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COMPLEX CONJUGATION AND SHIMURA VARIETIES

DON BLASIUS, LUCIO GUERBEROFF

Abstract. In this paper we study the action of complex conjugation on Shimura varieties and
the problem of descending these to the maximal totally real field of the reflex field. We prove the
existence of such descent for many Shimura varieties whose associated adjoint group has certain
factors of type A or D. This includes a large family of Shimura varieties of abelian type. Our
considerations and constructions are carried out purely at the level of Shimura data and group
theory.

1. Introduction

The goal of this paper is to analyze some aspects of complex conjugation acting on Shimura
varieties. This topic has been studied for a long time by several authors, notably Shimura, Deligne,
Langlands, Milne, Shih, and more recently, Taylor. In general, given a Shimura variety Sh(G,X)
defined by a Shimura datum (G,X), and any automorphism α of C, Langlands’ conjectured
([Lan79]) that the conjugate variety α Sh(G,X) = Sh(G,X)×C,α C can be realized as a Shimura
variety Sh(αG, αX) for a very explicit pair (αG, αX). This has been proved by Milne in [Mil83]
(see also [Bor84], [Bor87] and [Mil99]). The case of α = c (complex conjugation) has, among other
properties, the particularity that the pair (cG, cX) is very concrete. Namely, it can be identified
with (G,X), where X is obtained by composing the elements of x with complex conjugation on
the Deligne torus S. This simple description is hard to find in the literature, and hence we include
a proof of how it’s deduced from the general constructions.

Assuming a few standard extra conditions on the Shimura datum (G,X), the reflex field E can be
seen to be either totally real or a CM field. The Shimura variety has a canonical model Sh(G,X)E
over E, and the Hecke operators are defined over E as well. In this paper we investigate descent
of these varieties to the maximal totally real subfield E+ of E. The existence of such descent
can be seen as a nice generalization of the useful fact that the field obtained by adjoining to Q

the j-invariant of an order in an imaginary quadratic field has a real embedding. From now on,
assume that E is CM. We show in many cases that Sh(G,X) has a model over E+. Although
the Hecke operators are not defined over E+, they can nevertheless be characterized. The general
framework for constructing such models comes from the construction of descent data arising from
automorphisms of G of order 2 taking X to X. Using the classification of (adjoint) Shimura
data in terms of special nodes on Dynkin diagrams, our aim is to construct an involution of G
that induces the opposition involution on the based root datum (or the Dynkin diagram). The
construction we make follows from the classification of semisimple groups. The groups G which we
will work with are, roughly speaking, those for which the simple factors of Gad are of classical type
A or D, and satisfy an extra condition on the hermitian or skew-hermitian space defining them
(see Definitions 4.1 and 4.2). For example, a factor of type A is attached to a hermitian space
over a central division algebra D over a CM field K endowed with an involution of the second
kind J . We show that if there exists an opposition involution on these groups, then D must be
either K or a quaternion division algebra, and the involution J is easily described. We carry out
the construction of involutions if we assume the aforementioned extra condition, which in this
case amounts to the existence of a basis of the underlying vector space such that the matrix of
the hermitian form is diagonal with entries in K. In the quaternion algebra case, we can write
D = D0 ⊗F K, where F is the maximal totally real subfield of K, and D0 is a quaternion division
algebra over F . We assume furthermore in this case that if D0,v is not split for an embedding
v : F →֒ R, then the corresponding factor of Gad

R is compact. If D = K, the conditions in Definition
4.1 are automatically satisfied. For factors of type D, there is a similar scenario, although we only
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restrict to groups of type DH as in the Appendix of [MS81]. This encompasses a large family of
Shimura varieties of abelian type. We stress here that our methods are group-theoretic and we
work purely at the level of Shimura data, without making use of any moduli interpretation. In
particular, we could also include factors of type E6 (which is the only other type apart from A or
DH that contributes to the reflex field being CM instead of totally real) if they are concrete enough
to construct involutions on them.

Let us describe the organization of the paper and outline the main argument. In Section 2,
we start by recalling the general formalism of conjugation of Shimura varieties by an arbitrary
automorphism of C, we study the special case of complex conjugation explicitly, and prove in this
case that the conjugate Shimura datum is (G,X), where X is the complex conjugate conjugacy
class of X . We show (Theorem 2.1) that if (G,X) is a Shimura datum and θ : G → G is an
involution such that θ(X) = X, then θ induces an isomorphism of algebraic varieties from the
complex conjugate c Sh(G,X) to Sh(G,X), defined over the reflex field E, that constitutes a
descent datum from E to E+.

In Section 3, we recall some basic facts about root data and opposition involutions, and in
Proposition 3.2, we lay the ground for the prototype of involutions θ : G → G that we will
construct. Roughly speaking, suppose that T ⊂ G is a maximal torus of G, and x ∈ X factors
through TR. If θ : G → G is an involution that preserves TR and induces complex conjugation on
the group of characters X∗(T ), then θ(x) = x and thus θ(X) = X. This is basically the type of
involutions that we will construct, with some slight changes. Since we will make use of the explicit
classification of semisimple groups, we need to work with either Gder or Gad. We let Gi be the

almost simple factors of Gder, and G̃i be their simply connected covers, so that G̃i = ResFi/QHi,
for certain groups Hi which are absolutely almost simple, simply connected, over a totally real field
Fi. We recall the classification of these groups in Section 4, where we also construct opposition
involutions on them preserving specific maximal tori Si and inducing complex conjugation on
their characters (for non-compact places v of Fi). We only do this for groups of type A or DH.
These, together with type E6, are the only ones that give a CM reflex field, as opposed to totally
real. Furthermore, as noted above, we impose some extra conditions in order to construct the
involutions. From the tori Si, we get maximal tori T ′ ⊂ Gder and T ⊂ G, and an opposition
involution θ′ : Gder → Gder preserving T ′. As shown in Proposition 3.2, θ′ extends uniquely to an
involution on G. To show that θ(X) = X , we need to relate in some way the choice of our tori Si,
which is a priori unrelated to the Shimura datum, to the conjugacy class X . In Section 5, we show
that there always exists x ∈ X such that xad factors through the image of TR in Gad

R . This is all
we need for Proposition 3.2. In Theorem 5.1, we state the existence of descent datum for Shimura
varieties defined by groups (G,X) such that the simple factors of Gad are of the type described in
Section 4. We call these strongly of type (ADH). Finally, we also note that involutions inducing
the desired descent datum on Sh(G,X) can be constructed whenever G is adjoint and there exists
an opposition involution θ : G → G. This is always the case if G is adjoint and quasi-split, for
example.

The existence of the involutions constructed in this paper should have interesting applications,
which will be explored in the future, for example, in the setting of integral models and the zeta
function problem, and periods of automorphic forms.

The first author thanks the Erwin Schrödinger International Institute for Mathematics and
Physics for its support during a visit when a part of the work for this project was undertaken.
A substantial part of this work was carried out while the second author was a guest at the Max
Planck Institute for Mathematics in Bonn, Germany. It is a pleasure to thank the Institute for its
hospitality and the excellent working conditions.

Notation and conventions. We fix an algebraic closure C of the real numbers R, a choice of
i =

√
−1, and we let Q denote the algebraic closure of Q in C. We let c ∈ Gal(C/R) denote

complex conjugation on C, and we use the same letter to denote its restriction to Q. Sometimes
we also write c(z) = z̄ for z ∈ C.

Let k be a field. By a variety over k we will mean a geometrically reduced scheme of finite type
over k. We let Gm,k denote the usual multiplicative group over k. For any algebraic group G over
k, we let Lie(G) denote its Lie algebra and Ad : G → GLLie(G) the adjoint representation. For
us, reductive group will always include connectedness in the definition. If G is reductive, we let
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Gad (resp. Gder) denote its adjoint group G/Z(G) (resp. its derived subgroup), where Z(G) is the
center of G. If T ⊂ G is a torus, we denote by T ad the image of T under the projection G→ Gad.
For any commutative group scheme G, we denote by iG : G→ G the map g 7→ g−1.

We denote by A (resp. Af ) the ring of adèles of Q (resp. finite adèles). A CM field K is a
totally imaginary quadratic extension of a totally real field F .

We let S = RC/RGm,C. We denote by c = cS the algebraic automorphism of S induced by

complex conjugation. For any R-algebra A, this is c⊗R 1A : (C⊗RA)
× → (C⊗RA)

× on the points
of S(A).This is often denoted by z 7→ z̄, and on complex points it should not be confused with the
other complex conjugation 1S ⊗ c on S(C) = (C⊗R C)× on the second coordinate.

An involution of a group is an automorphism of order 2, whereas an involution of a ring is an
antiautomorphism of order 2. This should not cause any confusion.

We will denote by H the non-split quaternion algebra over R, identified with the set of matrices
of the form (

x y
−y x

)

in M2(C).

2. Shimura varieties, conjugation and descent

We will first review some basic facts about Shimura varieties and conjugation by an automor-
phism of C, specializing to the case of complex conjugation. Then we set up our descent problem,
describe some general considerations about reflex fields and Dynkin diagrams, and explain how to
construct descent data based on involutions of a Shimura datum.

2.1. Shimura varieties. A Shimura datum (G,X) will be understood in the sense of Deligne’s
axioms (2.1.1.1-3, [Del79]). We will assume moreover that the connected component Z0 of the
center Z of G splits over a CM field. For a compact open subgroup K ⊂ G(Af ), we put
ShK(G,X)(C) = G(Q)\X × G(Af )/K. For K sufficiently small (which we assume from now
on), this complex analytic space is smooth and is equal to the complex points of a complex quasi-
projective variety ShK(G,X)C. Let E = E(G,X) ⊂ C be the reflex field of (G,X); under our
hypotheses, this is contained in a CM field, and thus it’s either a CM field or a totally real field.
In any case, we let E+ be the maximal totally real subfield of E. The variety ShK(G,X)C admits
a canonical model over E, denoted by ShK(G,X)E . We use the same notation for the pro-objects
Sh(G,X)(C), Sh(G,X)C and Sh(G,X)E . We denote by wX : Gm,R → GR the composition of
x ∈ X with the weight morphism w : Gm,R → S, for some (or any) x ∈ X , and call it the weight
morphism of (G,X). For x ∈ X , we let µx : Gm,C → GC be the map given by µx(z) = xC(z, 1),
under the identification of SC ∼= Gm,C ×Gm,C given by (z ⊗ a) 7→ (za, z̄a).

