowadays, topo-
logical photonics is a burgeoning field with many experimental and
theoretical developments. Among them, one of the current frontiers
of the field is the exploration of the interplay between topological
photons and quantum emitters (QEs) (15–17).

Here, we show that topological photonic systems cause a number of
unprecedented phenomena in the field of quantum optics, namely,
when they are coupled to QEs. We analyze the simplest model consist-
ing of two-level QEs interacting with a one-dimensional (1D) topo-
logical photonic bath described by the Su-Schrieffer-Heeger (SSH)
model (18) (see Fig. 1). When the QE frequency lies between the two
bands (green region in Fig. 1B), we predict the emergence of chiral
photon bound states (BSs), that is, BSs that localize to the left/right
side of the QEs depending on the topology of the bath. In the many-
body regime (i.e., with many emitters), those BSs mediate tunable, chiral,
long-range interactions, leading to a rich phase diagram at zero tem-
perature, e.g., with double Néel ordered phases. Furthermore, when the
QEs are resonant with the bands (blue regions in Fig. 1B), we also find
unusual dissipative dynamics. For example, for two equalQEs separated
a given distance, we show that both the super/subradiance conditions
(19) and the scattering properties depend on the parameter that governs
the bath topology, even though the energy dispersion w(k) is in-
sensitive to it. This might open avenues to probe the topology of these
systems in unconventional ways, e.g., through reflection/transmission
experiments.
LIGHT-MATTER INTERACTIONS WITH 1D TOPOLOGICAL BATHS
The system that we study in thismanuscript is shown in Fig. 1A:One or
many QEs interact through a common bath, which behaves as the
photonic analog of the SSH model (18). This bath model is described
by two interspersed photonic lattices A/B of size N with alternating
nearest-neighbor hoppings J(1 ± d) between their photonic modes.
Assuming periodic boundary conditions and defining V† ¼ ða†k; b†kÞ,
the bath Hamiltonian can be written in momentum space as HB ¼
∑kV† ~HBðkÞV , with (setting ħ = 1)

~HBðkÞ ¼ wa f ðkÞ
f *ðkÞ wa

� �
ð1Þ

where f(k) = − J[(1 + d) + (1 − d)e−ik] = w(k)eif(k) [with w(k) > 0] is
the coupling in momentum space between the A (B) modes, ak ¼
∑jaje�ikj=

ffiffiffiffi
N

p
(bk ¼ ∑jbje�ikj=

ffiffiffiffi
N

p
). Here,a†j =b

†
j (aj/bj) are the creation

(annihilation) operators of the A/B photonic mode at the jth unit cell.
We assume that the A/B modes have the same energy, wa, that from
now on will be the reference energy of the problem, i.e., wa ≡ 0. This
Hamiltonian can be easily diagonalized introducing the eigenoperators,
uk=lk ¼ ½±ak þ eifðkÞbk�=

ffiffiffi
2

p
, as HB ¼ ∑kwkðu†kuk � l†k lkÞ, leading to

two bands with energy

±wðkÞ ¼ ±J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ d2Þ þ 2ð1� d2ÞcosðkÞ

q
ð2Þ

Let us now summarize the main bath properties:
(1) The bath has sublattice (chiral) symmetry (18), such that all

eigenmodes can be grouped in chiral symmetric pairs with opposite en-
ergies. Thus, the two bands are symmetric with respect to wa, spanning
[−2J, −2∣d∣J] (lower band) and [2∣d∣ J,2J] (upper band). The middle
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gap is 4∣d∣J, such that it closes when d = 0, recovering the normal 1D
tight-binding model.

(2) This bath supports topologically nontrivial phases, belonging to
the BDI class in the topological classification of phases (20). More con-
cretely, both bands can be characterized by a topological invariant, the
Zak phase Z (18), such that Z ¼ 0 corresponds to a trivial insulator,
whileZ ¼ p implies a nontrivial insulator. For the parameterization we
have chosen, this occurs for d > 0 and d < 0, respectively. Notice that for
an infinite system (i.e., in the bulk), this definitiondepends on the choice
of the unit cell, and the role of d can be reversed by shifting the unit cell
by one site. In the bulk, the band topologymanifests in the fact that one
cannot transform from one phase to the other without closing the gap
(as long as the symmetry is preserved).

(3) With finite systems, however, the sign of d determines whether
the chain ends with weak/strong hoppings, which leads to the appear-
ance (or not) of topologically robust edge states (21).

Now, let us lastly describe the rest of the elements of our setup. For
theNeQEs, we consider that they all have a single optical transition g-e,
with a detuningDwith respect towa, and they couple to the bath locally.
Thus, their free and interaction Hamiltonian read

HS ¼ D ∑
Ne

m¼1
smee ð3Þ
Bello et al., Sci. Adv. 2019;5 : eaaw0297 26 July 2019
HI ¼ g∑
m
ðsmegcxm þH:c:Þ ð4Þ

where cxm ∈ {axm, bxm} depends on the sublattice and the unit cell xm
at which the mth QE couples to the bath. We use the notation
smmn ¼ ∣mim n∣h , m, n ∈ {e, g}, for themth QE operator. We highlight
that we use a rotating-wave approximation, such that only excitation-
conserving terms appear in HI.

