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ISOCRYSTALS ASSOCIATED TO ARITHMETIC JET SPACES

OF ABELIAN SCHEMES

JAMES BORGER AND ARNAB SAHA

Abstract. Using Buium’s theory of arithmetic differential characters, we con-
struct a filtered F -isocrystal H(A)K associated to an abelian scheme A over
a p-adically complete discrete valuation ring with perfect residue field. As
a filtered vector space, H(A)K admits a natural map to the usual de Rham
cohomology of A, but the Frobenius operator comes from arithmetic differen-
tial theory and is not the same as the usual crystalline one. When A is an
elliptic curve, we show that H(A)K has a natural integral model H(A), which
implies an integral refinement of a result of Buium’s on arithmetic differential
characters. The weak admissibility of H(A)K depends on the invertibility of
an arithmetic-differential modular parameter. Thus the Fontaine functor as-
sociates to suitably generic A a local Galois representation of an apparently

new kind.

1. Introduction

The theory of arithmetic jet spaces developed by Buium draws inspiration from
the theory of differential algebra over a function field. In differential algebra, given
a scheme E defined over a function field K with a derivation ∂ on it, one can
define the jet spaces JnE for all n ∈ N. They form an inverse system of schemes
satisfying a universal property with respect to derivations lifting ∂. The ring of
global functions O(JnE) can be thought of as the ring of n-th order differential
functions on E. In the case when E is an elliptic curve, there exists a differential
function Θ ∈ O(J2E) which is a homomorphism of group schemes from J2E to the
additive group Ga. Such a Θ is an example of a differential character of order 2
for E and is known as a Manin character. Explicitly, if E is given by the Legendre
equation y2 = x(x − 1)(x− t) over K = C(t) with derivation ∂ = d

dt
, then

Θ(x, y, x′, y′, x′′, y′′) =
y

2(x− t)2
−
d

dt

[

2t(t− 1)
x′

y

]

+ 2t(t− 1)x′
y′

y2
.

where x, y, x′, y′, x′′, y′′ are the induced coordinates of the jet space J2E. The
existence of such a Θ can be viewed as a consequence of the Picard–Fuchs equation.
Using the derivation ∂ onK, we can lift anyK-rational point P ∈ E(K) canonically
to J2E(K), and this defines a homomorphism∇ : E(K)→ J2E(K). We emphasize
that ∇ is merely a map on K-rational points and does not come from a map of
schemes. The composition Θ◦∇ : E(K)→ Ga(K) is then a group homomorphism,
and the torsion points of E(K) are contained in its kernel simply because Ga(K)
is torsion free. Such a character Θ was used by Manin to give a proof of the Lang–
Mordell conjecture for abelian varieties over function fields [19]. Later Buium gave
a different proof, using other methods, but still using the Manin map [6].

1

http://arxiv.org/abs/1712.09346v3


2 JAMES BORGER AND ARNAB SAHA

The theory of arithmetic jet spaces, as developed by Buium, proceeds similarly.
Derivations ∂ are replaced by what are known as π-derivations δ. They naturally
arise from the theory of π-typical Witt vectors. For instance, when our base ring
R is an unramified extension of the ring of p-adic integers Zp and when π = p,

the Fermat quotient operator δx = φ(x)−xp

p
is the unique p-derivation, where the

endomorphism φ : R → R is the lift of the p-th power Frobenius endomorphism of
R/pR.

Let A be an abelian scheme over R of relative dimension g. In analogy with
differential algebra, one can define the n-th order jet space JnA to be the π-adic
formal scheme over R with functor of points

(JnA)(C) = A(Wn(C)) = HomR(SpecWn(C), A),

where C is an R-algebra and Wn(C) is the ring of π-typical Witt vectors of length
n+1, which is taken as the arithmetic analogue of C[t]/(tn+1). One might say that
Wn(C) is the ring of arithmetic jets of order n. The jet space JnA is also known
as the Greenberg transform. Similar to the differential jet space, JnA has relative
dimension g(n+ 1) over the base, in this case Spf R.

Then we let Xn(A) denote the R-module of all homomorphisms JnA → Ĝa

(of π-adic formal group schemes), which are referred to as arithmetic differential
characters of A of order n. They are the arithmetic analogue of Manin characters.
Let X∞(A) be the direct limit of the Xn(A). The usual Frobenius operator on
Witt vectors induces a canonical Frobenius morphism φ : Jn+1A→ JnA lying over
the endomorphism φ of Spf R. Hence pulling back morphisms via φ as Θ 7→ φ∗Θ,
endows X∞(A) with an action of φ∗ and hence makes X∞(A) into a left module
over the twisted polynomial ring R{φ∗} with commutation law φ∗ · r = φ(r) · φ∗.

In [8], Buium studied the structure of X∞(A)K := X∞(A) ⊗R K as a K{φ∗}-
module, where K = R[ 1

p
]. For example, he showed that when A has ordinary

reduction and its Serre–Tate parameters are either trivial or sufficiently general,
X(A)K is freely generated as a K{φ∗}-module by g characters of order either 1
or 2. In the case of elliptic curves, he showed this without any restrictions on the
Serre–Tate parameter.

The main purpose of this paper is not to study the abstract structure of the
Xn(A) but to use them and other character groups to construct a new filtered F -
isocrystal associated to A. But we will obtain some integral, R-linear refinements
of Buium’s theorems along the way and as applications at the end.

To go into greater detail, we need to introduce some further notation. Let R be
a p-adic complete discrete valuation ring with perfect residue field and uniformizer
π. We always assume p | πp−2, which is to say the absolute ramification index is at
most p− 2. Let φ : R→ R be a fixed lift of the p-th power Frobenius: so φ(x) ≡ xq

mod πR, for all x ∈ R. (In the body of the paper, we allow q-power Frobenius lifts
for any power q of p, which requires modifying the Witt vector functors.) Let us
also write MK :=M ⊗R K for any R-module M .

Let u : JnA→ A be the usual projection map and put Nn = keru. Then since

A is smooth, Nn is isomorphic to the (π-adic formal) affine ng-space Â
ng
R . As a

group object, it is unipotent and commutative. Then in section 4, we construct
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morphisms

f : Nn+1 → Nn

reducing modulo π to the Frobenius map composed with the usual projection u :
Nn+1 → Nn. We call f the lateral Frobenius. This has a transparent description

when A is Ĝa. Then J
nĜa(C) isWn(C), and N

n is the Veschiebung ideal VWn(C),
and f is simply the morphism V (x) 7→ V F (x).

As befits its name, f is not compatible with the usual Frobenius φ : Jn+1A →
JnA under the inclusions i : Nn → JnA. That is, we generally have

φ ◦ i 6= i ◦ f.

In fact, we can not expect to have equality here because that would induce lift of
Frobenius on the quotient A, and that exists only when A is a canonical lift. But
we do have the equality

φ2 ◦ i = φ ◦ i ◦ f.

We will see that this odd-looking behavior is just a reflection of the familiar facts
FV 6= V F and FFV = FV F in Witt vectors of rings which are p-torsion free.

In section 5, we determine the effect of the lateral Frobenius on the character

group Hom(N∞, Ĝa) = lim
−→n

Hom(Nn, Ĝa) and show that it is freely generated as an

R{f∗}-module by Hom(N1, Ĝa) in the sense that the natural map is an isomorphism:

R{f∗} ⊗R Hom(N1, Ĝa)
∼
−→Hom(N∞, Ĝa).

In section 6, we define H(A)K , our eventual isocrystal. We first define

H(A) :=
Hom(N∞, Ĝa)

i∗φ∗(X∞(A)φ)
= lim
−→
n

Hom(Nn, Ĝa)

i∗φ∗(Xn−1(A)φ)

and show the semi-linear endomorphism f∗ on Hom(N∞, Ĝa) descends to H(A). It
also comes with a submodule

Xprim(A) := lim
−→
n

Xn(A)/φ
∗(Xn−1(A)φ)

and fits in a map of short exact sequences

(1.1) 0 // Xprim(A)K

Υ

��

// H(A)K

Φ

��

// I(A)K� _

��

// 0

0 // H0(A,ΩA) // H1
dR(A)

// H1(A,OA) // 0

At this point we have not yet shown that H(A)K is finite dimensional. This is
done in section 7, where the first step is to prove the following:

Theorem 1.1. For any abelian scheme A of dimension g, the character group
X∞(A)K is freely generated as a K{φ∗}-module by g differential characters of order
at most g + 1.

We note that Buium’s theorem A in [8] contains the same result but with no
bound on the orders of the characters. He did however establish exactly the bound
g + 1 for the analogous question in the setting of differential algebra. See theorem
1.1 of chapter 5 of his book [7]. (We would like to remark that our techniques work
in the case of differential algebra as well to give an alternate proof.) We emphasize
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that this bound is not sharp for generic A. Buium’s theorem B in [8] says that
for abelian varieties with ordinary reduction and generic Serre–Tate parameters,
X∞(A)K is freely generated by characters g of order at most 2. But it would be
interesting to determine whether it is the best bound that applies for all A.

Our main result then follows:

Theorem 1.2. The rank of H(A)K is at most 2g, and hence H(A)K is a filtered
isocrystal. The underlying filtered vector space has a natural map ( 1.1) to de Rham
cohomology.

See theorem 8.2 for a more detailed statement.

Next, let us define the lower splitting numberml to be the minimal number which
is the order of a nonzero character: so Xml

(A) 6= {0} but Xml−1(A) = {0}. We
will see that ml is in fact either 1 or 2. If A is an elliptic curve, then ml is 1 when A
is the canonical lift of an ordinary elliptic curve and is 2 otherwise. In either case,
Xml

(A) is a free R-module of rank 1. We then show in theorem 9.6 that H(A) is
finitely generated as an R-module. (We do not consider whether this is true for
general abelian varieties.) Using this, we prove the following theorem, which is an
integral refinement of a part of Buium’s theorem B′ in [8]:

Theorem 1.3. Let A be an elliptic curve with lower splitting number ml. Then the
R-module Xml

(A), which is free of rank 1, freely generates X∞(A) as an R{φ∗}-
module in the sense that the canonical map

R{φ∗} ⊗R Xml
(A)→ X∞(A)

is an isomorphism.

In fact, given étale coordinates for A at the origin, we construct a canonical basis
element Θml

∈ Xml
(A). See theorem 9.6 for the proof.