We will fix the following notation once and for all. Let Gder be the derived group of G, Gab =
G/Gder (a torus), Gad be the adjoint group of G and p : G → Gad be the projection onto Gad.
The natural isogeny Z0×Gder → G and the projection G→ Gab define an isogeny Z0 → Gab. Let

G1, . . . , Gr be the almost simple factors of Gder over Q, and let G̃i → Gi be their simply connected

covers. We can write G̃i = ResFi/QHi, where the fields Fi are totally real and the groups Hi are
simply connected, absolutely almost simple over Fi. For each embedding v ∈ Ii = Hom(Fi,C),
we have groups Hi,v = Hi ⊗Fi,v R, and for a fixed i = 1, . . . , r, all these groups have the same

Dynkin type Di, which will be called the Dynkin type of G̃i (or of Gi or Hi). We let Ii,c = {v ∈
Ii | Had

i,v(R) is compact} and we let Ii,nc be its complement in Ii, which must be non-empty if Hi

is non-trivial. We also have that Gad is the direct product of the Gad
i = ResFi/QH

ad
i , and Gad

R is

the direct product of the Had
i,v for i = 1, . . . , r and v ∈ Ii. Let Xad be the Gad(R)-conjugacy class

containing pR(X), and write Xad =
∏

i,v Xi,v with Xi,v an Had
i,v(R)-conjugacy class of morphisms

S → Had
i,v. For each i and each v ∈ Ii,nc, there is a special node si,v in the Dynkin diagram Di,v of

Hi,v attached to Xi,v, which uniquely determines Xi,v as a conjugacy class with target Had
i,v (in the

sense that if Y is an Had
i,v(R)-conjugacy class satisfying Deligne’s axioms, for which its associated

special node is si,v, then Y = Xi,v; see [Del79], 1.2.6).

2.2. Conjugation. For the general properties of conjugation of Shimura varieties, we mainly
follow [DMOS82]; see also [Mil90] and [Lan79]. Let (G,X) be a Shimura datum. A special pair
(T, x) consists of a maximal torus T ⊂ G and a point x ∈ X factoring through TR. Fix x ∈ X
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a special point, and let σ ∈ Aut(C). We denote by (σ,xG, σ,xX) the conjugate Shimura datum,
so that there exists an isomorphism ϕσ,x : σ Sh(G,X)C = Sh(G,X)C ×C,σ C ≃ Sh(σ,xG, σ,xX)C,
unique with certain natural properties (Theorem II.4.2, [Mil90]). Choosing a different special point
gives canonically isomorphic results (Proposition II.4.3, [Mil90]). The reflex field of (σ,xG, σ,xG)
is σ(E), and σ Sh(G,X)E = Sh(G,X)E ×E,σ σ(E) is the canonical model of Sh(σ,xG, σ,xG)C over
σ(E). All of this also works at finite level: ifK ⊂ G(Af ) is compact open, ϕσ,x sends σ ShK(G,X)C
to Shσ,xK(σ,xG, σ,xX)C (same thing replacing C by E and σ(E)), where σ,xK ⊂ σ,xG(Af ) is explicit
(see below).

We are interested mainly on the case σ = c, but nevertheless it will be useful to recall the general
construction of (σ,xG, σ,xX). Let S be the (connected) Serre group. This can be defined as the
group of automorphisms of the forgetful fibre functor from the Tannakian category of CM Q-Hodge
structures to the category of finite dimensional Q-vector spaces. (Here a Q-Hodge structure is a
Q-vector space V such that V ⊗ C is endowed with a Hodge structure; the structure is CM if the
algebra of elements of End(V ) which induce morphisms of Hodge structure contains a commutative
semisimple subalgebra of dimension dimQ(V )). Let T denote the Taniyama group, defined here
as the group of automorphisms of the Betti fibre functor in Deligne’s Tannakian category of CM
motives for absolute Hodge cycles over Q; this is the Tannakian category generated by Artin
motives and by the cohomology of abelian varieties over Q which are potentially CM. These are
pro-algebraic groups, and there is a natural exact sequence

1 → S → T
π→ Gal(Q/Q) → 1,

where the second arrow corresponds to the functor taking a CM motive M to its CM Hodge
structure HB(M), and π corresponds to the natural inclusion of the category of Artin motives
into the category of CM motives. The group Gal(Q/Q) is to be considered as the pro-algebraic
group given by the inverse limit of the finite constant groups Gal(L/Q), for L ⊂ C a finite Galois
extension of Q. There is a continuous section of π over Af denoted by sp : Gal(Q/Q) → T(Af ).
For a motive M , sp(σ) corresponds to the automorphism of HB(M) ⊗Q Af obtained from the
Galois action of σ on étale cohomology using the comparison isomorphism. In the case of complex
conjugation c, sp(c) = F ⊗Q 1Af

for a unique F ∈ T(Q) which is called the Frobenius at infinity.

For any σ ∈ Gal(Q/Q), we let σS = π−1(σ). There is a cocharacter µcan : Gm,C → SC, which in
Tannakian terms gives rise to the Hodge cocharacter of the Hodge structures on HB(M)⊗Q C.

Let G be any algebraic group over Q and ρ : S → Gad be a homomorphism, inducing an action
of S on G by group automorphisms (conjugation). Let σ,ρG = σ

S ×S,ρ G be group obtained by
twisting G by the torsor σS. Thus, σ,ρG is the fpqc sheaf associated to the presheaf sending a
Q-algebra R to the group σS(R) ×S(R),ρ G(R), which is the quotient of σS(R) × G(R) by the

right action (s, g)s1 = (ss1, s
−1
1 g) of S(R). We now specialize to the case σ = c. In this case, c

S

is already trivialized over Q, a rational element being sp(c). In particular, the map sp(c)R.g 7→ g
(for g ∈ G(R)) defines a group isomorphism between the above presheaf and G, and a fortiori
between c,ρG and G. If H ⊂ G is a subgroup on which S acts trivially, then c,ρH is canonically
isomorphic to H (this is true for any σ), and the identifications are compatible. The isomorphism
between G(Af ) and

c,ρG(Af ), denoted by g 7→ cg in [Mil90, II.4] becomes the identity under our
identification, and similarly for the isomorphism g 7→ cg between GC and c,ρGC defined in [Mil90,
III.1] (note that the element z∞(c) defined in op. cit. is equal to sp(c)C).

Suppose that (G,X) is a Shimura datum as before, and (T, x) is a special pair. The map µx

factors through TC, and there exists a unique homomorphism ρadx : S → Gad such that (ρadx )C ◦
µcan = µad

x . For σ ∈ Aut(C), the group σ,xG is defined to be σ,ρad
x G in the notation of the previous

paragraph, where we take the restriction of σ to Q. Since the cocharacter σ(µx) of T = σ,ρxT
commutes with its complex conjugate, it is the Hodge cocharacter associated to a map S → σ,xGR

which we denote by σx, and σ,xX is defined to be its σ,xG(R)-conjugacy class. In particular, c,xG
can be identified with G, and c,xX is naturally identified with the G(R)-conjugacy class of cx. Note
that cx = x ◦ c, and h 7→ h ◦ c defines an antiholomorphic isomorphism between X and c,xX . This
doesn’t depend on x, and from now on we denote by X = {h◦c|h ∈ X}, and so the pair (c,xG,c,xX)
becomes naturally identified with the pair (G,X). The isomorphism ϕc,x becomes, under this

identification, an isomorphism ϕ : ShK(G,X)E ×E,c E → ShK(G,X)E ; in complex points, it
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defines an antiholomorphic isomorphism between ShK(G,X)(C) and ShK(G,X)(C), which we
denote by φ. For [h, g] ∈ ShK(G,X)(C), we have that φ([h, g]) = [h ◦ c, g] ∈ ShK(G,X)(C).

For example, suppose that E ⊂ R. Then there is an antiholomorphic involution on ShK(G,X)(C)
defined by complex conjugation acting on C. It follows from the theory of canonical models that
this involution takes the form [h, g] 7→ [η(h), g], where η : X → X is an antiholomorphic involution
of the form η(g.x) = (gn).x for some n ∈ N(R) (here N is the normalizer in G of T ). In fact,
the output is that there exists n ∈ N(R) such that cx = n.x, and thus X = X ; then the map η
becomes what we called φ, that is, η(h) = h ◦ c for any h ∈ X .

2.3. Involutions of Shimura data and descent. Fix a Shimura datum (G,X), with reflex field
E. For an involution θ : G → G, let θ(X) be the G(R)-conjugacy class {θ(h) | h ∈ X}, where
θ(h) = θR ◦ h. Since we want to consider involutions θ that send X to X 6= X , from now on, we
will focus on the case where E is a CM field (if E is totally real, the identity in G takes X to
X). Let E+ ⊂ E be the maximal totally real subfield, and let ι ∈ Gal(E/E+) be the non-trivial
automorphism, i.e. the restriction of complex conjugation c to E.

Suppose that θ is an involution of G such that θ(X) = X. For a compact open subgroup
K ⊂ G(Af ), denote by

θK = θ(K) ⊂ G(Af ). Then θ induces an isomorphism of algebraic varieties

Sh(θ) : ShK(G,X)E → ShθK(G,X)E . In complex points, this takes [h, g] to [θ(h), θ(g)]. Suppose
that θK = K. Then Sh(θ)−1 ◦ ϕ defines an isomorphism ψ : ι(ShK(G,X)E) = ShK(G,X)E ×E,ι

E → ShK(G,X)E .
Let V be an arbitrary scheme over E. Recall that an E/E+-descent datum is a pair of isomor-

phisms ψ1 : 1(V ) = V ×E,1 E → V and ψι : ιV = V ×E,ι E → V of schemes over E satisfying the
cocycle condition

ψσ ◦ σ(ψτ ) = ψστ

for all σ, τ ∈ Gal(E/E+), using the natural identification σ(τ(V )) = (στ)V . Then necessarily ψ1

is the first projection 1(V ) → V and thus to give a descent datum amounts to give an isomorphism
ψ = ψι : ι(V ) → V such that ψ ◦ ι(ψ) : ι(ι(V )) → V is equal to the identity map, when identifying
ι(ι(V )) = V . By definition, such a descent datum is effective if there exists a scheme V0 over
E+ and an isomorphism m : V → V0,E = V0 ×E+ E such that m ◦ ψ = ι(ψ), after identifying
ι(V0,E) = V0,E . The descent criterion ([Wei56]) tells us that if V is a quasi-projective algebraic
variety, then a descent datum for V is effective.

