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1 Introduction

In this paper we calculate the trace (and chiral) anomalies of Weyl fermions coupled to

non-abelian gauge fields in four dimensions. One of the motivations to study this problem

arises from a debate on whether a topological, parity-odd term is present in the trace

anomaly of the stress tensor of chiral fermions. We find that it does not.

We start by considering Bardeen’s method [1] that embeds the Weyl theory into the

theory of Dirac fermions coupled to vector and axial non-abelian gauge fields. Using a

Pauli-Villars (PV) regularization we calculate its trace anomaly. As an aside we rederive

the well-known non-abelian chiral anomaly to check the consistency of our methods. A

chiral limit produces the searched for anomalies of the non-abelian Weyl fermions.

2 Bardeen’s model

We consider the Bardeen’s model of massless Dirac fermions ψ coupled to vector and axial

non-abelian gauge fields, Aa and Ba. The lagrangian is given by

L = −ψ /D(A,B)ψ (2.1)

where /D(A,B) = γaDa(A,B), with Da(A,B) = ∂a+Aa+Baγ
5 being the covariant deriva-

tive for the gauge group G×G. Taking an appropriate limit on the background (by setting
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Aa = Ba → Aa

2 ) one finds the theory of left-handed Weyl fermions. We expand the gauge

fields on the generators of the gauge group as Aa = −iAα
aT

α and Ba = −iBα
a T

α. The com-

ponents Aα
a and Bα

a are real, and Tα denote the hermitian generators in the representation

of G chosen for ψ (we allow for the presence of an abelian subgroup, for example one could

consider the group U(N) with the fermion ψ sitting in the fundamental representation).1

This model is classically gauge invariant and conformally invariant. We wish to com-

pute systematically the anomalies. The chiral anomaly is well-known, of course, and we

recompute it to test our methods. The main aim is to obtain the trace anomaly.

Let us first review the classical symmetries. The lagrangian is invariant under the G×G

gauge transformations. Using infinitesimal parameters α = −iαα
aT

α and β = −iβα
a T

α, they

read


































δψ = −(α+ βγ5)ψ

δψ = ψ(α− βγ5)

δψc = (αT − βTγ5)ψc

δAa = ∂aα+ [Aa, α] + [Ba, β]

δBa = ∂aβ + [Aa, β] + [Ba, α]

(2.2)

where ψc = C−1ψ
T

is the charge conjugated spinor. The transformations of the gauge

fields can be written more compactly as

δAa = ∂aα̃+ [Aa, α̃] (2.3)

where Aa = Aa +Baγ
5 and α̃ = α+ βγ5. The corresponding field strength

Fab = ∂aAb − ∂bAa + [Aa,Ab] = F̂ab + Ĝabγ
5 (2.4)

contains the Bardeen curvatures F̂ab and Ĝab

F̂ab = ∂aAb − ∂bAa + [Aa, Ab] + [Ba, Bb]

Ĝab = ∂aBb − ∂bBa + [Aa, Bb] + [Ba, Ab] .
(2.5)

In the following we prefer to use the more explicit notation with γ5.

One can use Aα
a and Bα

a as sources for the vector Jaα = iψγaTαψ and axial Jaα
5 =

iψγaγ5Tαψ currents, respectively. These currents are covariantly conserved on-shell, with

the conservation law reading

(DaJ
a)α ≡ ∂aJ

aα − iψ[ /A+ /Bγ5, Tα]ψ = 0

(DaJ
a
5 )

α ≡ ∂aJ
aα
5 − iψ[ /Aγ5 + /B, Tα]ψ = 0

(2.6)

or, equivalently, as

(DaJ
a)α = ∂aJ

aα + fαβγAβ
aJ

aγ + fαβγBβ
aJ

aγ
5 = 0

(DaJ
a
5 )

α = ∂aJ
aα
5 + fαβγAβ

aJ
aγ
5 + fαβγBβ

aJ
aγ = 0 .