We next consider the finer structure of the isocrystal H(A)K , still assuming A is
an elliptic curve. Theorem 9.7 describes it explicitly in terms of certain arithmetic-
differential modular parameters λ and γ. We emphasize that these modular param-
eters are not modular functions in the usual sense, which is to say functions on the
usual moduli space or on bundles over it, but are instead functions on their arith-
metic jet spaces. We show that the parameter γ is always divisible by π and then
observe that whenever γ/π 6≡ 0 mod π, the F -crystal H(A) is weakly admissible.
Using the Fontaine functor [12] [21], one then obtains apparently new crystalline
Galois representations attached to elliptic curves and presumably abelian varieties,
or at least to generic ones.

The crystalline theory also attaches a filtered F -isocrystalHcrys(A)K to A. How-
ever, our F -isocrystal H(A)K is different than the crystalline one. This is because
the Frobenius map on H(A)K depends on the higher π-derivatives of the coeffi-
cients of the equations defining the abelian scheme, whereas Hcrys(A)K does not
involve any such higher π-derivatives. A natural question is whether the two de-
termine each other, especially by some explicit linear-algebraic functor like the
Fontaine functor mentioned above. In the analogous Drinfeld module setting of [3],
the shtuka necessarily determines both, simply because it determines the Drinfeld
module. But it would be interesting to go further and describe the functor in
purely linear-algebraic terms, without a detour back through the Drinfeld module.
Even further, one could ask whether the isocrystal is determined by just the local
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shtuka. If so, then it would be natural to hope that one could do the same in the
mixed-characteristic context of this paper using the p-adic shtukas of Scholze and
collaborators [23].

Acknowledgement. We wish to thank the anonymous referee for carefully
reading our article and the suggestions which led to deeper clarifications and en-
richment of this paper.

The second author is also grateful to Max Planck Institute for Mathematics in
Bonn for its hospitality and financial support.

2. Notation

We collect here the notation that will remain fixed throughout the paper.

p = a prime number

q = a power > 1 of p

R = a p-adically complete discrete valuation ring

K = the fraction field of R

MK = K ⊗RM, for any R-module M

m = the maximal ideal of R

π = a generator of m

v = the valuation on R normalized such that v(π) = 1

e = the absolute ramification index v(p), assumed ≤ p− 2

k = the residue field of R, assumed to be perfect

φ = an endomorphism of R satisfying φ(x) ≡ xq mod m, for all x ∈ R

S = Spf(R)

(The assumption e ≤ p−2 is only used in the citations to [8] in section 5 and might
well be removable.) By a π-formal scheme, we will mean a π-adic formal scheme
over S.

For any R-module M if x1, · · · , xn ∈ M forms an R-basis, then we will denote
M = R〈x1, · · · , xn〉. If Y = (y1, . . . , yl) ∈ M

l and Λ = (α1, . . . , αl) ∈ R
l, then the

dot-product Λ.Y will denote

Λ.Y = λ1y1 + · · ·+ λlyl.

3. Witt Vectors

Witt vectors over Dedekind domains with finite residue fields were introduced
in [1]. We will give a brief over view in this section.

3.1. Frobenius lifts and π-derivations. Let B be an R-algebra, and let C be
a B-algebra with structure map u : B → C. In this paper, a ring homomorphism
ψ : B → C will be called a lift of Frobenius (relative to u) if it satisfies the following:

(1) The reduction mod π of ψ is the q-power Frobenius relative to u, that is,
ψ(x) ≡ u(x)q mod πC.
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(2) The restriction of ψ to R coincides with the fixed φ on R, that is, the
following diagram commutes

B
ψ // C

R
φ

//

OO

R

OO

A π-derivation δ from B to C means a set-theoretic map δ : B → C satisfying the
following for all x, y ∈ B

δ(x+ y) = δ(x) + δ(y) + Cπ(u(x), u(y))

δ(xy) = u(x)qδ(y) + δ(x)u(y)q + πδ(x)δ(y),

where Cπ(X,Y ) denotes the polynomial

Cπ(X,Y ) =
Xq + Y q − (X + Y )q

π
∈ R[X,Y ],

such that for all r ∈ R, we have

δ(r) =
φ(r) − rq

π
.

When C = B and u is the identity map, we will call this simply a π-derivation on
B.

It follows that the map φ : B → C defined as

φ(x) := u(x)q + πδ(x)

is a lift of Frobenius in the sense above. Conversely, for any flat R-algebra B with

a lift of Frobenius φ, one can define the π-derivation δ(x) = φ(x)−xq

π
for all x ∈ B.

It is worth pointing out that although the definition of π-derivation depends on
the choice of uniformizer π in a literal sense, it is independent of the choice up
to a canonical bijection. Indeed, if π′ is another uniformizer, then δ(x)π/π′ is a
π′-derivation, and so this correspondence induces a bijection between π-derivations
B → C and π′-derivations B → C. Further, if π′′ is a third uniformizer, then we
have (δ(x)π/π′)π′/π′′ = δ(x)π/π′′. In this way, the set of π-derivations δ : B → C
is independent of π, up to a canonical and coherent family of bijections.

3.2. Witt vectors. We will present three different points of view on π-typical Witt
vectors. Let B be an R-algebra with structure map u : R→ B.

(1) The ring W (B) of π-typical Witt vectors can be defined as the unique (up
to unique isomorphism) R-algebra W (B) with a π-derivation δ on W (B) and an
R-algebra homomorphism W (B)→ B such that, given any R-algebra C with a π-
derivation δ on it and an R-algebra map f : C → B, there exists a unique R-algebra
homomorphism g : C →W (B) such that the diagram

W (B)

��
B C

foo

g
bb❊❊❊❊❊❊❊❊
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commutes and g ◦ δ = δ ◦ g. Thus W is the right adjoint of the forgetful functor
from R-algebras with π-derivation to R-algebras. For details, see section 1 of [1]
and [15].

(2) If we restrict to flat R-algebras B, then we can ignore the concept of π-
derivation and define W (B) simply by expressing the universal property above in
terms of Frobenius lifts, as follows: Given a flat R-algebra B, the ring W (B) is the
unique (up to unique isomorphism) flat R-algebraW (B) with a lift of Frobenius (in
the sense above) F :W (B)→W (B) and an R-algebra homomorphismW (B)→ B
such that for any flat R-algebra C with a lift of Frobenius φ (compatible with the
one on R) on it and an R-algebra map f : C → B, there exists a unique R-algebra
homomorphism g : C →W (B) such that the diagram

W (B)

��
B C

foo

g
bb❊❊❊❊❊❊❊❊

commutes and g ◦ φ = F ◦ g.

(3) Finally, one can also define Witt vectors in terms of theWitt polynomials. For

each n ≥ 0, let us define Bφ
n

to be the R-algebra with structure map R
φn

→ R
u
→ B

and define the ghost rings to be the product R-algebras ΠnφB = B×Bφ×· · ·×Bφ
n

and Π∞
φ B = B × Bφ × · · · . Then for all n ≥ 1 there exists a restriction, or

truncation, map Tw : ΠnφB → Πn−1
φ B given by Tw(w0, · · · , wn) = (w0, · · · , wn−1).

We also have the left shift Frobenius operators Fw : ΠnφB → Πn−1
φ B given by

Fw(w0, . . . , wn) = (w1, . . . , wn). Note that Tw is an R-algebra morphism, but Fw
lies over the Frobenius endomorphism φ of R.

Now as sets define

(3.1) Wn(B) = Bn+1,

and define the set map w :Wn(B)→ ΠnφB by w(x0, . . . , xn) = (w0, . . . , wn) where

(3.2) wi = xq
i

0 + πxq
i−1

1 + · · ·+ πixi

are the Witt polynomials. The map w is known as the ghost map. (Do note
that under the traditional indexing our Wn would be denoted Wn+1.) We can
then define the ring Wn(B), the ring of truncated π-typical Witt vectors, by the
following theorem as for example in [13], page 141:

Theorem 3.1. For each n ≥ 0, there exists a unique functorial R-algebra structure
on Wn(B) such that w becomes a natural transformation of functors of R-algebras.

The agreement between descriptions (1)–(3) above can be seen as follows: (2) is
a particular case of (1), and conversely, (1) is determined by (2) and functoriality
because every R-algebra is a quotient of a flat R-algebra. To show (3) and (1) are
equivalent, it is again enough to restrict to flat R-algebras, in which case it follows
from Lazard [17], VII§4, or Bourbaki [4], IX.44, exercise 14a. Alternatively, one
can see sections 1–3 of [1].

The realization that Witt vectors, which have traditionally been defined as in
(3) above, have a satisfying definition as the solution to a universal property, as in
(1), is due to Joyal [15].
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3.3. Operations on Witt vectors. Now we recall some important operators on
the Witt vectors. They are the unique functorial operators corresponding under
the ghost map to the operators Tw, Vw, and Fw on the ghost rings defined above.
First, the restriction, or truncation, maps T : Wn(B) → Wn−1(B) are given by
T (x0, . . . , xn) = (x0, . . . , xn−1). Note that W (B) = lim

←−
Wn(B). There is also the

Frobenius ring homomorphism F : Wn(B)→ Wn−1(B), which can be described in
terms of the ghost map. It is the unique map which is functorial in B and makes
the following diagram commutative

(3.3) Wn(B)
w //

F

��

ΠnφB

Fw

��
Wn−1(B)

w
// Πn−1
φ Bn

As with the ghost components, T is an R-algebra map but F lies over the Frobenius
endomorphism φ of R.

Next we have the Verschiebung V :Wn−1(B)→Wn(B) given by

V (x0, . . . , xn−1) = (0, x0, . . . , xn−1).

Let Vw : Πn−1
φ B → ΠnφB be the additive map given by

Vw(w0, .., wn−1) = (0, πw0, . . . , πwn−1).

Then the Verschiebung V makes the following diagram commute:

(3.4) Wn−1(B)
w //

V

��

Πn−1
φ B

Vw

��
Wn(B)

w
// ΠnφB

For all n ≥ 0 the Frobenius and the Verschiebung satisfy the identity

(3.5) FV (x) = πx.

The Verschiebung is not a ring homomorphism (unless B = 0), but it is Z-linear.

Finally, we have the multiplicative Teichmüller map [ ] : B → Wn(B) given by
x 7→ [x] = (x, 0, 0, . . . ).

3.4. Prolongation sequences and jet spaces. LetX and Y be π-formal schemes

over S = Spf R. We say a pair (u, δ) is a prolongation, and write Y
(u,δ)
→ X ,

if u : Y → X is a map of π-formal schemes over S and δ : OX → u∗OY is a
π-derivation making the following diagram commute:

R // u∗OY

R

δ

OO

// OX

δ

OO

Following Buium [9](page 103), a prolongation sequence is a sequence of prolonga-
tions

S T 0
(u,δ)oo T 1

(u,δ)oo · · ·
(u,δ)oo ,
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where each T n is a π-formal scheme over S, satisfying

u∗ ◦ δ = δ ◦ u∗

and u∗ is the pull-back morphism on the sheaves induced by u. We will often use
the notation T ∗ or {Tn}n≥0. Note that if the T n are flat over S then having a
π-derivation δ is equivalent to having lifts of Frobenius φ : T n+1 → T n.