Theorem 2.1. The map ψ : ι(ShK(G,X)E) → ShK(G,X)E obtained as above from an involution
θ : G → G such that θ(X) = X and θK = K is an effective E/E+-descent datum on the
Shimura variety ShK(G,X)E. Hence, there exists a quasi-projective, smooth, algebraic variety
ShK(G,X)E+ over E+, and an isomorphism m : ShK(G,X)E → ShK(G,X)E+ ×E+ E such that
m ◦ ψ = cm.

Proof. Let V = ShK(G,X)E , V = ShK(G,X)E , and let n : V → ι(ι(V )) be the natural isomor-
phism. We need to check that ψ◦ι(ψ)◦n = idV , and for this it is enough to see that both morphisms
are equal on the set of complex points V (C). Let cV : V (C) → (ιV )(C) be the bijection that sends
x : Spec(C) → V to p−1

ι,V ◦ x ◦ Spec(c), where pι,V : ιV → V is the first projection, and define

cιV : (ιV )(C) → (ι(ιV ))(C) similarly. Then we have that n(C) = cιV ◦cV , ι(ψ)(C) = cV ◦ψ(C)◦c−1
ιV ,

and ψ satisfies that ψ(C)◦ cV = Sh(θ)−1(C)◦φ. Recall that φ : V (C) → V (C) sends [h, g] to [h̄, g].
Putting all this together, we get that

(ψ ◦ ι(ψ) ◦ n)(C) = Sh(θ)−1(C) ◦ φ ◦ Sh(θ)−1 ◦ φ,
and thus

(ψ ◦ ι(ψ) ◦ n)(C)([h, g]) = [θ−1
(
θ−1(h)

)
, θ−2(g)].

But for any y ∈ X, θ−1(y) = θ−1
R ◦ y, and so

θ−1
(
θ−1(h)

)
= θ−1

(
θ−1
R ◦ h

)
= θ−1

(
θ−1
R ◦ h ◦ c

)
= θ−1

(
θ−1
R ◦ h

)
= θ−2

R ◦ h = θ−2(h),

and thus (ψ ◦ ι(ψ) ◦ n)(C)([h, g]) = [h, g], using the fact that θ2 = id. Finally, since ShK(G,X)E
is quasi-projective, the descent datum just constructed is effective. �

Remark 2.1. The model of Theorem 2.1 depends on the descent datum, which in turns depends
on the particular involution θ.
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We note that, by the nature of the descent datum, Hecke operators do not descend to the
model ShK(G,X)E+ . Given q ∈ G(Af ), the Hecke operator Tq is a morphism of algebraic varieties
Tq : ShK(G,X)E → Shq−1Kq(G,X)E , which in complex points is given by Tq([h, g]) = [h, gq].

Then Tθ(q) ◦ Sh(θ) = Sh(θ) ◦ Tq : ShK(G,X)E → Shθ(q)−1θKθ(q)(G,X)E . The Hecke operator Tq
descends to a map ShK(G,X)E+ → Shq−1Kq(G,X)E+ if and only if Tθ(q) = Tq.

In the following sections we will construct several examples of involutions θ as above, and explain
a general framework for such constructions.

3. Opposition involutions

In this section we recall some basic facts about opposition involutions and prove a few results
that will be needed in the forthcoming sections. For the basic facts regarding root data, see [Spr79].

3.1. Root data. Let Ψ = (X,Φ, X∨,Φ∨) be a root datum with Φ 6= ∅. Let Q be the subgroup of
X generated by Φ, and V = Q⊗Z Q. Let W = W (Φ) be the Weyl group of the root system Φ in
V . This can be naturally identified with the Weyl group of Φ∨ and with the subgroup of AutZ(X)
generated by the reflections sα for α ∈ Φ. Choose a basis ∆, and consider the associated based
root datum Ψ0 = (X,Φ,∆, X∨,Φ∨,∆∨).

There is an obvious notion of isomorphism of root data (resp. based root data) Ψ → Ψ′ (resp.
Ψ0 → Ψ′

0). It amounts to giving a Z-linear isomorphism f : X → X ′ such that f(Φ) = Φ′ and
tf(f(α)∨) = α∨ for all α ∈ Φ (resp. and f(∆) = ∆′). Here tf denotes the transpose with respect
to the root data pairings. We denote by Aut(Ψ) (resp. Aut(Ψ0)) the group of automorphisms of
Ψ (resp. Ψ0). Each sα can be seen as an automorphism of Ψ, and thus there is a natural inclusion
W ⊂ Aut(Ψ). We also denote by −1 ∈ Aut(Ψ) the automorphism that sends x ∈ X to −x ∈ X .

Assume from now on that Φ is reduced. If ∆ is a basis, let w0 be the longest element of W
with respect to it. Then w0(∆) = −∆, and thus −w0 = −1 ◦w0 ∈ Aut(Ψ0). We call ⋆ = −w0 the
opposition involution of Ψ0 (since w2

0 = 1 it is indeed an involution). We denote the action of ⋆ on
elements x (which can be characters of T , nodes of the Dynkin diagram, etc.) by x 7→ x⋆. When
Φ = ∅, in which case Ψ is called toral, we directly define ⋆ = −1 ∈ AutZ(X).

Remark 3.1. An isogeny (in particular, an isomorphism) of based root data will commute with
the corresponding opposition involutions. In particular, ⋆ is a central element of AutΨ0.

Remark 3.2. Let X0 ⊂ X denote the subgroup of X orthogonal to Φ∨. The root datum Ψ is
called semisimple when X0 = 0. If this is not the case, then there exists a non-zero x ∈ X0, which
hence must be invariant under W . In particular, x⋆ = −x 6= x, so ⋆ cannot be the identity map if
the root datum is not semisimple. In the same vein, if the root datum is toral then ⋆ 6= 1 unless
Ψ is trivial (that is, also semisimple).

Suppose now that k is an algebraically closed field of characteristic 0, and let G be a reductive
group over k. Let T ⊂ G be a maximal torus, and Ψ = Ψ(G, T ) be the associated root datum, so
that X = X∗(T ). Let B ⊃ T be a Borel subgroup, and let Ψ0 = Ψ0(G, T,B) be the corresponding
based root datum. Let Aut(G) be the group of automorphisms of G, and Inn(G) ⊂ Aut(G) be the
subgroup of inner automorphisms (that is, defined by elements in G(k)). Thus, Inn(G) ≃ Gad(k) ≃
G(k)/Z(k), where Z is the center of G. Then there is a split exact sequence

(3.1) 1 → Inn(G) → Aut(G) → AutΨ0 → 1

where, for f ∈ Aut(G), the third arrow sends f to the automorphism of Ψ0 induced by f ′ ∈
Aut(G, T,B), where f ′ = int(g) ◦ f for any element g ∈ G(k) such that int(g)f(B, T ) = (B, T ).
We define an opposition involution of G (with respect to (B, T )) to be any element θ ∈ Aut(G) of
order 1 or 2 that induces the opposition involution ⋆ in AutΨ0. Note that this definition does not
require θ to preserve T or B. If θ′ is another such involution then θ′ = int(g)◦θ for some g ∈ G(k).
If θ is an opposition involution for (B, T ) and (B′, T ′) is another Borel pair, then it is also an
opposition involution for (B′, T ′). The exact sequence (3.1) is split by the choice of a pinning.
More precisely, let ∆ ⊂ Φ be the set of simple roots corresponding to B. For each α ∈ ∆, let
Uα ∈ G be the usual unipotent subgroup (see [Spr79], 2.3), and let uα ∈ Uα be a non-trivial element.
The pinning is the datum {uα}α∈∆ with respect to (B, T ), and a splitting AutΨ0 → Aut(G) of
(3.1) associated to this pinning is given by an isomorphism AutΨ0 ≃ Aut(G, T,B, {uα}α∈∆); two
such splittings differ by an automorphism int(t) for some t ∈ T (k). In particular, after choosing
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a pinning, we can take θ ∈ Aut(G) to be the image of ⋆ under the splitting and this will be an
opposition involution, which proves their existence. Note that we are actually showing that there
are opposition involutions in Aut(G) which preserve T and B (and a fixed pinning).

Let k be any field of characteristic 0, and k be an algebraic closure of k. Let Γ = Aut(k/k). Let
G be a reductive group over k, T ⊂ G a maximal torus, and B ⊃ Tk a Borel subgroup of Gk. Let
Ψ = Ψ(Gk, Tk) and Ψ0 = Ψ0(Gk, Tk, B). There is a natural action of Γ on X , denoted by χ 7→ χγ ,
where

χγ(t) = γ
(
χ(γ−1(t))

)

for γ ∈ Γ, t ∈ T (k). We call it the usual action of Γ on X . It defines an action of Γ on Ψ. Let γ ∈ Γ.
Then we define a second action µG(γ) on X , the ∗-action, given by µG(γ)(χ)(t) = χγ(n−1tn) for

t ∈ T (k), where n ∈ G(k) is an element such that int(n) sends the Borel pair (γ(B), γ(Tk)) to
(B, Tk). For example, if B is a Borel defined over k, then we can take n = 1 and the ∗-action is just
the usual action χ 7→ χγ . Going back to the general case, this gives a morphism µG : Γ → AutΨ0,
and it induces an action of Γ on AutΨ0 by taking ρ 7→ µG(γ) ◦ ρ ◦ µG(γ)

−1 for ρ ∈ AutΨ0. There
is also an action of Γ on Aut(Gk) given by γ.f = (1G×Spec(k)Spec(γ

−1))◦f ◦(1G×Spec(k) Spec(γ)),

which onG(k)-points is simply g 7→ γ(f(γ−1(g))). It preserves the subgroup Inn(Gk) = G(k)/Z(k),
where it acts as usual. The exact sequence (3.1) becomes

(3.2) 1 → Inn(Gk) → Aut(Gk) → AutΨ0 → 1

and is Γ-equivariant. We define an opposition involution of G to be an automorphism θ ∈ Aut(G)
of order 1 or 2 such that θk is an opposition involution on Gk.