Methods
In the next sections, we study the dynamics emerging from the global
QE-bath HamiltonianH =HS +HB +HI using several complementary
approaches.When one is only interested in the QE dynamics and the
bath can be effectively traced out, the following Born-Markovmaster
equation (22) describes the evolution of the reduced density matrix r
of the QEs

̇r ¼ i½r;HS� þ i∑
n;m

Jabmn½r; smegsnge� þ
∑
n;m

Gab
mn

2
½2sngersmeg � smegs

n
ger� rsmegs

n
ge� ð5Þ

The functions Jabmn;G
ab
mn, which ultimately control the QE coherent

and dissipative dynamics, respectively, are the real and imaginary
parts of the collective self-energySab

mnðDþ i0þÞ ¼ Jabmn � iGab
mn=2. This

collective self-energy depends on the sublattices a, b ∈ {A, B} to which
themth and nth QEs couple, respectively, as well as on their relative
position xmn = xn − xm. For our model, they can be calculated analyt-
ically in the thermodynamic limit (N → ∞) yielding

SAA=BB
mn ðzÞ ¼ � g2z½y∣xmn∣þ QþðyþÞ � y∣xmn∣� Q�ðyþÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z4 � 4J2ð1þ d2Þz2 þ 16J4d2
p ð6Þ

SAB
mnðzÞ ¼

g2J½FxmnðyþÞQþðyþÞ � Fxmnðy�ÞQ�ðyþÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 � 4J2ð1þ d2Þz2 þ 16J4d2

p ð7Þ

where Fn(z) = (1 + d)z∣n∣ + (1 − d)z∣n + 1∣,Q±(z) =Q(±1 ∓ ∣ z ∣),Q(z)
is Heaviside’s step function, and

y± ¼ z2 � 2J2ð1þ d2Þ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 � 4J2ð1þ d2Þz2 þ 16J4d2

p
2J2ð1� d2Þ ð8Þ

However, since we have a highly structured bath, this perturbative
description will not be valid in certain regimes, e.g., close to band edges,
and we will use resolvent operator techniques (23) or fully numerical
approaches to solve the problem exactly for infinite/finite bath sizes,
respectively. Since those methods were explained in detail in other
works, here, we focus on the results and leave the details in the Supple-
mentary Materials.
BANDGAP REGIME
In this section, we assume that the QEs are in the bandgap regime; that
is, their transition frequency lies outside of the two bands of the photonic
bath. From here on, we only discuss results in the thermodynamic
limit (when N → ∞) such that the edge states (21) play no role in the
B

A

δ

δ

π

ω

δ

Fig. 1. System schematic. (A) Schematic picture of the present setup: Ne two-
level QEs interact with the photonic analog of the SSH model. This model is char-
acterized by having alternating hopping amplitudes J(1 ± d), where J defines their
strength, while d, the so-called dimerization parameter, controls the asymmetry
between them. The interaction with photons (in transparent red) induces non-
trivial dynamics between the emitters. (B) Bath’s energy bands for a system with
a dimerization parameter∣d∣= 0.2. The main spectral regions of interest for this
manuscript are the middle bandgap (green) and the two bands (blue).
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QE dynamics. We refer the interested reader to (24) and the Supple-
mentaryMaterials to see some of the consequences the edge states have
on the QE dynamics.

Single QE: Dynamics
Let us start considering the dynamics of a single excited QE, i.e.,
∣y(0)〉 =∣e〉∣vac〉, where∣vac〉 denotes the vacuum state of the lattice
of bosonic modes. Since H conserves the number of excitations, the
global wave function at any time reads

∣yðtÞi ¼ CeðtÞseg þ ∑
N

j¼1
∑

a¼a;b
Cj;aðtÞa†j

" #
∣gi∣vaci ð9Þ

In both perturbative and exact treatments, the dynamics of Ce(t)
can be shown [see (23) and the Supplementary Materials] to depend
only on the single-QE self-energy

SeðzÞ ¼ g2z signð∣yþ∣� 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 � 4J2ð1þ d2Þz2 þ 16J4d2

p ð10Þ

obtained fromEq. 6 definingSeðzÞ ≡ SAA
nn ðzÞ. Fromhere, we can already

extract several conclusions: (i) Se(z) is independent of the sign of d,
which means that the spontaneous emission dynamics is insensitive
to the topology of the bands; (ii) perturbative approaches, like the
Born-Markov approximation of Eq. 5, predict an exponential decay
of excitations at a rate Ge(D) = −2ImSe(D + i0+), which is strictly zero
in the bandgap regime. Thus, one expects that the excitation remains
localized in theQEat any time.However, in Fig. 2, we compute the exact
dynamics Ce(t) for several d’s and observe that this perturbative limit is
only recovered in the limit of ∣d∣→ 1. On the contrary, when ∣d∣≪
1 and d≠ 0, the dynamics displays fractional decay and oscillations. As it
happens with other baths (25), the origin of this dynamics stems from
the emergence of photon BSs, which localize around the QEs (26–28).
However, the BSs appearing in the present topological waveguide bath
have some distinctive features with no analog in other systems and
therefore deserve special attention.
Bello et al., Sci. Adv. 2019;5 : eaaw0297 26 July 2019
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Single QE: BSs
The energy and wave function of the BSs in the single-excitation
subspace can be obtained by solving the secular equation H∣YBS〉 =
EBS∣YBS〉, with EBS lying out of the bands, and ∣YBS〉 in the form of
Eq. 9, but with time-independent coefficients. Without loss of general-
ity, we assume that the QE couples to sublattice A at the j = 0 cell. After
some algebra, one can find that the energy of the BS is given by the pole
equation: EBS = D + Se(EBS). Irrespective of D or g, there always exist
three BS solutions of the pole equation (one for each bandgap region).
This is because the self-energy diverges in all band edges, which guar-
antees finding aBS in each of the bandgaps (29, 30). Themain difference
with respect to other BSs (26–30) appears in the wave function ampli-
tudes, which read