(2.7)

1The generators satisfy the Lie algebra [Tα, T β ] = ifαβγT γ . Our conventions for Weyl and Dirac

fermions follow those made explicit in ref. [2].
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Indeed, under an infinitesimal gauge variation of the external sources Aα
a and Bα

a , the

action S =
∫

d4xL varies as

δ(A,B)S = −
∫

d4x (αα(DaJ
a)α + βα(DaJ

a
5 )

α) , (2.8)

and the full gauge invariance of the action implies that Jaα and Jaα
5 are covariantly con-

served on-shell, as stated above.

Similarly, to study the stress tensor, it is useful to couple the theory to gravity by

introducing the vierbein eµ
a and related spin connection. The new lagrangian becomes

L = −eψγaea
µ∇µψ (2.9)

where e is the determinant of the vierbein, ea
µ its inverse, and ∇µ = ∂µ + Aµ + Bµγ

5 +
1
4ωµabγ

ab the covariant derivative that acts on the fermion ψ, which contains also the spin

connection associated to the vierbein. One may verify that, on top of the background gen-

eral coordinate and local Lorentz symmetries, the model acquires also a Weyl invariance, i.e.

an invariance under arbitrary local scalings of the vierbein. This suffices to prove conformal

invariance in flat space. The vierbein is used also as an external source for the stress tensor

Tµa =
1

e

δS

δeµa
. (2.10)

The Weyl symmetry implies that the stress tensor is traceless on-shell. Indeed, an infinites-

imal Weyl transformation with local parameter σ is of the form



















δψ = −3

2
σψ

δAµ = δBµ = 0

δeµ
a = σeµ

a

(2.11)

and varying the action only under an infinitesimal Weyl transformation of the vierbein

(which is the source of the stress tensor) produces the trace of the stress tensor

δ(e)S =

∫

d4xe σT a
a . (2.12)

Then, the full Weyl invariance of the action implies that the trace vanishes on-shell, T a
a =

0. On top of that, the on-shell stress tensor can be shown to be symmetric, once the curved

index of Tµa is made flat with the vierbein (T ab = T ba), and satisfies a suitable conservation

law. A clear exposition of the various properties of the stress tensor may be found in [3],

and for completeness we report in appendix B the main properties relevant for our model.

3 PV regularization

To regulate the one-loop effective action we introduces massive PV fields. The mass term

produces the anomalies, which we will compute with heat kernel methods.
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We denote by ψ the PV fields as well (for the moment this does not cause any confusion)

and add a Dirac mass term to their massless lagrangian in (2.1)

∆L = −Mψψ =
M

2
(ψT

c Cψ + ψTCψc) . (3.1)

It preserves vector gauge invariance but breaks axial gauge invariance. Indeed under (2.2)

the mass term varies as

δ∆L = 2Mψβγ5ψ = −M(ψT
c βCγ5ψ + ψTβTCγ5ψc) (3.2)

where β = −iβαTα, which shows that the vector gauge symmetry is preserved, leaving

room for an anomaly in the axial gauge symmetry.

The mass term sources also a trace anomaly, as the curved space version of (3.1)

∆L = −eMψψ =
eM

2
(ψT

c Cψ + ψTCψc) (3.3)

varies under the infinitesimal Weyl transformation (2.11) as

δ∆L = −eσMψψ =
eσM

2
(ψT

c Cψ + ψTCψc) . (3.4)

However, it preserves the general coordinate and local Lorentz symmetries. One concludes

that only axial gauge and trace anomalies are to be expected.

Casting the PV lagrangian LPV = L+∆L in the form

LPV =
1

2
φTTOφ+

1

2
MφTTφ (3.5)

where φ =

(

ψ

ψc

)

, allows us to recognize the operators

TO =

(

0 C /D(−AT , BT )

C /D(A,B) 0

)

, T =

(

0 C

C 0

)

(3.6)

and

O =

(

/D(A,B) 0

0 /D(−AT , BT )

)

, O2 =

(

/D
2
(A,B) 0

0 /D
2
(−AT , BT )

)

. (3.7)

The latter identifies the regulators, as we shall see in the next section.