There may not be a Γ-equivariant splitting of (3.2), so it may not always be possible to construct
in this way an opposition involution of G. However, if G is quasi-split and B is a Borel subgroup
defined over k, it can be shown (see [ABD+66],XXIV.3.10) that there exists a Γ-equivariant split-
ting. Since ⋆ ∈ AutΨ0 is central, it commutes with µG(γ) for any γ ∈ Γ, and thus it is a Γ-invariant
element in the last group of (3.2). Thus, for quasi-split reductive groups over k, there always exist
opposition involutions on G over k, but the condition of G being quasi-split is far from necessary.
There are many non-quasi-split cases where the opposition involution is trivial (see below), and so
obviously defined over k. There are many non-trivial examples as well, as we will see later.

Remark 3.3. If G = T is a torus, then there exists one and only one opposition involution
θ ∈ Aut(G), namely θ = iG.

Lemma 3.1. If θ is an opposition involution of G, then θZ : Z → Z is equal to iZ .

Proof. It is enough to see that both maps induce the same map on X∗(Z), that is, that θ∗Z :

X∗(Z) → X∗(Z) is multiplication by −1, and thus we can assume that k = k. Let (B, T ) be a
Borel pair. Then Z ⊂ T . Let χ ∈ X∗(Z). Then there exists µ ∈ X∗(T ) such that µ|Z = χ.
We claim that θ∗Z(χ) = (µ⋆)|Z . Indeed, for z ∈ Z(k), θ∗Z(χ)(z) = χ(θ(z)), whereas (µ⋆)|Z(z) =
Ψ0(θ)(µ)(z) = µ((int(g) ◦ θ)(z)) = µ(θ(z)) (where g ∈ G(k) sends θ(B, T ) to (B, T )), which shows
that θ∗Z = (µ⋆)|Z .

On the other hand, if n0 ∈ NG(T )(k) represents w0 ∈W = NG(T )(k)/T (k), then for z ∈ Z(k),
µ⋆(z) = µ(n−1

0 z−1n0) = µ(z−1) = µ−1(z) because z ∈ Z(k). Thus, θ∗Z(χ) = −χ, as desired, where
we have switched back to the additive notation for the group X∗(Z). �

Remark 3.4. The last lemma shows in particular that if the identity is an opposition involution,
then Z is killed by 2. Then Z0 must be trivial, that is, G must be semisimple (see also Remark
3.2).

3.2. Dynkin diagrams and special nodes. Let Ψ0 be a based root datum with Φ 6= ∅ and
reduced, and let D be its Dynkin diagram. Then the opposition involution ⋆ acts on D. We
include for reference the list of connected Dynkin diagrams and their opposition involutions; see
[Bou02] for notation of nodes and more details. We also list the special nodes of each diagram
(see [Del79], 1.2.5, for the definition of special node). Also, note that if Ψ is semisimple, then ⋆ is
trivial on Ψ0 if and only if it is trivial on D. For a Shimura datum (G,X), the only factors of Gad

that contribute to a CM reflex field are the ones of type Al (l ≥ 2), Dl (l ≥ 5 odd) or E6. This
follows from the list below and Proposition 2.3.6 of [Del79].
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• D = Al (l ≥ 1)
α⋆
i = αl+1−i (so ⋆ it’s trivial if l = 1)

All nodes αi are special
• D = Bl (l ≥ 2) or Cl (l ≥ 3)

⋆ is trivial
There is only one special node: α1 in the Bl case, and αl in the Cl case

• D = Dl (l ≥ 4)
If l is even, ⋆ is trivial
If l is odd, α⋆

i = αi for i < l − 1, and α⋆
l−1 = αl

The special nodes are α1, αl−1 and αl

• D = E6

α⋆
1 = α6, α

⋆
2 = α2, α

⋆
3 = α5, α

⋆
4 = α4

The special nodes are α1 and α6

• D = E7, E8, F4 or G2

⋆ is trivial
Only E7 has a special node, which is α7

3.3. Multiplicative groups of CM type. From now on let k = Q and Γ = Gal(Q/Q). Let T1
and T2 be algebraic groups over Q of multiplicative type, not necessarily connected. Then there
is a natural bijection Hom(T1, T2) ≃ HomΓ(X2, X1), where AutΓ means Γ-equivariant morphisms
for the natural Galois structures on Xi = X∗(Ti). In particular, for T over Q of multiplicative
type, there is a natural isomorphism Aut(T ) ≃ AutΓ(X), with X = X∗(T ). We let c∗T : X → X

be the map c∗T (χ) = χc. We say T splits over an extension K ⊂ Q of Q if Aut(Q/K) acts trivially
on X∗(T ).

Lemma 3.2. If T is a group of multiplicative type that splits over a CM field, then c∗T ∈ AutΓ(X).

Proof. Suppose that T splits over K ⊂ Q, a CM field. Let χ ∈ X . Then χγ = χ for any
γ ∈ Aut(Q/K), and thus χγ1 = χγ2 if γ1, γ2 ∈ Γ have the same restriction to K. For any γ ∈ Γ,
γc and cγ have the same restriction to K, and so c∗T (χ

γ) = (χγ)c = χcγ = χγc = (c∗T (χ))
γ . �

Under the assumptions of the last lemma, we let cT : T → T the unique involution inducing
c∗T on X . If T1 and T2 are groups of multiplicative type which are split over a CM field, and
f : T1 → T2 is a morphism, then f ◦ cT1

= cT2
◦ f , because both maps induce the same morphism

X2 → X1.
Suppose now that T is a group of multiplicative type over R. Using the same procedure, there

exists a unique involution cT : T → T inducing complex conjugation on characters. If T is defined
over Q and split over a CM field, these definitions are compatible with base change from Q to R.

Example 3.1. For T = S over R, the map cS is given by cS(z⊗ a) = z⊗ a for an R-algebra A and
z ⊗ a ∈ (C⊗R A)

×.

Remark 3.5. If T is an anisotropic R-torus (that is, if T (R) is compact), then it’s easy to see
that χc = −χ for any χ ∈ X and thus cT = iT is the opposition involution on T .

3.4. Involutions taking X to X. Let (G,X) be a Shimura datum. Recall that we are assuming
that Z0 splits over a CM field, and hence we have the conjugation involution cZ0 : Z0 → Z0.

Remark 3.6. Let x ∈ X . From the fact that int(x(i)) : Gad
R → Gad

R is a Cartan involution, it
follows that Gad

R is an inner form of an anisotropic group H over R (that is, H(R) is compact).
A similar statement holds for Gder

R (the element x(i) may not belong to Gder(R), however over C,
int(x(i)) can be replaced by int(x(i)′) for some x(i)′ ∈ (T ∩ Gder)(C)). The next lemma is well
known.

Lemma 3.3. Let G be a reductive group over R and assume that it is an inner form of a group H
over R which is anisotropic. Assume furthermore that T ⊂ G is a maximal torus, and the inner
automorphism of GC defining a cocycle for H is given by int(t0) for some t0 ∈ T (C). Then the
following hold.

(i) cT = iT .
(ii) For a Borel subgroup B ⊃ TC, the opposition involution acting on Ψ0(G, T,B) is given by the

∗-action of c.
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(iii) The subgroup c(B) ⊂ GC is the opposite Borel subgroup of B, that is, c(B) ∩B = TC.

Proof. Notice that T (R) is compact, so (i) follows from Remark 3.5. By hypothesis, we can choose

an isomorphism φ : GC → HC such that f : GC → GC defined by f(g) = φ−1(φ(g)) is an inner
automorphism of the form int(t0), with t0 ∈ T (C). Then there exists a maximal torus TH ⊂ H
such that TH,C = φ(TC), and we let BH = φ(B). Let r = Ψ0(φ) : Ψ0(H,TH , BH) → Ψ0(G, T,B)
be the induced isomorphism. It is Gal(C/R)-equivariant for the ∗-actions, as follows from the fact
that the forms are inner, and it commutes with ⋆, so it is enough to prove part (ii) when G itself
is anisotropic, which is well known. For (iii), the fact that f preserves TC and B again allows us
to reduce to the case of G anisotropic, in which case the statement is well known. �

Remark 3.7. In the last lemma, if the group if quasi-split and B is a Borel subgroup defined
over R, the inner automorphism will not usually belong to T (C), otherwise we would have B = T .
There are quasi-split semisimple groups with B 6= T which are inner forms of anisotropic groups,
for example SU(n, n). In this case, the Cartan involution coming from a certain Shimura datum
and special pair will preserve the maximal torus and a Borel subgroup containing it, but not a
rational Borel subgroup.

Remark 3.8. Suppose that (G,X) is a Shimura datum, and let (T, x) be a special pair. Then
Gder

R satisfies all the hypotheses of the previous lemma. Here the inner automorphism defining the
cocycle is int(x(i)′) as before. Alternatively, we can work with the adjoint group Gad

R and x(i).

Remark 3.9. Suppose that θ : G→ G is an involution such that there exists a special pair (T, x)
with the property that θ preserves T and induces cTR

on TR. Then θR(x) = cTR
◦ x = x ◦ cS = x,

and thus θ(X) = X.

Lemma 3.4. Let G be a reductive group over R, and T ⊂ G a maximal torus. If θ : G → G is
an involution such that θ(T ) ⊂ T and θ|T = cT , then θ(B) = c(B) ⊂ GC for any Borel subgroup
B ⊃ TC.

Proof. Let R ⊂ X = X∗(T ) denote the set of roots of (GC, TC). Let R+ denote the set of
positive roots with respect to B. Then θ(B) is the Borel subgroup whose Lie algebra is Lie(TC)⊕⊕

α∈R+ Lie(GC)α◦θ. Since α ◦ θ = αc, it follows that this is the Lie algebra of c(B), and since both
θ(B) and c(B) are connected, this proves the lemma. �

The construction of involutions taking X to X that we will perform will be based on involutions
θ which will roughly be as in Remark 3.9. By the following proposition, we need to look for
opposition involutions on semisimple groups.

Proposition 3.1. Let (G,X) be a Shimura datum and let θ : G→ G be an involution of G, such
that there exists a special pair (T, x) with the property that θ preserves T and induces cTR

on TR.
Then θder : Gder → Gder is an opposition involution, and θ0 = θ|Z0 : Z0 → Z0 is equal to cZ0 .

Proof. Suppose that θ is an involution with (T, x) as in the statement. To see that θ0 = cZ0

it’s enough to see that θR,0 = cZ0
R

. Since Z0
R ⊂ TR and θR|TR

= cTR
it follows that θ0,R = cZ0

R

.