Cj;a ¼ gEBSCe

2p
∫
p

�pdk
eikj

E2
BS � w2ðkÞ ð11Þ

Cj;b ¼ gCe

2p
∫
p

�pdk
wðkÞei½kj�fðkÞ�

E2
BS � w2ðkÞ ð12Þ

whereCe is a constant obtained from the normalization condition that
is directly related to the long-time population of the excited state in
spontaneous emission. For example, in Fig. 2 where D = 0, it can be
shown to be ∣Ce(t → ∞ )∣2 = ∣Ce∣

4 = [1 + g2/(4J2∣d∣)]−2.
From Eqs. 11 and 12, we can extract several properties of the spatial

wave function distribution. On the one hand, above or below the bands
(outer bandgaps), the largest contribution to the integrals is that of k=0;
thus, all the Cj,a have the same sign (see the left column of Fig. 3A, top
and bottom row). In the lower (upper) bandgap, Cj,a of the different
sublattices has the same (opposite) sign. On the other hand, in the
inner bandgap, the main contribution to the integrals is that of k = p.
This gives an extra factor (−1) j to the coefficients Cj,a (see Fig. 3A,
middle row). Furthermore, the probability amplitudes of the sublattice
where theQE couples to are symmetric with respect to the position of
the QE, whereas they are asymmetric in the other sublattice; that is,
the BSs are chiral. Changing d from positive to negative results in a
spatial inversion of the BS wave function. The asymmetry of the BS
wave function is more extreme in the middle of the bandgap (D = 0).
For example, if d > 0, the BS wave function with EBS = 0 is given by
Cj,a = 0 and

Cj;b ¼
gCeð�1Þj
Jð1þ dÞ

1� d
1þ d

� �j

; j ≥ 0

0; j < 0

8<
: ð13Þ

whereas for d < 0, the wave function decays for j < 0 while being
strictly zero for j ≥ 0. At this point, the BS decay length diverges as
lBS∼ 1/(2∣d∣) when the gap closes. Away from this point, the BS decay
length shows the usual behavior for 1D baths lBS ∼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣Dedge∣

p
, with

Dedge being the smallest detuning between the QE and the band-edge
frequencies.

The physical intuition of the appearance of such chiral BS at EBS = 0
is that the QE with D = 0 acts as an effective edge in the middle of the
chain or, equivalently, as a boundary between two semi-infinite chains
with different topology. This picture provides us with an insight that is
useful to understand other results of thismanuscript: Despite considering
0 20 40 60 80 100

Time [J −1]

0.0
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|C
e
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)|2

|δ| = 0.7
0.5

0.3

0.1

0.05

Fig. 2. Single-QE dynamics. Probability to find the emitter in the excited
state, ∣Ce(t)∣

2, for different values of ∣d∣. The other parameters are D = 0 (middle
of the bandgap) and g = 0.4J. As the bandgap closes, i.e., d→ 0, the decay becomes
stronger. Dashed lines mark the value of ∣Ce(t → ∞ )∣2 = [1 + g2/(4J2∣d∣)]−2.
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the case of an infinite bath, the local QE-bath coupling inherits in-
formation about the underlying bath topology. One can show that this
chiral BS has the same properties as the edge state, which appears in a
semi-infinite SSH chain in the topologically nontrivial phase, for exam-
ple, inheriting its robustness to disorder. To illustrate it, we study the
effect of two types of disorder: one that appears in the cavities’ bare fre-
quencies (diagonal), and another one that appears in the tunneling
amplitudes between them (off-diagonal). The former corresponds to
the addition of random diagonal terms to the bath’s Hamiltonian
HB →HB þ ∑jðea;ja†j aj þ eb;jb

†
j bjÞ and breaks the chiral symmetry

of the original model, while the latter corresponds to the addition of
off-diagonal random terms HB →HB þ ∑jðe1;jb†j aj þ e2;ja

†
jþ1bj þ

H:c:Þ and preserves it. We take the en, j, n = a, b,1,2, from a uniform
distribution within the range [−w/2, w/2] for each jth unit cell. To pre-
vent changing the sign of the coupling amplitudes between the cavities,
w is restricted to w/2 < (1 −∣d∣) in the case of off-diagonal disorder.

In the middle (right) column of Fig. 3A, we plot the shape of the
three BSs appearing in our problem for a situation with off-diagonal
(diagonal) disorder with w = 0.5J. There, we observe that while the
upper and the lower BS are modified for both types of disorder, the chi-
ral BS has the same protection against off-diagonal disorder as a regular
SSH edge state: Its energy is pinned atEBS = 0, and it keeps its shapewith
Bello et al., Sci. Adv. 2019;5 : eaaw0297 26 July 2019
no amplitude in the sublattice to which the QE couples. On the con-
trary, for diagonal disorder, the middle BS is not protected anymore
and may have weight in both sublattices.