Prolongation sequences form a category CS∗ , where a morphism f : T ∗ → U∗

is a family of morphisms fn : T n → Un commuting with both the u and δ, in the
evident sense. This category has a final object S∗ given by Sn = Spf R for all n,
where each u is the identity and each δ is the given π-derivation on R.

For any π-formal scheme X over S, for all n ≥ 0 we define the n-th jet space
JnX (relative to S) as a functor by

JnX(C) := X(Wn(C)) = HomS(Spf(Wn(C)), X),

for any R-algebra C. This functor is representable by a π-formal scheme. (This
was established in two independent threads. First, one can use theorem 12.1 of [2]
to prove the representability of the absolute arithmetic jet space Wn∗(X) and then
invoke the equality JnX = S×Wn∗(S)Wn∗(X). Second, one can use theorem 2.3.24
of [22], which proves Buium’s original construction represents the desired functor.)

Then J∗X := {JnX}n≥0 forms a prolongation sequence and is called the canon-
ical prolongation sequence as in proposition 1.1 in [9]. By the same proposition 1.1
in [9], J∗X satisfies the following universal property—for any T ∗ ∈ CS∗ and X a
π-formal scheme over S0, we have

(3.6) Hom(T 0, X) = HomCS∗ (T
∗, J∗X)

Let X be a π-formal scheme over S = Spf R. Define Xφn

by Xφn

(B) := X(Bφ
n

)
for any R-algebra B. In other words, Xφn

is X ×S,φn S, the pull-back of X under

the map φn : S → S. (N.B., (Spf A)φ
n

should not be confused with Spf(Aφ
n

).)
Next define the following product of π-formal schemes

ΠnφX = X ×S X
φ ×S · · · ×S X

φn

.

Then for any R-algebra B we have X(ΠnφB) = X(B)×S · · · ×S X
φn

(B). Thus the
ghost map w in theorem 3.1 defines a map of π-formal S-schemes

w : JnX → ΠnφX.

Note that w is injective when evaluated on points with coordinates in any flat
R-algebra.

The operators F and Fw in (3.3) induce maps φ and φw fitting into a commutative
diagram

(3.7) JnX
w //

φ

��

ΠnφX

φw

��
Jn−1X

w
// Πn−1
φ X.

The map φw is easier to define. It is the left-shift operator given by

φw(w0, . . . , wn) = (φS(w1), . . . , φS(wn)),
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where φS : Xφi

→ Xφi−1

is the composition given in the following diagram:

(3.8) Xφi ∼ // Xφi−1

×S,φ S

��

// Xφi−1

��
S

φ
// S.

We note that a choice of a coordinate system on X over S induces coordinate

systems on Xφi

for each i, and with respect to these coordinate systems, φS is
expressed as the identity. One might say that φS applies φ to the horizontal coor-
dinates and does nothing to the vertical coordinates.

For the map φ : JnX → Jn−1X , we can define it in terms of the functor of
points. For any R-algebra B, the ring map F :Wn(B)→Wn−1(B) is not R-linear
but lies over φ : R→ R. As B varies, the resulting linearized R-algebra maps

Wn(B)→Wn−1(B)φ =Wn−1(B
φ),

induce functorial maps

(3.9) JnX(B) = X(Wn(B))−→X(Wn−1(B
φ)) = Jn−1X(Bφ),

which is the same as giving a morphism φ : JnX → Jn−1X lying over φ : S → S.

If A is a π-formal group scheme over S, the ghost map w : JnA → ΠnφA

and the truncation map u : JnA → Jn−1A are π-formal group scheme homo-
morphisms over S. On the other hand, the Frobenius maps φ : JnA→ Jn−1A and
φw : ΠnφA → Πn−1

φ A are π-formal group scheme homomorphisms lying over the
Frobenius endomorphism φ of S.

3.5. Character groups. Given a prolongation sequence T ∗ we can define its shift
T ∗+n by (T ∗+n)j := T n+j for all j, page 106 in [9].

S
(u,δ)
← T n

(u,δ)
← T n+1 . . .

We define a δ-morphism of order n from X to Y to be a morphism J∗+nX → J∗Y

of prolongation sequences. We define a character of order n, Θ : A → Ĝa to be
a δ-morphism of order n from A to Ĝa which is also a group homomorphism of
π-formal group schemes. By the universal property of jet schemes as in (3.6), an

order n character is equivalent to a homomorphism Θ : JnA → Ĝa of π-formal
group schemes over S. We denote the group of characters of order n by Xn(A):

Xn(A) = HomS(J
nA, Ĝa).

Note that Xn(A) comes with an R-module structure since Ĝa is an R-module object

in the category of π-formal schemes over S. Also the inverse system Jn+1A
u
→ JnA

defines a directed system

Xn(A)
u∗

→ Xn+1(A)
u∗

→ · · ·

via pull back. Each morphism u∗ is injective and we then define X∞(A) to be the
direct limit lim

−→
Xn(A).

Similarly, pre-composing with the Frobenius map φ : Jn+1A → JnA induces a
Frobenius operator φ : Xn(A) → Xn+1(A). However since φ : Jn+1A → JnA is
not a morphism over S but instead lies over the Frobenius endomorphism φ of S,
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some care is required. Consider the relative Frobenius morphism φR, defined to be
the unique morphism making the following diagram commute:

Jn+1A

φR

&&

φ

((

##

JnA×S,φ S

��

// JnA

��
S

φ
// S

Then φR is a morphism of π-formal group schemes over S. Now given a δ-character
Θ : JnA→ Ĝa, define φ

∗Θ to be the composition

(3.10) Jn+1A
φR
−→ JnA×S,φ S

Θ×id
−→ Ĝa ×S,φ S

ι
−→ Ĝa

where ι is the isomorphism of π-formal group schemes over S coming from the fact
that Ĝa descends to Zp as a π-formal group scheme. For any R-algebra B, the
induced morphism on B-points is

A(Wn+1(B))
A(F )
−→ A(Wn(B)φ)

Θφ
B−→Bφ

b7→b
−→B.

Note that this composition is indeed a morphism of π-formal group schemes.

Thus we have an additive map Xn(A) → Xn+1(A) given by Θ 7→ φ∗Θ. Note
that this map is not R-linear. However, the map

φ∗ : Xn(A)−→Xn+1(A)
φ, Θ 7→ φ∗Θ

is R-linear, where Xn+1(A)
φ denotes the abelian group Xn+1(A) with R-module

structure defined by the law r · Θ := φ(r)Θ. Taking direct limits in n, we obtain
an R-linear map

(3.11) X∞(A)−→X∞(A)φ, Θ 7→ φ∗Θ.

In this way, X∞(A) is a left module over the twisted polynomial ring R{φ∗} with
commutation law φ∗r = φ(r)φ∗.

4. Lateral Frobenius

Let B be an R-algebra and f : R → B be the structure map. Consider the
following map of exact sequences:

0 // Wn−1(B)
V // Wn(B) // B // 0

0 // Wn−1(B)
V // R×B Wn(B) //

I

OO

R //

f

OO

0

Here the top row is the usual exact sequence, and the bottom row is the pull back
of the top row along the structure map f . Let us write

W̃n(B) = R×B Wn(B),
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which is naturally an R-algebra. One can think of elements of W̃n(B) as usual
Witt vectors but with the initial component being an element of R rather than B.
Indeed, we have a bijection

R×Bn → R×B Wn(B)

(r, b1, . . . , bn) 7→
(

r, (f(r), b1, b2, . . . , bn)
)

The addition and multiplication laws on W̃n(B) are then defined in terms of these
components by the usual universal polynomials for Witt vector addition and mul-
tiplication, keeping in mind that B is an R-algebra.

Now we will define an R-algebra homomorphism

(4.1) F̃ : W̃n(B)→ W̃n−1(B
φ),

which we call the lateral Frobeniusmap. First observe that the projection W̃n(B)→
R has a canonical section. Indeed, the Frobenius lift φ on R induces a lift

f̃ : R→Wn(B)

of f and hence a section of the map W̃n(B)→ R. Therefore, we have a bijection

R⊕Wn−1(B)→ W̃n(B)

(r, z) 7→ f̃(r) + V (z).

In terms of this identification, we then define the lateral Frobenius map (4.1) simply
to be the Frobenius map on the second summand:

(r, z) 7→ (r, F (z)).

So F̃ is defined by the expression

F̃ (f(r) + V (z)) = f(r) + V F (z).

There are ghost analogues of W̃n and F̃ . Let us define

Π̃nφ(B) = R×B Πnφ(B) = R ×Bφ × · · · ×Bφ
n

,

with the product R-algebra structure, and the R-algebra map

F̃w : Π̃nφ(B)→ Π̃n−1
φ (Bφ)

(r, z1, z2, . . . , zn) 7→ (r, z2, z3, . . . , zn),

which drops the z1 component. Then the following diagram commutes:

(4.2) W̃n(B)

F̃

��

w // Π̃nφ(B)

F̃w

��
W̃n−1(B

φ)
w // Π̃n−1

φ (Bφ)

Indeed, this follows straight from the description of V in terms the ghost compo-
nents. The ghost principle then implies that F̃ is also an R-algebra homomorphism:
Since any R-algebra is a quotient of a π-torsion free one, and since W̃ preserves
surjectivity and F̃w is functorial in B, we may assume that B itself is π-torsion free.
Then the ghost map w is injective and hence it is sufficient, by the diagram above,
to recall that F̃w is an R-algebra homomorphism.
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Proposition 4.1. Write F̃ (r, x1, . . . , xn) = (r, F̃1, . . . , F̃n−1). Then F̃i ≡ xqi mod
π.

Proof. This is equivalent to showing that the following diagram commutes:

Wn(B)
F̃ //

V

��

Wn−1(B
φ)

V

��
Wn+1(B/πB)

F // Wn(B
φ/πBφ)

This follows from the identity FV = V F on Wn(B/πB), which holds since B/πB
is in characteristic p. �

Proposition 4.2. Let I : W̃n(B)→Wn(B) be the natural map. Then we have

F 2 ◦ I = F ◦ I ◦ F̃ .

Proof. Again by the ghost principle, it is enough to check the corresponding identity
on the ghost vectors. So, if Iw : Π̃nφ(B) → Πnφ(B) denotes the natural inclusion,
then it is sufficient to show

F 2
w ◦ Iw = Fw ◦ Iw ◦ F̃w.