Let T ′ = T ∩ Gder, let B ⊂ GC be a Borel subgroup containing TC, and B′ = B ∩ Gder
C ⊃ T ′

C.
Let Ψ′

0 = Ψ0(G
der, T ′, B′) and let r = Ψ0(θ

der) : Ψ′
0 → Ψ′

0 be the induced isomorphism. It
is given by r(χ) = χ ◦ int(q) ◦ θder|T ′

C
for χ ∈ X ′ = X∗(T ′), where q ∈ Gder(C) is such that

int(q)θder(T ′
C, B

′) = (T ′
C, B

′). On the other hand, by Lemma 3.3, (ii), ⋆ : Ψ′
0 → Ψ′

0 is given by
χ⋆ = χc ◦ int(a−1), where a ∈ Gder(C) is such that int(a)c(T ′

C, B
′) = (T ′

C, B
′). By Lemma 3.4, we

can take a = q. Finally, the hypothesis that θder|T ′ = cT ′ implies that χ⋆ = χ ◦ θ ◦ int(q−1). Thus,
to see that r(χ) = χ⋆, it is enough to see that θder ◦ int(q−1) and θder ◦ int(ϕ(q)) induce the same
automorphism of T ′

C, and this follows from the fact that both elements θ−1(q) and q−1 conjugate
the Borel pair (T ′

C, B
′) to the same Borel pair. �

The following proposition is a partial converse and the main result of this section. Since our
construction will be explicit using the classification of semisimple groups, we need to work with
either the derived group or the adjoint group. The idea is to construct an involution on G taking
X to X by extending an opposition involution on Gder. Ideally we would want the involution to
be as in Remark 3.9, but it is enough to consider a weaker hypothesis, as stated in the proposition.
Recall the notation from Subsection 2.1. Suppose that for each i, Si ⊂ Hi is a maximal torus,
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and let T̃i = ResFi/Q Si ⊂ G̃i, Ti ⊂ Gi its image in Gi, T
′ ⊂ Gder the image of their product, and

T = Z0T ′. Note that T ad
R = T

′ ad
R =

∏
i,v S

ad
i,v, where Si,v ⊂ Hi,v and Sad

i,v is its image in Had
i,v.

Proposition 3.2. Suppose that θi : Hi → Hi is an opposition involution for each i. Suppose
moreover that θi(Si) = Si and θ

ad
i,v|Sad

i,v
= cSad

i,v
for every i and v ∈ Ii,nc. Finally, assume that there

exists x ∈ X such that xad factors through T ad
R . Then there exists an involution θ : G → G such

that θ(X) = X.

Proof. For each i, the involution ResFi/Q θi defines an opposition involution of G̃i. Moreover, the

kernel Ki of the projection G̃i → Gi is contained in the center of G̃i. By Lemma 3.1, ResFi/Q θi
induces x 7→ x−1 on the center. In particular, it preserves Ki and induces an opposition involution
on Gi. Similarly, the product of these involutions define an opposition involution θ′ : Gder → Gder.
Let q : Z0 × Gder → G be the natural isogeny. We can look at the product involution θ′ × cZ0 :
Gder × Z0 → Gder ×Z0. We claim that this preserves ker(q), and thus it induces an involution on
G. To show this, we can work with C-points. The kernel consists of pairs (g, z) such that zg = 1,
so we need to check that if (g, z) is such a pair, then θ′(g)cZ0(z) = 1. The element g = z−1 belongs
to Z0∩Gder ⊂ ZGder . The maps cZ0 : Z0 → Z0 and cZ

Gder
: ZGder → ZGder are equal on Z0∩Gder,

and by part (i) of Lemma 3.3, cZ
Gder

= iZ
Gder

, so cZ0(z) = z−1. On the other hand, by Lemma

3.1, θ′ induces iZ
Gder

on ZGder , and so θ′(g) = g−1 = z. This proves that there exists a (unique)

involution θ : G→ G such that θder = θ′ and θ0 = cZ0 .
We also have that θ preserves T and θadR =

∏
i,v θ

ad
i,v. Now, we know that there exists x ∈ X

such that xad factors through T ad
R . Let y = θR(x). Then yad = θadR (xad). For v ∈ Ii,nc, we have

θadi,v(xi,v) = xi,v because θadi,v induces cSad
i,v

and xi,v factors through Sad
i,v. For v ∈ Ii,c, xi,v = 1.

Thus, yad = xad. Also, since θR induces cZ0
R

on Z0
R, and q : Z

0 → Gab is an isogeny, it follows that

θR induces cGab
R

on Gab
R . From this it follows that y and x have the same projections to Gad

R and

to Gab
R , and thus y = x (see for instance the proof of Proposition 5.7 of [Mil05]). Since y = θR(x),

this shows that θ(X) = X. �

4. Involutions on classical semisimple groups

In this section, we make use of several results regarding the classification of semisimple algebraic
groups over totally real fields. For notation and terminology regarding algebras with involutions
and their associated groups, we freely follow our main reference [KMRT98]. We are only interested
in the explicit classification of groups of type A and D in order to construct our desired involutions
on certain Shimura varieties. Furthermore, not all the groups in the general classification appear
in the theory of Shimura varieties, so we are only interested in classifying the groups Hi (in the
notation of Subsection 2.1) of type Al (l ≥ 2) or Dl (l ≥ 4 odd) that can occur. Furthermore,
in accordance with the previous section, we are also interested in constructing, whenever possible,
opposition involutions on these groups.

The following construction regarding quaternion algebras will be used often in the following.
Suppose that D is a quaternion division algebra over a number field K. Let λ ∈ D× be a pure
quaternion (that is, such that σ(λ) = −λ, where σ : D → D is the canonical involution), and
choose another pure quaternion µ ∈ D× such that λµ = −µλ. Then {1, λ, µ, λµ} is a standard
basis of D. If we let L = K(λ), then L is a maximal subfield of D (a quadratic extension of K).
We have an isomorphism of L-algebras φ : D ⊗K L→M2(L) defined by

φ(λ ⊗ 1) =

(
λ 0
0 −λ

)

and

φ(µ ⊗ 1) =

(
0 µ2

1 0

)
.

Then the isomorphism φ sends L⊗K L to the subalgebra of diagonal matrices in M2(L).
Throughout this section, let F be a totally real field and H be an absolutely almost simple,

simply connected algebraic group over F . We let D be the Dynkin diagram of HF (where F is

some algebraic closure of F ). We let I = Hom(F,R), Ic = {v ∈ I : Had
v (R) is compact} and Inc

its complement in I.
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4.1. Groups of type Al (l ≥ 2). Suppose that D = Al with l ≥ 2. Then there exists a quadratic
étale extension K/F (so K/F is a quadratic extension of fields, or K = F × F ), and a central
simple algebra B over K, of degree l + 1, endowed with an involution τ : B → B of the second
kind (that is, inducing ι on K, where ι is the non-trivial automorphism of K which fixes F ) such
that H = SU(B, τ) ([KMRT98], Theorem 26.9). If H is one of the Hi as above, then K must be
a field. Indeed, if otherwise, then H ≃ SL1(A) for some central simple algebra A over F of degree
l + 1. For each v ∈ Hom(F,R), Av = A⊗F,v R ≃Ml+1(R) or Av ≃M(l+1)/2(H). In both cases, it
follows that Hv is an inner form of SLl+1,R, so the ∗-action of c is trivial (a condition that doesn’t
depend on the Borel pair), and thus it cannot be the opposition involution because l ≥ 2. From
this and Lemma 3.3 it follows that H cannot occur as one the factors Hi. Thus, we have proved
that K must be a field. Moreover, a similar argument implies that K must be totally imaginary,
that is, K/F is a CM extension. The adjoint group Had is PGU(B, τ).

We can then write B = EndD(V ) for some central division algebra D over K, endowed with
an involution J : D → D of the second kind, whose action we denote by d 7→ dJ , and a finite
dimensional right D-vector space V . There is a non-degenerate hermitian form h : V × V → D
inducing the involution τ : B → B. The pair (V, h) is called a hermitian space over D.

Suppose that θ : H → H is an opposition involution. There is a natural isomorphism between
Aut(H) and the group of F -algebra automorphisms of B that commute with τ ([KMRT98], The-
orem 26.9), and thus there exists such an automorphism γ : B → B of order 2, inducing θ. If γ|K
is the identity of K, then γ = int(b0) for some b0 ∈ B× by the Skolem-Noether Theorem, and b0 is
moreover a similitude for τ . The induced map θ : H → H would thus be an inner automorphism,
inducing the identity on the Dynkin diagram, but the opposition involution on Al is non-trivial
for l ≥ 2. Hence, γ|K must be ι. Let B and D denote the K-algebras B and D with ι-conjugate
structure. Thus γ : B → B is a K-algebra isomorphism. We let Br(K) be the Brauer group of K
and [B] = [D] ∈ Br(K) be the class of B in it. Then [D] = [B] = [B] = [D], which implies that
there must exist a ring automorphism α : D → D inducing ι on K.

Proposition 4.1. Let D be a central division algebra over a CM extension K/F of number fields,
endowed with an involution J : D → D of the second kind. Then the following are equivalent:

(a) D = K or D is a quaternion divison algebra over K.
(b) The order of [D] ∈ Br(K) is 1 or 2.
(c) There exists a ring automorphism α : D → D inducing ι on K.

Moreover, in this case, α is unique up to composition with an inner automorphism of D. Fur-
thermore, it can be chosen to have order 2 and such that αJ = Jα is either 1 if D = K or the
canonical involution if D is a quaternion division algebra.

Proof. The fact that (a) implies (b) in the quaternion algebra case follows from the existence of
the canonical involution on D, which gives an isomorphism D → Dop, so [D] = [D]−1. To see that
(b) implies (a), see 10.2.3 of [Sch85].

Now suppose that (a) is true. If D = K, then take α = ι. If D is a quaternion division algebra,
let σ : D → D be its canonical involution, and take α = Jσ = σJ (they commute because JσJ is
a symplectic involution of the first kind on D, and hence equal to σ).

Finally, suppose that α : D → D is as in (c). The involution J : D → D induces an isomorphism

D → D
op
, where D is the conjugate algebra λ · d = ι(λ)d for λ ∈ K. Similarly, α induces an

isomorphism D → D, and thus in the end we have an isomorphism D → Dop, which implies that
the order of [D] is 1 or 2.