Last, tomakemore explicit the different behavior with disorder of
the middle BS compared to the other ones, we compute their local-
ization length lBS as a function of the disorder strengthw averaging for
many realizations. In Fig. 3B, we plot both the average value (markers)
of l�1

BS and its standard deviation (SD) (bars) for the cases of themiddle
(blue circles) and upper (purple triangles) BSs. Generally, one expects
that forweak disorder, states outside the band regions tend to delocalize,
while for strong disorder, all eigenstates become localized [see, for ex-
ample, (31)]. This is the behavior we observe for the upper BS for both
types of disorder. However, the numerical results suggest that for off-
diagonal disorder, the chiral BS never delocalizes (on average). Further-
more, the chiral BS localization length is less sensitive to the disorder
strength w manifested in both the large initial plateau region and the
smaller SDs compared to the upper BS results.

In summary, a QE coupled locally to an SSH bath (i) localizes a
photon only on one side of the emitter depending on the sign of d, (ii)
with no amplitude in the sublattice where the QE couples to, and (iii)
with the same properties as the topological edge states, e.g., robustness
to disorder. As we discuss inmore detail in the SupplementaryMaterials,
A B

C

δ
λ

Fig. 3. BS properties. (A) BS wave function for a QE placed at j = 0 that couples to the A sublattice; d = 0.2 and g = 0.4J. Probability amplitudes Cj,a are shown in blue,
while the Cj,b are shown in orange. The QE frequency is set to D = 2.2J (top row), D = 0 (middle row), and D = −2.2J (bottom row). The first column corresponds to the
model without disorder, the second corresponds to the model with disorder in the couplings between cavities, and the third corresponds to the model with disorder in
the cavities’ resonant frequencies. In both cases with disorder, the disorder strength is set to w = 0.5J. For each case, the value of the BS’s energy is shown at the bottom
of the plots. (B) Inverse BS localization length for the two different models of disorder as a function of the disorder strength. Parameters: g = 0.4J and d = 0.5. The dots
correspond to the average value computed with a total of 104 instances of disorder, and the error bars mark the value of 1 SD above and below the average value (the
blue curves are slightly displaced to the right for better visibility). Two cases are shown, which correspond to D ≃ 2.06J (triangles, outer bandgaps) and D = 0 (circles,
inner bandgap). (C) Absolute value of the dipolar coupling for D = 0 and g = 0.4J; Markov, solid line; exact, dots. The insets show the shape of the BSs in the
topological and the trivial phases. The situation for the BA configuration is the same, reversing the role of d.
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the SSH bath is the simplest 1D bath that provides all these features
simultaneously.

Two QEs
Let us now focus on the consequences of such exotic BS when two QEs
are coupled to the bath. For concreteness, we focus on a parameter regime
where the Born-Markov approximation is justified, althoughwe have per-
formed an exact analysis in the SupplementaryMaterials. FromEq. 5, it is
easy to see that in the bandgap regime, the interaction with the bath leads
to an effective unitary dynamics governed by the following Hamiltonian

Hdd ¼ Jab12 ðs1egs2ge þH:c:Þ ð14Þ

That is, the bath mediates dipole-dipole interactions between the
QEs. One way to understand the origin of these interactions is that
the emitters exchange virtual photons through the bath, which, in
this case, are localized around the emitter. These virtual photons are
nothing but the photonBS thatwe studied in the previous section. Thus,
these interactions Jabmn inherit many properties of the BSs. For example,
the interactions are exponentially localized in space, with a localization
length that can be tuned and made large by setting D close to the band
edges or fixing D = 0 and letting the middle bandgap close (d → 0).
Moreover, one can also qualitatively change the interactions by moving
D to different bandgaps: For ∣D∣ > 2J, all the Jabmn have the same sign,
while for∣D∣<2∣ d∣ J, they alternate sign as xmn increases. In addition,
changing D from positive to negative changes the sign of JAA=BBmn , but
leaves JAB=BAmn unaltered. Furthermore, while JAA=BBmn are insensitive
to the bath’s topology, theJAB=BAmn mimic the dimerization of the underly-
ing bath, but allow for longer-range couplings. The most notable re-
gime is again reached for D = 0. In that case, JAA=BBmn identically vanish,
and thus, theQEs only interact if they are coupled to different sublattices.
Furthermore, in such a situation, the interactions have a strong direc-
tional character; i.e., the QEs only interact if they are in some particular
order. Assuming that the first QE at x1 couples to sublattice A, and the
second one at x2 couples to B, we have

JAB12 ¼
signðdÞ g

2ð�1Þx12
Jð1þ dÞ

1� d
1þ d

� �x12

if d⋅x12 > 0

0 if d⋅x12 < 0

QðdÞ g2

Jð1þ dÞ if x12 ¼ 0

8>>>><
>>>>:

ð15Þ

In Fig. 3C, we plot the absolute value of the coupling for this case
computed exactly and compare it with the Markovian formula. Apart
from small deviations at short distances, it is important to highlight that
the directional character agrees perfectly in both cases.