This is a straightforward verification. We have

(Fw ◦ Iw ◦ F̃w)(r, z1, . . . , zn) = (Fw ◦ Iw)(r, z2, . . . , zn)

= Fw(r, z2, . . . , zn)

= (z2, . . . , zn).

On the other hand,

(F 2
w ◦ Iw)(r, z1, . . . , zn) = F 2

w(r, z1, . . . , zn)

= Fw(z1, . . . , zn)

= (z2, . . . , zn).

And this completes the proof. �

Remark. Here we would like to note that F ◦ I 6= I ◦ F̃ . This is because if we
again look at the identity on the ghost side, then Fw ◦ Iw(z0, . . . , zn) = (z1, . . . , zn),

whereas Iw ◦ F̃w(z0, . . . , zn) = (z0, z2, . . . , zn) making the identity not possible. One
can also view this as a manifestation of the inequality FV 6= V F .

For any π-formal S-scheme X , with an S-point P : S → X , for each n we can
define Nn = JnX ×X S, which is the following fiber product

Nn

��

i // JnX

��
S

P // X
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Thus Nn(B) is the set of thickenings of the point P to a map h : Spf(W̃n(B))→ X :

Spf(R)
P //

��

X

Spf(W̃n(B))

h

::t
t

t
t

t

The projections W̃n(B) → W̃n−1(B) on Witt vectors therefore induce maps

u : Nn → Nn−1. Similarly, the lateral Frobenius maps F̃ : W̃n(B) → W̃n−1(B
φ)

on Witt vectors induce lateral Frobenius maps in geometry

f : Nn → Nn−1.

By definition, they send a morphism h as above to its composition with the Witt
vector lateral Frobenius

Spf(W̃n−1(B
φ))

F̃
−→ Spf(W̃n(B))

h
−→X.

Indeed, F̃ is a morphism of R-algebras compatible with the projections to R. The
lateral Frobenius f : Nn → Nn−1 is a group homomorphism, but we emphasize
however that it only is semi-linear. It does not lie over the identity of S but over
the endomorphism φ of S. This is because it is the twist Bφ, and not B, which
appears in W̃n−1(B

φ) in the definition of f.

Theorem 4.3. The morphism f : Nn → Nn−1 is a lift of Frobenius and satisfies

φ◦j ◦ i = φj−1 ◦ i ◦ f

for j ≥ 2. If X is smooth over S, then {Nn}∞n=1 forms a prolongation sequence.

Proof. The statement that f is a lift of Frobenius with respect to u is exactly
proposition 4.1. For the compositional identity, we may assume j = 2:

φ◦2 ◦ i = φ ◦ i ◦ f,

which is an immediate consequence of proposition 4.2.

If X is smooth, then the Nn are smooth and hence flat over S for all n. Therefore
the lift of Frobenius f : Nn → Nn−1 corresponds to a π-derivation δ with respect to
u on the corresponding structure sheaves hence making the system {Nn}∞n=1 into
a prolongation sequence. �

Let A be a π-formal group scheme over S with identity section e : S → A. Let
us define Π̃nφA = S ×A ΠnφA as the following fiber product

Π̃nφA
iw //

��

ΠnφA

uw

��
S

e
// A

where uw is the usual projection onto the initial coordinate of ΠnφA. Let us also fix

the notation iw : Π̃nφA→ ΠnφA for the induced morphism, as shown. Then a point

w ∈ Π̃nφA can be expressed as z = (e, z1, . . . , zn) where zi ∈ A
φi

.
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Then there are associated morphisms ũw, fw : Π̃nφA→ Π̃n−1
φ A, corresponding to

u and f respectively and they are given by

ũw(e, z1, . . . , zn) = (e, z1, . . . , zn−1)

fw(e, z1, . . . , zn) = (e, φS(z2), . . . , φS(zn))(4.3)

We then have the following morphism of short exact sequences of π-formal group
schemes

0 // Nn i //

w

��

JnA
u //

w

��

A //

��

0

0 // Π̃nφA
iw // ΠnφA

uw // A // 0

4.1. Local Witt coordinates. Assume further that A is a smooth commutative
π-formal group scheme over S of relative dimension g. We now recall a few facts
on the étale coordinates to compute the characters out of Nn to Ĝa, explicitly in
coordinates. More details can be found in, say [8], page 317.

Recall if A→ Y is an étale morphism of π-formal schemes, then JnA ≃ JnY ×Y
A. Now assume further that Y = Spf R[x0 ]̂ , where x0 = (x01, · · · , x0g) is a system
of étale coordinates at the identity section of A. We claim that JnY ≃W g

n , where
Wn is the π-formal scheme representing the Witt vector of length n + 1 functor.
Recall, by the definition of the n-th arithmetic jet functor, for any R-algebra B we
have

(4.4) JnY (B) = HomR(R[x0 ]̂ ,Wn(B))

Now giving an element in HomR(R[x0 ]̂ ,Wn(B)) is equivalent to specifying the
image of the tuple of variables x0 in Wn(B). Hence the set Hom(R[x0 ]̂ ,Wn(B)) is
isomorphic to W g

n . Therefore JnY ≃ Spf R[x0, . . . ,xn ]̂ , where xi = (xi1, · · · , xig)
is the Witt coordinate. Therefore we have

(4.5) JnA ≃ A×Y J
nY ≃ A×Y Spf R[x0, . . . ,xn ]̂ .

Hence the xi form an étale coordinate system on JnA around the identity section.
We will call them the local Witt coordinates for JnA since they are induced from
the Witt vectors as seen above. This, in turn, induces a coordinate system on
LieJnA. Also recall that Nn = JnA×A S, where the fiber-product is taken along

the identity section S
e
→ A. Then by composition, we have a section S

e
→ A→ Y

which, at the level of maps between R-algebras R[x0] → R, is given by x0 → 0.
Then we have

Nn = JnA×A S = (JnY ×Y A)×A S = JnY ×Y S

≃ Spf R[x1, . . . ,xn ]̂

For the rest of the paper, we will be using the coordinate system defined by xi on
Nn. We emphasize however that once n > 1, it is not the same coordinate system
as the one used by Buium, as in corollary (1.5) of [8], for example. We call our
coordinates the Witt coordinates to distinguish them from what might be called
the Buium–Joyal coordinates used in [8].
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Theorem 4.4. Let A be a smooth π-formal group scheme over S. Then the mor-
phism of π-formal group schemes (i ◦ f − φ ◦ i) : Nn → Jn−1A factors uniquely
through u : Nn → N1:

Nn i◦f−φ◦i //

u

��

Jn−1A

N1

g

66

Proof. Let e : S → A denote the identity section. Consider the following diagram

Nn w //

x 7→(x,−x)

��

Π̃nφA

z 7→(z,−z)

��
Nn ×Nn

i×f

��

w // Π̃nφA× Π̃nφA

iw×fw

��
JnA×Nn−1

φ×i

��

w // ΠnφA× Π̃n−1
φ A

φw×iw

��
Jn−1A× Jn−1A

(x1,x2) 7→x1+x2

��

w // Πn−1
φ A×Πn−1

φ A

(z1,z2) 7→z1+z2

��
Jn−1A

w // Πn−1
φ A

Then the composition of the left column is precisely i ◦ f − φ ◦ i, whereas the
right column sends z = (e, z1, . . . , zn) 7→ (φS(z1), e, . . . , e). (This follows from

the definitions as in (3.7) and (4.3).) Hence the map Π̃nφA → Πn−1
φ A factors as

Π̃nφA→ Π̃1
φA

gw
−→ Πn−1

φ A given by

(e, z1, · · · , zn) 7→ (e, z1) 7→ (φS(z1), e, · · · , e).

Hence we have the solid arrows in the following commutative diagram:

N1

g

��

w // Π̃1
φA

gw

��☛☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛

Nn

u

;;✈✈✈✈✈✈✈✈✈✈✈

i◦f−φ◦i

��

w // Π̃nφA

<<①①①①①①①①

��
Jn−1A

w // Πn−1
φ A

Now we claim that there is a unique map g : N1 → Jn−1A, as shown above,
making the entire diagram commute. Observe that with the choice of local Witt
coordinates of JnA as in (4.5) the map u : Nn → N1 admits a section σ which is
a morphism of π-formal schemes. Hence there is at most one map g making the
diagram commute.
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We can also use the section σ to prove existence. Put g = (i ◦ f − φ ◦ i) ◦ σ. It
is then enough to prove the commutativity relation i ◦ f − φ ◦ i = g ◦ u. By the
diagram above, these statements will follow from the injectivity of the map

(Jn−1A)(B)→ (Πn−1
φ A)(B)

when Spf B = Nn. By adjointness, this is equivalent to the injectivity of the map
A(Wn−1(B))→ A(Πn−1

φ B). To show this, it is enough to show that Spf Πn−1
φ B →

SpfWn−1(B) is an epimorphism in the category of π-formal schemes. To show this,
it is enough to show that the ghost map Wn−1(B)→ Πn−1

φ B is injective. (See [11]

(9.5.6).) But this holds because Nn is smooth over S and hence B is flat. �

As in the remark above, this theorem can be understood as a manifestation of
the fact that the operator FV −V F on Witt vectors can be expressed as a function
of just the initial component.

5. Characters of the kernel

We continue with our notations as defined in section 2. Additionally, we will
also fix the following for the rest of the paper:

A = a π-formal abelian scheme of dimension over S

g = the dimension of A over S, assumed to be nonzero.

For every n, we have the following exact sequence of π-formal group schemes

(5.1) 0→ Nn i
→ JnA

u
→ A→ 0

We can consider the set Hom(Nn, Ĝa) of π-formal group scheme morphisms from

Nn to Ĝa. As in section 3.5, we endow Hom(Nn, Ĝa) with the R-module structure
given by pointwise addition and scalar multiplication.

Let prj : Ĝ
g
a → Ĝa denote the j-th projection for 1 ≤ j ≤ g. In lemma 2.3 of [8],

Buium constructs a π-formal group scheme isomorphism

Ψ1 : N1 → Ĝ
g
a,

depending only on a choice of étale coordinates on A. Let Ψ1 be the g-tuple

(5.2) Ψ1 = (Ψ11, . . . ,Ψ1g),

where Ψ1j := prj ◦Ψ1. Then {Ψ1j} form an R-basis of Hom(N1, Ĝa).

For all 1 ≤ i ≤ n and 1 ≤ j ≤ g define Ψij : N
n → Ĝa to be the composition

(5.3) Nn f◦(i−1)

→ Nn−i+1 → N1 Ψ1j
→ Ĝa

where the middle unlabeled map is the usual projection un−i and Ψ1j are as in
(5.2).