The uniqueness of α up to inner automorphism follows because if β is another such automor-
phism, then αβ−1 : D → D is a K-linear automorphism and hence inner by the Skolem-Noether
Theorem. �

Remark 4.1. Suppose that D is a quaternion division algebra. Under the conditions of the
previous proposition, there exists a unique quaternion algebra D0 ⊂ D over F such that D =
D0 ⊗F K and J = σ0 ⊗F ι, where σ0 is the canonical involution of D0 (see [KMRT98], 2.22).
Then the map α constructed in the proof is α = 1D0

⊗F ι. We define the canonical conjugation
α : D → D (attached to J or D0) to be α = 1D0

⊗F ι. If D = K, we also call α = ι the canonical
conjugation.
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Thus, we have shown that if there exists θ : H → H an opposition involution, then either D = K
(and J = ι) or D is a quaternion division algebra (and J = σ0 ⊗F ι). Conversely, suppose that
D = K or D is a quaternion division algebra. We will construct suitable opposition involutions
under an additional assumption.

Remark 4.2. Suppose that D = K (and D0 = F ) or D is a quaternion division algebra. Let
Is ⊂ Hom(F,R) be the subset of places v ∈ I = Hom(F,R) such that D0,v = D0 ⊗F,v R is split,
and let Ins ⊂ I be its complement. We let Ic ⊂ I be the subset of places v such that Had

v (R) is
compact, and Inc its complement. The group HR can be written as a product of special unitary
groups

∏
v∈I SU(pv, qv), and the compact places are exactly the places where pvqv = 0.

Definition 4.1. We say that a hermitian space (V, h) over D (where D = K or a quaternion
division algebra) is strongly hermitian if there exists an h-orthogonal D-basis β = {v1, . . . , vn}
of V such that h(vi, vi) ∈ K× for all i; in the quaternion algebra case, we ask furthermore that
Ins ⊂ Ic.

Remark 4.3. Note that a hermitian space over D = K is always strongly hermitian.

Suppose that (V, h) is strongly hermitian, and let β be a basis as in the definition. Let I : V → V
be the α-semilinear isomorphism obtained by applying α to the coordinates of elements of V with
respect to the basis β (this map is inspired in the constructions of [Tay12]). Then h(I(x), I(y)) =
α(h(x, y)). Let θ : H → H be given as θA(g) = IAgIA for an F -algebra A and a D ⊗F A-linear
automorphism g of V ⊗F A. Let L ⊂ D be a maximal subfield. More precisely, if D = K then
L = K, and if D is a quaternion division algebra, take L = K(λ), where λ is a pure quaternion in
D0. Let S = SL,β be the subgroup of H defined as follows. For an F -algebra A,

S(A) = {h ∈ H(A) ⊂ AutD⊗FA(V ⊗F A) : h(vi ⊗ 1) = (vi ⊗ 1)λi, for some λi ∈ (L⊗F A)
×}.

This is a maximal torus in H .

Proposition 4.2. With the above hypotheses, the following statements are true.

(a) The involution θ : H → H is an opposition involution.
(b) We have θ(S) = S and for every v ∈ Inc, θv : Hv → Hv induces cSv

on Sv.

In particular, θadv : Had
v → Had

v induces cSad
v

on Sad
v for v ∈ Inc.

Proof. For part (a), it suffices to see that θL : HL → HL is an opposition involution. We can
identify HK with SLV/D, where SLV/D(A) consists, for a K-algebra A, of the D ⊗K A-linear
automorphisms of V ⊗K A with reduced norm 1. Using the basis β, we can further identify
SLV/D(A) ∼= SLn(D⊗K A). Let Q ∈ GLn(K) be the matrix of h with respect to β. Then it’s easy
to see that θA : SLn(D ⊗K A) → SLn(D ⊗K A) is explicitly given by the formula

θA(X) = Q−1(tX−1)σQ,

where σ : D → D is the canonical involution of D if D is a quaternion division algebra, and σ = id
if D = K. Note that Q is a diagonal matrix in GLn(K).

If D = K, we denote by φ : D⊗K L→ L the unique obvious isomorphism. If D is a quaternion
division algebra, we take φ : D ⊗K L → M2(L) to be an isomorphism of L-algebras taking
L ⊗K L to D2(L) as constructed above (we use for this the pure quaternion λ ∈ D0 and another
pure quaternion µ ∈ D0 such that λµ = −µλ). In particular, σ preserves L. The identification
HK(A) ∼= SLn(D ⊗K A) sends SK(A) to the subgroup of matrices in SLn(D ⊗K A) which are
diagonal and have entries in L ⊗K A. Since σ preserves L, it follows that θK sends the torus SK

to itself. Moreover, if we now extend scalars to L, the map φ provides an isomorphism

(4.1) HL
∼= SLnm,L,

where Snm,L is the usual group of nm× nm-matrices of determinant 1; furthermore, the torus SL

maps to the torus of diagonal matrices in SLnm,L (so S in indeed is a maximal torus, as claimed). If
m = 1, then θL(X) = Q−1tX−1Q forX ∈ SLn,L. Suppose thatm = 2. Write Q = diag(q1, . . . , qn),

and let Q̃ = diag(q1, . . . , qn, q1, . . . , qn) ∈ GL2n(K). Write matrices X ∈ SL2n,L as blocks

X =

(
A B
C D

)
,
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with A,B,C,D of size n× n. Then θL : SL2n,L → SL2n,L is explicitly given as

θL(X) = Q̃−1

(
tD −tB
−tC tA

)
Q̃.

From this explicit expression of θ as an involution of SLnm,L, it’s easy to see that it preserves the
maximal torus SL of diagonal matrices and that it induces the opposition involution on the root
datum.

For part (b), fix v ∈ Inc. We need to check that if χ ∈ X = X∗(Sv) = Hom(Sv ×R C,Gm,C),
then χ ◦ θv,C = χc. To compute χc, we need to compute how complex conjugation acts on Hv(C).
Choose once and for all an extension τ : L →֒ C of v to L. Using the embedding τ and the
isomorphism (4.1), we can identify Hv ×R C = HL ×L,τ C ∼= SLnm,C. Moreover, the action of c on
Hv(C) ∼= SLnm(C) is explicitly given as follows. Let Qv = diag(v(q1), . . . , v(qn)) ∈ GLn(R) and

Q̃v = diag(v(q1), . . . , v(qn), v(q1), . . . , v(qn)) ∈ GL2n(R). Let

γ =

(
0 In

−In 0

)
.

If m = 1 and X ∈ SLn(C), then c(X) = Q−1
v X∗,−1Q. If m = 2 and X ∈ SL2n(C), then

c(X) = Q−1
v γX∗,−1γ−1Qv. The last case easily follows from (4.1) and the fact that D0,v is split.

We can identifyX∗(Sv) in the standard way with Znm/L, where L = {(k, k, . . . , k) : k ∈ Z}. It then
follows easily from our calculations of the action of c that if χ ∈ X∗(Sv) is identified with the class
of the tuple (a1, . . . , an) in the casem = 1, respectively the class of the tuple (a1, . . . , an, b1, . . . , bn)
in the case m = 2, then χc is identified with (−a1, . . . ,−an) or with (−b1, . . . ,−bn,−a1, . . . ,−an)
respectively. This, together with our formulas for θ, show that θv induces cSv

on Sv, which is what
we wanted to prove. �

Remark 4.4. When D0,v is not split, there is also an explicit formula for c which involves a matrix
γ as above, but which is a diagonal matrix. So in this case θv does not induce cSv

on Sv. We only
care about non-compact places, hence our assumption Ins ⊂ Ic.

Remark 4.5. Keep the assumptions and notation as above. For each v ∈ Inc, we will construct a
map y : S → Had

v satisfying Deligne’s axioms ([Del79], 1.2.1) and factoring through Sad
v . Namely,

fix τ : L →֒ C an extension of v to L, and let w = τ |K (so w = τ when D = K = L). Let
Dw = D ⊗K,w C and Jw : Dw → Dw be defined by Jw(d ⊗ z) = J(d) ⊗ z. The group Hv(A)
can be identified, using the basis β, with the group of matrices X ∈ GLn(Dw ⊗R A) such that
tXJwQX = Q and Nrd(X) = 1. If m = 1, let φτ : Dw → C be the unique isomorphism. If m = 2,
consider the C-algebra isomorphism φτ : Dw →M2(C) given by

φτ (λ⊗K,w 1) =

(
τ(λ) 0
0 −τ(λ)

)
,

φτ (µ⊗K,w 1) =

(
0 v(µ2)
1 0

)
.

As above, for any R-algebra A, this induces an isomorphism GLn(Dw ⊗R A) ∼= GLmn(C ⊗R A)
taking the subgroup of diagonal matrices with entries in Lw ⊗R A (where Lw = L ⊗K,w C) to
the subgroup of diagonal matrices in GLmn(C ⊗R A). Moreover, the corresponding involution
X 7→ tXJw gets identified with X 7→ γX∗γ−1, where if m = 1, γ = In, and if m = 2, γ is the
hermitian matrix defined by

γ =

(
0 iIn

−iIn 0

)

if v(λ2) > 0, and

γ =

(
−v(µ2)In 0

0 In

)

if v(λ2) < 0 (note that in this case, we must have v(µ2) > 0). In this way, we can write

Hv(A) ∼=
{
X ∈ GL2n(C⊗R A) : (γX

∗γ−1)Q′X = Q′, det(X) = 1
}
,

where Q′ = Qv ifm = 1 and Q′ = Q̃v = diag(v(q1), . . . , v(qn), . . . , v(q1), . . . , v(qn)) ifm = 2. Thus,
we can identify Hv with the special unitary group SU(γ−1Q′) of the hermitian matrix γ−1Q′, and
the maximal torus Sv is the torus of diagonal matrices. Note that Had

v is also the adjoint group



14 DON BLASIUS, LUCIO GUERBEROFF

of the similitude unitary group GU(γ−1Q′). We define y′ : S → GU(γ−1Q′) as follows. For an
R-algebra A and z ∈ S(A), let

y′A(z) =

(
diag(y′A(z)1, . . . , y

′
A(z)n) 0

0 diag(y′A(z)1, . . . , y
′
A(z)n)

)
,

where y′A(z)i = z if v(qi) > 0 and y′A(z)i = z if v(qi) < 0. We let y = y′ ad : S → Had
v . Using the

explicit computation of γ−1Q′ in each case, the group GU(γ−1Q′) is isomorphic to a similitude
unitary group GU(p, q) of a certain signature (p, q) (furthermore, if m = 2, in our case where D0,v

is split, the signature is always (n, n), so the group Hv is in fact quasi-split). It’s then standard
that y′, and hence y, satisfies Deligne’s axioms (see for instance the Appendix of [MS81]).