Many QEs: Spin models with topological
long-range interactions
One of the main interests of having a platform with BS-mediated in-
teractions is to investigate spin models with long-range interactions
(32, 33). The study of these models has become an attractive avenue in
quantum simulation because long-range interactions are the source of
nontrivial many-body phases (34) and dynamics (35), and are also very
hard to treat classically.

Let us now investigate how the shape of the QE interactions inherited
from the topological bath translates into different many-body phases
Bello et al., Sci. Adv. 2019;5 : eaaw0297 26 July 2019
at zero temperature as compared to those produced by long-range
interactions appearing in other setups such as trapped ions (34, 35)
or standard waveguide setups. For that, we consider havingNe emitters
equally spaced and alternatively coupled to the A/B lattice sites. After
eliminating the bath and adding a collective field with amplitude m to
control the number of spin excitations, the dynamics of the emitters
(spins) is effectively given by

Hspin ¼ ∑
m;n

JABmnðsm;A
eg sn;Bge þH:c:Þ � m

2
ðsm;A

z þ sn;Bz Þ
h i

ð16Þ

denoting bysn;an , n = x, y, z, the corresponding Paulimatrix acting on the
a ∈ {A, B} site in the nth unit cell. The Jabmn are the spin-spin interactions
derived in the previous subsection, whose localization length, denoted by
x, and functional formcan be tuned through systemparameters such asD.

For example, when the lower (upper) BSmediates the interaction,
the Jabmn has negative (alternating) sign for all sites, similar to the ones
appearing in standard waveguide setups. When the range of the in-
teractions is short (nearest neighbor), the physics is well described by
the ferromagnetic XY model with a transverse field (36), which goes
from a fully polarized phase when ∣m∣ dominates to a superfluid one
in which spins start flipping as ∣m∣ decreases. In the case where the
interactions are long-ranged, the physics is similar to that explained in
(34) for power-law interactions (º1/r3). The longer range of the interac-
tions tends to break the symmetry between the ferro/antiferromagnetic
situations and leads to frustrated many-body phases. Since similar
interactions also appear in other scenarios (standard waveguides or
trapped ions), we now focus on the more different situation where the
middle BS at D = 0 mediates the interactions, such that the coefficients
JABmn have the form of Eq. 15.

In that case, theHamiltonianHspin of Eq. 16 is very unusual: (i) Spins
only interact if they are in different sublattices; i.e., the system is bipar-
tite; (ii) the interaction is chiral in the sense that they interact only in
case they are properly sorted: the one in latticeA to the left/right of that
in lattice B, depending on the sign of d. Note that d also controls the
interaction length x. In particular, for ∣d ∣ = 1, the interaction only
occurs between nearest neighbors, whereas for d → 0, the interactions
become of infinite range. These interactions translate into a rich phase
diagram as a function of x and m, which we plot in Fig. 4A for a small
chainwithNe=20 emitters (obtainedwith exact diagonalization). Let us
guide the reader into the different parts:

(1) The region with maximum average magnetization (in white)
corresponds to the places where m dominates such that all spins are
aligned upward.

(2) Now, if we decrease m from this fully polarized phase in a region
where the localization length is short, i.e., x ≈ 0.1, we observe a
transition into a state with zero average magnetization. This behavior
can be understood because in that short-range limit, JABmn only couples
nearest-neighbor AB sites, but not BA sites as shown in the scheme of
the lower part of the diagram for d > 0 (the opposite is true for d < 0).
Thus, the ground state is a product of nearest-neighbor singlets (for J>0)
or triplets (for J<0). This state is usually referred to as valence-bond solid
in the condensedmatter literature (37). Note that the difference between
d ≷ 0 is the presence (or absence) of uncoupled spins at the edges.

(3) However, when the bath allows for longer-range interactions
(x > 1), the transition from the fully polarized phase to the phase of zero
magnetization does not occur abruptly but passes through all possible
intermediate values of themagnetization. Besides, we also plot in Fig. 4B
the spin-spin correlations along the x and z directions (note the symmetry
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in the xy plane) for the case of m = 0 to evidence that a qualitatively dif-
ferent order appears as x increases. In particular, we show that the spins
align along the x direction with a double periodicity, which we can
pictorially represent by ∣ ↑ ↑ ↓ ↓ ↑ ↑ …〉x and label as double Néel
ordered states. Such orders have been predicted as a consequence
of frustration in classical and quantum spin chains with competing
nearest-neighbor and next–nearest-neighbor interactions (38–40), in-
troduced to describe complex solid-state systems such as multiferroic
materials (41). In our case, this order emerges in a system that has
long-range interactions but no frustration as the system is always bipar-
tite regardless the interaction length.

To gain analytical intuition of this regime, we take the limit x→∞,
where the Hamiltonian (16) reduces to

H′
spin ¼ UHspinU

† ≃ JðSþAS�B þH:c:Þ ð17Þ

where SþA=B ¼ ∑ns
n;A=B
eg , and we have performed a unitary trans-

formation U ¼ Q
n∈ℤodd

sn;Az sn;Bz to cancel the alternating signs of JABmn .
Equality in Eq. 17 occurs for a system with periodic boundary con-
ditions, while for finite systems with open boundary conditions, some
corrections have to be taken into account due to the fact that not all
spins in one sublattice couple to all spins in the other, but only to those
to their right/left depending on the sign of d. The ground state is symmet-
ric under (independent) permutations inA andB. In the thermodynamic
limit, we can apply mean field, which predicts symmetry breaking in
the spin xy plane. For instance, if J < 0 and the symmetry is broken
along the spindirection x, the spinswill align so that〈ðSxAÞ2〉 ¼ 〈ðSxBÞ2〉 ¼
〈SxAS

x
B〉 ¼ ðNe=2Þ2 and 〈SxA〉

2 ¼ 〈SxB〉
2 ¼ ðNe=2Þ2.

