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Abstract
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1 Introduction

Let n be an integer. A group G has exponent n if for all g ∈ G, gn = 1.
In 1902, W. Burnside asked the following question [7]. Is a finitely generated
group with finite exponent necessarily finite? In order to study this question,
the natural object to look at is the free Burnside group of rank r and exponent
n. It is defined to be quotient of the free group Fr of rank r by the (normal)
subgroup Fnr generated by the n-th power of all elements. We denote it by
Br(n). Every finitely generated group with finite exponent is a quotient of a
free Burnside group.

For a long time, hardly anything was known about free Burnside groups. It
was only proved that Br(n) was finite for some small exponents: n = 2 [7],
n = 3 [7, 24], n = 4 [31] and n = 6 [21]. In 1968, P.S. Novikov and S.I. Adian
achieved a breakthrough by providing the first examples of infinite Burnside
groups [29]. More precisely, they proved the following theorem. Assume that r
is at least 2 and n is an odd exponent larger than or equal to 4381 then the free
Burnside group of rank r and exponent n is infinite.

This result has been improved in many directions. S.I. Adian decreased the
bound on the exponent [1]. A.Y. Ol’shanskĭı obtained a similar statement using
a diagrammatical approach of small cancellation theory [30]. The case of even
exponents has been solved by S.V. Ivanov [22] and I.G. Lysenok [26]. More
recently, T. Delzant and M. Gromov gave an alternative proof of the infiniteness
of Burnside groups [17]. To sharpen our understanding of Burnside groups
we would like to study the symmetries of Br(n). This leads us to the outer
automorphism group of Br(n).

The subgroup Fnr is characteristic. Hence the projection Fr � Br(n) induces
a natural homomorphism Out (Fr) → Out (Br(n)). This map is neither one-
to-one nor onto. However it provides numerous examples of automorphisms of
Burnside groups. For instance the first author proved that for sufficiently large
odd exponents, the image of Out (Fr) in Out (Br(n)) contains free subgroups
of arbitrary rank and free abelian subgroups of rank br/2c [11]. In this article
we are interested in the following question.
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Question: Which (outer) automorphism of Fr induces an (outer) automor-
phism of infinite order of Br(n)?

Remark 1.1. Since Br(n) is a torsion group, every inner automorphism of
Br(n) has finite order. Therefore an automorphism ϕ ∈ Aut (Br(n)) has finite
order if and only if so has its outer class. Hence, for our purpose we can
equivalently work with Out (Br(n)) or Aut (Br(n)).

The first examples of automorphisms of Br(n) with infinite order were given
by E.A. Cherepanov [8]. In particular he proved that the automorphism ϕ of
F(a, b) given by ϕ(a) = ab and ϕ(b) = a (also called Fibonacci morphism)
induces an automorphism of infinite order of B2(n) for all odd integers n > 665.
In [11], the first author provides a large class of automorphisms with the same
property.

Theorem 1.2 (Coulon, [11, Theorem 1.3]). Let ϕ be a hyperbolic automorphism
of Fr (i.e. the semi-direct product Fr oϕ Z is word-hyperbolic). There exists
an integer n0 such that for all odd exponents n > n0, ϕ induces an element of
infinite order of Out (Br(n)).

In order to state our main theorem, we first need to recall some definitions
about the growth of automorphisms. Let G be a finitely generated group en-
dowed with the word-metric. Given g ∈ G, the length ‖g‖ of its conjugacy
class is the length of the smallest word over the generators which represents an
element conjugated to g. Given an outer automorphism Φ of G one says that

• Φ is exponentially growing if there exist g ∈ G and λ > 1 such that for all
k ∈ N, ‖Φk(g)‖ > λk,

• Φ is polynomially growing if for every g ∈ G there is a polynomial P such
that for all k ∈ N, ‖Φk(g)‖ 6 P (k).

This definition actually does not depend on the choice of generators used to
compute ‖Φk(g)‖. Automorphisms of free groups are either exponentially or
polynomially growing.

The Fibonacci morphism ϕ used by E.A. Cherepanov is not hyperbolic. It
can be seen indeed as the automorphism induced by a pseudo-Anosov home-
omorphism of the punctured torus. Since this homeomorphism preserves the
boundary component of the torus, the semi-direct product Fr oϕ Z contains
a copy of Z2 which is an obstruction to being hyperbolic. Nevertheless like
hyperbolic automorphisms it is exponentially growing. On the other hand we
also know that a polynomially growing automorphism of Fr induces an auto-
morphism of finite order of Br(n) for every exponent n [11]. It suggests a link
between the growth of an automorphism of Fr and its order as automorphism
of Br(n).

Theorem 1.3. Let Φ ∈ Out (Fr) be an outer automorphism of Fr. The follow-
ing assertions are equivalent:

1. Φ has exponential growth;
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2. there exists n ∈ N such that Φ induces an outer automorphism of Br(n)
of infinite order;

3. there exist κ, n0 ∈ N such that for all odd integers n > n0, Φ induces an
outer automorphism of Br(κn) of infinite order.

The new result of this article is the implication (1) ⇒ (3). Before sketching
this proof, let us have a look at the arguments used by E.A. Cherepanov [8].
The proof of the infiniteness of Br(n) by P.S. Novikov and S.I. Adian is based
on the following important fact [1].

Proposition 1.4. Let w be a reduced word of Fr. If w does not contain a
subword of the form u16 then w induces a non-trivial element of Br(n) for all
odd exponents n > 655.

In particular two distinct reduced words without 8-th power define distinct
elements of Br(n). Compute now the orbit of b under the automorphism ϕ of
F(a, b) defined by ϕ(a) = ab and ϕ(b) = a. It leads to the following sequence of
words

ϕ1(b) = a ϕ5(b) = abaababa
ϕ2(b) = ab ϕ6(b) = abaababaabaab
ϕ3(b) = aba ϕ7(b) = abaababaabaababaababa
ϕ4(b) = abaab . . .

None of these words contains a 4-th power [23]. Therefore they induce pairwise
distinct elements of Br(n). In particular, as an automorphism of Br(n), ϕ has
infinite order.

This argument can be generalized for any exponentially growing automor-
phism of F2 using an appropriate train track representative. However, it does
not work anymore in higher rank. Consider for instance the exponentially grow-
ing automorphism ψ of F(a, b, c, d) defined by ψ(a) = a, ψ(b) = ba, ψ(c) = cbcd
and ψ(d) = c. As previously we compute the orbit of d under ψ.

ψ1(d) = c
ψ2(d) = cbcd
ψ3(d) = cbcdbacbcdc
ψ4(d) = cbcdbacbcdcba2cbcdbacbcdccbcd
ψ5(d) = cbcdbacbcdcba2cbcdbacbcdc2bcdba3cbcdbacbcdcba2 . . .

. . . cbcdbacbcdc2bcdcbcdbacbcdc

This orbit is exponentially growing. Note that each time ψp(d) contains a sub-
word bam then ψp+1(d) contains bam+1. Hence the ψp(d)’s contain arbitrarily
large powers of a. This cannot be avoided by choosing the orbit of another ele-
ment. Proposition 1.4 is no more sufficient to tell us wether or not the ψp(d)’s
are pairwise distinct in Br(n). Therefore, we need a more accurate criterion
to distinguish two different elements of Br(n). This is done using elementary
moves.
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Let n ∈ N and ξ ∈ R+. An (n, ξ)-elementary move consists in replacing a
reduced word of the form pums ∈ Fr by the reduced representative of pum−ns,
provided m is an integer larger than n/2 − ξ. Note that an elementary move
may increase the length of the word.

Theorem 1.5 (Coulon [12, Theorem 4.12]). There exist integers n1 and ξ such
that for all odd exponents n > n1 we have the following property. Let w and
w′ be two reduced words of Fr. If w and w′ define the same element of Br(n)
then there are two sequences of (n, ξ)-elementary moves which respectively send
w and w′ to the same word.

Thanks to this tool we can now explain using the example ψ how our proof
works. We need to understand the effect of elementary moves on a word ψp(d).
To that end we assign colors to the letters. Let say that a, b are yellow letters
(dotted lines on Figure 1) whereas c, d are red letters (thick lines on the figure).
The word ψp(d) is then the concatenation of maximal yellow and red subwords.
We define Red (ψp(d)) to be the red word obtained from ψp(d) be removing all
the yellow letters. We claim that the elementary moves preserve Red (ψp(d)).

a a a ab b b b b b b bc c c c c c c c c c c cd d d d d

Figure 1: The yellow-red decomposition of ψ4(d)

Since the orbit of d grows exponentially one can prove that Red (ψp(d)) does
not contain large powers. More precisely there is an integer n2 such that for
all p ∈ N, Red (ψp(d)) does not contain any n2-th power (see Proposition 5.9).
This fact can be interpreted in terms of dynamical properties of the attractive
laminations associated to the automorphism ψ. It follows from this remark that
the power um involved in any (n, ξ)-elementary move with n > 2n2 + 2ξ only
contains yellow letters. However such a move could completely collapse a yellow
subword and then affect the red letters (see Figure 2)

Word before the elementary move:
w1 s un s�1 w2

Word after the elementary move:
w1 w2

Figure 2: An elementary move collapsing red letters

Let us now have a look at the yellow subwords. Notice that the image by
ψ of a yellow word is still a yellow word. On the contrary, the image of a red
word may contain yellow subwords (e.g. ψ(c)). Therefore the yellow subwords
of ψp(d) can be sorted in two categories. The ones which are yellow subwords of
ψ(c) and ψ(d) and the ones which arise as the images by ψ of yellow subwords
of ψp−1(d). In particular, among all the ψp(d)’s, there is only a finite number of
orbits under ψ of maximal yellow subwords. Consequently there is an integer n3

such that for every odd integer n > n3, none of them becomes trivial in Br(n).



6

We can now argue by contradiction. Let n > max{n1, 2n2 + 2ξ, n3} be an
odd integer. Assume that ψ induces an automorphism of finite order of Br(n).
In particular there exists p ∈ N∗ such that ψp(d) and d have the same image in
Br(n). It follows from Theorem 1.5 that a sequence of (n, ξ)-elementary moves
sends ψp(d) to d. However n > 2n2 + 2ξ, thus these moves will only change the
yellow subwords of ψp(d). Moreover, since n > n3 none of the yellow words can
completely disappear. Therefore the red word Red (ψp(d)) associated to ψp(d)
should be exactly d. Contradiction.

The proof for an arbitrary exponentially growing automorphism of Fr follows
the same ideas. One has to replace the words in a, b, c, d by paths in an appro-
priate relative train track. This leads to a technical difficulty, though. The red
and yellow paths that we want to consider do not necessarily represent elements
of the free groups. This problem is handled in Section 4.2 and Section 5. We
use there subtle aspects of the machinery of train-tracks to show that the red
words do not contain large powers (Proposition 5.9). In particular we need to
pass to a finite index subgroup of Fr. This operation actually ensures at the
same time that no yellow subpath will be removed by elementary moves (see the
discussion before). Beside this fact, the main ingredients are the ones described
above.

Acknowledgment Most of this work was done while the first author was
staying at the Max-Planck-Institut für Mathematik, Bonn, Germany. He wishes
to express his gratitude to all faculty and staff from the MPIM for their support
and warm hospitality. The second author would like to thank Michael Handel
and Gilbert Levitt for helpful conversations. The second author is supported
by the grant ANR-10-JCJC 01010 of the Agence Nationale de la Recherche

2 Primitive matrices and substitutions

In this section we summarize a few properties about primitive integer matrices
and substitutions on an alphabet that we be useful later.