4 Regulators and consistent anomalies

Using the Pauli-Villars regularization, we relate the anomaly computation to a sum of heat

kernel traces, following the scheme of refs. [4, 5] which we briefly review. Starting with a

lagrangian for ϕ

L =
1

2
ϕTTOϕ (4.1)
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invariant under a linear symmetry

δϕ = Kϕ (4.2)

acting also on the backgroud fields contained in the operator TO, one constructs the one-

loop effective action Γ by a path integral. The latter is regulated by subtracting a loop of

a massive PV field φ with lagrangian (3.5)

eiΓ =

∫

Dϕ eiS → eiΓ =

∫

DϕDφ ei(S+SPV ) (4.3)

where it is understood that one should take the decoupling limit M → ∞, with all diver-

gences canceled by renomalization. The anomalous response of the path integral under a

symmetry is due to the PV mass term only, as one can define the measure of the PV field

to make the whole path integral measure invariant. In a hypercondensed notation, where

a term like φTφ includes in the sum of the (suppressed) indices a spacetime integration as

well, the lagrangian in (4.1) is equivalent to the action, and one computes the symmetry

variation of the regulated path integral as follows

iδΓ = i〈δS〉 = lim
M→∞

iM〈φT

(

TK +
1

2
δT

)

φ〉

= − lim
M→∞

Tr

[(

K +
1

2
T−1δT

)(

1 +
O
M

)−1]

(4.4)

where brackets 〈. . .〉 indicate normalized correlators. It is convenient to manipulate this

expression further, by using the identity 1 = (1 − O

M
)(1 − O

M
)−1 and invariance of the

massless action, to cast it in the equivalent form

iδΓ = i〈δS〉 = − lim
M→∞

Tr

[(

K +
1

2
T−1δT +

1

2

δO
M

)(

1− O2

M2

)−1]

. (4.5)

In the derivation we have considered a fermionic theory, used the PV propagator

〈φφT 〉 = i

TO + TM
, (4.6)

taken into account the opposite sign for the PV loop, and considered an invertible matrix

T . In the limit M → ∞ the regulating factor (1− O2

M2 )
−1 in (4.5) can be effectively replaced

by e
O

2

M2 , if O2 is negatively defined (in euclidean). This substitution allows us to use well-

known heat kernel formulae. Obviously, a symmetry remains anomaly free if one finds a

symmetrical mass term.

Thus, denoting

J = K +
1

2
T−1δT +

1

2

δO
M

, R = −O2 (4.7)

the anomaly is related to the trace of the heat kernel of the regulator R with insertion of

the operator J

iδΓ = i〈δS〉 = − lim
M→∞

Tr
[

Je−
R

M2

]

. (4.8)

It has the same form of the regulated Fujikawa’s trace producing the anomalies [6, 7],

where J is the infinitesimal part of the jacobian arising from a change of variables in the
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path integral under a symmetry transformation, and R is the regulator. The limit extracts

only the mass independent term (negative powers of the mass vanish in the limit, while

positive powers are renormalized away, usually by employing additional PV fields). The PV

method guarantees that the regulator R together with the jacobian J produces consistent

anomalies, which follows from the fact that one is computing directly the variation of the

effective action.

Let us now go back to the specific case of the Bardeen’s model, and extract the heat

kernel traces that compute the anomalies. For each symmetry we must consider the trans-

formation generated by K and obtain the corresponding form of J .

To start with, the vector current Jaα remains covariantly conserved also at the quantum

level, as the PV mass term is invariant under vector gauge transformations.

For the axial current, recalling the transformation laws in (2.2), one finds

J =

(

iβαTαγ5 0

0 iβαTαTγ5

)

(4.9)

as δT vanishes, while the contribution from δO is also seen to vanish (all possible terms

vanish under the Dirac trace). Here, TαT denotes the transposed of Tα. Removing the

spacetime integration and the local parameters βα from (4.8), and recalling the nomaliza-

tions in (2.8), (4.8) and (A.3), one finds

(Da〈Ja
5 〉)α =

i

(4π)2

[

tr [γ5Tαa2(Rψ)] + tr [γ5TαTa2(Rψc
)]
]

(4.10)

where the remaining trace is the finite dimensional one on the gamma matrices and color

space. In this formula we find the so-called Seeley-DeWitt coefficients a2(Ri) corresponding

to the regulators Ri associated to the fields assembled into φ

Rψ = − /D
2
(A,B) , Rψc

= − /D
2
(−AT , BT ) . (4.11)

The a2 coefficients are the only ones that survive renormalization and the limit M → ∞.