SinceNe is finite in our case, the symmetry is not broken, but it is still
reflected in the correlations, so that

〈sm;A
n sn;An 〉≃ 〈sm;A

n sn;Bn 〉≃ 1=2 ð18Þ
Bello et al., Sci. Adv. 2019;5 : eaaw0297 26 July 2019
with n = x, y. In the original picture with respect to U, we obtain the
double Néel order observed in Fig. 4B. As can be understood, the
alternating nature of the interactions is crucial for obtaining this type
of ordering. Last, let us mention that the topology of the bath trans-
lates into the topology of the spin chain in a straightforwardmanner:
Regardless the range of the effective interactions, the ending spins of
the chain will be uncoupled to the rest of the spins if the bath is topo-
logically nontrivial.

This discussion shows the potential of the present setup to act as a
quantumsimulator of exoticmany-body phases not possible to simulate
with other known setups. The full characterization of such spin models
with topological long-range interactions is interesting on its own andwe
will present it elsewhere.
BAND REGIME
Here, we study the situation when QEs are resonant with one of the
bands. For concreteness, we only present two results where the uncon-
ventional nature of the bath plays a prominent role, namely, the emer-
gence of unexpected super/subradiant states and their consequences
when a single photon scatters into one or two QEs.

Dissipative dynamics: Super/subradiance
The band regime is generally characterized by inducing nonunitary dy-
namics in the QEs. However, whenmany QEs couple to the bath, there
are situations in which the interference between their emissionmay en-
hance or diminish (even suppress) the decay of certain states. This phe-
nomenon is known as super/subradiance (19), respectively, and it can
be used, e.g., for efficient photon storage (42) ormultiphoton generation
(43). Let us illustrate this effect with twoQEs: In that case, the decay rate
of a symmetric/antisymmetric combination of excitations is Ge ± G12.
When G12 = ± Ge, these states decay at a rate that is either twice the
individual one or zero. In this latter case, they are called perfect sub-
radiant or dark states.
A B

δ

δ

ξ

ξ

μ

μ

σ
σ

Fig. 4. Spin models: Phase diagram and correlations. (A) Ground state average polarization obtained by exact diagonalization for a chain with Ne = 20 emitters with
frequency tuned to D = 0 as a function of the chemical potential m and the decay length of the interactions x. The different phases discussed in the text, a valence-bond
solid (VBS) and a double Néel ordered phase (DN), are shown schematically below, on the left and right, respectively. Interactions of different sign are marked with links
of different color. For the VBS, we show two possible configurations corresponding to d < 0 (top) and d > 0 (bottom). In the topologically nontrivial phase (d < 0), two
spins are left uncoupled with the rest of the chain. (B) Correlations CnðrÞ ¼ 〈s9ns

9þr
n 〉� 〈s9n〉〈s

9þr
n 〉, n = x, y, z [Cx(r) = Cy(r)] for the same system as in (A) for different

interaction lengths, fixing m = 0 (left column). Correlations for different chemical potentials fixing x = 5; darker colors correspond to lower chemical potentials (right
column). Note that we have defined a single index r that combines the unit cell position and the sublattice index. The yellow dashed line marks the value of 1/2
expected when the interactions are of infinite range.
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In standard 1D baths,G12(D) =Ge(D) cos (k(D)∣xmn∣); thus, the dark
states are such that the wavelength of the photons involved, k(D), allows
for the formation of a standing wave between the QEs when both try to
decay, i.e., when k(D)∣xmn∣= np, with n ∈ ℤ. Thus, the emergence of
perfect super/subradiant states solely depends on the QE frequency
D, bath energy dispersion w(k), and their relative position xmn, which
is the common intuition for this phenomenon.

This commonwisdom ismodified in the bath, where we find situa-
tions in which, for the same values of xmn, w(k), and D, the induced
dynamics is very different depending on the sign of d. In particular,
when two QEs couple to the A/B sublattice, respectively, the collective
decay reads

GAB
12 ðDÞ ¼ GesignðDÞcosðkðDÞx12 � fðDÞÞ ð19Þ

which depends both on the photonwavelengthmediating the interaction

kðDÞ ¼ arccos
D2 � 2J2ð1þ d2Þ

2J2ð1� d2Þ
� �

ð20Þ

an even function of d, and on the phase f(D) ≡ f(k(D)), sensitive to the
sign of d. This f dependence enters through the system-bath coupling
when rewriting HI in Eq. 4 in terms of the eigenoperators uk, lk. The
intuition behind it is that although the sign of d does not play a role
in the bath properties of an infinite system, when the QEs couple to it,
the bath embedded between them is different for d≷ 0, making the two
situations inequivalent.