2.1 Primitive matrices

A square matrix M of size ` whose entries are non-negative integers is irre-
ducible if for each i, j ∈ {1, . . . , `}, there exists p ∈ N such that the (i, j)-entry
of Mp is not zero. It is primitive when there exists p ∈ N such that any entry
of Mp is not zero.

The Perron-Frobenius theorem for an irreducible matrixM with non-negative
integer entries states that there exists a unique dominant eigenvalue λ > 1 ofM
associated to an eigenvector with positive coordinates (see for instance Seneta’s
book [32]). This λ is called the Perron-Frobenius-eigenvalue (or simply PF-
eigenvalue) of M . In addition, if λ = 1 then M is a transitive permutation
matrix.
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2.2 Primitive substitutions
Let A = {a1, . . . , a`} be a finite alphabet. The free monoid generated by A

is denoted by A∗. We write 1 for the empty word, also called trivial word. An
infinite word is an element of AN. Let m ∈ N∗. A word w ∈ A∗ is an m-th
power if there exists a non-trivial word u ∈ A∗ such that w = um. A non-trivial
word w ∈ A∗ is primitive if it is not an m-th power with m at least 2 (i.e. if
w = um, then u = w and m = 1). A word w ∈ A∗ (or an infinite word w ∈ AN)
contains an m-th power, if there exists a word u ∈ A∗ \ {1} such that um is
a subword of w. The shift is the map S : AN → AN which sends (wi)i∈N to
(wi+1)i∈N. An infinite word w is said to be shift-periodic if there exists q ∈ N∗

such that Sq(w) = w. If u stands for the word w0w1 · · ·wq−1 then we write
w = u∞. Roughly speaking it means that w is the infinite power of u.

A morphism of the free monoid A∗ is called a substitution defined on A. Such
a substitution σ is indeed completely determined by the images σ(a) ∈ A∗ of
all the letters a ∈ A. Moreover, it naturally extends to a map AN → AN. The
matrix M of a substitution σ is a square matrix of size ` whose (i, j)-entry is
the number of occurrences of the letter ai in the word σ(aj). The substitution
σ is said to be primitive when M is primitive.

Proposition 2.1. Let a be a letter of A. Let σ be a primitive substitution on
A such that a is a prefix of σ(a).

(i) The sequence (σp(a)) converges to an infinite word σ∞(a) fixed by σ.

(ii) If σ∞(a) is not shift-periodic, then there exists an integer m > 2 such that
for all p ∈ N, σp(a) does not contain an m-th power.

(iii) If there exists a non-trivial primitive word u such that σ∞(a) = u∞ then
there exists an integer q > 2 such that σ(u) = uq.

Remark 2.2. The case covered by Point (iii) in the proposition is not vacuous.
Consider for instance the substitution defined on A = {a, b, c} by σ(a) = ab,
σ(b) = c and σ(c) = abc. The transition matrix M of σ and its square are the
followings

M =

 1 0 1
1 0 1
0 1 1

 M2 =

 1 1 2
1 1 2
1 1 2


In particular, σ is primitive. However (σn(a)) converges to the infinite shift-
periodic word (abc)∞.

To prove Proposition 2.1 we use the following results due to B. Mossé.

Proposition 2.3 (Mossé [27, Théorème 2.4]). Let σ be a primitive substitution
on a finite alphabet A. Let u ∈ AN be an infinite word fixed by σ. Then either

(i) u is shift-periodic, or

(ii) there exists an integer m > 2 such that u does not contain an m-th power.

Lemma 2.4 (Mossé [27, Proposition 2.3]). Let u ∈ A∗ be a primitive word.
Let m > 2 be an integer. If uwu is subword of um, then there exists an integer
p > 0 such that w = up.
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Proof of Proposition 2.1. By assumption a is a prefix of σ(a). Thus there exists
w ∈ A∗ such that σ(a) = aw. Since σ is primitive, w is not trivial. It follows
that for every p ∈ N∗, σp(a) is exactly the word

σp(a) = awσ(w)σ2(w) . . . σp−1(w).

In particular, σp(a) is a prefix of σp+1(a). Therefore, (σp(a)) converges to an
infinite word σ∞(a) fixed by σ:

σ∞(a) = awσ(w)σ2(w) . . . σp(w) . . .

which proves (i). Assume now that this infinite word is not shift-periodic. Ac-
cording to Proposition 2.3, there exists m > 2 such that σ∞(a) does not contain
an m-th power. The same holds for the prefixes of σ∞(a), in particular, for all
σp(a), which proves (ii).

Finally, assume that σ∞(a) = u∞, where u is a non-trivial primitive word.
Since σ∞(a) is fixed by σ, we obtain that u∞ = σ(u)∞. In particular, u is
a prefix of σ∞(u). The substitution σ being primitive, σ(u) is not shorter
than u. We derive that there exists w0 ∈ A∗ such that σ(u) = uw0. Hence
u∞ = (uw0)∞. Lemma 2.4 shows that there exists p ∈ N satisfying w0 = up.
Thus σ(u) = up+1. Remember that a is a prefix of u. Hence u can be written
u = au′. It follows that the length of σ(u) = awσ(u′) is larger than the one of
u. Thus p+ 1 > 2, which proves (iii).

3 Train-tracks and automorphisms of free groups
In this section, we recollect some material about relative train-track maps.

Details can be found in [6] where they have been introduced by M. Bestvina and
M. Handel. There exist several improvements of relative train-track maps, and
we will use here (very few of) improved relative train-track maps introduced by
M. Bestvina, M. Feighn and M. Handel in [4].

3.1 Paths and circuits
The graphs that we consider are metric graphs with oriented edges. By metric

graph, we mean a graph equipped with a path metric. If e is an edge of a graph
G, then e−1 stands for the edge with the reverse orientation. The pair {e, e−1}
is the unoriented edge associated to e (or e−1). By abuse of notation, we will
just say the unoriented edge e for the pair {e, e−1}. Let Θ : E → E be the map
defined by Θ(e) = e−1. Sometimes, it will be useful to consider a subset ~E of
E such that ~E and Θ(~E) give rise to a partition of E (i.e. we choose a preferred
oriented edge for each unoriented edge). We call such a set ~E a preferred set of
oriented edges for G.

A path in a graph G is a continuous locally injective map α : I → G, where
I = [a, b] is a segment of R. The initial point of α is α(a) and its terminal
point is α(b); both α(a) and α(b) are the endpoints of α. We do not make
any difference between two paths which differ from an orientation preserving
homeomorphism between their domains. A path is trivial if its domain is a
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point. When the endpoints of α are vertices, α can be viewed as a path of edges,
i.e. a concatenation of edges: α = e1 . . . ep where the ei are edges of G such that
the terminal vertex of ei is the initial vertex of ei+1 and ei 6= e−1

i+1. A circuit
in G is a continuous locally injective map of an oriented circle into G. We do
not make any difference between two circuits which differ from an orientation
preserving homeomorphism between their domains. A circuit can be viewed as
a concatenation of edges which is well defined up to cyclic permutation. If α
is a path, or a circuit, we denote by α−1 the path, or circuit, with the reverse
orientation.

A continuous map α : I → G, where I is segment in R, is homotopic relatively
to the endpoints to a unique path denoted by [α]. A non homotopically trivial
continuous map α : S1 → G is homotopic to a unique circuit denoted by [α].

3.2 Topological representatives
Marked graphs and topological representatives. Let r > 2. We denote
by Rr the rose of rank r. It is a graph with one vertex ? and r unoriented edges.
The fundamental group π1(Rr, ?) is the free group Fr, with basis given by a
preferred set of oriented edges. A marked graph (G, τ) (often simply denoted
by G) is a connected metric graph G having no vertex of valence 1, equipped
with a homotopy equivalence τ : Rr → G. This homotopy equivalence τ gives
an identification of the fundamental group π1(G) with Fr, well defined up to
an inner automorphism. A topological representative of an outer automorphism
Φ ∈ Out (Fr) is a homotopy equivalence f : G → G of a marked graph (G, τ)
such that:

• f takes vertices to vertices and edges to paths of edges,

• τ−◦f ◦τ : Rr → Rr induces Φ on Fr = π1(Rr, ?), where τ− is a homotopy
inverse of τ .

In particular, the restriction of f to an open edge is locally injective.

Induced map on paths and circuits. If α is a path or a circuit in G, one
defines f#(α) as being equal to [f(α)].

Legal turns. For any edge e of G, Df(e) denotes the first edge of f(e). A
turn is a pair of edges (e1, e2) of G which have the same initial vertex. The turn
(e1, e2) is degenerate if e1 = e2, non degenerate otherwise. A turn (e1, e2) is
legal if for all p ∈ N, ((Df)p(e1), (Df)p(e2)) is non degenerate; otherwise, the
turn is illegal.

3.3 Lifts
Let f : G → G be a topological representative of Φ ∈ Out (Fr). Let G̃ be the
universal cover of G. Galois’ covering theory gives a one-to-one correspondence
between the set of the lifts of f to G̃ and the set of automorphisms in the outer
class Φ. More precisely, a lift f̃ of f is in correspondence with the automorphism
ϕ ∈ Φ if:

f̃ ◦ g = ϕ(g) ◦ f̃ , ∀g ∈ Fr (1)
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where the elements of Fr are viewed as deck transformations of G̃.

3.4 Invariant filtrations and transition matrices
Let f : G→ G be a topological representative of Φ ∈ Out (Fr).

Filtration, strata and k-legal paths. A filtration of a topological repre-
sentative f : G → G is a strictly increasing sequence of f -invariant subgraphs
∅ = G0 ⊂ G1 ⊂ · · · ⊂ Gm = G. The stratum of height k denoted by Hk is the
closure of Gk \ Gk−1. The edges of height k are the edges of Hk. A path of
height k is a path in Gk which crosses Hk non trivially, i.e. its intersection with
Hk contains a non-trivial path. A path (of edges) α is k-legal if it is a path of
Gk and for all subpath e1e2 of α with e1, e2 edges of height k, the turn (e−1

1 , e2)
is legal.

Transition matrices. A transition matrix Mk is associated to the stratum
Hk. We choose a preferred set of oriented edges for Hk: ~E = {e1, . . . , e`} (where
` is the number of unoriented edges of Hk). The transition matrix Mk of Hk

is a square matrix of size ` whose (i, j)-entry is number of times the edge ei or
the reverse edge e−1

i occur in the path f(ej).

The stratum Hk is irreducible when its transition matrix Mk is irreducible.
Let λk be the PF-eigenvalue of Mk – see Section 2.1. If λk > 1, then Hk is
called an exponential stratum. If Mk is primitive, Hk is said aperiodic. When
the stratumHk is irreducible and λk = 1,Hk is called a non-exponential stratum.
When Mk is the zero matrix, the stratum Hk is called a zero stratum.

Remark 3.1. Given a topological representative f : G → G and an invariant
filtration for f , up to refine the filtration, one can always suppose that any
stratum is of one of three possible types: exponential, non-exponential or zero.
Moreover, up to replace f by a positive power of f , one can assume – see [4] –
that

• each exponential stratum is aperiodic,

• each non-exponential stratum Hk consists of a single edge e, and that
f(e) = eu where u is loop in Gk−1 based at the endpoint of e.