Similarly, for the Weyl symmetry one uses the transformations in (2.11) to find

〈T a
a〉 = − 1

2(4π)2

[

tr a2(Rψ) + tr a2(Rψc
)
]

(4.12)

where now also δT contributes to (4.7), while δO drops out as before. Again, all remaining

traces are in spinor and color spaces. Since the mass term is general coordinate and local

Lorentz invariant, no anomalies arise in those symmetries.

5 Anomalies

We are left to compute the anomalies produced by the traces of the heat kernel coefficients

a2 in (4.10) and (4.12), with the regulators (4.11). The heat kernel formulae needed in the

calculation are well-known, and for commodity we have reported them in appendix A.

– 6 –



J
H
E
P
1
0
(
2
0
1
9
)
2
4
1

The vector symmetry is guaranteed to remain anomaly free by the invariance of the

mass term. As a check one may verify, using the explicit traces given in appendix A, that

the would-be anomaly vanishes

(Da〈Ja〉)α =
i

(4π)2

[

tr [Tαa2(Rψ)]− tr [TαTa2(Rψc
)]
]

= 0 . (5.1)

5.1 Chiral anomaly

Evaluation of (4.10) produces the chiral anomaly

(Da〈Ja
5 〉)α = − 1

(4π)2
ǫabcd tr

Y M
Tα

[

F̂abF̂cd +
1

3
ĜabĜcd

− 8

3
(F̂abBcBd +BaF̂bcBd +BaBbF̂cd) +

32

3
BaBbBcBd

]

+ PETs

(5.2)

where the remaining trace is only in color space (the trace on gamma matrices has been

implemented). PETs indicate the parity-even terms that take the form

PETs =
i

(4π)2
tr

Y M
Tα

[

4

3
D2DB +

2

3
[F̂ ab, Ĝab] +

8

3
[DaF̂ab, B

b]

− 4

3
{B2, DB}+ 8BaDBBa +

8

3
{{Ba, Bb}, DaBb}

]

.

(5.3)

They are canceled by the chiral gauge variation of a local counterterm

Γct =

∫

d4x

(4π)2
tr

Y M

[

2

3
(DaBb)(DaBb) + 4F ab(A)BaBb −

8

3
B4 +

4

3
BaBbBaBb

]

(5.4)

and the remaining answer coincides with the famous result obtained by Bardeen [1].

5.2 Trace anomaly

Evaluation of (4.12) produces the trace anomaly

〈T a
a〉 =

1

(4π)2
tr

Y M

[

2

3
F̂ abF̂ab +

2

3
ĜabĜab

]

+ CTTs (5.5)

where CTTs are the cohomologically trivial terms

CTTs =
1

(4π)2

(

− 4

3

)

tr
Y M

[

D2B2 +DBDB − (DaBb)(DbBa)− 2F ab(A)BaBb

]

(5.6)

that are canceled by the Weyl variation of the following counterterm

Γ̄ct =

∫

d4x
√
g

(4π)2
tr

Y M

[

2

3
(DµBν)(DµBν) + 4Fµν(A)BµBν +

1

3
RB2

]

(5.7)

where µ, ν are curved indices, and R the Ricci scalar. Of course, one restricts to flat space

after variation.
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The counterterms (5.4) and (5.7) merge consistently into a unique counterterm that

in curved space reads

Γtot
ct =

∫

d4x
√
g

(4π)2
tr

Y M

[

2

3
(DµBν)2+4Fµν(A)BµBν+

1

3
RB2− 8

3
B4+

4

3
BµBνBµBν

]

. (5.8)

One may already notice that, on top of the complete gauge invariance of the trace

anomaly, there is no parity-odd term present.

6 Chiral and trace anomalies of Weyl fermions

We are now ready to study the chiral limit of the Bardeen’s model, and identify the chiral

and trace anomalies of Weyl fermions. We take the limit Aa = Ba → 1
2Aa, which creates

a chiral projector in the coupling to the gauge field, normalized as usual after the scaling.