Using Eq. 19, we find that to obtain a perfect super/subradiant state,
the following conditions must be satisfied: k(Ds)x12 − f(Ds) = np, n ∈ℕ.
They come in pairs: IfDs is a superradiant (subradiant) state in the upper
band, −Ds is a subradiant (superradiant) state in the lower band. In par-
ticular, it can be shown that when d < 0, the super/subradiant equation
has solutions for n = 0,…, x12, while if d > 0, the equation has solu-
tions for n = 0, …, x12 + 1. Besides, the detunings Ds at which the
subradiant states appear also satisfy that JAB12 ðDsÞ ≡ 0, which guaran-
tees that these subradiant states survive even in the non-Markovian
regime [with a correction due to retardation, which is small as long as
x12Ge(D)/(2∣vg(D)∣)≪ 1]. Apart from inducing different decay dy-
namics, these different conditions for super/subradiance at fixed D
also translate in different reflection/transmission coefficients when
probing the system through photon scattering, as we show next.

Single-photon scattering
The scattering properties of a single photon impinging into one or sev-
eralQEs in the ground state can be obtained by solving the secular equa-
tion with energiesH ∣Yk〉 = ± wk ∣Yk〉, with the ± sign depending on
the band we are probing (44). Here, we focus on the study of the trans-
mission amplitude t (see scheme of Fig. 5A) for two different situations:
(i) a singleQE coupled to both cavityA and cavityB in the same unit cell
with coupling constants ga and g(1 − a), such that we can interpolate
between the case where the QE couples only to sublatticeA (a = 1) or B
(a = 0), and (ii) a pair of emitters in the AB configuration separated x12
unit cells. After some algebra, we find the exact formulas for the trans-
mission coefficients for the two situations

t1QE ¼ 2iJð1� dÞsinðkÞ½Jð1þ dÞð±wk � DÞ � g2að1� aÞ�
2iJ2ð1� d2Þð±wk � DÞsinðkÞ þ g2wk½2að1� aÞðe�if ∓ 1Þ ± 1�

ð21Þ
Bello et al., Sci. Adv. 2019;5 : eaaw0297 26 July 2019
t2QE ¼ ½2J2ð1� d2Þð±wk � DÞsinðkÞ�2
g4w2

ke
i2ðkx12�ϕÞ � ½g2wk ± i2J2ð1� d2Þð±wk � DÞsinðkÞ�2

ð22Þ

In Fig. 5B, we plot the single-photon transmission probability ∣t∣2

as a function of the frequency of the incident photon for the single-QE
(left) and two-QE (right) situations. Let us now explain the different
features observed.
Single QE
We first plot in an orange dashed line (Fig. 5B) the results for a = 0,1,
showingwell-known features for this type of system (44), namely, a per-
fect transmission dip (∣t∣2 = 0)when the frequency of the incident pho-
ton matches exactly that of the QEs. This is because the Lamb shift
induced by the bath in this situation is dwe= 0. The dip has a bandwidth
defined by the individual decay rateGe. Besides, it also shows∣t∣

2 = 0 at
the band edges due to the divergent decay rate at these frequencies,
also predicted for standard waveguide setups (44). The situation be-
comesmore interesting for 0 < a < 1, since theQE energy is shifted by
dwe = g2a(1 − a)/[J(1 + d)], which is different for ±d. This is why the
dips in ∣t1QE∣

2 appear at different frequencies for d = ±0.3. Notice
that t1QE is invariant under the transformation a → 1 − a (this is not
A Scatterer t

r

in

B

δω ω
ω

α δ δ

δ δα

ω ω

Fig. 5. Single-photon scattering. (A) Pictorial representation of the scattering
process: An incident photon impinges into a scatterer, part of which is reflected
(transmitted) with probability amplitude r (t). Bottom row: Relevant level struc-
ture for the single-photon scattering for both scatterers considered: one and
two QEs. ∣gg〉 ≡ ∣g〉1∣g〉2 denotes the common ground state, while ∣S;Ai ¼
ð∣e〉1∣g〉2 ±∣g〉1∣e〉2Þ=

ffiffiffi
2

p
denotes the symmetric (antisymmetric) excited state

combination of the two QEs. (B) Transmission probability for a single emitter
coupled to both A and B cavities of the same unit cell (left) and two emitters
in the AB configuration separated a total of x12 = 2 unit cells (right). The param-
eters in the single emitter case are g = 0.4J, d = ±0.5, and D = 1.5J. The dashed
line corresponds to the case where the emitter couples to a single sublattice (a = 0,1)
(does not depend on the sign of d). When the emitter couples to both sublattices
(a = 0.3), the perfect reflection resonance experiences a shift that is different for
d> 0 (purple line) or d< 0 (blue line). The parameters for the two-emitter case are
g = 0.1J, d = ±0.5, and D ≃ 1.65J, for which the two QEs are in a subradiant con-
figuration if d > 0.
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true for the reflection coefficient, which acquires a d-dependent phase
shift for a = 0 but not for a = 1).
Two QEs
In the right panel of Fig. 5B,weplot∣t2QE∣

2 for twoQEs coupled equally
to a bath (same energy, distance, and coupling strength), and where the
only difference is the sign of d of the bath. The distance chosen is small
such that retardation effects do not play a significant role. The differ-
ences between d > 0 and d < 0 in the∣t2QE∣

2 are evenmore pronounced
than in the single-QE scenario since the responses are now also qualita-
tively different:While the case d > 0 features a single transmission dip at
theQE frequency, for d <0, the transmissiondip is followedby awindow
of frequencies with perfect photon transmission, i.e.,∣t2QE∣