3.5 A quick review on relative train-track maps
Relative train-track maps. A topological representative f : G → G of an
outer automorphism Φ ∈ Out (Fr) with a filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ Gm =
G is a relative train-track map (RTT) if for every exponential stratum Hk:

(RTT-i) Df maps the set of edges of height k to itself (in particular, each
turn consisting of an edge of height k and one of height less than k
is legal);

(RTT-ii) if α is a non-trivial path with endpoints in Hk ∩ Gk−1, then f#(α)
is a non-trivial path with endpoints in Hk ∩Gk−1;

(RTT-iii) for each k-legal path α, the path f#(α) is k-legal.
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In particular, an edge e of an exponential stratum Hk is k-legal. Theorem
5.12 in [6] ensures that any outer automorphism Φ of Fr can be represented
by an RTT f . By replacing if necessary Φ by a positive power of Φ, one can
suppose that Φ satisfies Remark 3.1. In addition, we can ask that all the images
of vertices are fixed by f (see Theorem 5.1.5 in [4]). We sum up these facts in
the following theorem.

Theorem 3.2 (Bestvina-Handel [6], Bestvina-Feighn-Handel [4]). Let Φ be an
outer automorphism of Fr. There exists p > 1 such that Φp has a topological
representative f : G→ G which is an RTT, with the properties that:

• for all vertices v of G, f(v) is fixed by f ,

• every exponential stratum of f is aperiodic.

• each non-exponential stratum Hk consists of a single edge e, and that
f(e) = eu where u is loop in Gk−1 based at the endpoint of e.

Splittings. Let f : G → G be a topological representative. A splitting of
a path or a circuit α is a decomposition of α as a concatenation of subpaths
α = α1α2 . . . αq (with q > 1 if α is a circuit, and q > 2 if α is a path) such
that for all p > 0, fp#(α) = fp#(α1)fp#(α2) . . . fp#(αq). In that case, one writes
α = α1 · α2 · . . . · αq and α1, α2, . . . , αq are called the terms of the splitting. A
basic, but important, property of RRT is given by the following lemma.

Lemma 3.3 (Bestvina-Handel [6, Lemma 5.8]). Let f : G→ G be an RTT. If
Hk is an exponential stratum, and if α is a k-legal path, then the decomposition
of α as maximal subpaths in Hk or in Gk−1 is a splitting:

α = α1 · β1 · α2 · . . . · αq−1 · βq−1 · αq,

where the αi are paths in Hk, the βi are paths in Gk−1, all non trivial (except
possibly α1 and αq).

3.6 Growth of automorphisms of free groups

The growth of an outer automorphism Φ ∈ Out (Fr) can be detected on an
RTT representative. For a detailed discussion about the growth of a conjugacy
class under iteration of an outer automorphism, one can read G. Levitt’s paper
[25]. For our purpose, we just need the following observations.

Remark 3.4. Let Φ ∈ Out (Fr).

1. Φ has either polynomial growth, or exponential growth.

2. Moreover, Φ has exponential growth if and only if one (hence any) RRT
f : G→ G representing Φ has at least one exponential stratum.

4 Reductions of Theorem 1.3
In this section we explain how to reduce our main theorem to an easier state-

ment. First, note that given an outer automorphism Φ of the free group, Φ has
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exponential (respectively polynomial) growth if and only if for every p ∈ N∗,
so has Φp. In particular, to prove Theorem 1.3, Φ can be replaced by some
positive power of Φ. It will be advantageous to do so, since it allows us to use
relative train-track maps with better properties (see Theorem 3.2).

4.1 Polynomially growing automorphisms
Arguing by induction on the rank r of Fr, the first author handled the case

of polynomially growing automorphisms.

Proposition 4.1 (Coulon [11, Theorem 1.6]). If Φ ∈ Out (Fr) is polynomially
growing, then for all positive integers n, Φ induces an outer automorphism of
finite order of Br(n).

Remark 4.2. The same proof actually gives a quantitative bound for the order
of Φ in Out (Br(n)). If Φ is an outer polynomially growing automorphism of
Fr, then Φp(r,n) induces a trivial outer automorphism of Br(n) where

p(r, n) = n2(2r−1−1).

Example 4.3. A particular case of polynomially growing automorphisms is
given by the automorphisms of F2 induced by a Dehn-twist on a punctured
torus. For instance the automorphism ϕ defined by ϕ(a) = a and ϕ(b) = ba.
Here ϕn is trivial in Aut (Br(n)).

In view of Remark 3.4 (1) and Proposition 4.1, we see that Theorem 1.3 is
a consequence of the following proposition.

Proposition 4.4. If Φ ∈ Out (Fr) has exponential growth, then there exist
κ, n0 ∈ N such that for all odd integers n > n0, Φ induces an outer automor-
phism of Br(κn) of infinite order.

4.2 Passing to a finite index subgroup
Let Φ be an exponentially growing outer automorphism of Fr. By replacing

if necessary Φ by a power of Φ we can assume that Φ is represented by an RTT
f : G → G with a filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ Gm = G, satisfying the
properties of Theorem 3.2. We denote by Hk the stratum of height k. Let e be
an edge of an exponential stratum Hk. According to Lemma 3.3, f(e) can be
split as follows

f(e) = α1 · β1 · α2 · · · · · αq−1 · βq−1 · αq,

where the αi’s are non trivial paths contained in Hk and the βi’s non trivial
paths contained in Gk−1. We denote by Pe the set {β1, . . . , βq−1}. Let P be
the union of Pe for all edges e belonging to an exponential stratum. Note that
P is finite.

Let p ∈ N and e be an edge of the exponential stratum Hk. Recall that Gk−1

is f -invariant. Thus if β is a maximal subpath of fp#(e) contained in Gk−1 then
it is the image by some (possibly trivial) power of f# of a path in P. Moreover
we assumed that the image by f of any vertex of G is fixed by f . Hence if in
addition β is a loop, there exists a path β′ in P∪f#(P) which is a loop such that
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β is the image of β′ by a (possibly trivial) power of f#. Since Fr is residually
finite, there exists a finite-index normal subgroup H of Fr with the following
property. For every path β ∈ P ∪ f#(P), if β is a loop then the conjugacy class
of Fr that it represents does not intersect H.

Recall that G̃ stands for the universal cover of G. Let us fix a base point x0

in G. The fundamental group Fr = π1(G, x0) can therefore be identified with
the deck transformation group acting on the left on G̃. We fix a lift f̃ : G̃→ G̃
of f . It determines an automorphism ϕ in the outer class of Φ such that for
every g ∈ Fr,

ϕ(g) ◦ f̃ = f̃ ◦ g. (2)

There are only finitely many subgroups of Fr of a given index. Thus there
exists an integer q such that ϕq(H) = H. Consequently the intersection L =⋂
p∈Z ϕ

p(H) is also a normal finite-index subgroup of Fr. Moreover it is ϕ-
invariant. As a consequence of the LERF property, it implies that the restriction
of ϕ to L is an automorphism. See for instance Lemma 6.0.6 in [4], attributed
there to Scott.

We now denote by κ the index of L in Fr. Let Ĝ be the space Ĝ = L\G̃ and
ρ : Ĝ→ G be the natural projection induced by G̃→ G. The group Fr still acts
on the left on Ĝ and L is the kernel of this action. The map f̃ induces a map
f̂ : Ĝ→ Ĝ such that ρ ◦ f̂ = f ◦ ρ. Moreover, according to (2), for every g ∈ Fr,

ϕ(g) ◦ f̂ = f̂ ◦ g. (3)

Lemma 4.5. The map f̂ : Ĝ→ Ĝ admits a filtration which makes f̂ be an RRT
representing the outer class of ϕ restricted to L. Moreover, for every exponential
stratum Ĥ of Ĝ there exists k ∈ {1, . . . ,m} such that

1. Hk is an exponential stratum of G,

2. Ĥ is contained in ρ−1(Hk) and

3. f̂ sends Ĥ in Ĥ ∪ ρ−1(Gk−1).

Proof. We observe that, by construction, f̂ : Ĝ → Ĝ is a topological represen-
tative of ϕ restricted to L, and ∅ = ρ−1(G0) ⊂ ρ−1(G1) ⊂ · · · ⊂ ρ−1(Gm) = Ĝ

is an invariant filtration for f̂ . We are going to define a finer filtration (Ĝk,j)
where the pairs (k, j) are endowed with the lexicographical order such that for
every k ∈ {1, . . . ,m} we have

ρ−1(Gk−1) ⊂ Ĝk,1 ⊂ Ĝk,2 ⊂ . . . ⊂ Ĝk,s = ρ−1(Gk).

Let k ∈ {0, . . . ,m}. We focus on the stratumHk of height k ofG. We distinguish
three cases.

1. If Hk is a zero stratum, we just put Ĝk,1 = ρ−1(Gk). Since ρ ◦ f̂ = f ◦ ρ,
we have f̂(Ĝk,1) ⊆ ρ−1(Gk−1). Therefore the associated stratum is a zero
stratum.
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2. If Hk is a non-exponential stratum, it consists of a single edge e with
f(e) = eu where u is a loop in Gk−1. Then ρ−1(e) is a collection of κ edges:
ê1, . . . , êκ (recall that κ is the index of L in Fr). For every j ∈ {1, . . . , κ},
we put Ĝk,j = {ê1, . . . , êj} ∪ ρ−1(Gk−1). Since ρ ◦ f̂ = f ◦ ρ, we get
that f̂(êj) = êj ûj where ûj is a path in ρ−1(Gk−1). In particular, f̂ let
invariant the filtration

ρ−1(Gk−1) ⊂ Ĝk,1 ⊂ . . . ⊂ Ĝk,κ = ρ−1(Gk).

Moreover each stratum coming from this filtration consists of a single
edge êj and its transition matrix is the scalar matrix 1. Thus it is a
non-exponential stratum.

3. Assume now that Hk is an exponential stratum. We define a binary rela-
tion on ρ−1(Hk). Given two edges ê1 and ê2 we say that ê1 ∼ ê2 if there
exists p ∈ N such that ê1 or ê−1

1 is an edge of f̂p(ê2). This relation is
reflexive and transitive. We claim that it is an equivalence relation. Let
ê1 and ê2 be two edges of ρ−1(Hk) such that ê1 ∼ ê2. We want to prove
that ê2 ∼ ê1. By definition of our relation there exists p ∈ N such that
ê1 or ê−1

1 is an edge of f̂p(ê2). For simplicity we assume that ê1 belongs
to f̂p(ê2). The other case works in the same way. We write e1 = ρ(ê1)
and e2 = ρ(ê2) for their respective images in G. Since the stratum Hk is
aperiodic there exists q ∈ N such that e2 or e−1

2 is an edge of fq(e1). For
simplicity we assume that e2 is an edge fq(e1). Since ρ ◦ f̂ = f ◦ ρ there
exists a preimage of e2 in Ĝ which is an edge of f̂q(ê1). Thus there exists
u ∈ Fr such that u · ê2 is an edge of f̂q(ê1). We now prove by induction
that for every ` ∈ N, u` · ê2 is an edge of f̂ `(p+q)+q(ê1), where

u` = ϕ`(p+q)(u) · · ·ϕp+q(u)u.

If ` = 0 the statement follows from the definition of u. Assume that it is
true for ` ∈ N, i.e. u` · ê2 is an edge of f̂ `(p+q)+q(ê1). Using (3) we get that
ϕp(u`) · f̂p(ê2) = f̂p(u`ê2) is a subpath of f̂ (`+1)(p+q)(ê1). In particular
ϕp(u`) · ê1 lies in f̂ (`+1)(p+q)(ê1). With a similar argument we get that
ϕp+q(u`)u · ê2 lies in f̂ (`+1)(p+q)+q(ê1). However

ϕp+q(u`)u = ϕ(`+1)(p+q)(u) · · ·ϕp+q(u)u = u`+1.