Lemma 5.1. For all i, consider the set Bi = {hi1, . . . , hig} where hij ∈ k[x1, . . . ,xn]
satisfy

hij ≡ x
qi−1

1j mod (deg (qi−1 + 1)).

Then the set B1 ∪ · · · ∪Bn are k-linearly independent polynomials.
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Proof. For each i, let Λi = (λi1, . . . , λig) ∈ k
g be n vectors of length g such that

Λ1.B1 + · · ·+ Λn.Bn = 0.

Then we want to show that Λi = 0 for all i = 1, . . . , n. We will show this by
induction on i. Now

Λ1.B1 + · · ·+ Λn.Bn ≡ (λ11x11 + · · ·+ λ1gx1g) mod (deg 2).

Since the left hand side of the above expression is 0, we must have λ11 = · · · =
λ1g = 0 and hence Λ1 = 0. Now assume true for i. Then we have

Λi+1.Bi+1 + · · ·+ Λn.Bn ≡ λ(i+1)1x
qi

11 + · · ·+ λ(i+1)gx
qi

1g mod (deg (qi + 1))

where the left hand side of the above expression is 0 and hence we must have
λ(i+1)1 = · · · = λ(i+1)g = 0 and hence Λi+1 = 0 and we are done. �

Proposition 5.2. The family {Ψij}ij, for 1 ≤ i ≤ n and 1 ≤ j ≤ g, forms an

R-basis for Hom(Nn, Ĝa). In particular rkR Hom(Nn, Ĝa) = ng.

Proof. By pulling back via the canonical projection map u : Nn → Nn−1 we get
the following exact sequence of R-modules

0→ Hom(Nn−1, Ĝa)
u∗

→ Hom(Nn, Ĝa)→ Hom(Ker(Nn u
→ Nn−1), Ĝa).

Note that we have a canonical isomorphism Ker(Nn u
→ Nn−1) ≃ Ker(JnA

u
→

Jn−1A) of π-formal group schemes. As in the proof of corollary 2.10 in [8], we have

rkRHom(Ker(Nn u
→ Nn−1), Ĝa) ≤ g. SinceN

1 ≃ Ĝga, we have Hom(N1, Ĝa) ≃ R
g.

Hence we have that rkR Hom(Nn, Ĝa) ≤ ng. And by corollary 2.4 and proposition

2.5 in [8] we have that rkRHom(Nn, Ĝa) ≥ ng. Hence we have rkR Hom(Nn, Ĝa) =
ng.

Now we want to show that {Ψij}ij form an R-basis of Hom(Nn, Ĝa). By
Nakayama’s lemma, it is enough to show that the reduction modulo π of Ψij ,

denoted Ψij , are k-linearly independent. Then for Ψ1 = (Ψ11, . . . ,Ψ1g), the multi-

variate polynomials with k coefficients Ψ1j satisfy

Ψ1j(x1, . . . ,xn) ≡ x1j mod (deg 2).

(Here we drop the unnecessary initial coordinate x0 = e from the notation.) The
above follows from the general property of the logarithm of a formal group law (e.g.
see the proof of lemma 2.3 in [8]). Hence for Ψi = (Ψi1, . . . ,Ψig) we have

Ψij(x1, . . . ,xn) ≡ x
qi−1

1j mod (deg (qi−1 + 1)).

Hence by lemma 5.1, we have that {Ψij} are k-linearly independent. �

We define Ψi := (Ψi1, · · · ,Ψig) ∈ Hom(Nn, Ĝa)
g. Then by proposition 5.2, any

morphism Ψ ∈ Hom(Nn, Ĝa) can be represented as

(5.4) Ψ = γ1.Ψ1 + · · ·+ γn.Ψn

where γi ∈ R
g.
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6. Extensions of abelian schemes and de Rham cohomology

The aim of the section is to define a certain K-module H(A)K . We will prove
that it is naturally an isocrystal admitting a filtration in the consequent sections.
In the process, we will also provide an overview of some background material on the
universal vectorial extension of A and its relation with the de Rham cohomology
of A.

Let x0 = (x01, · · · , x0g) be an étale coordinate system of A around the identity
section. Then recall from section 4.1 that x = (x0, . . . ,xn) denotes the local Witt
coordinates for JnA around the identity section where xi = (xi1, · · · , xig).

In this coordinate system, if the lift of Frobenius map φ : Jn+1A→ JnA is given
by

(6.1) φ(x0, · · · ,xn+1) = (y0, · · · ,yn)

then we have
n+1
∑

i=0

πixq
n+1−i

i =

n
∑

i=0

πiyq
n−i

i

and hence
n+1
∑

i=0

πiqn+1−ixq
n+1−i−1
i dxi =

n
∑

i=0

πiqn−iyq
n−i−1
i dyi.

In the cotangent space along the identity section x = y = 0, we then have
πn+1dxn+1 = πndyn and hence

dyn = πdxn+1.

Therefore the derivative matrix of φ at the identity section is given by a block
matrix of size n× (n+ 1) with g × g blocks

(6.2) Dφ =











0g πIg 0g · · · 0g
0g 0g πIg · · · 0g
...

...
...

. . .
...

0g 0g 0g · · · πIg











where 0g denotes the g × g zero matrix and Ig is the g × g identity.

6.1. Recall that Ext♯(A, Ĝa) parametrizes isomorphism classes of extensions of

A by Ĝa, along with a splitting of the corresponding short exact sequence of
the (commutative) Lie algebras. (See [20], p. 13–14, where it would be denoted

Extrig(A, Ĝa).) The R-module Ext♯(A, Ĝa) is canonically isomorphic to the de
Rham cohomology H1

dR(A) of the abelian scheme A. Here we will give a brief
reminder of this identification.

Let A♯ denote the universal vectorial extension of A. Then A♯ sits in a short
exact sequence of π-formal schemes

(6.3) 0→ V → A♯ → A→ 0

where V is the vector group associated to R-module H0(A∨,ΩA∨) = H1(A,ΩA)
∨
.

(See [20], p. 24, (2.6.7).) The universal extension of A satisfies the property that
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given any extension C of A by Ĝa then C can be obtained as a push out of the

universal extension by a unique morphism f : V → Ĝa:

(6.4) 0 // V

f

��

// A♯

fC

��

//// A // 0

0 // Ĝa
// C // A // 0

where fC : A♯ → C denotes the evident push-out morphism. Now consider the
short exact sequence of Lie algebras associated to (6.3):

(6.5) 0→ LieV → LieA♯→LieA→ 0.

Then we have identifications LieA ≃ H0(A,ΩA)
∨

and LieA♯ ≃ H1
dR(A)

∨
(by

[20], p. 48, (4.1.7)). Under these identifications, (6.5) becomes the dual of Hodge
filtration sequence

(6.6) 0→ H1(A,OA)
∨
→ H1

dR(A)
∨
→ H0(A,ΩA)

∨
→ 0.

Now suppose we are given a cohomology class η ∈ H1
dR(A). Consider the com-

position

(6.7) H1(A,OA)
∨
→ H1

dR(A)
∨
→ R

where the first map is the canonical inclusion and the second map is the dual of η.
The universal property of the universal vectorial extension gives an extension

(6.8) 0 // Ĝa
// Cη // A // 0.

The corresponding extension of tangent spaces is then canonically split, simply

because the functional (6.7) factors through H1
dR(A)

∨
. Indeed, first consider the

universal case, which is to say the extension induced by the map H1(A,OA)
∨
→

H1
dR(A)

∨
:

(6.9) 0 // H // (A♯ ×H)/V // A // 0.

Here, H is the vector group corresponding to the R-module H1
dR(A)

∨
. The corre-

sponding extension of tangent spaces is then

(6.10) 0 // H1
dR(A)

∨ // Lie(A
♯)⊕H

1
dR(A)

∨

H1(A,OA)∨
σ

mm // Lie(A) // 0,

where σ is splitting induced by the canonical isomorphism Lie(A♯)
∼
→H1

dR(A)
∨
(of

[20], p. 48, (4.1.7).) Finally, pushing out further along H1
dR(A)

∨
→ R gives our

desired splitting ση:

(6.11) 0 // R // Lie(Cη)
ση

jj // Lie(A) // 0.

Also observe that if the extension Cη itself is split, then the set of splittings of the

tangent space is identified with Lie(A)
∨
.

Summing up, we have a canonical map

H1
dR(A)→ Ext♯(A, Ĝa), η 7→ (Cη, ση).
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It is an isomorphism because it sits in a morphism of short exact sequences

(6.12) 0 // H0(A,ΩA)

��

// H1
dR(A)

��

// H1(A,OA)

��

// 0

0 // Lie(A)∨ // Ext♯(A, Ĝa) // Ext(A, Ĝa) // 0,

which is an isomorphism on each end.

6.2. For all n ≥ 1, we will define maps from HomA(N
n, Ĝa) to Ext♯(A, Ĝa). These

maps are obtained by push-outs of JnA by Ψ ∈ Hom(Nn, Ĝa). Consider the exact
sequence

(6.13) 0→ Nn i
→ JnA

u
→ A→ 0

Given a character Ψ ∈ HomA(N
n, Ĝa) consider the push out

0 // Nn

Ψ

��

i // JnA

gΨ

��

u //// A // 0

0 // Ĝa
i // A∗

Ψ
// A // 0

where A∗
Ψ = JnA×Ĝa

Γ(Nn) and Γ(Nn) = {(i(z),−Ψ(z))| z ∈ Nn} ⊂ JnA × Nn and

gΨ(x) = [x, 0] ∈ A∗
Ψ.

Based on the choice of local étale coordinates x0 for A, consider the local Witt
coordinates for JnA defined in section 5. This gives us a basis for Lie JnA which
we will still denote as x = (x0, · · · ,xn). Let sWitt : Lie J

nA→ LieNn be given by
sWitt(x0, · · · ,xn) = (x1, · · · ,xn). Thus we have the following split exact sequence
of R-modules

0 // LieNn Di // Lie JnA
sWitt

ll
Du // Lie(A) // 0

Let v : LieA→ Lie JnA be the corresponding section, satisfying sWitt = 1−v◦Du.
Then in Witt coordinates, v is given by v(x0) = (x0, 0, · · · , 0).

Let sΨ denote the induced splitting of the push out extension

0 // Lie Ĝa
// Lie(A∗

Ψ)
sΨ

ll // Lie(A) // 0

It can be described explicitly in terms of the composition

s̃Ψ : Lie JnA× Lie Ĝa−→
Lie JnA× Lie Ĝa

Lie Γ(Nn)

sΨ−→ Lie Ĝa

by
s̃Ψ(x, y) = DΨ(sWitt(x)) + y.

