



# Propane activation over vanadia clusters on different catalysts

S. Wrabetz, P. Kube, S. Carey, A. Trunschke and R. Schlögl

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Dept. of Inorganic Chemistry, Berlin, 14195,Germany wrabetz@fhi-berlin.mpg.de



Date: 21.08.2019 , Time: 11:30 Topic: Catalysis for Base Chemicals



#### Introduction













### **DYNAMICS** of the MoV oxide surface





The newly generated very strong  $C_3H_8$  adsorption sites might be related to the segregated of V<sup>5+</sup> and reflects a decrease in selectivity to acrylic acid.

1 A. Trunschke, J. Noack, S. Trojanov, F. Girgsdies, T. Lunkenbein, V. Pfeifer, M. Hävecker, P. Kube, C. Sprung, F. Rosowski, R. Schlögl, ACS Catalysis, 2017, 7, 3061–3071.



### **DYNAMICS** of the **complex MoVTeNb** oxide surface







#### > Dynamic nature of the surface during reaction.

Very strong interaction of propane with the used surface explains the decrease in selectivity caused by V<sup>5+-</sup>segregation already at r.t..

1 A. Trunschke, J. Noack, S. Trojanov, F. Girgsdies, T. Lunkenbein, V. Pfeifer, M. Hävecker, P. Kube, C. Sprung, F. Rosowski, R. Schlögl, ACS Catalysis, 2017, 7, 3061–3071.



## Activation of C<sub>3</sub>H<sub>8</sub>







#### **Activation Barrier & Catalytic Activity**

 $V_2O_5$  MoVTeNb oxide

**6V/SBA15** 

AC FHI



1 Hävecker, M.; Wrabetz, S.; Kröhnert, J.; Csepei, L.-I.; Naumann d'Alnoncourt, R.; Kolen'ko, Y. V.; Girgsdies, F.; Schlögl, R.; Trunschke, A. Journal of Catalysis 2012, 285, 48.

MoV oxide

P. Kube, B. Frank, S. Wrabetz, J. Kröhnert, M. Hävecker, J. Valasco-Vélez, J. Noack, R. Schlögl, A. Trunschke, ChemCatChem 9 (2017) 1-14.



1 Hävecker, M.; Wrabetz, S.; Kröhnert, J.; Csepei, L.-I.; Naumann d'Alnoncourt, R.; Kolen'ko, Y. V.; Girgsdies, F.; Schlögl, R.; Trunschke, A. Journal of Catalysis 2012, 285, 48.

2 P. Kube, B. Frank, S. Wrabetz, J. Kröhnert, M. Hävecker, J. Valasco-Vélez, J. Noack, R. Schlögl, A. Trunschke, ChemCatChem 9 (2017) 1-14.



#### **Activation Barrier & Catalytic Activity**

AC FHI





- 1 Hävecker, M.; Wrabetz, S.; Kröhnert, J.; Csepei, L.-I.; Naumann d'Alnoncourt, R.; Kolen'ko, Y. V.; Girgsdies, F.; Schlögl, R.; Trunschke, A. Journal of Catalysis 2012, 285, 48.
- P. Kube, B. Frank, S. Wrabetz, J. Kröhnert, M. Hävecker, J. Valasco-Vélez, J. Noack, R. Schlögl, A. Trunschke, ChemCatChem 9 (2017) 1-14.



#### **Activation Barrier & Catalytic Activity**



MoV oxide V<sub>2</sub>O<sub>5</sub> MoVTeNb oxide 6V/SBA15



1 Hävecker, M.; Wrabetz, S.; Kröhnert, J.; Csepei, L.-I.; Naumann d'Alnoncourt, R.; Kolen'ko, Y. V.; Girgsdies, F.; Schlögl, R.; Trunschke, A. Journal of Catalysis 2012, 285, 48.

2 P. Kube, B. Frank, S. Wrabetz, J. Kröhnert, M. Hävecker, J. Valasco-Vélez, J. Noack, R. Schlögl, A. Trunschke, ChemCatChem 9 (2017) 1-14.





- **DFT:** direct calculation of the ENERGY BARRIERS of the first hydrogen abstraction from propane by a vanadyl (O=V) group yields a propyl radical bound to a HVO<sup>IV</sup> surface sites.