Thus the statement holds for ` + 1, which completes the proof of the
induction.

Since L has finite index in Fr, there exist ` ∈ N and t ∈ N∗ such that
u` and u`+t are in the same L-coset, i.e. u`+tu−1

` ∈ L. However

u`+tu
−1
` = ϕ(`+t)(p+q)(u) · · ·ϕ(`+1)(p+q)(u) = ϕ(`+1)(p+q)(ut−1).

Since L is ϕ-invariant, we derive that ut−1 belongs to L. Recall that L is
the kernel of the action of Fr on Ĝ, hence ut−1 · ê2 = ê2. On the other
hand, ut−1 · ê2 is an edge of f̂ (t−1)(p+q)+q(ê1). Consequently ê2 ∼ ê1,
which completes the proof of our claim.
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We denote by Ĥk,1, · · · , Ĥk,s the equivalence classes for the relation ∼.
For every j ∈ {1, . . . , s}, we put Ĝk,j = Ĥk,1 ∪ · · · ∪ Ĥk,j ∪ ρ−1(Gk−1). By
construction, the filtration

ρ−1(Gk−1) ⊂ Ĝk,1 ⊂ . . . ⊂ Ĝk,s = ρ−1(Gk)

is f̂ -invariant. Moreover the strata Ĥk,1, . . . , Ĥk,s associated to this fil-
tration are irreducible. We claim that they are exponential. Let j ∈
{1, . . . , s}. Let Mk,j be the transition matrix of Ĥk,j . It is known that if
the PF-eigenvalue of Mk,j is 1, then Mk,j is a permutation matrix. Thus
there exist an edge ê ∈ Ĥk,j and a positive integer p such that ê is the
only edge of ρ−1(Hk) in f̂p(ê). In particular, if e stands for e = ρ(ê) we
get that e is the only edge of Hk in fp(e). This contradicts the fact that
H is aperiodic. Hence the PF-eigenvalue of Mk,j is larger than 1 and the
stratum Ĥk,j is exponential.

Finally, recall that f satisfies properties (RTT-i), (RTT-ii) and (RTT-iii). It
follows from ρ ◦ f̂ = f ◦ ρ, that f̂ also satisfies properties (RTT-i), (RTT-ii) and
(RTT-iii).

Lemma 4.6. For every edge ê in an exponential stratum Ĥ of Ĝ, for every
p ∈ N, every maximal subpath of f̂p#(ê) that does not cross Ĥ is not a loop.

Proof. Let ê be an edge of an exponential stratum Ĥ of Ĝ. Let p ∈ N. Let β̂ be
a maximal subpath of f̂p#(ê) that does not cross Ĥ. By Lemma 4.5, there exists
k ∈ {1, . . . ,m} such that Hk is an exponential stratum of G, Ĥ is contained in
ρ−1(Hk) and f̂(Ĥ) is a subset of Ĥ ∪ρ−1(Gk−1). We denote by e the image of ê
by ρ. It belongs to Hk. Since ρ is a continuous locally injective map, f̂p#(ê) is a
lift of fp#(e). It follows that β = ρ(β̂) is a maximal subpath of fp#(e) contained
in Gk−1. If β is not a loop, neither is β̂. Therefore we can assume that β is a
loop in G. By construction of P, there exists a loop β′ in P ∪f#(P) such that β
is the image of β′ by some power of f#. However, by definition, the conjugacy
class of Fr represented by β′ does not intersect L ⊂ H. Since L is ϕ-invariant,
neither does the conjugacy class of Fr represented by β. Thus its lift β̂ in Ĝ
cannot be a loop.

Lemma 4.7. Let n be an integer. Recall that κ is the index of L in Fr. If Φ
induces an outer automorphism of finite order of Br(κn) then its restriction to
L induces an outer automorphism of finite order of L/Ln.

Proof. According to Remark 1.1, the image of ϕ in Aut (Br(κn)) has finite
order. Hence there exists p ∈ N such that for every g ∈ Fr, ϕp(g)g−1 belongs
to Fκnr . However, L has index κ in Fr. It follows that for every g ∈ Fr, gκ
lies in L. In particular, Fκnr is a subset of Ln. Consequently for every g ∈ L,
ϕp(g)g−1 belongs to Ln. It exactly means that, as an automorphism of L/Ln,
ϕp is trivial. Hence the restriction of Φ to L induces an automorphism of finite
order of L/Ln.

Proposition 4.4 becomes a consequence of the following result.



16

Proposition 4.8. Let Φ ∈ Out (Fr) be an outer automorphism represented by
an RTT f : G → G. Assume that for every edge e in an exponential stratum
H, for every p ∈ N, every maximal subpath of fp#(e) that does not cross H is
not a loop. Then there exists n0 ∈ N such that for all odd integers n > n0, Φ
induces an outer automorphism of Br(n) of infinite order.

4.3 Automorphisms with only one exponential stratum

The following lemma is proved by the first author in [11] using the structure
of free products.

Lemma 4.9 (Coulon [11, Lemma 1.9]). Let n be an integer. Let ϕ be an
automorphism of Fr which stabilizes a free factor H. We assume that ϕ induces
an automorphism of finite order of Br(n). Then, the restriction of ϕ to H also
induces an automorphism of finite order of H/Hn.

Let Φ ∈ Out (Fr) be an exponentially growing outer automorphism, and let
f : G → G be an RTT representing Φ with a filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂
Gm = G. By Remark 3.4 (2), f has at least one exponential stratum. We
assume that f satisfies the additional assumption of Proposition 4.8, i.e. for
every edge e in an exponential stratum H, for every p ∈ N, every maximal
subpath of fp#(e) that does not cross H is not a loop. By replacing if necessarily
Φ by a power of Φ, we can assume that the exponential strata of the RTT
are aperiodic. Note that this operation does not affect the graph G. However
one might need to refine the filtration of the RTT. In particular the RTT does
not necessarily satisfy anymore the additional assumption of Proposition 4.8.
Nevertheless for every edge e in the lowest exponential stratum Hk for every
p ∈ N, every maximal subpath of fp#(e) that does not cross Hk is not a loop.

Let G′ be the connected component of the graph Gk which contains Hk. We
assert that G′ is f -invariant, i.e. f(G′) ⊆ G′. Indeed, G′ ∩ f(G′) is non-empty
(it contains Hk) and f(G′) is connected. Let H be the free factor of Fr defined
by G′ ⊆ G, and let Ψ ∈ Out (H) be the outer automorphism induced by the
restriction f ′ = f G′ : G′ → G′. We note that f G′ : G′ → G′ is an RTT
representing Ψ, which has exactly one exponential stratum, namely Hk, which
is aperiodic and the top stratum of f ′. In particular Ψ has exponential growth.

Lemma 4.10. If Ψ induces an outer automorphism of H/Hn of infinite order,
then Φ also induces an outer automorphism of Br(n) of infinite order.

Proof. There exists an automorphism ϕ in the class of Φ which stabilizes H.
Assume that Φ induces an outer automorphism of Br(n) of finite order. In
particular the image of ϕ in Aut (Br(n)) has finite order (see Remark 1.1). It
follows from the previous lemma that the restriction to H of ϕ (and thus Ψ)
induces an automorphism (outer automorphism) of finite order of H/Hn.

It follows from our discussion that Proposition 4.8 is a consequence of the
following statement.

Proposition 4.11. Let Φ ∈ Out (Fr) be an outer automorphism represented by
an RTT f : G→ G with exactly one exponential stratum H, which is aperiodic
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and the top stratum of f . Assume that for every edge e in H, for every p ∈ N,
every maximal subpath of fp#(e) that does not cross H is not a loop. Then
there exists n0 ∈ N such that for all odd integers n > n0, Φ induces an outer
automorphism of Br(n) of infinite order.

5 Tracking powers
The next two sections are dedicated to the proof of Proposition 4.11. As

we explained in the introduction, the goal is to understand in which extend a
periodic path can appear in the orbit of a circuit under the iteration of the
train-track map. This is the purpose of this section.

The general strategy is the following. We consider an outer automorphism Φ
represented by an RTT f : G → G with a single exponential stratum H which
is aperiodic. Then, we fix an edge e• in H. For every p ∈ N, we look at the
path obtained by removing from fp#(e•) all the edges which are not in H. This
sequence can be interpreted as the orbit of e• under a substitution over the set
of oriented edges of H (Lemma 5.1). It follows from the aperiodicity of H that
this substitution is primitive. Therefore we would like to apply Proposition 2.1.
We need to rule out first the case of an infinite shift-periodic word, though
(Proposition 2.1 (ii)). The dynamic of the substitution is not sufficient to con-
clude here. Remark 2.2 provides indeed an example of a primitive substitution
σ with an infinite shift-periodic fixed point. However the particularity of this
example is that σ does not represent an automorphism of F3. Our proof (see
Proposition 5.2) strongly uses the fact that the substitution we are looking at
comes from an automorphism of the free group.

From now on, Φ denotes an outer automorphism of Fr which can be rep-
resented by an RTT f : G → G with exactly one exponential stratum H.
Moreover, H is aperiodic and the top stratum of f . We denote by E the set of
all the oriented edges of H. In addition, we assume that for every e ∈ E , for
every p ∈ N, every maximal subpath of fp#(e) that does not cross H is not a
loop.

By replacing if necessary Φ by a power of Φ we can assume that for every
vertex v of G, f(v) is fixed by f and that there exists e• ∈ E such that Df(e•) =
e•. Note that this operation does not affect the graph G or the exponential
stratum. In particular, H is still the only exponential stratum of f . It is
aperiodic and the top stratum. By choice of e•, f fixes the initial vertex x0 of
e•. Thus it naturally defines an automorphism ϕ ∈ Aut (π1(G, x0)) in the outer
class Φ: if g is an element of π1(G, x0) represented by a loop α based at x0,
then ϕ(g) is the homotopy class of f(α) (relative to x0).

5.1 The yellow-red decomposition.
We refer to the edges of H as red edges and to the edges of G \H as yellow

edges. Recall that G̃ denotes the universal cover of G. An edge of G̃ can be
labelled by the edge of G of which it is the lift. In particular its color is given
by the color of its label.
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A k-legal path of G (where k is the height of H) will be call a red-legal path.
A path (in G or in G̃) is a yellow path if it only crosses yellow edges. Red paths
are defined in the same way. Any path α (in G or in G̃) can be decomposed
as a concatenation of maximal yellow and red subpaths: α = α1 . . . αq, where
αi (1 6 i 6 q) is a non trivial subpath of α which is either yellow or red, and
for all i ∈ {1, . . . , q − 1}, αi and αi+1 have not the same color. According to
Lemma 3.3, this decomposition is a splitting of α.

The red word associated to a path. We associate to any path of edges α
in G or G̃ a word Red (α) over the alphabet E . As a path of edges, α is labelled
by a word over the alphabet that consists of all oriented edges of G. The word
Red (α) is obtained from this word by removing all the letters corresponding to
yellow edges. We stress on the fact that if α is a reduced path, then Red (α) is
not, in general, a reduced word.

5.2 The induced substitution on red edges.
Definition and first properties. We associate to the RTT f a substitution
σ on E called the induced substitution. It is defined as follows.