4.2. Groups of Type Dl (l ≥ 4 odd). Suppose that D = Dl with l ≥ 5 odd. Then H =
Spin(B, τ), whereB is a central simple algebra over F of degree 2l and τ is an orthogonal involution
([KMRT98], Theorem 26.15). The adjoint group is Had = PGO+(B, τ). In order to avoid
introducing spin groups, we will work in this section with Had. Since the map Aut(H) → Aut(Had)
is an isomorphism, an opposition involution on Had will uniquely lift to an opposition involution
on H ; moreover, suppose that S ⊂ H is a maximal torus and the involution on Had preserves Sad

and induces cSad
v

on Sad
v for every v ∈ Inc. Then the lifted involution on H preserves S and also

obviously induces cSad
v

on Sad
v for every v ∈ Inc. This will allow us to concentrate on Had and

avoid spin groups.
Since F is a number field, it can be shown that B = EndD(Λ), where D = F or a quaternion

division algebra over F (see [Sch85], 8.2.3), and Λ is a right D-vector space of finite dimension
n. Let m = degF D. Moreover, the involution τ : B → B must be attached to a non-degenerate
F -bilinear form q : Λ×Λ → D. In the case D = F (where dimF Λ = 2l), q is a symmetric bilinear
form. In the case that D is a quaternion division algebra (where dimD Λ = l), q is a skew-hermitian
form with respect to the canonical involution σ : D → D. We will only treat the case where D
is a quaternion division algebra. Let Is ⊂ I = Hom(F,R) be the set of v : F → R such that
Dv = D ⊗F,v R is split, and let Ins be its complement in I. For v ∈ Is, the skew-hermitian
form qv on Λv defines a non-degenerate symmetric bilinear form bv over a real vector space Wv

of dimension 2n (see [Sch85]), and then we have that Ic ⊂ Is is the set of split places where bv is
definite. As in the Appendix of [MS81] (type DH), we will assume that Ic = Is. We call the pair
(Λ, q) a skew-hermitian space over D. Note that n = l is odd.

Let β = {v1, . . . , vn} be a D-basis of Λ, which is q-orthogonal. The group Had = PGO+(Λ, q)
can also be seen as the adjoint group of G = SO(Λ, q), where

G(A) = {g ∈ AutD⊗FA(Λ⊗F A) : qA(g(x), g(y)) = qA(x, y) ∀x, y ∈ ΛA, Nrd(g) = 1}
for an F -algebra A. Here Nrd is the reduced norm in EndD(Λ). We let S′ = S′

β ⊂ G be the

subgroup of G defined as follows. For every i = 1, . . . , n, let qi = q(vi, vi). This is a pure
quaternion in D, and so Li = F (qi) is a quadratic field extension of F . For an F -algebra A, let

S′(A) = {g ∈ G(A) ⊂ AutD⊗FA(Λ⊗F A) : g(vi ⊗ 1) = (vi ⊗ 1)λi, for some λi ∈ (Li ⊗F A)
×}.

Then S′ ⊂ G is a maximal torus of G, and it defines maximal tori S ⊂ H and Sad = S′ ad ⊂ Had.
We will construct involutions on H modeled after our constructions for the case of type Al. For

this we need to make an analogous extra assumption.

Definition 4.2. We say that the skew-hermitian space (Λ, q) over D is strongly skew-hermitian
if there exists a q-orthogonal D-basis β = {v1, . . . , vn} of Λ and an F -automorphism α : D → D
such that q(vi, vj) = −α(q(vj , vi)) and α2 = 1.

Remark 4.6. Any automorphism α : D → D as above must be necessarily inner, of the form
α(d) = rdr−1 for some r ∈ D× such that r2 ∈ F×. This implies that rσ(r)−1 ∈ F× as well
(because F is the set of elements of D fixed by σ). Moreover, since q(vi, vi) ∈ D×, r must be a
pure quaternion in D.

Suppose that (Λ, q) is strongly hermitian, and let β and α = int(r) be as in the definition. We
then have ασ = σα. Let I : Λ → Λ be the α-semilinear automorphism obtained by applying α to
the coefficients of elements of Λ with respect to the basis β. Then q(I(x), I(y)) = −α(q(x, y)). Let
θ : G → G be defied by θA(g) = IAgIA for an F -algebra A and a D ⊗F A-linear automorphism g
of Λ⊗F A.
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Let L = F (r), where r ∈ D is as above. This is again a quadratic extension of F (and a maximal
subfield of D). Let S′ and Sad be the maximal tori of G and Had defined above using the basis β.

Proposition 4.3. With the above hypotheses, the following statements are true.

(a) The map θ : G→ G is an opposition involution (and hence so is θad).
(b) We have θ(S′) = S′ and for every v ∈ Inc, θv : Gv → Gv induces cS′

v
on S′

v.

In particular, θadv : Had
v → Had

v induces cSad
v

on Sad
v for v ∈ Inc.

Proof. For part (a), it suffices to see that θE : GE → GE is an opposition involution, for a
convenient extension E/F . Using the basis β and the isomorphism φ : D ⊗F L → M2(L) as
constructed above, we can identify GL as follows. Implicit in the construction of φ is the choice
of a pure quaternion s ∈ D with rs = −rs, and we let t = v(s2) ∈ R. Let qi = q(vi, vi). Since
σ(qi) = −qi and rqir−1 = −qi, we have

φ(r) =

(
r 0
0 −r

)
∈ GL2(L)

and

φ(qi) =

(
0 bi
ci 0

)

for some bi, ci ∈ L. The image in M2(L) under φ of Li ⊗F L ⊂ D ⊗F L consist of the matrices in
M2(L) of the form (

x ybi
yci x

)

for some x, y ∈ L. Thus, the induced isomorphism φ :Mn(D⊗FL) →M2n(L) sends the subalgebra
of diagonal matrices L1 ⊗F L× · · · × Ln ⊗F L to the set of matrices in M2n(L) of the form

(4.2) X =

(
diag(x1, . . . , xn) diag(y1b1, . . . , ynbn)

diag(y1c1, . . . , yncn) diag(x1, . . . , xn)

)

with xi, yi ∈ L. Let

Q̃ =

(
0 diag(b1, . . . , bn)

diag(c1, . . . , cn) 0

)
∈ GL2n(L).

Then, for any L-algebra R, writing a matrix X ∈ GL2n(R) as X =

(
A B
C D

)
, there is an

isomorphism

(4.3) G(R) ∼=
{
X ∈ GL2n(R) :

(
tD −tB
−tC tA

)
Q̃

(
A B
C D

)
= Q̃, det(X) = 1

}

that takes the subgroup S′ to the subgroup of matrices of the form (4.2) in the right hand side.

Note that the equation is equivalent to tXQ̃′X = Q̃′, where

Q̃′ =

(
diag(c1, . . . , cn) 0

0 − diag(b1, . . . , bn)

)

(the matrix Q̃′ is the matrix of the associated bilinear form; see [Sch85], 10.3). Moreover, if

γ =

(
rIn 0
0 −rIn

)
,

then θR(X) = γXγ−1 for X ∈ G(R); in block matrix terms,

θR

(
A B
C D

)
=

(
A −B
−C D

)
.

It’s clear then that θ preserves S′.
Let E/L be a field extension such that there exist elements ei, fi ∈ E with e2i = ci and

f2
i = bi (for example, take E = C with a fixed embedding of L). For elements a1, . . . , an,
let adiag(a1, . . . , an) be the anti-diagonal matrix whose (i, n + 1 − i)-th entry is ai, and let
Jn = adiag(1, . . . , 1). Let

δ =

(
adiag(en, . . . , e1) adiag(−fn, . . . ,−f1)
diag( e12 , . . . ,

en
2 ) diag( f12 , . . . ,

fn
2 )

)
∈ GL2n(E).
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Then the map X 7→ δXδ−1 sends GE (viewed inside GL2n,E via (4.3)) to the special orthogonal
group SO2n of the matrix J2n over E. The maximal torus S′

E maps to the subgroup of diagonal
matrices in SO2n, and θ becomes conjugation by the matrix

δγδ−1 =

(
0 2rJn

r
2Jn 0

)

inside GL2n. We identify in the usual way X∗(S′) ∼= Zn. As a Borel subgroup of GE we take the
subgroup B of upper triangular matrices belonging to GE . The map θ sends B to the subgroup
B− of lower triangular matrices. Let J ′

2n be the matrix obtained from J2n by swapping the
rows n and n + 1. Then it’s easy to see that J ′

2n ∈ G(E) and sends B− to B. It follows that
Ψ0(θ)(χ) = χ ◦ int(J ′

2n) ◦ θ for χ ∈ X∗(S′). If χ is parametrized by (a1, . . . , an), then Ψ0(θ)(χ) is
parametrized by (a1, . . . , an−1,−an) = (a1, . . . , an)

⋆ (see [Bou02], Plate IV). Thus, θ : G → G is
an opposition involution.

Let v : F →֒ R and let τ : L →֒ C be an extension of v to L. If τ = τ , then τ(r) ∈ R. Thus,
τ(r)2 ∈ R>0, and this implies that Dv is split, so v ∈ Is = Ic. In part (b), we only care for v ∈ Inc,
so suppose from now on that τ 6= τ , so that τ(r) ∈ iR>0. By the same reasoning we have that
t = v(s2) < 0. We use τ to identify GC

∼= SO2n as above. We first work out the induced complex
conjugation on G(C) ∼= SO2n(C). Using the isomorphisms D ⊗F,v C ≃ (D ⊗F L)⊗L,τ C ∼=M2(C)
(the last one coming from φ), it’s easy to see that complex conjugation on D ⊗F,v C corresponds
to taking a matrix X ∈M2(C) to

(
t 0
0 1

)(
X22 X21

X12 X11

)(
t−1 0
0 1

)
,

where t = v(s2) as above. Note that qi ∈ D ⊂ D ⊗F,v C, so this implies that tτ(ci) = τ(bi) and
thus

(4.4) t
ei

fi
= −fi

ei
.