#### Size-Dependent Catalytic Activity of Supported Vanadium Oxide Species: Oxidative Dehydrogenation of Propane

Xavier Rozanska, Remy Fortrie, and Joachim Sauer\* J. Am. Chem. Soc. 2014, 136, 7751-7761.

|                                                                                | MoV ox.                | V <sub>2</sub> O <sub>5</sub> | MoVTeNb ox. <sup>1,2</sup> | <b>6V/SBA15</b> <sup>2</sup> |
|--------------------------------------------------------------------------------|------------------------|-------------------------------|----------------------------|------------------------------|
| E <sub>app.</sub>                                                              | 74 kJ/mol              | 66 kJ/mol                     | 80 kJ/mol                  | 110 kJ/mol                   |
| $\Delta$ H <sub>ads,</sub><br>at 50% coverage of C <sub>3</sub> H <sub>8</sub> | 40 kJ/mol              | 70 kJ/mol                     | 63 kJ/mol                  | 44 / 52 kJ/mol               |
| Intrinsic barrier<br><b>ΔH<sup>#</sup> <sub>exp</sub></b>                      | 114 kJ/mol             | 136 kJ/mol                    | 143 kJ/mol                 | 154 / 162<br>kJ/mol          |
| <b>Γ<sub>C3H8</sub><br/>mmol/A<sub>adssits</sub>*h</b>                         | 1.47*10 <sup>-19</sup> | 8.0*10 <sup>-20</sup>         | 6.92*10 <sup>-20</sup>     | 2.89*10 <sup>-21</sup>       |
| Energy barrier<br>DFT <sup>3</sup>                                             | 132 kJ/mol<br>octamer  | 139<br>tetramer               | 143 kJ/mol<br>trimer       | 148 / 160<br>di-/ monomer    |

The cluster size of the active surface vanadium oxide ensembles decreases with increasing the energy barrier.

- Hävecker, M.; Wrabetz, S.; Kröhnert, J.; Csepei, L.-I.; Naumann d'Alnoncourt, R.; Kolen'ko, Y. V.; Girgsdies, F.; Schlögl, R.; Trunschke, A. Journal of Catalysis 2012, 285, 48.
- P. Kube, B. Frank, S. Wrabetz, J. Kröhnert, M. Hävecker, J. Valasco-Vélez, J. Noack, R. Schlögl, A. Trunschke, ChemCatChem 9 (2017) 1-14.
- 3 X. Rozanska, R. Fortrie, J. Sauer, J. Am. Chem. Soc. 2014, 136, 7751-7761.





#### A structure reactivity relationship

can be retrieved by a combination of kinetic measurements, the determination of the heat of adsorption and DFT calculations.

Higher rates of propane oxidation are correlated with lower barriers for propane activation and seem to be linked with larger vanadium oxide cluster size.

|                                                                    | MoV ox.                | V <sub>2</sub> O <sub>5</sub> | MoVTeNb ox. <sup>1,2</sup> | <b>6V/SBA15</b> <sup>2</sup> |  |
|--------------------------------------------------------------------|------------------------|-------------------------------|----------------------------|------------------------------|--|
| E <sub>app.</sub>                                                  | 74 kJ/mol              | 66 kJ/mol                     | 80 kJ/mol                  | 110 kJ/mol                   |  |
| $\Delta H_{ads,}$ at 50% coverage of C <sub>3</sub> H <sub>8</sub> | 40 kJ/mol              | 70 kJ/mol                     | 63 kJ/mol                  | 44 / 52 kJ/mol               |  |
| Intrinsic barrier<br><b>ΔH<sup>#</sup> <sub>exp</sub></b>          | 114 kJ/mol             | 136 kJ/mol                    | 143 kJ/mol                 | 154 / 162<br>kJ/mol          |  |
| r <sub>C3H8</sub><br>mmol/A <sub>adssits</sub> *h                  | 1.47*10 <sup>-19</sup> | 8.0*10 <sup>-20</sup>         | 6.92*10 <sup>-20</sup>     | 2.89*10 <sup>-21</sup>       |  |
| Energy barrier<br>DFT <sup>3</sup>                                 | 132 kJ/mol<br>Octamer  | 139<br>tetramer               | 143 kJ/mol<br>trimer       | 148 / 160<br>di-/ monomer    |  |
| cluster size of the active surface vanadium oxide                  |                        |                               |                            |                              |  |

## Thank you for your attention !







#### Equipment







#### Equipment