Then, F̂ab = Ĝab → 1
2Fab(A) and Ja = Ja

5 → Ja = 1
2(J

a + Ja
5 ), so that from (5.2)

and (5.5) (without the cohomologically trivial terms) we immediately derive the searched

for anomalies for the left-handed Weyl fermions coupled to non-abelian gauge fields

(Da〈Ja〉)α = − 1

(4π)2
ǫabcd tr

Y M
Tα∂a

[

2

3
Ab∂cAd +

1

3
AbAcAd

]

〈T a
a〉 =

1

(4π)2
tr

Y M

[

1

3
F abFab

]

.

(6.1)

The chiral anomaly is the standard one, rederived as a check on the methods used

here. The trace anomaly is our new result, that verifies the absence of parity-odd terms.

It is just half the trace anomaly of non-chiral Dirac fermions.

Thus, we have computed the consistent anomalies for Dirac and Weyl fermions, defined

as arising from the symmetry variation of an effective action. In particular, we find that

the consistent trace anomaly acquires a gauge invariant form. The property of gauge

invariance displayed by the trace anomaly is not explicitly maintained by our regulator (as

far as the axial gauge symmetry is concerned), but the breaking terms can be removed by

the variation of a local counterterm, as we have indicated.2

7 Conclusions

We have calculated the chiral and trace anomaly in the Bardeen’s model of Dirac fermions

coupled to non-abelian vector and axial gauge fields, rederiving the famous result for the chi-

ral anomaly and finding the trace anomaly. Then, by a chiral limit we have obtained the chi-

ral and trace anomalies for left-handed Weyl fermions coupled to non-abelian gauge fields.

2The final gauge invariance of the trace anomaly can be understood on general grounds by retracing an

argument put forward in [8], according to which in euclidean space the fermionic functional determinant

which produces the effective action can always be defined to have a gauge invariant modulus, but with a

possibly anomalous phase. The Weyl scalings are real, and they only affect the modulus. Thus possible

trace anomalies are expected to be gauge invariant. On the other hand, the difficulties in defining the phase

in a gauge invariant way are responsible for the gauge anomalies. These expectations are indeed verified by

our explicit calculations.
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The main aim of this paper was to find the explicit form of the trace anomaly for

Weyl fermions, verifying that it does not contain any parity-odd term proportional to

the topological Chern-Pontryagin density. The latter was conjectured to be a possibility

in [9], see also comments in [10, 11]. It would be a type-B anomaly in the classification

of [12]. However, it was found to be absent in the abelian gauge coupling of a single Weyl

fermion [2]. Here we prove that it is absent also in the more general case of the coupling

to non-abelian gauge fields. The analogous case of a Weyl fermion on a curved spacetime

background has been debated more extensively in the literature, where a topological term

proportional to the Pontryagin density was reported in [13], and confirmed in [14, 15],

where the concept of a MAT background, that extends the Bardeen construction to curved

space, has been developed. However, the topological term was found to be absent in [16],

as confirmed also in [17]. We believe that the latter are the correct results. This conclusion

indeed finds support from the analogous situation studied in this paper. Also, an analysis

of a Dirac fermion on the MAT background, suitably regularized with PV fields, does not

seem to produce parity-odd terms in the trace anomaly [18].

Acknowledgments

We wish to thank Loriano Bonora for stimulating discussions.

A The heat kernel

Let us consider a flat D-dimensional spacetime and an operator H of the form

H = −∇2 + V (A.1)

where V is a matrix potential and ∇2 = ∇a∇a, with ∇a = ∂a + Wa the gauge covariant

derivative satisfying

[∇a,∇b] = ∂aWb − ∂bWa + [Wa,Wb] = Fab . (A.2)

The trace of the corresponding heat kernel has a small time expansion given by

Tr
[

Je−isH
]

=

∫

dDx tr
[

J(x)〈x|e−isH |x〉
]

=

∫

dDx i

(4πis)
D
2

∞
∑

n=0

tr [J(x)an(x,H)](is)n

=

∫

dDx i

(4πis)
D
2

tr [J(x)(a0(x,H) + a1(x,H)is+ a2(x,H)(is)2 + . . .)]

(A.3)

where the symbol “tr” is a trace on the remaining discrete matrix indices, J(x) is an

arbitrary matrix function, and an(x,H) are the heat kernel, or Seeley-DeWitt, coefficients.