We then have a morphism of exact sequences

(6.14) 0 // Xn(A) //

��

HomA(N
n, Ĝa) //

Ψ 7→(A∗

Ψ,sΨ)

��

Ext(A, Ĝa)

0 // Lie(A)∨ // Ext♯(A, Ĝa) // Ext(A, Ĝa) // 0
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The following proposition describes the morphism Xn(A)→ Lie(A)
∨
explicitly.

Proposition 6.1. Let Θ be a character in Xn(A), and put Ψ = i∗Θ ∈ Hom(Nn, Ĝa).

(1) The map Xn(A)→ Lie(A)
∨
of ( 6.14) sends Θ to −DΘ ◦ v.

(2) Let Θ̃ = φ∗Θ, then −DΘ̃ ◦ v = 0.

(3) If Ψ ∈ i∗φ∗(Xn(A)), then the class (A∗
Ψ, sΨ) ∈ Ext♯(A, Ĝa) is zero.

Proof. (1): Let us recall in explicit terms how the map is given. For the split

extension A × Ĝa, the retractions Lie(A) × Lie Ĝa = Lie(A × Ĝa) → Lie Ĝa are in

bijection with maps Lie(A) → Lie Ĝa, a retraction s corresponding to map x0 7→
s(x0, 0). Therefore to determine the image of DΘ, we need to identify LieA∗

Ψ with
the split extension and then apply this map to sΨ.

The trivialization A∗
Ψ

∼
→A× Ĝa is given by the map

JnA× Ĝa

Γ(Nn)
= A∗

Ψ
∼
−→A× Ĝa

defined by [a, b] 7→ (u(a),Θ(a) + b). So the trivialization of the extension of Lie
algebras is given by the map

LieJnA× Lie Ĝa

Lie Γ(Nn)
= LieA∗

Ψ
∼
−→ Lie(A)× Lie Ĝa

defined by [a, b] 7→ (u(a), DΘ(a) + b). The inverse isomorphism H is then given by
the expression

H(x, y) = [v(x), y −DΘ(v(x))],

and so the composition Lie(A) → Lie(A) × Lie Ĝa → Lie(A∗
Ψ) → Lie Ĝa is simply

−DΘ ◦ v.

(2): We have Θ̃ = Θ ◦ φ and hence DΘ̃ ◦ v = DΘ ◦ Dφ ◦ v. But note that by
equation (6.2), Dφ ◦ v = 0 and hence we are done.

(3): We know from diagram (6.14) that A∗
Ψ is a trivial extension since Ψ lies in

i∗Xn+1(A). Now as in part (2) of proposition 6.1, we have, in the notation of that

proposition, −DΘ̃◦v = 0 and therefore the class in Ext♯(E, Ĝa) is zero by part (1).

�

Proposition 6.2. If Θ ∈ Xn−1(A), then (φ ◦ i − i ◦ f)∗Θ = πΨ for some Ψ ∈

Hom(N1, Ĝa).

Proof. By theorem 4.4, we have

(φ ◦ i− i ◦ f)∗Θ ∈ Hom(N1, Ĝa).

It is then enough to show that this character vanishes modulo π, which is to say it
restricts to 0 on the fiber modulo π. But this holds because both φ and f reduce to
the Frobenius map modulo π. �
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6.3. Filtered Isocrystal. Now we review some of the basic definitions of filtered
isocrystals in p-adic Hodge theory. For more details, we refer to the excellent survey
article [5].

A filtered module over a commutative ring R is an R-module M endowed with a
collection {M i}i∈Z of submodules that is decreasing in the sense that M i+1 ⊂M i

for all i ∈ Z. The category of such objects will be denoted as FilR.

Let us define a (non-degenerate) isocrystal over K to be a finite dimensional
K-vector space D equipped with a (bijective) Frobenius-semilinear endomorphism

φD : D → D. The category of isocrystals over K is denoted by ModφK and forms
an abelian category.

A filtered isocrystal overK is a triple (D,φD, {D
i}) where (D,φD) is an isocrystal

over K and (D, {Di}) is an object in FilK . It is called weakly admissible if for every

subobject (D′, φ′, {D′i}) we have

(6.15)
∑

i. dimK(D′i/D′i+1) ≤ ordp det(φ
′)

and if for (D′, φ′, {D′i}) = (D,φ, {Di}) we have equality in this relation.

Now we will define a K-module H(A)K which will have a semilinear endomor-
phism. We will eventually prove (corollary 8.3) that this is a filtered isocrystal.

For any R-module M , let us fix the notation

Mφ = R⊗φ,RM.

Then the φ-linear map φ∗ : Xn−1(A)→ Xn(A) induces a linear map Xn−1(A)φ →
Xn(A), which we will abusively also denote φ∗. We then define

Hn(A) =
Hom(Nn, Ĝa)

i∗φ∗(Xn−1(A)φ)

Then u : Nn+1 → Nn induces u∗ : Hom(Nn, Ĝa)→ Hom(Nn+1, Ĝa). And since u
commutes with both i and φ, we have

u∗i∗φ∗(Xn(A)) = i∗φ∗u∗(Xn(A)) ⊂ i
∗φ∗(Xn+1(A)),

and hence u also induces a map u∗ : Hn(A)→ Hn+1(A). Define

(6.16) H(A) = lim
−→

Hn(A)

where the limit is taken in the category of R-modules.

Similarly, f : Nn+1 → Nn induces f∗ : Hom(Nn, Ĝa) → Hom(Nn+1, Ĝa), which
descends to a φ-linear morphism of R-modules

(6.17) f∗ : Hn(A)→ Hn+1(A)

because by theorem 4.3 we have f∗i∗φ∗(Xn−1(A)) = i∗φ∗φ∗(Xn−1(A)) ⊂ i
∗φ∗Xn(A).

This in turn induces a φ-linear endomorphism f∗ : H(A)→ H(A).

Proposition 6.3. For any character Θ in Xn(A), let the derivative at the iden-
tity with respect to our chosen coordinates be DΘ = (A0, · · · , An) where Aj ∈
Mat1×g(R).

(1) We have

i∗φ∗Θ = f∗(i∗Θ) + γ.Ψ1,

where γ = πA0.
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(2) For n ≥ 2, we have

i∗(φ◦n)∗Θ = (fn−1)∗i∗φ∗Θ.

Proof. (1): By theorem 4.4, there is an element γ ∈ Rg such that

(i∗φ∗ − f∗i∗)Θ = γ.Ψ1

Then we have

i∗φ∗Θ ≡ γ.Ψ1 mod (Ψ21, . . . ,Ψ2g, . . . ,Ψ(n+1)1, . . . ,Ψ(n+1)g)

in Hom(Nn+1, Ĝa). By equation (6.2) the derivative matrix D(Θ ◦ φ ◦ i) at the
identity section is

(6.18) (πA0, · · · , πAn)

Hence we have

(6.19) γ = πA0.

(2): This follows directly from theorem 4.3. �

Proposition 6.4. For any n ≥ 0, the diagram

Xn(E)/Xn−1(E) �
� φ∗

//
� _

i∗

��

Xn+1(E)/Xn(E)
� _

i∗

��
HomA(N

n, Ĝa)/HomA(N
n−1, Ĝa)

f∗

∼
// HomA(N

n+1, Ĝa)/HomA(N
n, Ĝa)

is commutative. The morphisms i∗ and φ∗ are injective, and f∗ is bijective.

Proof. For n ≥ 1, commutativity of the diagram follows from proposition 6.3; for
n = 0, it is immediate since X0(A) = 0.

The maps i∗ are injective because the projections JnA → Jn−1A and Nn →
Nn−1 have the same kernel, and f∗ is an isomorphism by proposition 5.2. It follows
that φ∗ is an injection. �

7. Finite generation of X∞(A)K as a K{φ∗}-module

For every n we have the following short exact sequence

(7.1) 0→ Nn → JnA→ A→ 0

Applying Hom(−, Ĝa) to the above short exact sequence gives us

(7.2) 0→ Xn(A)→ Hom(Nn, Ĝa)
∂
→ Ext(A, Ĝa)

By the theory of extensions of groups that admit rational sections (see [24], page

185, theorem 7) we have Ext(A, Ĝa) ≃ H
1(A,OA) ≃ R

g.

Let In(A) := image(∂). Note that since for all n, there are maps Hom(Nn, Ĝa)
u∗

→֒

Hom(Nn+1, Ĝa), we have In(A) ⊂ In+1(A). Define

(7.3) I(A) := lim
−→

In(A)

and

hi = rk Ii(A)− rk Ii−1(A)
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for all i ≥ 1. We define the upper splitting number to be the smallest number
mu ≥ 1 such that hn = 0 for all n ≥ mu. Note that mu exists since

I0(A) ⊂ I1(A) ⊂ · · · ⊂ Ext(A, Ĝa) ∼= Rg.

We define the lower splitting number to be the unique ml satisfying Xml
(A) 6=

{0} and Xml−1(A) = {0}.

Lemma 7.1. We have ml = 1 or ml = 2.

Proof. We know rkR Ext(A, Ĝa) = g and rkRHom(Nn, Ĝa) = ng, by corollary
5.2. So for n ≥ 2, the kernel Xn(A) in (7.2) has rank at least g, which is at least 1.
�

Let us recall the the structure of X∞(A)K as a K{φ∗}-module where K{φ∗}
is the twisted polynomial ring with commutation law φ∗r = φ(r)φ∗. The R-linear
structure comes from the fact that the target of characters is the π-formal group

scheme Ĝa, which is an R-module scheme. The K{φ∗}-module structure is then
given by extension of scalars from R to K. The operator φ∗ acts on a character
Θ ∈ Xn(A) via pull-back Θ 7→ φ∗Θ as defined in (3.11).

The operators u∗ and φ∗ induce a bi-filtration on Xn(A):

X1(A)
u∗

// X2(A)
u∗

// · · ·
u∗

// Xn−1(A)
u∗

// Xn(A)

0 //

OO

X1(A)φ
u∗

//

φ∗

OO

· · ·
u∗

// Xn−2(A)φ
u∗

//

φ∗

OO

Xn−1(A)φ

φ∗

OO

. . .
...

φ∗

OO

...

φ∗

OO

X1(A)φn−2

φ∗

OO

u∗

// X2(A)φn−2

φ∗

OO

0 //

OO

X1(A)φn−1

φ∗

OO

All the morphisms are R-linear and injective, and all the squares are pull-back
squares, by proposition 6.4. We say a differential character Θ ∈ Xn(A)K is primitive
if

Θ /∈ u∗Xn−1(A)K + φ∗(Xn−1(A)K)φ.