For every e ∈ E , σ(e) = Red (f(e)) .

Lemma 5.1. Let α be a red-legal path in G. For all p ∈ N, we have

Red
(
fp#(α)

)
= σp(Red (α)).

Proof. We consider a decomposition of α as α = α1e1α2e2 . . . αqeqαq+1 where
each ei ∈ E is a red edge, and each αi is a (possibly trivial) yellow subpath. In
particular, Red (α) = e1e2 . . . eq. The path α being red-legal, Lemma 3.3 leads
to

f#(α) = f#(α1e1α2e2 . . . αqeqαq+1)

= f#(α1)f(e1)f#(α2)f(e2) . . . f#(αq)f(eq)f#(αq+1).

However, f sends yellow edges to yellow paths. We deduce that

Red (f#(α)) = Red (f(e1)) Red (f(e2)) . . .Red (f(eq))

= σ(e1)σ(e2) . . . σ(eq) = σ(e1e2 . . . eq) = σ(Red (α))

The image by f# of a red-legal path is still a red-legal path. Therefore for all
p ∈ N,

Red
(
fp+1

# (α)
)

= Red
(
f#

(
fp#(α)

))
= σ

(
Red

(
fp#(α)

))
.

The result follows by induction on p.

Primitivity of the induced substitution. The material of this paragraph
is widely inspired by the work of P. Arnoux and all. [2, Section 3]. Recall that
Θ : E → E is the map which sends e to e−1. We extend Θ to the free monoid
E∗ in the following way. Let w be an element of E∗. By definition, it can be
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written w = e1e2 . . . eq where ei ∈ E . We put Θ(w) = e−1
q . . . e−1

2 e−1
1 . It defines

an involution of E∗ called the flip map. Moreover, we observe that for all edges
e ∈ E , σ ◦Θ(e) = Θ ◦ σ(e). Thus σ and Θ commute on E∗. The substitution σ
is said to be orientable with respect to a subset ~E of E if

(i) ~E and Θ(~E) make a partition of E ,

(ii) σ(~E) ⊂ ~E∗.

Note that (i) just says that ~E is a preferred set of oriented edges for H. In that
case, σ induces a substitution of ~E∗, that we still denote by σ.

By assumption the red stratum H of f is aperiodic. In other words its tran-
sition matrix M is primitive. Applying [2, Proposition 3.7], we know that

• either σ is not orientable and then σ is a primitive substitution on the
alphabet E ,

• or there exists a subset ~E of E such that σ is orientable with respect to ~E
and then σ induces a primitive substitution on the alphabet ~E .

Thus in both cases, there exists a subset E• of E containing e• such that σ(E•) ⊂
E∗• and the substitution σ : E∗• → E∗• is primitive.

5.3 A red word without large powers
The infinite red word σ∞(e•). Recall that e• is a red edge of E that has been
chosen in such a way that Df(e•) = e•. Because the red stratum is aperiodic,
f(e•) = e• · α where Red (α) is non trivial. In particular e• is a prefix of σ(e•).
According to Proposition 2.1 the sequence (σp(e•)) converges to an infinite word
σ∞(e•) of EN• . Note that f(e•) = e• · α is a splitting. Hence for every p ∈ N,

fp#(e•) = e• · α · f#(α) · . . . · fp−1
# (α).

Hence (fp#(e•)) also converges to an infinite path

f∞# (e•) = e• · α · f#(α) · . . . · fp#(α) · . . .

Proposition 5.2. The infinite word σ∞(e•) is not shift periodic.

This proof combines a dynamical argument (σ is a primitive substitution)
and a group theoretical one (ϕ is an automorphism of Fr). Let us sketch first
the main steps. We assume that the proposition is false. This means that if
we restrict our attention to the red edges, the path f∞# (e•) is periodic. We
construct from G a colored graph Γ on which f∞# (e•) coils up. More precisely
its fundamental group H can be decomposed as a free product H = L ∗ 〈h〉,
where L is generated by conjugates of yellow loops and h is represented by a
loop γ̂ with the following property. If we collapse all the yellow edges of Γ we
obtain a simple (red) loop which is exactly the image of γ̂ by the same operation.
Moreover, this red loop is the period of the red word associated to f∞# (e•) (see
Figure 3). We show that the RTT f induces a homotopy equivalence f̂ : Γ→ Γ
that catches two conflicting features of Φ:
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1. Since the stratum H is exponential, f̂ should increase the length of the
red word associated to γ̂ (see Lemma 5.7).

2. The yellow components of G are invariant under f . It follows that the
automorphism of H induced by f̂ sends h to gh±1, where g belongs to the
normal subgroup generated by L.

The key fact is that these two properties can be observed in the abelianization
of H which leads to a contradiction.

Proof of Proposition 5.2. Assume that σ∞(e•) is shift-periodic. Recall that, as
a substitution of E∗• , σ is primitive. Proposition 2.1 implies that there exists an
integer q > 2 and a primitive word u = e1e2 . . . e` of E∗• such that σ∞(e•) = u∞

and σ(u) = uq. Notice that e1 = e•. This means, in particular, that the infinite
path f∞# (e•) is obtained as a concatenation

f∞# (e•) = γ0 · γ1 · γ2 · . . . · γk · . . . ,

of loops
γk = e1 · αk`+1 · e2 · αk`+2 · . . . · e` · α(k+1)`,

where the αi are (possibly trivial) yellow paths. Moreover, if αi is non trivial,
then it is a maximal yellow subpath of the image by power of f# of a red edge.
By assumption, none of them is a loop. Recall that x0 is the initial point of
e1 = e•. For every i ∈ {1, . . . , `}, yi and xi respectively stand for the initial and
the terminal points of αi. In particular, x0 = x`. We now focus on the path
γ = γ0:

γ = e1 · α1 · e2 · α2 · . . . · e` · α`.

Lemma 5.3. The path f#(γ) is exactly γ0 . . . γq−1. In particular, it is an initial
subpath of the infinite path f∞# (e•).

Proof. By construction, there exists p ∈ N such that γ0 · γ1 is a proper initial
subpath of fp#(e•). Moreover, the terminal point of γ0γ1, which is also the initial
vertex of the red edge e1 = e•, is splitting point of the yellow-red splitting of
fp#(e•). Thus f#(γ0γ1) = f#(γ0)·f#(γ1) is an initial subpath of fp+1

# (e•), hence
of f∞# (e•). However, by Lemma 5.1

Red (f#(γ0)) = σ(Red (γ0)) = σ(u) = uq = Red (γ0 . . . γq−1) .

It follows that there exists a subpath α′ of αq` such that

f#(γ0) = [γ0 . . . γq−2]
[
e1α(q−1)`+1e2α(q−1)`+2 . . . e`α

′] .
On the other hand, γ1 and thus f#(γ1) starts with the red edge e1 = e•. Since
f#(γ0) · f#(γ1) is an initial subpath of fp+1

# (e•), the path α′ is necessarily the
whole αq`. Consequently f#(γ) = γ0 . . . γq−1.

The graph Γ and the loop γ̂. Let i ∈ {1, . . . , `}. We define Ĝi to be a copy
of the largest connected yellow subgraph of G containing yi. We denote by α̂i
(respectively ŷi and x̂i) the path αi (respectively the vertices yi and xi) viewed
as a path of Ĝi (respectively as vertices of Ĝi).
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We now construct a graph Γ as follows. We start with the disjoint union of
the Ĝi for i ∈ {1, . . . , `}. Then, for every i ∈ {1, . . . , `}, we add an oriented edge
êi whose initial and terminal points are respectively x̂i−1 and ŷi. The reverse
edge ê−1

i is attached accordingly. In this process we think about the indices i
as elements of Z/`Z. In particular, x̂0 should be understood as the point x̂` of
Ĝ`. We denote by Γ the graph obtained in this way (see Figure 3). Let ρ be the

ê1

ê2

ê2

êi

êi+1

ê`�1

ê`

↵̂`

↵̂1

↵̂2

↵̂i

↵̂k`+i

↵̂`�1

x̂` = x̂0

ŷ1

x̂1

ŷ2

x̂2

ŷi

x̂i

ŷ`�1

x̂`�1

ŷ`

Ĝ`

Ĝ1

Ĝ2

Ĝi

Ĝ`�1

Figure 3: The graph Γ

graph morphism ρ : Γ → G such that for every i ∈ {1, . . . , `}, ρ(êi) = ei and
the restriction of ρ to Ĝi is the natural embedding Ĝi ↪→ G. We color the edges
of Γ by the color of their images under ρ. In other words, the edges êi are red,
whereas the edges of the subgraphs Ĝi are yellow. By construction, the loop γ̂
defined below is a lift of γ in Γ.

γ̂ = ê1α̂1ê2α̂2 . . . ê`α̂`.

The subgroup H. We denote by H the fundamental group π1(Γ, x̂0). Let us
choose a maximal tree Ti in each Ĝi. The union T defined below is a maximal
tree of Γ.

T =

(⋃̀
i=1

Ti

)
∪

(
`−1⋃
i=1

êi

)
.
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For every edge e of Γ not in T , we write βe for the path contained in T starting
at x̂0 and ending at the initial vertex of e. We define he as the element of H
represented by βeeβ−1

e−1 . Let i ∈ {1, . . . , `}. For each unoriented edge of Ĝi \ Ti,
we chose one of the two corresponding oriented edges. We denote then by Fi
the preferred set of oriented edges obtained in this way. We write F for the
union

F =
⋃̀
i=1

Fi.

Lemma 5.4. Let h be the element of H represented by γ̂. The family B obtained
by taking the union of (he)e∈F and {h} is a free basis of H.

Proof. It follows from the definition of F that the family (he)e∈F∪{ê`} is a free
basis of H. By construction of Γ, h = g · hê` where g is a product of some he
with e ∈ F ∪ F−1. This implies that the family (he)e∈F together with h forms
a free basis of H.

Let k ∈ N and ∈ i ∈ {1, . . . , `}. The path αk`+i and αi have the same
endpoints, namely yi (the terminal point of ei) and xi (the initial point of
ei+1). In particular, they are contained in the same maximal yellow connected
component of G. We denote by α̂k`+i the copy in Ĝi of αk`+i (See Figure 3).
We put

γ̂k = ê1α̂k`+1ê2α̂k`+2 . . . ê`α̂(k+1)`.

By construction γ̂k is a loop of Γ based at x̂0 lifting γk (i.e. ρ ◦ γ̂k = γk).

Lemma 5.5. Let h be the element of H represented by γ̂. Let k ∈ N. There
exists g in the normal subgroup generated by (he)e∈F such that the element of
H represented by the loop γ̂k is gh.

Proof. It just follows from the following equality

γ̂k =
[
ê1

(
α̂k`+1α̂

−1
1

)
ê−1

1

] [
ê1α̂1ê2

(
α̂k`+2α̂

−1
2

)
ê−1

2 α̂−1
1 ê−1

1

]
. . .[

ê1α̂1ê2 . . . ê`−1

(
α̂(k+1)`−1α̂

−1
`−1

)
ê−1
`−1 . . . ê

−1
2 α̂−1

1 ê−1
1

][
γ̂
(
α̂−1
` α̂(k+1)`

)
γ̂−1

]
γ̂

Lemma 5.6. The map ρ : Γ→ G is locally injective.