They are matrix valued, and the first ones are

a0(x,H) = 1

a1(x,H) = −V

a2(x,H) =
1

2
V 2 − 1

6
∇2V +

1

12
F2
ab

(A.4)
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where ∇aV = ∂aV + [Wa, V ], and so on. More details on the heat kernel expansion can

be found in [19, 20]. They have been computed with quantum mechanical path integrals

in [21, 22], while a useful report is [23].

In the main text, the role of the hamiltonian H is played by the regulators Rψ and Rψc
,

and is ∼ 1
M2 , see eq. (4.8) (here we use a minkowskian set-up). In D = 4 the s-independent

term contains a2(x,H), which produces the anomalies.

Let us now specialize to the regulator Rψ = − /D
2
(A,B) which is expanded as

Rψ = − /D
2
(A,B)

= −Da(A)Da(A) +B2 − γ5(Da(A)Ba)

− 1

2
γab

(

F̂ab − 4BaBb + γ5(Ĝab − 4BaDb(A))
)

(A.5)

and contains the Bardeen curvatures F̂ab and Ĝab given in (2.5), the covariant derivative

Da(A) = ∂a +Aa, and the covariant divergence of Ba, D
a(A)Ba = (∂aBa) + [Aa, Ba].

Comparing it with the heat kernel operator H in eq. (A.1)

H = −∇2 + V = −∂a∂a − 2W a∂a − (∂aW
a)−W 2 + V . (A.6)

allows one to fix

Wa = Aa + γabγ
5Bb (A.7)

V = −2B2 − γ5(Da(A)Ba)−
1

2
γabF̂ab (A.8)

Fab = Fab(A) + (γacγbd − γbcγad)B
cBd + γ5(γcaDb(A)B

c − γcbDa(A)B
c) . (A.9)

Now the coefficient a2(Rψ) can be made explicit using (A.4). We compute directly

the relevant Dirac traces, and list some intermediate results for the reader interested in

checking our calculations. Recalling the three different contributions appearing in the last

line of (A.4), we find (with Da ≡ Da(A)):

i) from a2 =
1
2V

2

tr [γ5Tαa2(Rψ)] = tr
Y M

Tα

[

i

2
ǫabcdF̂abF̂cd + 4{B2, DB}

]

tr [Tαa2(Rψ)] = tr
Y M

Tα
[

− F̂ abF̂ab + 8B4 + 2DBDB
]

tr [a2(Rψ)] = tr
Y M

[

− F̂ abF̂ab + 8B4 + 2DBDB
]

(A.10)
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ii) from a2 = −1
6∇2V

tr [γ5Tαa2(Rψ)] = tr
Y M

Tα

[

− 2

3
iǫabcd

(

BaBbF̂cd + 2BaF̂bcBd + F̂abBcBd

)

+
2

3
D2DB

+
1

3
[F̂ ab, Ĝab] +

4

3
[DaF̂ab, B

b]− 2{B2, DB}+ 4BaDBBa

]

tr [Tαa2(Rψ)] = tr
Y M

Tα

[

i

6
ǫabcd

(

[Ĝab, F̂cd]− 4[Ba, DbF̂cd]
)

+ 8(BaB
2Ba −B4) (A.11)

+
4

3
D2B2 +

4

3
(F̂ abBaBb + 2BaF̂

abBb +BaBbF̂
ab)

]

tr [a2(Rψ)] = tr
Y M

[

4

3
D2B2

]

iii) from a2 =
1
12F2

ab

tr [γ5Tαa2(Rψ)] = tr
Y M

Tα

[

iǫabcd
(

1

6
ĜabĜcd −

2

3
{F̂ab, BcBd}+

16

3
BaBbBcBd

)

− 8

3
{B2, DB}+ 4

3
{{Ba, Bb}, DaBb}

]

tr [Tαa2(Rψ)] = tr
Y M

Tα

[

1

3
F̂ abF̂ab −

4

3
{F̂ab, B

aBb}+ 8

3
(BaBbB

aBb −B4)

− 8BaB
2Ba − 4

3
DaBbD

aBb − 2

3
DBDB

]

tr [a2(Rψ)] = tr
Y M

[

1

3
F̂ abF̂ab −

8

3
F̂abB

aBb +
8

3
BaBbB

aBb − 32

3
B4

− 4

3
DaBbD

aBb − 2

3
DBDB

]

.