Below, we will write Bi for a subset of Xi(A)K which is a lift of a K-basis of

Xi(A)K/(u
∗Xi−1(A)K + φ∗(Xi−1(A)K)φ).

We will call Bi a primitive basis for Xi(A)K . If B1, . . .Bn are primitive bases for
X1(A)K , . . . ,Xn(A)K , then it follows from the diagram above that Xn(A)K has a
K-basis

Sn(B1) ∪ · · · ∪ Sn(Bn)

where

Sn(Bi) = {φ
∗hΘ | for all 0 ≤ h ≤ (n− i) and Θ ∈ Bi}
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In particular, if we denote the dimensions of the associated bi-graded pieces by

(7.4) li = rkXi(A)K/(u
∗Xi−1(A)K + φ∗(Xi−1(A)K)φ),

then we have

(7.5) rkXn(A)K = ln + 2ln−1 + · · ·+ nl1.

Lemma 7.2. For all n ≥ 2, ln = hn−1 − hn.

Proof. From the exact sequence

(7.6) 0→ Xn(A)K → Hom(Nn, Ĝa)K
∂
→ In(A)K → 0,

we have rkK(In(A)K) = ng − rk(Xn(A)K). Combining this with (7.5), we have

hn = (ng − rk(Xn(A)K))− ((n− 1)g − rk(Xn−1(A)K))

= g − (l1 + · · · ln)

and hence hn−1 − hn = ln. �

Lemma 7.3. For all n ≥ 1, hn is a (weakly) decreasing function of n.

Proof. This follows from lemma 7.2 since ln ≥ 0 for all n. �

Corollary 7.4. If hN = 0, then ln = 0 for all n ≥ N + 1.

Proof. This follows from lemmas 7.2 and 7.3. �

Proposition 7.5. (1) The largest integer n such that ln 6= 0 is n = mu. In other
words, the largest order of a primitive character is mu.

(2) The smallest order of a primitive character is ml. In particular, ml ≤ mu.

Proof. (1): By definition of mu, we have hmu = hmu+1 = · · · = 0. This implies by
lemma 7.2 that ln = 0 for all n ≥ mu+1. On the other hand, hmu−1 ≥ 1 and hence
lmu = hmu−1 − hmu ≥ 1. Thus there is a primitive character of order mu.

(2): Since Xml−1(A)K = {0} and Xml
(A)K 6= {0}, there exists a primitive

character of order ml and no smaller order. �

Now consider the integers i for which there exists a primitive character of order
i. By the previous result, they fall into a sequence

ml = i1 < · · · < ir = mu.

This sequence forms an interesting numerical invariant of A. A more refined invari-
ant would include the multiplicities li1 , li2 , . . . , lir .

Theorem 7.6. For any abelian scheme A of dimension g, X∞(A)K is freely
K{φ∗}-generated by g differential characters of order at most g + 1. Thus lml

+
· · ·+ lmu = g and mu ≤ g + 1.

Proof. Note that X∞(A)K is freely generated by the primitive characters B1∪· · ·∪
Bmu . The number of them is

l1 + · · ·+ lmu = l1 + (h1 − h2) + · · ·+ (hmu−1 − hmu)

= l1 + h1

= g.
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Now we show their orders are at most g+1. Since
∑

hi ≤ g and hi are a weakly
decreasing sequence of non-negative integers, we must have hi = 0 for all i ≥ g+1,
and hence mu ≤ g + 1. �

Now define

Xprim(A) := lim
−→

Xn(A)/φ
∗Xn−1(A)φ.

Corollary 7.7. We have

Xprim(A)K ≃ Xmu(A)K/φ
∗(Xmu−1(A)K)φ

Moreover, Bi1 ∪ · · · ∪Bir is a K-basis for Xprim(A)K .

Proof. For all n ≥ mu, the subset Sn(Bi1 ) ∪ · · · ∪ Sn(Bir ) generates Xn(A)K as a
K-module, whereas (Sn(Bi1 )\Bi1)∪· · ·∪(Sn(Bir )\Bir ) generates φ

∗(Xn−1(A)K)φ
as a K-module. Therefore Xn(A)K/φ

∗(Xn−1(A)K)φ is generated by Bi1 ∪· · ·∪Bir
as a K-module for all n ≥ mu and hence in particular

Xprim(A)K ≃ Xmu(A)K/φ
∗(Xmu−1(A)K)φ.

�

Corollary 7.8. If g = 1, then ml = mu =: m and Xprim(A)K ≃ Xm(A)K .

Proof. If ml = 1, then note that h1 = 0. Since hn is a weakly decreasing function
in n, we have h1 = h2 = · · · = 0. Therefore the rank of In(A) is 0 for all n ≥ 0 and
hence mu = 1.

If ml = 2, then note that h1 = 1 since ∂ : Hom(N1, Ĝa)K → Ext(A, Ĝa)K is

injective. But since rkK Ext(A, Ĝa)K = 1, we have h2 = h3 = · · · = 0. Therefore
rk Ii(A) is constant for all i ≥ 1 and hence mu = 2. �

8. The F -isocrystal and Hodge sequence of A

In this section, we show that H(A)K is a filtered isocrystal. Given our choice of
étale coordinates, we construct a canonical K-basis of our filtered isocrystal H(A)
and also show the exact sequence corresponding to this filtration admits a canonical
map to the Hodge sequence of A as introduced in (6.5) or (6.6). This will be shown
in theorem 8.2 and corollary 8.3.

Proposition 8.1. The morphism

u∗ : Hn(A)K → Hn+1(A)K

is injective. For n ≥ mu, it is an isomorphism.
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Proof. Consider the following diagram of exact sequences:

0 0

(Xn(A)K)φ
u∗(Xn−1(A)K)φ

OO

i∗φ∗

// Hom(Nn+1,Ĝa)K
Hom(Nn,Ĝa)K

OO

0 // (Xn(A)K)φ

OO

i∗φ∗

// Hom(Nn+1, Ĝa)K

OO

// Hn+1(A)K // 0

0 // (Xn−1(A)K)φ

u∗

OO

i∗φ∗

// Hom(Nn, Ĝa)K

u∗

OO

// Hn(A)K //

u∗

OO

0

0

OO

0

OO

Then i∗φ∗ : Xn(A)/Xn−1(A) → Hom(Nn+1, Ĝa)/Hom(Nn, Ĝa) is injective by
proposition 6.4 and hence, by snake lemma, Hn(A)K → Hn+1(A)K is injective
for all n.

It remains to show that u∗ : Hn(A)K → Hn+1(A)K is surjective for all n ≥
mu. Let X∞(A) be primitively generated by the g primitive characters Bml

∪
· · · ∪ Bmu as in theorem 7.6. Then the image of (Sn(Bml

)\Sn−1(Bml
)) ∪ · · · ∪

(Sn(Bmu)\Sn−1(Bmu)) forms a K-basis for Xn(A)K/u
∗Xn−1(A)K for all n ≥ mu.

Hence rkXn(A)K/u
∗Xn−1(A)K = g = Hom(Nn, Ĝa)K/Hom(Nn−1, Ĝa)K which

implies i∗φ∗ is surjective for all n ≥ mu and hence u∗ : Hn(A) → Hn+1(A) is
surjective.

�

Let us recall the diagram (6.14)

0 // Xn(A) //

��

HomA(N
n, Ĝa)

∂ //

Ψ 7→(A∗

Ψ,sΨ)

��

Ext(A, Ĝa)

0 // Lie(A)∨ // Ext♯(A, Ĝa) // Ext(A, Ĝa) // 0

Then by proposition 6.1(3), i∗φ∗(Xn−1(A)φ) is in the kernel of the middle vertical
map. Therefore this diagram induces a diagram

(8.1) 0 // Xn(A)
φ∗(Xn−1(A)φ)

//

Υ

��

Hn(A) //

Φ

��

In(A) //
� _

��

0

0 // Lie(A)∨ // Ext♯(A, Ĝa) // Ext(A, Ĝa) // 0
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where In(A) denotes the image of ∂ : Hom(Nn, Ĝa) → ExtA(A, Ĝa). Passing to
the limit gives a diagram:

(8.2) 0 // Xprim(A)K

Υ

��

// H(A)K

Φ
��

// I(A)K� _

��

// 0

0 // Lie(A)∨K
// Ext♯(A, Ĝa)K // Ext(A, Ĝa)K // 0

To describe Υ explicitly, let us fix some notation. Let Θ1, · · · ,Θg be a basis for

Xprim(A)K . For each Θi : J
nA → Ĝa, let the derivative matrix at the identity be

DΘi = (A0i, . . . , Ani) where Aji are (1 × g)-matrices.

Then the following theorem is, at last, the precise form of theorem 1.2 from the
introduction:

Theorem 8.2. The diagram ( 8.2) is a map of short exact sequences of K-modules.
We have rkK H(A)K ≤ 2g. Moreover Φ is injective if and only if the g × g matrix
(A01, . . . , A0g) is invertible over K.

Proof. We know the diagram is a map of short exact sequences by the discussion
above. By corollary 7.7, we have rkK Xprim(A)K = g and rkK I(A)K ≤ g and hence
rkK H(A) ≤ 2g.

Now by proposition 6.1(1), we have Υ(Θi) = −DΘi ◦ v = −A0i. Therefore the
g × g matrix of Υ with respect to our basis is given by (A01, · · · , A0g), and we are
done. �

Corollary 8.3. The K-module H(A)K is a filtered isocrystal of rank at most 2g
with semilinear endomorphism f∗ and filtration H(A)K ⊇ Xprim(A)K ⊇ {0}.

9. The elliptic curve case

In this section, we will closely look at the structure of the filtered isocrystal
H(A)K when A is an elliptic curve. We show that H(A), defined in (6.16), is a
finitely generated free sub-R-module of H(A)⊗R K = H(A)K .

When A is an elliptic curve over S, then by corollary 7.8 we have m = ml =
mu ≤ 2. The following are two possible choices of Θm ∈ Xm(A)K :

If m = 1, by proposition 6.4, there exists Θ1 ∈ X1(A)K such that i∗Θ1 = Ψ1.

If m = 2, again by proposition 6.4, there exists Θ2 ∈ X2(A)K such that i∗Θ2 =

Ψ2 − λΨ1. Since i
∗Θ2 ∈ ker

[

∂ : Hom(N2, Ĝa)→ Ext(A, Ĝa)
]

, we have

∂Ψ2 = λ1∂Ψ1.