Proof. We proof this lemma by contradiction. Let ê and ê′ be two distinct edges
of Γ with the same initial vertex v̂. Suppose that ρ(ê) = ρ(ê′). There exists
i ∈ {1, . . . , `} such that v̂ is a vertex of Ĝi. By construction ρ preserves the
color of the edges, thus ê and ê′ necessarily have the same color. We distinguish
two cases. Assume first that ê and ê′ are both yellow edges. Recall that the
restriction of ρ to Ĝi is the inclusion Ĝi ↪→ G. Thus ê = ê′. Contradiction.
Assume now that ê and ê′ are red. By construction of Γ, at most two red edges
have an initial vertex in Ĝi. Without loss of generality we can assume that
ê−1 = êi and ê′ = êi+1 (as previously, if i = ` then êi+1 correspond to ê1).
Then ρ(v̂) is the terminal vertex yi of ei and the initial vertex xi of ei+1. Thus
the yellow path αi is either trivial or a loop of G. By assumption, it cannot be
a loop, thus αi is trivial and ei+1 = ρ(ê′) = ρ(ê) = e−1

i . It contradicts the fact
that γ is a path. Consequently ρ is locally injective.

If follows from the lemma that ρ induces an embedding ρ∗ from H into
π1(G, x0). From now on, we identify H with its image in π1(G, x0).
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The automorphism induced on H. Recall that ϕ is the automorphism of
π1(G, x0) in the outer class Φ induced by f . We now prove that ϕ induces an
automorphism of H. To that end we lift the RTT f into a map f̂ : Γ→ Γ.

Lemma 5.7. There exists a continuous map f̂ : Γ→ Γ satisfying the followings.

1. f ◦ ρ = ρ ◦ f̂

2. f̂(γ̂) is homotopic relatively to its endpoints to γ̂0 . . . γ̂q−1.

Proof. For every i ∈ {1, . . . , `}, we denote by Γi the subgraph of Γ containing
the red edges ê1, . . . , êi and the yellow graphs Ĝ1, . . . , Ĝi. In particular, Γ` is
the whole graph Γ. By convention, we put Γ0 = {x̂0}. Let i ∈ {1, . . . , `}. The
path γ can be split as follows

γ = (e1α1 . . . eiαi) · (ei+1αi+1 . . . e`α`).

Therefore f#(e1α1 . . . eiαi) is an initial subpath of f#(γ) = γ0 . . . γq−1 (see
Lemma 5.3). However the path γ̂0 . . . γ̂q−1 is by construction a lift in Γ of
γ0 . . . γq−1. Thus there exists a path β̂i in Γ starting at x̂0 such that ρ ◦ β̂i =

f#(e1α1 . . . eiαi). In particular β̂` = γ̂0 . . . γ̂q−1. In addition, we define β̂0 to be
the trivial path equal to x̂0.

We claim that for every i ∈ {0, . . . , `}, there exists a continuous map f̂i :
Γi → Γ satisfying the following

1. f ◦ ρ = ρ ◦ f̂i,

2. f̂i(ê1α̂1 . . . êiα̂i) is homotopic relatively to its endpoints to β̂i.

We proceed by induction on i. By assumption f fixes the vertex x0. We put
f̂0(x̂0) = x̂0, hence the claim holds for i = 0. Assume now that the claim holds
for i ∈ {0, . . . , `− 1}. Our goal is to extend f̂i into a map f̂i+1 : Γi+1 → Γ.
We start with the following observation. By construction the path γ splits as
follows

γ = (e1α1 . . . eiαi) · ei+1 · αi+1 · (ei+2αi+2 . . . e`α`).

Therefore we have

f#(γ) = f#(e1α1 . . . eiαi) · f(ei+1) · f#(αi+1) · f#(ei+2αi+2 . . . e`α`).

In particular f(ei+1) is a subpath of f#(γ). The path ê1α̂1 . . . êiα̂i is con-
tained in Γi. According to the induction hypothesis, f̂i(ê1α̂1 . . . êiα̂i) is a lift of
f(e1α1 . . . eiαi) which is homotopic relatively to its endpoints to β̂i. In particu-
lar f̂i(x̂i) is the endpoint of β̂i and a preimage in Γ of f(xi). Recall that β̂i is the
lift in Γ of f#(e1α1 . . . eiαi). Therefore we can define f̂i+1(êi+1) to be the path
of Γ starting at f̂i(x̂i) that lifts f(ei+1). Let us now focus on Ĝi+1. Since ei+1

is a red edge, its image under f starts and ends by a red edge. In particular,
there exists j ∈ {1, . . . , `} such that the last edge of f(ei+1) is ej . On the other
hand f is continuous and sends yellow edges to yellow paths. Therefore it maps
the largest yellow connected component of G containing yi+1 to the largest yel-
low connected component of G containing the endpoint of f(ei+1), i.e. yj . It
provides a map from Ĝi+1 to Ĝj , which completes the definition of f̂i+1.
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It remains to prove that f̂i+1(ê1α̂1 . . . êi+1α̂i+1) is homotopic relatively to its
endpoints to β̂i+1. By construction

f̂i+1(ê1α̂1 . . . êi+1α̂i+1) = f̂i(ê1α̂1 . . . êiα̂i)f̂i+1(ê1)f̂i+1(α̂i+1)

In particular it is homotopic relatively to its endpoints to β̂if̂i+1(ê1)f̂i+1(α̂i+1).
However, β̂if̂(êi) is the lift starting at x̂0 of f#(e1α1 . . . eiαiei+1). Thus it is
sufficient to prove that f̂i+1(α̂i+1) is homotopic relatively to its endpoints to
the lift starting at f̂i+1(ŷi+1) of f#(αi+1). However, these last paths all belong
to Ĝj and the restriction of ρ to Ĝj is the natural embedding Ĝj ↪→ G. The
conclusion follows then from the fact that f(αi+1) and f#(αi+1) are homotopic
relatively to their endpoints in the yellow connected component of G they belong
to. Thus the claim holds for i+ 1

Note that if i = ` our construction provides two definitions for f̂`(x̂0). On the
one hand f̂0(x̂0) = x̂0. On the other hand x̂0 = x̂` is the endpoint of α̂` that
belongs to Ĝl. However f̂`(γ̂) and γ̂0 . . . γ̂q−1 are homotopic relatively to their
endpoints. Thus the endpoints of γ̂ (which is x̂0) is sent to the endpoint of γ̂q−1,
i.e. x̂0. Hence f̂` is well defined. We conclude the proof by taking f̂ = f̂`.

Lemma 5.8. The map ϕ induces an automorphism of H.

Proof. It follows from Lemma 5.7 that ϕ(H) is a subgroup of H. As a conse-
quence of the LERF property, it implies that the restriction of ϕ to H is an
automorphism – see for instance Lemma 6.0.6 in [4].

The abelianization of H. We now completes the proof of Proposition 5.2.
Let d be the rank of the free group H. We consider the the abelianization
morphism H → Zd. In particular ϕ induces an automorphism ϕab of Zd. We
denote by C the image in Zd of the free basis B of H given by Lemma 5.4. The
first (d − 1) elements of B (the ones corresponding to oriented edges in F) are
conjugates of a yellow loops of Γ. However f and thus f̂ maps yellow edges to
yellow edges. Hence the subgroup Zd−1 generated by the first (d− 1) elements
of C is invariant under ϕab. By Lemma 5.7, f̂(γ̂) is homotopic relatively to {x̂0}
to γ̂0γ̂1 · · · γ̂q−1. It follows from Lemma 5.5 that the matrix R of ϕab in the
basis C has the following shape:

R =


? . . . ? ?
...

...
...

? . . . ? ?
0 . . . 0 q

 .

Since q > 2, the determinant of R cannot be invertible in Z, which contradicts
the fact that ϕab is an automorphism. We have thus proved that σ∞(e•) is not
shift-periodic.

Proposition 5.9. There exists an integer m such that for every p ∈ N, as a
word over E•, Red

(
fp#(e•)

)
does not contains an m-th power.
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Proof. According to Lemma 5.1, for every p ∈ N, the red word associated to
fp#(e•) is exactly σp(e•). However the substitution σ is primitive and the infinite
word σ∞(e•) is not shift-periodic. Hence the result follows from Proposition 2.1.

6 The automorphism of Br(n) induced by ϕ.

6.1 A criterium of non triviality in Br(n)

Let us have a pause in order to introduce a key tool for the sequel of the proof
of Proposition 4.11.

Let (X,x0) be a pointed simplicial tree. Given two points x and x′ of X,
|x− x′| denotes the distance between them whereas [x, x′] stands for the geodesic
joining x and x′. Let g be an isometry of X. Its translation length, denoted by
‖g‖, is the quantity ‖g‖ = infx∈X |gx− x|. If X is the Cayley graph of Fr, then
‖g‖ is exactly the length of the conjugacy class of g ∈ Fr. The set of points
Ag = {x ∈ X | |gx− x| = ‖g‖} is called the axis of g. It is a subtree of X. It is
known that either ‖g‖ = 0 and Ag is the set of fixed points of g or ‖g‖ > 0 and
Ag is a bi-infinite geodesic on which g acts by translation of length ‖g‖. In the
first case g is said to be elliptic, in the second one hyperbolic. For more details
we refer the reader to [15].

Let n ∈ N. We explain now a criterium to decide whether two elements of
Fr have the same image in Br(n) or not. To that end we assume that Fr acts
by isometries on X.

Definition 6.1. Let n ∈ N and ξ ∈ R+. Let y and z be two points of X. We
say that z is the image of y by an (n, ξ)-elementary move (or simply elementary
move) if there is a hyperbolic element u ∈ Fr such that

1. diam ([x0, y] ∩Au) > (n/2− ξ) ‖u‖

2. z = u−ny.

The point z is the image of y by a sequence of (n, ξ)-elementary moves if there
is a finite sequence y = y0, y1, . . . , y` = z such that for all i ∈ {0, . . . , `− 1},
yi+1 is the image of yi by an (n, ξ)-elementary move.

Remark 6.2. Roughly speaking an elementary move allows us to replace a
subword of the form vm by vm−n provided m is sufficiently large. Assume that
X is the Cayley graph of Fr and x0 the vertex of X that corresponds to 1.
Let g be an element of Fr. The reduced word w which represents g labels the
geodesic between x0 and gx0. Let us suppose now that w can be written (as a
reduced word) w = pvms with m > n/2− ξ. It follows that

diam ([x0, gx0] ∩Au) > ‖um‖ > (n/2− ξ) ‖u‖ ,

where u is the element of Fr represented by pvp−1. Thus u−ng which is repre-
sented by pvm−ns is the image of g by an elementary move. Later in the proof,
the tree X will be the universal cover of an RTT. Therefore this formulation,
which extends the idea of substituting subwords, is more appropriate for our
purpose.
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Proposition 6.3 (Coulon [12, Theorem 4.12]). Assume that Fr acts properly
co-compactly by isometries on (X,x0). There exist n1 ∈ N and ξ ∈ R+ such that
for every odd exponent n > n1 the following holds. Two isometries g, g′ ∈ Fr
have the same image in Br(n) if and only if there exist two finite sequences of
(n, ξ)-elementary moves which respectively send gx0 and g′x0 to the same point
of X.

This proposition provides in particular a criterion for detecting trivial ele-
ments in Br(n).

Corollary 6.4. Assume that Fr acts properly co-compactly by isometries on
(X,x0). There exist n1 ∈ N and ξ ∈ R+ such that for every odd exponent
n > n1 the following holds. An element g ∈ Fr is trivial in Br(n) if and only if
there exists a finite sequence of (n, ξ)-elementary moves which sends gx0 to x0.