(A.12)

The analogous results for a2(Rψc
) are obtained by replacing A → −AT and B → BT

(and also Tα → TαT for the explicit Tα appearing in the traces). Their effect is just to

double the contribution from a2(Rψ) in the chiral and trace anomalies.

B Properties of the stress tensor

In the main text we have defined the stress (or energy-momentum) tensor, associated to

the action S =
∫

d4xL, with lagrangian (2.9), by the functional derivative with respect to

the vierbein

Tµ
a =

1

e

δS

δeµa
. (B.1)

We review here its classical properties, which we actually need only in the flat space limit.

Our fermionic model depends on the background fields eµ
a, Aµ, Bµ, and statisfies various

background gauge symmetries, responsible for the properties of the gauge currents and

stress tensor. Let us discuss the latter.

The infinitesimal background symmetries associated to general coordinate invariance

(with infinitesimal local parameters ξµ), local Lorentz invariance (with infinitesimal local
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parameters ωab), and Weyl invarance (with infinitesimal local parameter σ), take the form

δeµ
a = ξν∂νeµ

a + (∂µξ
ν)eν

a + ωa
beµ

b + σeµ
a

δAµ = ξν∂νAµ + (∂µξ
ν)Aν

δBµ = ξν∂νBµ + (∂µξ
ν)Bν

δψ = ǫµ∂µψ +
1

4
ωabγ

abψ − 3

2
σψ .

(B.2)

Under the Weyl symmetry δσ with local parameter σ, the gauge fields do not transform,

and the invariance of the action implies

δσS =

∫

d4x

(

δS

δeµa(x)
δσeµ

a(x) +
δRS

δψ(x)
δσψ(x) + δσψ(x)

δLS

δψ(x)

)

=

∫

d4xe Tµ
a(x)δσeµ

a(x) =

∫

d4xe T a
a(x)σ(x) = 0

(B.3)

where in the second line we have implemented the equations of motion of the spinor fields

(we used left and right derivatives for the Grassmann valued fields). Thus local Weyl

invariance implies tracelessness of the stress tensor (as the infinitesimal function σ(x) is

arbitrary), with the trace computed through the vierbein, T a
a = Tµ

aeµ
a. Thus, the stress

tensor is traceless at the classical level.

Similarly, the Lorentz symmetry δω with local parameters ωab implies

δωS =

∫

d4x

(

δS

δeµa(x)
δωeµ

a(x) +
δRS

δψ(x)
δωψ(x) + δωψ(x)

δLS

δψ(x)

)

=

∫

d4xe Tµ
aδωeµ

a =

∫

d4xe Tµ
aω

a
beµ

b =

∫

d4xe T baωab = 0

(B.4)

and constrains the antisymmetric part of the stress tensor to vanish on-shell. Again, we

have used the fermionic equations of motion and the fact that the gauge fields Aµ and Bµ

do not transform under local Lorentz transformations. Considering the arbitrariness of the

local parameters and their antisymmetry, ωab = −ωba, one recognizes that the stress tensor

with flat indices is symmetric, T ab = T ba. At the quantum level, our PV regularization

preserves this symmetry, and no anomalies can arise in the local Lorentz sector.

Finally, a suitable conservation law of the stress tensor arises as a consequence of

the infinitesimal diffeomorphism invariance δξ. It is actually useful to combine it with

additional local Lorentz and gauge symmetries (with composite parameters), so to obtain
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a conservation law in the following way

δξS =

∫

d4x

(

δS

δeµa(x)
δξeµ

a(x) +
δRS

δψ(x)
δξψ(x) + δξψ(x)

δLS

δψ(x)

+
δS

δAα
µ(x)

δξA
α
µ(x) +

δS

δBα
µ (x)

δξB
α
µ (x)

)

=

∫

d4xe

(

Tµ
aLξeµ

a + JµαLξA
α
µ + Jµα

5 LξB
α
µ

)

=

∫

d4xe

(

Tµ
a∇µξ

a + JµαξνF̂α
νµ + Jµα

5 ξνĜα
νµ

)