2 = 1. A con-
venient picture to understand this behavior is depicted in Fig. 5A, where
we show that a single photon only probes the symmetric/antisymmetric
states in the single excitation subspace (S/A) with the following energies
(linewidths) renormalized by the bathwS;A ¼ D ± JAB12 (GS, A = Ge ± G12).
For the parameters chosen (see caption), it can be shown that for d > 0,
the QEs are in a perfect super/subradiant configuration in which one
of the states decouples while the other one has a 2Ge decay rate. Thus, at
this configuration, the two QEs behave like a single two-level system
with an increased linewidth. On the other hand, when d < 0, both
the (anti)symmetric states are coupled to the bath, such that the
system is analogous to a V-type system where perfect transmission
occurs for an incident frequency ±wk, EIT = (wSGA − wAGS)/(GA − GS)
(45) (depicted in a black dashed line; Fig. 5B).

In both the single- and two-QE situations, the different response can
be intuitively understood as theQEs couple locally to a different bath for
d≷ 0. However, this different response of ∣t∣2 can be thought of as an
indirect way of probing topology in these systems.
 on A
ugust 28, 2019
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IMPLEMENTATIONS
One of the attractive points of our predictions is that they can be poten-
tially observed in several platforms by combining tools that, in most of
the cases, have already been experimentally implemented independently.
Some candidate platforms are as follows:

(1) Photonic crystals. The photonic analog of the SSH model has
been implemented in several photonic platforms (6, 10–12), including
some recent photonic crystal realizations (7). The latter are particularly
interesting due to the recent advances in their integration with solid-
state and natural atomic emitters [see (46, 47) and references therein].

(2) Circuit QED. Superconducting metamaterials mimicking stan-
dard waveguide QED are now being routinely built and interfaced with
one or many qubits in experiments (48, 49). The only missing piece is
the periodic modulation of the couplings to obtain the SSH model, for
which there are already proposals using circuit superlattices (50).

(3) Cold atoms. Quantum optical phenomena can be simulated in
pure atomic scenarios by using state-dependent optical lattices. The idea
is to have two different trapping potentials for two atomic metastable
states, such that one statemostly localizes, playing the role of QEs, while
the other state propagates as a matter wave. This proposal (51) was re-
cently used (52) to explore the physics of standard waveguide baths. Re-
placing their potential by an optical superlattice made of two laser fields
with different frequencies, one would be able to probe the physics of the
topological SSH bath. These cold-atom superlattices have already been
implemented in an independent experiment to measure the Zak phase
of the SSH model (53).

Beyond these platforms, the bosonic analog of the SSH model has
also been discussed in the context of metamaterials (54) or plasmonic
Bello et al., Sci. Adv. 2019;5 : eaaw0297 26 July 2019
and dielectric nanoparticles (55, 56), where the predicted phenomena
could also be potentially observed.
CONCLUSIONS AND OUTLOOK
In summary, we have presented several phenomena appearing in a
topological waveguide QED system with no analog in other optical
setups. When the QE frequencies are tuned to the middle bandgap, we
predict the appearance of chiral photon BSs that inherit the topological
robustness of the bath. Furthermore, we also showhow these BSsmediate
directional, long-range spin interactions, leading to exotic many-body
phases, e.g., double Néel ordered states, which cannot be obtained, to
our knowledge, with other bound-state mediated interactions. Besides,
we study the scattering and super/subradiant behavior when one or two
emitters are resonant with one of the bands, finding that transmission
amplitudes can depend on the parameter that controls the topology
even though the band energy dispersion is independent of it.

Except for the many-body physics, the rest of the phenomena dis-
cussed in this article, that is, the formation of chiral BSs and the peculiar
scattering properties, could also be observed in classical setups, since
these results are derived within the single-excitation regime. Given
the simplicity of the model and the variety of platforms where it can be
implemented, we foresee that our predictions can be tested in near-future
experiments.

As an outlook, we believe that our work opens complementary re-
search directions on topological photonics, which currently focuses
more on the design of exotic light properties (10–12, 57, 58). For exam-
ple, the study of the emergent spin models with long-range topological
interactions is interesting on its own and might lead to the discovery of
novel many-body phases. Moreover, the scattering-dependent
phenomena found in this manuscript can provide alternative paths
for probing topology in photonic systems. On the fundamental level,
the analytical understandingwe develop for 1D systems provides a solid
basis to understand quantum optical effects in higher-dimensional
topological baths (59, 60).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/7/eaaw0297/DC1
Section S1. Integration of the dynamics
Section S2. Subexponential decay
Section S3. Two QE dynamics in the non-Markovian regime
Section S4. Existence conditions of two QE BSs
Section S5. Finite-bath dynamics
Section S6. Middle BSs in 1D baths
Fig. S1. Schematics showing the contour of integration.
Fig. S2. Non-Markovian dynamics.
Fig. S3. Decaying part of the dynamics of a single emitter with parameters D = −2J, ∣d∣ = 0.5,
and g = 0.2J.
Fig. S4. Disappearance of the two-QEs BSs in the trivial and topological cases.
Fig. S5. Finite-size effects.
Table S1. Topological properties of several 1D baths, and their corresponding BS features A to
C (see text for discussion) when an emitter couples to them.
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