However, despite the similarity with the word problem in a group, Corol-
lary 6.4 is not equivalent to Proposition 6.3. This comes from the fact that
(n, ξ)-elementary moves are not symmetric. One first has to see a large power
along the geodesic [x0, gx0] before performing an elementary move. For instance,
if a and b are two distinct primitive elements of Fr, there is no sequence of ele-
mentary moves that sends an to bn. Corollary 6.4 only implies a weaker form of
Proposition 6.3 in the sense that we need to allow a larger class of elementary
moves: those of the form pvms→ pvm−ns with m > n/4− ξ/2.

In our situation, we will apply this criterion with two elements of the form
g and ϕp(g), where g ∈ Fr and ϕ is the automorphism we want to study. The
theory of train-track provides many information about the path [x0, ϕ

p(g)x0].
Therefore it is also more natural to have a criterion that uses conditions on
[x0, gx0] and [x0, ϕ

p(g)x0] rather than [gx0, ϕ
p(g)x0].

Proposition 6.3 is “well-known” from the specialists of Burnside’s groups. One
can find in Adian’s [1] or Ol’shanskĭı’s work [30] statements close to Proposi-
tion 6.3. However, to our knowledge it has never been stated in this simple way.
Let us explain the parallel with Ol’shanskĭı’s solution to the Burnside problem.
His proof is written in terms of van Kampen diagrams. In particular, Lemma 5.5
of [30] says the following. Let w be a word over a basis of Fr. For a sufficiently
large exponent n if w induces a trivial element of Br(n), then there exists a
van Kampen diagram whose boundary is labelled by w. Moreover this diagram
contains a 2-cell such that at least 1/3 of its boundary is a subpath of w. Such
a cell represents a relation of the form vn. Removing this 2-cell corresponds to
performing an elementary move. A proof by induction on the number of 2-cells
would give a statement similar to Corollary 6.4. One needs though to allow
weaker elementary moves of the form pvms→ pvm−ns with m > n/3. However
a sharpening of Lemma 5.5 of [30] should provide the same estimates.

An other difference between the two approaches is the following. A.Y. Ol’shan-
skĭı works with words over a basis of Fr: this can be interpreted in terms of an
action of Fr on its Cayley graph. In our context we have to consider the action
of Fr on a tree X which is no more its Cayley graph, but the universal cover
of a train-track. Therefore one could not apply directly Ol’shanksĭı’s result.
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One would need to use before an equivariant quasi-isometry to transpose his
statement in an arbitrary tree.

6.2 Performing elementary moves in G̃

We get back to the proof of Proposition 4.11. The notations are the same as
the ones of Section 5.

Metrics on G̃. For our purpose, the pointed tree (X,x0) that appears in
Proposition 6.3 will be the universal cover (G̃, x̃0) of G where x̃0 is preimage of
x0. By declaring that any edge of G̃ is isometric to the unit real segment [0, 1]
we obtain an Fr-invariant length metric on G̃: the combinatorial metric. We
denote by |α| the resulting combinatorial length of a path α in G̃.

We also define a pseudo-length-metric on G̃ in the following way. We first
consider that any yellow edge has length zero. Recall that E is the set of all the
oriented red edges of G. We chose a preferred set of oriented edges ~E . Recall
that the transition matrix M of the red stratum of f is aperiodic. We denote
by λ > 1 the Perron-Frobenius dominant eigenvalue of M and we consider a
positive right eigenvector l = (le)e∈~E associated to λ. We declare the lifts of e
isometric to the real segment [0, le]. The resulting pseudo-metric is called the
PF-pseudo-metric. We denote by |α|PF the resulting length of the path α in G̃:
|α|PF is called the PF-length of α. This length only depends on the red word
Red (α) ∈ E∗. If α is a red-legal path, we thus get that for all p ∈ N,

|fp#(α)|PF = λp|α|PF.

Unless stated otherwise we will work with G̃ endowed with the combinatorial
metric.

The element g and its orbit. Recall that e• is the red edge fixed at the
beginning of Section 5. For all p ∈ N, fp#(e•) is a path starting by e•. Its
yellow-red decomposition is a splitting. The red stratum H is aperiodic. Thus
if p is a sufficiently large integer, one can find an other occurrence of e• in
fp#(e•): f

p
#(e•) = e•ν0e•ν1. The path ν = eν0 is a red-legal circuit, and the

yellow-red decomposition of ν is a splitting. We denote by g the element of
π1(G, x0) represented by ν. By construction the geodesic [x̃0, gx̃0] is the lift in
G̃ of ν starting at x̃0.

Lemma 6.5. There exists an integer n2 with the following property. Let p ∈ N.
Let β be a path of G̃ such that the red words respectively associated to β and
fp#(ν) are the same. For all u ∈ Fr \ {1}, if

diam (β ∩Au) > n2 ‖u‖ ,

then the axis of u only contains yellow edges.

Proof. By construction there exists p0 ∈ N such that ν is a prefix of fp0# (e•).
More generally, for every p ∈ N, fp#(ν) is a prefix of fp+p0# (e•). According to
Proposition 5.9, there exists m ∈ N such that for every p ∈ N, the red word
associated to fp#(ν) does not contain an m-th power. Put n2 = m + 2. Let β
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be a path of G̃ and p an integer such that the red words respectively associated
to β and fp#(ν) are the same. Let u be a non-trivial element of Fr such that

diam (β ∩Au) > n2 ‖u‖ .

In particular there is a vertex x ∈ Au such that for every j ∈ {0, . . . ,m}, ujx
belongs to β. Assume now that Au contains a red edge e. Since Au is u-invariant
bi-infinite geodesic, the geodesic [x, ux] contains some red edges. In particular, if
α stands for the path [x, umx] then Red (α) contains an m-th power. However,
β is a path of G̃. Consequently, [x, umx] is a subset, hence a subpath of β.
Therefore the red word associated to β and thus to fp#(ν) contains an m-th
power. Contradiction.

We finish this section by the proof of Proposition 4.11.

Proof of Proposition 4.11. Our goal is to prove that for sufficiently large odd
integers n the sequence (ϕp(g))p∈N of elements of Fr is embedded in Br(n).
Since ϕ is an automorphism, it is sufficient to check that for all p ∈ N∗, ϕp(g) 6≡
g in Br(n). We are going to use the criterium of Section 6.1. Recall that the
geodesic [x̃0, gx̃0] is a lift in G̃ of ν. We denote by n1, ξ and n2 the constants
given, accordingly, by Proposition 6.3 and Lemma 6.5. For the rest of the proof
we fix an odd integer n larger than

n0 = max {n1, 2n2 + 2ξ + 1, |x̃0 − gx̃0|} .

Note that this lower bound only depends on the outer automorphism Φ and the
RTT f .

Let p ∈ N∗. By construction the path β = [x̃0, ϕ
p(g)x̃0] is a lift of fp#(ν).

Assume now that ϕp(g) ≡ g in Br(n). By Proposition 6.3, there exists two
sequences of (n, ξ)-elementary moves which respectively send g and ϕp(g) to
the same element of Fr. However, we fixed n > |x̃0 − gx̃0|. Therefore no (n, ξ)-
elementary move can be performed on [x̃0, gx̃0]. It follows that there exists a
sequence of (n, ξ)-elementary moves which sends ϕp(g) to g. We denote by βi
the reduced path obtained from β after the i-th (n, ξ)-elementary move. In
particular β0 = β. We are going to show, by induction on i, that:

(H1) for all j ∈ {0, . . . , i − 1}, no maximal yellow subpath of βj is completely
removed when operating the (j + 1)-th elementary move,

(H2) Red (βi) = Red (β).

If i = 0, (H1) is vacuous whereas (H2) is obvious. Assume that these two
conditions hold for i. We focus on the (i + 1)-th elementary move. Let us
denote by Au the axis of the elementary move performed on βi. In particular
diam (βi ∩Au) > (n/2− ξ) ‖u‖ in G̃. By hypothesis (H2) the red words associ-
ated to βi, β and fp#(ν) are the same. By Lemma 6.5 the axis Au only contains
yellow edges.
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x̃0 x unx ϕp(g)x̃0

u−nϕp(g)x̃0

Au

Figure 4: An elementary move removing a yellow path

We consider now the k-th maximal yellow subpath α of βi. Assume that α is
completely removed when performing the (i+ 1)-th elementary move. Since Au
is yellow, the image of α by the projection G̃ → G must be a loop. Let α′ be
the k-th maximal yellow subpath of β. By hypothesis (H1), no maximal yellow
subpath of βj is completely removed when operating the (j + 1)-th elementary
move for j ∈ {0, . . . , i − 1}. Thus α is obtained from α′ by a sequence of
elementary moves and the image of α′ by G̃ → G is also a loop. On the
other hand fp#(ν) is a prefix of some path in the orbit under f# of e•. It
follows from our original assumption that the image of α′ in G cannot be a
loop. Contradiction. Thus (H1) is true at step i + 1. Hypothesis (H1) implies
that Red (βi+1) = Red (βi), and thus Red (βi+1) = Red (β) by hypothesis (H2).
This gives (H2) at step i+ 1, which completes the induction.

Recall that (βi) is the collection of paths obtained by the sequence of ele-
mentary moves which sends ϕp(g) to g. It follows from the previous discussion
that at each step i, |βi|PF = |β|PF. In particular |fp#(ν)|PF = |β|PF = |ν|PF.
However we build ν in such a way that |fp#(ν)|PF = λp|ν|PF. This contradicts
our original assumption. Therefore for every p ∈ N, ϕp(g) 6≡ g in Br(n). In
particular ϕ (respectively Φ) induces an automorphism (respectively outer
automorphism) of Br(n) of infinite order.

7 Comments and questions

7.1 About other possible strategies of proof
In the introduction, we recalled the argument given by E.A. Cherepanov. It

is easy to elaborate a generalization to a wider class of automorphisms which
does not require the criterium stated in Proposition 6.3.

An outer automorphism Φ ∈ Out (Fr) is irreducible with irreducible powers
(or simply iwip) if there is no (conjugacy class of a) proper free factor of Fr
which is invariant by some positive power of Φ. An iwip outer automorphism
can be represented by an (absolute) train-track map f : G→ G with a primitive
transition matrix [6]. Roughly speaking it implies that there is no “yellow strata”
which were the ones responsible for having large powers in our words. As a
particular case of Proposition 5.9, there exists a loop γ in G and an integer n2



30

with the following property. For every p ∈ N, the word labeling the loop fp#(γ)
does not contain an n2-th power (as a complete word, not just its red part).
Consequently Proposition 1.4 is sufficient to conclude. Note also that, in this
context, Proposition 5.9 can be proved in a much easier way. Using either the
action of Fr on the stable tree associated to Φ (see [18, Theorem 2.1]) or the
fact that the attractive laminations of Φ cannot by carried by a subgroup of
rank 1 (see [3, Proposition 2.4]).

However as we explained in the introduction there exists automorphisms for
which one cannot use the same strategy. Consider for instance the automor-
phism ψ of F4 = F(a, b, c, d) defined in the introduction by ψ(a) = a, ψ(b) = ba,
ψ(c) = cbcd and ψ(d) = c. One can view ψ as a relative train-track map on
the rose: there is only one exponential stratum (the “red stratum” which corre-
sponds to the free factor 〈c, d〉) and the restriction of ψ to 〈a, b〉 has polynomial
growth (and 〈a, b〉 gives rise to a “yellow stratum”). We saw that ap−1 occurs
as subword of ψp(d). Nevertheless, we still do not need Proposition 6.3 to con-
clude here that the automorphism ψ satisfies the statement of Theorem 1.3. It
is sufficient to pass to the quotients of Fr and Br(n) by the normal subgroup
generated by a and b, and then to argue as previously.