It follows that the induced complex conjugation on G(C), viewed inside GL2n(C) as in (4.3), is
given by

X =

(
A B
C D

)
7→ c′(X) =

(
D tC

t−1B A

)
.

Finally, we apply conjugation by δ to identify GC with SO2n. We only need to consider the
action of c on diagonal matrices. Let X = diag(x1, . . . , xn, x

−1
n , . . . , x−1

1 ) ∈ SO2n(C). Then
c(X) = δc′(δ)−1c′(X)c′(δ)δ−1, and a long but easy direct calculation using (4.4) shows that

δc′(δ)−1 =

(
2 adiag( en

fn
, . . . , e1

f1
) 0

0 1
2 adiag(

f1
e1
, . . . , fnen )

)
,

and thus

c(diag(x1, . . . , xn, x
−1
n , . . . , x−1

1 ) = diag(x1
−1, . . . , xn

−1, xn, . . . , x1).

This implies that if χ ∈ X∗(S′) is parametrized by (a1, . . . , an) ∈ Zn then χc is parametrized by
(−a1, . . . ,−an). This is also easily seen to be the parameter of χ ◦ θ, which shows that θv induces
cS′

v
on S′

v.
�

Remark 4.7. Keep the assumptions and notation as above. For each v ∈ Inc, we will construct
a map y : S → Had

v satisfying Deligne’s axioms ([Del79], 1.2.1) and factoring through Sad
v . Recall

that t = v(s2) and let u = v(r2). Since v ∈ Inc, by our assumptions Dv is not split. This implies
that u < 0 and t < 0. Let ψ : Dv → H be the isomorphism of R-algebras sending r ⊗ 1 to

√−ue2
and s⊗ 1 to

√−te3. Here e1, e2, e3 and e4 are the following elements of H:

e1 = I2, e2 =

(
i 0
0 −i

)
,

e3 =

(
0 1
−1 0

)
, e4 = e2e3.
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As above, we can write ψ(qi) =

(
0 yi

−yi 0

)
with yi ∈ C×. Let

T =

(
0 diag(y1, . . . , yn)

− diag(y1, . . . , yn)

)
.

We then have, for an R-algebra R,

(4.5) Gv(R) ∼=
{
X =

(
A B
−B A

)
∈ GL2n(C⊗R R) : X

∗TX = T, det(X) = 1

}
.

The maximal torus S′ corresponds to the subgroup of matrices on the right hand side where
A = diag(a1, . . . , an) and B = diag(b1y1, . . . , bnyn) with ai, bi ∈ R. We can actually see Hv as the
adjoint group of G′

v, where

G′
v(R)

∼=
{
X =

(
A B
−B A

)
∈ GL2n(C⊗R R) : X

∗TX = ν(X)T, det(X) = ν(X)n
}
.

We define y′ : S → G′
v by the formula

y′R(z) =

(
Re(z)In diag( Im(z)

|y1|
y1, . . . ,

Im(z)
|yn|

yn)

diag(− Im(z)
|y1|

yi, . . . ,− Im(z)
|yn|

yn) Re(z)In

)

for z ∈ S(R). Conjugating by a suitable matrix U ∈ GL2n(C), we can write G′
v
∼= GO∗(2n) and y

becomes the map in the Appendix of [MS81], so it satisfies Deligne’s axioms, and hence also does
y = y′ ad.

5. Involutions on certain Shimura varieties

In this section we combine all our previous results to prove the existence of descent data on
certain Shimura varieties Sh(G,X). As we said before, we only consider the case where the simple
groups Hi are of type A or DH. In the previous section, we constructed opposition involutions on
some of these groups, preserving a certain maximal torus Si and inducing complex conjugation on
its characters. Furthermore, we constructed maps yi,v : S → Had

i,v for every v ∈ Ii,nc satisfying

Deligne’s axioms ([Del79], 1.2.1), factoring through Sad
i,v. We now show that we can always find

an element x ∈ X such that xi,v factors through Sad
i,v for every i and v ∈ Ii,nc. The existence of

descent data will follow by combining this with Proposition 3.2.
Let H be an almost simple, simply connected group over R (to play the role of one of the

non-compact Hi,v). Suppose that there exist morphisms y : S → Had satisfying Deligne’s axioms
([Del79, 1.2.1]); in particular, H is absolutely almost simple. Let D be the Dynkin diagram of
HC associated with a choice of maximal torus and Borel. To each Had(R)-conjugacy class Y of
morphisms y as above, we can attach a special node sY ∈ D, and sY = sY ′ if and only if Y = Y ′.

Lemma 5.1. Under the above conditions, there exist at most two H(R)-conjugacy classes Y of
morphisms satisfying 1.2.1 of [Del79]. Moreover, given such a conjugacy class Y , any morphism
satisfying these axioms must belong to either Y or Y −1.

Proof. Suppose first that D is not of type Al. This case is easy because there are not too many
special nodes. Indeed, assume first that H(R) is connected, and fix Y one of the conjugacy classes.
Then sY −1 = s⋆Y 6= sY ([Del79, 1.2.8]), and hence Y −1 and Y are two distinct conjugacy classes.
Suppose that Z is a third conjugacy class, that is, sZ is neither equal to sY nor to s⋆Y . Again by
[Del79, 1.2.8], sZ 6= s⋆Z , and thus we have four distinct special nodes sY , s

⋆
Y , sZ and s⋆Z . There is

no connected Dynkin diagram with four special nodes which is not of type Al, and thus this is a
contradiction. If H(R) is not connected, then sY = s⋆Y by op. cit.. If Z is another conjugacy class,
then again by op. cit. we must have sZ = s⋆Z . But for any connected Dynkin diagram, there is at
most one special node which is fixed under the opposition involution, and thus Z = Y .

Suppose now that H is of type Al with l ≥ 2, so H = SU(p, q) for some non-zero pair of integers
p, q such that p+ q = l + 1. The isomorphism C⊗R C ≃ C× C given by z ⊗ a 7→ (za, za) induces
by projection on the first coordinate an isomorphism HC ≃ SLl+1,C; fix the usual Borel pair here
to define the Dynkin diagram. Define a morphism y0 : S → Had = PGU(p, q) with y0(z) being the
class of the matrix (

zIp 0
0 zIq

)
.
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Then y0 satisfies axioms 1.2.1 of [Del79], and the special node s0 attached to its Had(R)-conjugacy
class Y0 is αp. From the conjugate map y0 = y−1

0 we get the special node αq associated with Y −1
0 .

If Y is another conjugacy class, say with special node αt, then there would be an isomorphism
PGU(p, q) ∼= PGU(t, l + 1 − t) sending Y0 or Y −1

0 to Y . In particular, t = p or t = q, and we
conclude that there are at most two possible conjugacy classes of morphisms satisfying 1.2.1 of
[Del79] for the fixed form PGU(p, q) of PGLl+1,C (and there are exactly two in all cases except
when p = q, when there is only one). �

Going back to our general Shimura datum (G,X), for each i, let Si ⊂ Hi be a maximal torus,

T̃i = ResFi/Q Si ⊂ G̃i, Ti ⊂ Gi its image in Gi, T
′ ⊂ Gder the image of their product, and

T = Z0T ′. Note that T ad
R = T

′ ad
R =

∏
i,v S

ad
i,v, where Si,v ⊂ Hi,v and Sad

i,v is its image in Had
i,v.

Lemma 5.2. Suppose that T ⊂ G is a the maximal torus defined above. Suppose that for each
v ∈ Ii,nc, there exists a morphism yi,v : S → Had

i,v satisfying axioms 1.2.1 of [Del79] and factoring

through Sad
i,v. Then there exists an element x ∈ X such that xad factors through T ad

R .

Proof. Let z ∈ X be an arbitrary element. The previous lemma implies that zi,v is Had
i,v(R)-

conjugate to a map yi,v : S → Sad
i,v. Thus, we can write zi,v = ui,v.yi,v for ui,v ∈ Had

i,v(R). We claim

that, after possibly changing the yi,v, we can arrange for ui,v to be in Had
i,v(R)

+. Indeed, if ui,v is

not in that connected component, then in particular Had
i,v(R) is not connected, and thus there is

only one conjugacy class in question, with two connected components, one containing zi,v and the

other one containing yi,v. Thus, we only need to replace yi,v with y−1
i,v , which also factors through

Sad
i,v. For v ∈ Ii,c, let ui,v = 1. It follows that u = (ui,v) ∈ Gad(R)+, and thus there exists g ∈ G(R)

lifting u. Let x = g−1.z ∈ X , so that xad = (yi,v), which factors through T ad
R as desired. �

Definition 5.1. The Shimura datum (G,X) is said to be strongly of type (ADH) if each of the
groups Hi is either of type Al with l ≥ 2 and attached to a strongly hermitian space (as in
Definition 4.1), or of type Dl with l ≥ 5 odd and attached to a strongly skew-hermitian space (as
in Definition 4.2).

For example, a Shimura variety defined by a similitude unitary group attached to a hermitian
space over a CM field is strongly of type (ADH). Note however that the definition only restricts
the semisimple part of G.

Theorem 5.1. Suppose that (G,X) is strongly of type (ADH). Then there exists an involution
θ : G→ G such that θ(X) = X, and hence there exist a model of Sh(G,X) over E+ as in Theorem
2.1.

Proof. In Subsections 4.1 and 4.2, we constructed for every i, an opposition involution θi : Hi → Hi

and a maximal torus Si ⊂ Hi such that θi(Si) = Si and θadi,v induces cSad
i,v

for every v ∈ Ii,nc.

Moreover, by Remarks 4.5 and 4.7, for every i and v ∈ Ii,nc, there is a map yi,v : S → Had
i,v

satisfying Deligne’s axioms ([Del79], 1.2.1) and factoring through Sad
i,v. The result then follows by

combining Proposition 3.2 and Lemma 5.2.
�

Remark 5.1. The conclusion of the previous theorem holds in other cases as well. For instance,
if G is adjoint and there exists an opposition involution θ : G→ G (which is always the case if G
is also quasi-split, for example), then by the adjointness of G, we conclude that θ(X) = X. Our
method can also work to include factors of other types, for instance of type E6, as long as one can
construct an opposition involution inducing complex conjugation on the characters of a maximal
torus (at non-compact places) and morphisms satisfying Deligne’s axioms and factoring through
these tori (as in Remarks 4.5 and 4.7).
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