Note that λ is in K to start with. However, we will show in theorem 9.4 that λ
is integral, in other words, λ ∈ R. Now pulling back Θ2 by φ and i we have

(9.1) i∗φ∗Θ2 = Ψ3 − φ(λ)Ψ2 + γΨ1

Now again since i∗(φ∗Θ2) ∈ ker
[

∂ : Hom(N3, Ĝa)→ Ext(A, Ĝa)
]

we also have

∂Ψ3 = φ(λ)∂Ψ2 − γ∂Ψ1.
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Proposition 9.1. For n ≥ m,

Hn(A)K ≃

{

K〈Ψ1〉, if m = 1
K〈Ψ1,Ψ2〉, if m = 2

Proof. By definition, we know that Hm(A) = Hom(Nm, Ĝa). Then the result
follows from the above discussion and proposition 8.1. �

Proposition 9.2. We have

In(A)⊗K ≃

{

K〈Ψ1, . . . ,Ψn〉, if n ≤ m− 1
K〈Ψ1, . . . ,Ψm−1〉, if n ≥ m− 1

Proof. The case n ≤ m− 1 is clear. So suppose n ≥ m− 1. Then HomA(N
j , Ĝa)⊗

K has basis Ψ1, . . . ,Ψj , and Xn(A) ⊗ K has basis Θm, . . . , (φ
n−m)∗Θm. Since

each (φj)∗Θm equals Ψm+j plus lower order terms, K〈Ψ1, . . . ,Ψm−1〉 is a com-

plement to the subspace Xn(A) of HomA(N
n, Ĝa). Therefore the map ∂ from

K〈Ψ1, . . . ,Ψm−1〉 to the quotient In(A) is an isomorphism. �

Lemma 9.3. Consider the φ-linear endomorphism F of Km with matrix


















0 0 . . . 0 µm
1 0 0 µm−1

0 1 0 µm−2

...
. . .

. . .
...

...

0 0 1 µ1



















,

for some given µ1, . . . , µm ∈ K. If Km admits an R-lattice which is stable under
F , then we have µ1, . . . , µm ∈ R.

Proof. The equal-characteristic analogue of this lemma is lemma 9.7 of [3]. It was
proven using two results in equal-characteristic Dieudonné–Manin theory, namely
(B.1.5) and (B.1.9) of [16], which are proved in pages 257–261. All these arguments
have straightforward translations to the mixed-characteristic setting, and so we
leave them to the reader. Or one could refer to the original paper by Manin [18],
lemma 2.2 and theorem 2.2. �

Theorem 9.4. If A splits at m = 2, then λ ∈ R.

Proof. Let γ be the element associated to Θ2 as in proposition 6.3. We will prove
the cases when γ = 0 and γ 6= 0 separately.

Case γ = 0 : When γ = 0 we have f∗i∗(Θ2) = i∗φ∗(Θ2). Since Θ2 generates
X(A)K , we have f∗i∗ = i∗φ∗ on all of X(A)K . Therefore for all n ≥ 1, we have a
φ-linear map f∗ : In−1(A)→ In(A) fitting in a morphism of exact sequences:

0 // Xn(A)
i∗ // Hom(Nn, Ĝa)

∂ // In(A) // 0

0 // Xn−1(A)

φ

OO

i∗ // Hom(Nn−1, Ĝa)
∂ //

f∗

OO

In−1(A) //

f∗

OO

0
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Recall I(A) = lim
−→

In(A) ⊂ Ext(A, Ĝa). Then by proposition 9.2, the vector space

I(A)K has aK-basis ∂Ψ1, and with respect to this basis, the φ-linear endomorphism
f∗ has matrix Γ0 = (λ).

Note that I(A) is a finitely generated R-module since it is a submodule of

Ext(A, Ĝa) which is a finitely generated free R-module and R is a discrete val-
uation ring. Since Γ0 is an endomorphism of I(A) and hence an integral lattice of
I(A)K , we conclude that λ is integral, that is, λ ∈ R.

Case γ 6= 0 : Recall H(A) = lim
−→

Hn(A). Let us consider the matrix Γ of the

φ-linear endomorphism f of H(A)K with respect to the K-basis Ψ1,Ψ2 given by
proposition 9.1. Then we have

i∗φ∗Θ2 = f∗(Ψ2)− φ(λ)Ψ2 + γΨ1.

Therefore we have

f∗(Ψ2) ≡ φ(λ)Ψ2 − γΨ1 mod i∗φ∗(X2(A)φ)

and hence

Γ =

(

0 −γ
1 φ(λ)

)

We will now apply lemma 9.3 to the operator f∗ on H(A)K , but to do this we need
to produce an integral lattice M . Consider the commutative square

H(A)
Φ //

��

Ext♯(A, Ĝa)

j

��
H(A)K

ΦK // Ext♯(A, Ĝa)K .

Let M denote the image of H(A) in H(A)K . It is clearly stable under f∗. But also
the maps ΦK and j are injective, by theorem 8.2 (γ being nonzero) and because

Ext♯(A, Ĝa) ≃ Rr; so M agrees with the image of H(A) in Ext♯(A, Ĝa) and is
therefore finitely generated.

We can then apply lemma 9.3 and deduce φ(λ) ∈ R. This implies λ ∈ R, since
R/πR is a field and hence the Frobenius map on it is injective. �

Corollary 9.5. (1) The element Θm ∈ Xm(A)K lies in Xm(A).
(2) For n ≥ m, all the maps in the diagram

Xn(A)φ/Xn−1(A)φ
φ∗

//

i∗

��

Xn+1(A)/Xn(A)

i∗

��
Hom(Nn, Ĝa)φ/HomA(N

n−1, Ĝa)φ
f∗ // HomA(N

n+1, Ĝa)/HomA(N
n, Ĝa)

are isomorphisms.

Proof. (1): By theorem 9.4, the element i∗Θm of HomA(N
m, Ĝa)K actually lies in

HomA(N
m, Ĝa), and therefore by the exact sequence (7.2) we have Θm ∈ Xm(A).

(2): By proposition 6.4, we know f∗ is an isomorphism and the maps i∗ are
injective. So to show they are isomorphisms for all n ≥ m, it is enough to show they

are surjective. The R-linear generator Ψm of HomA(N
m, Ĝa)/HomA(N

m−1, Ĝa) is
the image of Θm, which by part (1), lies in Xm(A). Therefore i∗ is surjective for
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n = m. Then because f∗ is an isomorphism, it follows by induction that i∗ is
surjective for all n ≥ m.

Finally, φ∗ is an isomorphism because all the other morphisms in the diagram
are. �

By definition, i∗(φj)∗Θm is Ψm+j plus lower order characters with coefficients in
K. However, the implication of the corollary above says that the coefficients of the
lower order characters are in fact integral. Now the following result proves theorem
1.3.

Theorem 9.6. Let A be an elliptic curve that splits at m.

(1) For any n ≥ m, the composition

(9.2) Xn(A)−→HomA(N
n, Ĝa)−→HomA(N

n, Ĝa)/HomA(N
m−1, Ĝa)

is an isomorphism of R-modules.
(2) Xn(A) is freely generated as an R-module by Θm, . . . , (φ

∗)n−mΘm.
(3) We have

H(A) ≃

{

R〈Ψ1〉, if m = 1, i.e. A is a canonical lift
R〈Ψ1,Ψ2〉, if m = 2

Proof. (1): By corollary 9.5, the induced morphism on each graded piece is an
isomorphism of R-modules. It then follows that the map in question is also an
isomorphism of R-modules.

(2): This follows formally from (1) and the fact, which follows from corollary
9.5, that the map (9.2) sends any (φ∗)jΘm to Ψm+j plus lower order terms.

(3): Recall we have Xm(A) ≃ R〈Θm〉 where i
∗Θm ≡ Ψm mod Hom(Nm−1, Ĝa).

By (2) as above, we have Xn(A) ≃ R〈Θm, φ
∗Θm, . . . , (φ

∗)n−mΘm〉. By proposition
6.3, for all n ≥ m we have

i∗(φ∗)n−mΘm ≡ (f∗)n−mi∗Θm mod Hom(N1, Ĝa)

≡ Ψn mod Hom(Nn−1, Ĝa)

Therefore we have Hn(A) ≃ Hom(Nm, Ĝa) for all n ≥ m + 1 and hence the limit

H(A) is isomorphic to Hom(Nm, Ĝa) and we are done. �

9.1. The integral F -crystal H(A) for an elliptic curve A. The filtration of
the isocrystal H(A) is given by

(9.3) H(A)i =

{

H(A), if i ≤ 0
Xprim(A), if i ≥ 1

Theorem 9.7. Let A be an elliptic curve over S.

(1) If m = 1, that is A is a canonical lift, then

H(A) = Xprim(A) ≃ R〈Ψ1〉.

The semilinear operator f∗ acts as f∗(Ψ1) = γΨ1.

(2) If m = 2, then

H(A) ≃ R〈Ψ1,Ψ2〉, Xprim(A) ≃ R〈Θ2〉
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The semilinear operator f∗ acts on the R-basis of H(A) as

f∗(Ψ1) = Ψ2, f∗(Ψ2) = φ(λ)Ψ2 − γΨ1.

where π | γ.

Moreover, in both the above cases of m, if γ 6≡ 0 mod π2, then H(A) is a weakly
admissible filtered isocrystal of dimension 1 and 2 respectively.

Proof. By theorem 9.6 (3), we have

H(A) ≃

{

R〈Ψ1〉, if m = 1, i.e. A is a canonical lift,
R〈Ψ1,Ψ2〉, if m = 2.

We also have isomorphisms for n ≥ m

R〈Θm〉 = Xprim(A)
∼
−→Xn(A)/φ

∗(Xn−1(A)φ).

The filtration on H(A) is given by H(A) ⊇ Xprim(A).

In the case when m = 2, the action of the semi-linear operator f∗ with respect
to the above choice of basis Ψ1 and Ψ2 of H(A) is described by the matrix

Γ =

(

0 −γ
1 φ(λ)

)

as in the proof of theorem 9.4. This proves the action of f∗ on the R-basis Ψ1 and
Ψ2 is as stated.

In the case when m = 1, it is straightforward to see that H(A) is weakly admis-
sible when γ 6≡ 0 mod π2 by definition (6.15).

In the case when m = 2, when γ 6≡ 0 mod π2, then f∗ does not preserve the
R-submodule Xprim(A) ⊂ H(A) and hence makes H(A) weakly admissible. �

Combining these, we have the following map between exact sequences of R-
modules, as in (8.1):

0 // Xprim(A) //

Υ

��

H(A) //

Φ

��

I(A) //
� _

��

0

0 // Lie(A)∗ // HdR(A) // Ext(A, Ĝa) // 0

where Υ sends Θm to γ/π (in coordinates), and Φ is injective if and only if γ 6= 0.
However, we do note that the map Φ is not compatible between the two F -crystal
structure on H(A) and the crystalline structure on HdR(A).
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