Nevertheless, given an arbitrary automorphism, this trick (passing to a well
chosen quotient) seems to be less easy to run. Look at the automorphism ψ of
F4 = F(a, b, c, d) defined as follows.

ψ : a → a
b → ba
c → cd−1bd
d → dcd−1bd.

This automorphism grows exponentially. However if one considers the quotient
of F4 by the normal subgroup generated by a and b, it induces the Dehn twist
c→ c, d→ dc, which has finite order as an automorphism of B2(n).

Let ϕ be an automorphism of Fr. The geometry of the suspension Fr oϕ Z
might provide an alternative proof of Theorem 1.3. In [11], the first author
solved indeed the case where Fr oϕ Z is a hyperbolic group. Generalizing the
Delzant-Gromov approach of the Burnside Problem, he constructed a sequence
of groups Hj with lim

−→
Hj = Br(n) such that for every j,

• ϕ induces an automorphism of infinite order of Hj ,

• Hj oϕ Z is a hyperbolic group obtained from Hj−1 oϕ Z by small cancel-
lation.

It follows from the hyperbolicity that ϕ induces an automorphism of infinite
order of Br(n).

If ϕ is an arbitrary exponentially growing automorphism then Fr oϕ Z is no
more hyperbolic. However F. Gautero and M. Lustig proved that Fr oϕ Z is
hyperbolic relatively to a family of subgroups which consists of conjugacy classes
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that grow polynomially under iteration by ϕ [19, 20]. Therefore one could use
a generalization of the iterated small cancellation theory to relative hyperbolic
groups. We refer the reader to [14] for a detailed presentation of the Delzant-
Gromov approach to the Burnside problem and [13] for a generalization. See
also [16] for a theory of small cancellation in relatively hyperbolic groups.

7.2 Quotients of Out(Fr)

The following remark is due to M. Sapir. Proposition 4.1 says that for every
integer n > 1, polynomially growing automorphisms of Fr induce automor-
phisms of finite order of Br(n). More precisely their orders divide

p(r, n) = n2(2r−1−1).

Let us denote by Qr,n the quotient of Out (Fr) by the (normal) subgroup gen-
erated by {

Φp(r,n)|Φ ∈ Out (Fr) polynomially growing
}
.

In particular the p(r, n)-th power of the Nielsen transformations which gener-
ate Out (Fr) are trivial in Qr,n. It follows from Proposition 4.1 that the map
Out (Fr)→ Out (Br(n)) induces a natural map Qr,n → Out (Br(n)). Therefore
we have the following results

Theorem 7.1. Let r > 3. There exists n0 such that for all odd integers n > n0,
the group Qr,n contains copies of F2 and Zbr/2c.

Proof. This is a consequence of [11] Theorems 1.8 and 1.10.

Theorem 7.2. Let Φ be an outer automorphism of Fr. The following assertions
are equivalent:

1. Φ has exponential growth;

2. there exists n ∈ N such that the image of Φ in Qr,n has infinite order;

3. there exist κ, n0 ∈ N such that for all odd integers n > n0, the image of
Φ in Qr,κn has infinite order.

Proof. This is a consequence of our main theorem.

7.3 Exponentially growing automorphisms of the free group
can have finite order in a free Burnside group

The constant n0 in Theorem 1.3 does depend on the outer automorphism Φ ∈
Out (Fr). Indeed, we give in this section explicit examples of automorphisms in
the kernel of the natural map Aut (Fr)→ Aut (Br(n)) which have exponential
growth. In particular, there are iwip automorphisms in this kernel.

7.3.1 A first family of examples

An outer automorphism Φ ∈ Out (Fr) induces, by abelianisation, an automor-
phism of Zr. This defines a homomorphism: Out (Fr) → GL(r,Z), Φ 7→ MΦ.
Nielsen proved that for r = 2, this morphism is an isomorphism [28]. More-
over, Φ has exponential growth if and only if the absolute value of the trace of
M2

Φ ∈ GL(2,Z) is larger than 2.
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Examples: Let {a, b} be a basis of the free group F2. For n ∈ N∗, we define
ϕn ∈ Aut (F2) by ϕn(a) = a(ban)n, ϕn(b) = ban. We denote by Φn the corre-
sponding outer class in Out (F2). The outer class Φn has exponential growth
since the trace of M2

Φn
equals n4 + 4n2 + 2. However, the outer automorphism

of B2(n) induced by Φn is the identity.

For r > 2, we consider a splitting of Fr as a free product Fr = F2 ∗ Fr−2.
For n ∈ N∗, we consider the automorphism ψn = ϕn ∗ Id which is equal to
ϕn (defined in the previous paragraph) when restricted to the first factor of the
splitting and to the identity when restricted to the second factor. Again, the
outer class Ψn of ψn has exponential growth (since Φn has), but the the outer
automorphism of Br(n) induced by Ψn is the identity.

These examples show that the constant n0 in Theorem 1.3 is not uniform: it
does depend on the outer class Φ ∈ Out (Fr). The automorphisms Φn are iwip
automorphisms. But this is not the case of the automorphisms Ψn. We fix this
point in the next subsection.

7.3.2 Iwip automorphisms of Fr trivial in Out(Br(n))

To produce iwip automorphisms in the kernel of the canonical map Out (Fr)→
Out (Br(n)), one can follow the idea of W. Thurston to generically produce
pseudo-Anosov homeomorphisms of a surface by composing well chosen Dehn
twist homeomorphisms [33].

In the context of automorphisms of free groups, there is a notion of Dehn twist
(outer) automorphism – see for instance [10] – which generalizes the notion of
a Dehn twist homeomorphism of a surface: Example 4.3 provides such a Dehn
twist automorphism. In [9], M. Clay and A. Pettet explain how to generate iwip
automorphisms of Fr by composing two Dehn twist automorphisms associated
to a filling pair of cyclic splittings of Fr. We will not explicit these definitions
here. Four our purpose we only need to know that:

• Dehn twist automorphisms have polynomial growth (in fact linear growth),
and

• there exist Dehn twist automorphisms ∆1,∆2 ∈ Out (Fr) satisfying the
hypothesis of the following theorem.

Theorem 7.3 (Clay-Pettet [9, Theorem 5.3]). Let ∆1,∆2 ∈ Out (Fr) be the
Dehn twist outer automorphisms for a filling pair of cyclic splittings of Fr.
There exists N ∈ N such that, for every p, q > N :

• the subgroup of Out (Fr) generated by ∆p
1 and ∆q

2 is a free group of rank
2,

• if Φ ∈< ∆p
1,∆

q
2 > is not conjugate to a power of either ∆p

1 or ∆q
2, then Φ

is an iwip outer automorphism.

We fix an exponent n ∈ N. We consider two such Dehn twist outer auto-
morphisms ∆1 and ∆2 and the integer N ∈ N given by Theorem 7.3. Since ∆1

and ∆2 have polynomial growth, they induce automorphism of finite order of
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Br(n). In particular, there exists p > N such that Φ = ∆p
1∆p

2 is in the kernel
of the map Out (Fr) → Out (Br(n)). However Theorem 7.3 ensures that Φ is
an iwip outer automorphism of Fr.

7.4 Growth rates in Out(Fr) and Out(Br(n))

Let Φ be an exponentially growing automorphism of Fr. Our study in Sec-
tion 6 seems to indicate that for odd exponents n large enough some structure
of Φ is preserved in Br(n). Therefore we wonder how much information could
be carried through the map Out (Fr) → Out (Br(n)). In particular what can
we say about the growth rate of Φ?

Let G be a group generated by a finite set S. We endow G with the word-
metric with respect to S. The length of the conjugacy class of g ∈ G, denoted
by ‖g‖, is the length of the shortest element conjugated to g. An outer automor-
phism Φ of G naturally acts on the set of conjugacy classes of G. Consequently,
as in the free group, one can define the (exponential) growth rate of Φ by

EGR(Φ) = sup
g∈G

lim sup
p→+∞

p
√
‖Φp(g)‖.

Since the word-metrics for two distinct finite generating sets ofG are bi-lipschitz
equivalent, this rate does not depend on S. The automorphism Φ is said to have
exponential growth if EGR(Φ) > 1.

For the extend of our knowledge it is not known if there exist outer automor-
phisms of Burnside groups with exponential growth. We would like to ask the
following questions.

• Are there automorphisms of Br(n) with exponential growth?

• Let Φ ∈ Out (Fr) with exponential growth. Is there an integer n0 such
that for all (odd) exponents n > n0, the automorphism Φ̂n of Br(n)
induced by Φ has exponential growth? Such that EGR(Φ̂n) = EGR(Φ)?

• Are there automorphisms of Br(n) of infinite order which do not have
exponential growth?

On the other hand, it could be very interesting to understand to what extend
the structure of the attracting laminations associated to an outer automorphism
of Fr is preserved in Br(n). Recall that theses laminations are the fundamental
tool used by M. Bestvina, M. Feighn and M. Handel to prove that Out (Fr)
satisfies the Tits alternative [4, 5].
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118(160)(2):203–235, 287, 1982.

[31] I. N. Sanov. Solution of Burnside’s problem for exponent 4. Leningrad
State Univ. Annals [Uchenye Zapiski] Math. Ser., 10:166–170, 1940.

[32] E. Seneta. Non-negative matrices and Markov chains. Springer Series in
Statistics. Springer, New York, 2006.

[33] W. P. Thurston. On the geometry and dynamics of diffeomorphisms of
surfaces. American Mathematical Society. Bulletin. New Series, 19(2):417–
431, 1988.



36

Rémi Coulon
Department of Mathematics, Vanderbilt University
Stevenson Center 1326, Nashville TN 37240, USA
remi.coulon@vanderbilt.edu
http://www.math.vanderbilt.edu/∼coulonrb/

Arnaud Hilion
Aix Marseille Université, CNRS, Centrale Marseille, LATP, UMR 7353
13453 Marseille, France
arnaud.hilion@univ-amu.fr
http://junon.u-3mrs.fr/hilion/


	1 Introduction
	2 Primitive matrices and substitutions
	2.1 Primitive matrices
	2.2 Primitive substitutions

	3 Train-tracks and automorphisms of free groups
	3.1 Paths and circuits
	3.2 Topological representatives
	3.3 Lifts
	3.4 Invariant filtrations and transition matrices
	3.5 A quick review on relative train-track maps
	3.6 Growth of automorphisms of free groups

	4 Reductions of Theorem 1.3
	4.1 Polynomially growing automorphisms
	4.2 Passing to a finite index subgroup
	4.3 Automorphisms with only one exponential stratum

	5 Tracking powers
	5.1 The yellow-red decomposition.
	5.2 The induced substitution on red edges.
	5.3 A red word without large powers

	6 The automorphism of B r(n) induced by .
	6.1 A criterium of non triviality in B r(n)
	6.2 Performing elementary moves in 

	7 Comments and questions
	7.1 About other possible strategies of proof
	7.2 Quotients of Out(Fr)
	7.3 Exponentially growing automorphisms of the free group can have finite order in a free Burnside group
	7.3.1 A first family of examples
	7.3.2 Iwip automorphisms of Fr trivial in Out(B r(n))

	7.4 Growth rates in Out(Fr) and Out(B r(n))