= −
∫

d4xe ξa
(

∇µT
µ
a − JbαF̂α

ab − Jbα
5 Ĝα

ab

)

= 0

(B.5)

where in the third line we have implemented the fermion equations of motion (and denoted

with Lie derivatives Lξ the transformation rules under diffeomorphisms), and in the fourth

line added for free to the Lie derivative of the vierbein a spin connection term (it amounts

to a local Lorentz transformation with composite parameter, and it drops out on-shell as

the stress tensor is symmetric), and to the Lie derivatives of the gauge fields suitable gauge

transformations (which also drop out after partial integration as the corresponding currents

are covariantly conserved, recall eqs. (2.7) and (2.8) which we use here in their curved

space version), and then integrated by parts. The arbitrariness of the local parameters

ξa(x) allows to derive a covariant conservation law, which contains a contribution from the

gauge fields (that would vanish once the gauge fields are made dynamical, since then one

can use their equations of motion). It reads

∇µT
µ
a = JbαF̂α

ab + Jbα
5 Ĝα

ab . (B.6)

Our PV regularization preserves diffeomorphism invariance, and thus no anomaly may

appear in the Ward identities related to this symmetry.

We end this appendix by presenting the explicit expression of the energy-momentum

tensor for the Bardeen model in flat spacetime

Tab =
1

4
ψ
(

γa
↔

Db(A,B) + γb
↔

Da(A,B)
)

ψ (B.7)

where
↔

Da(A,B) = Da(A,B) −
←

Da(A,B), with the second derivative meaning here
←

Da(A,B) =
←

∂ a − Aa − Baγ
5. One can verify explicitly all the statements about the

classical background symmetry derived above, namely

∂aT
ab = ψγa(F̂

ab + Ĝabγ5)ψ , T ab = T ba , T a
a = 0 . (B.8)

The PV regularization used in the main text preserves the corresponding quantum Ward

identities except the last one, as the mass term in curved space is not Weyl invariant,

and a trace anomaly develops. A more extensive discussion about the construction and

properties of the stress tensor can be found in ref. [3].
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gravity: a non-perturbative approach to split anomalies, Eur. Phys. J. C 78 (2018) 652

[arXiv:1807.01249] [INSPIRE].

[16] F. Bastianelli and R. Martelli, On the trace anomaly of a Weyl fermion,

JHEP 11 (2016) 178 [arXiv:1610.02304] [INSPIRE].

– 14 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRev.184.1848
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,184,1848%22
https://doi.org/10.1140/epjc/s10052-019-6799-z
https://arxiv.org/abs/1808.03489
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.03489
https://doi.org/10.1016/j.aop.2003.08.011
https://arxiv.org/abs/hep-th/0307199
https://inspirehep.net/search?p=find+EPRINT+hep-th/0307199
https://doi.org/10.1142/S0217751X8900162X
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,A4,3959%22
https://doi.org/10.1016/0550-3213(90)90176-E
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B335,166%22
https://doi.org/10.1103/PhysRevLett.42.1195
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,42,1195%22
https://doi.org/10.1103/PhysRevLett.44.1733
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,44,1733%22
https://doi.org/10.1016/0550-3213(84)90066-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B234,269%22
https://doi.org/10.1016/j.nuclphysb.2012.02.006
https://arxiv.org/abs/1201.3428
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.3428
https://doi.org/10.1103/PhysRevD.98.085002
https://arxiv.org/abs/1804.02940
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.02940
https://arxiv.org/abs/1906.07914
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.07914
https://doi.org/10.1016/0370-2693(93)90934-A
https://arxiv.org/abs/hep-th/9302047
https://inspirehep.net/search?p=find+EPRINT+hep-th/9302047
https://doi.org/10.1007/JHEP07(2014)117
https://arxiv.org/abs/1403.2606
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.2606
https://doi.org/10.1140/epjc/s10052-017-5071-7
https://arxiv.org/abs/1703.10473
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.10473
https://doi.org/10.1140/epjc/s10052-018-6141-1
https://arxiv.org/abs/1807.01249
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.01249
https://doi.org/10.1007/JHEP11(2016)178
https://arxiv.org/abs/1610.02304
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.02304


J
H
E
P
1
0
(
2
0
1
9
)
2
4
1
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