
Physics Letters B 798 (2019) 134938
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Taub-NUT from the Dirac monopole

Hadi Godazgar a,∗, Mahdi Godazgar b, C.N. Pope c,d

a Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Mühlenberg 1, D-14476 Potsdam, Germany
b School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, United Kingdom
c George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
d DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 OWA, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 September 2019
Accepted 11 September 2019
Available online 16 September 2019
Editor: M. Cvetič

Writing the metric of an asymptotically flat spacetime in Bondi coordinates provides an elegant way of 
formulating the Einstein equation as a characteristic value problem. In this setting, we find that a specific 
class of asymptotically flat spacetimes, including stationary solutions, contains a Maxwell gauge field 
as free data. Choosing this gauge field to correspond to the Dirac monopole, we derive the Taub-NUT 
solution in Bondi coordinates.
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1. Introduction

Asymptotically flat spacetimes have been extensively studied 
over the last 50 years, particularly, recently, in the context of 
gravitational wave detections [1] and asymptotic symmetry groups 
[2,3]. In this paper, motivated by recent work on dual gravitational 
charges [4–7], we show how treating asymptotically flat space-
times in terms of a characteristic value problem [8] provides an 
intriguing way of viewing the Dirac magnetic monopole as a pro-
genitor of the Taub-NUT spacetime.1

Our starting point is to consider a general class of asymptoti-
cally flat metrics, written in a Bondi coordinate system (u, r, xI =
{θ, φ}), such that the metric takes the form2

ds2 = −F e2βdu2 − 2e2βdudr + r2hI J (dxI − C Idu)(dx J − C J du),

(1.1)

with the metric functions satisfying the following fall-off condi-
tions at large r:
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1 The relation between the Dirac monopole and Taub-NUT solutions is also en-

countered in a different setting: that of the double copy [9,10], where, the focus of 
the investigation is on the (double) Kerr-Schild ansatz and the key insight is that 
the Kerr-Schild null vector(s) may be related to a Maxwell field.

2 See section 2 of Ref. [11] for a more in-depth discussion of asymptotically-flat 
spacetimes and the notation we will use in this paper.
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where ωI J is the standard metric on the round 2-sphere with co-
ordinates xI = {θ, φ} and C2 ≡ C I J C I J . Moreover, a residual gauge 
freedom allows us to require that

h = ω, (1.3)

where h ≡ det(hI J ), and ω ≡ det(ωI J ) = sin θ . Following Ref. [7], 
we do not impose on the fields defined above any regularity con-
ditions on the 2-sphere.

One may introduce a complex null frame of vector fields eμ
a =

(�a, na, ma, m̄a) with inverse Eμ
a ,

gab = Eμ
a Eν

b ημν, ημν =
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0 −1
−1 0

0

0
0 1

⎞⎟⎟⎠ , (1.4)
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Fig. 1. Hypersurfaces defining a characteristic value problem.
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m
 = r m̂I (dxI − C Idu), (1.5)

and

2m̂(I ¯̂m J ) = hI J , (1.6)

with hI J the matrix inverse of hI J .
Given the choice of Bondi coordinates, the formalism most 

adapted to the problem of constructing solutions from initial data 
is the characteristic approach [8]. In the characteristic value prob-
lem, such as that defined by Bondi coordinates, the spacetime is 
viewed as a foliation of null hypersurfaces, called the characteris-
tic surfaces, corresponding to the level sets of u (see Fig. 1).

The vacuum3 Einstein equation may then be divided into three 
types of equations [8]:

1. Hypersurface equations: these are equations that hold in each 
u = constant hypersurface and are of the form

∂rF = HF (F,G), (1.7)

where F denotes the set of hypersurface variables, which in 
Bondi coordinates correspond to {β, F , C I }, while G denotes 
evolution variables, which in Bondi coordinates corresponds 
to hI J . The operator HF , as well as HG defined below, is 
non-linear in derivatives with respect to the three hypersur-
face coordinates. The structure of the hypersurface equations 
is such that the r-dependence of the right hand side is always 
explicit, and therefore the hypersurface variables may simply 
be determined by integrating with respect to r.

3 One could, of course, include matter with corresponding energy–momentum 
tensor satisfying appropriate fall-off conditions. However, in this paper, we simply 
consider the vacuum Einstein equation.
2. Evolution equations: these are of the form

∂u∂rG = HG(F,G, ∂uG). (1.8)

Note that there are no second order derivatives in time.
3. Conservation equations: these are satisfied on r = constant 

hypersurfaces transverse to the characteristics, and are of the 
form

∂uF = hF (F,G, ∂uG), (1.9)

where hF is some non-linear operator in the two angular co-
ordinates in the u = constant hypersurfaces. These are to be 
thought of as conservation equations rather than evolution 
equations because their structure is such that once they are 
satisfied on a particular r = constant hypersurface, they are 
guaranteed to hold for all values of r.

In the complex null frame introduced above, these groups cor-
respond to the following components of the Einstein equation:

Hypersurface equations : �μ �ν Gμν = 0 , �μ nν Gμν = 0 ,

�μ mν Gμν = 0 . (1.10)

Evolution equations : mμ mν Gμν = 0 . (1.11)

Conservation equations : nμ nν Gμν = 0 , nμ mν Gμν = 0 .

(1.12)

Note that the mμ m̄ν Gμν = 0 component is automatically satisfied 
if we assume the other components to hold [12]. Since we are as-
suming specific expansions in inverse powers of r for the metric 
components,4 at least for the first few orders, the corresponding 
hypersurface equations simplify to algebraic equations at fixed u
for all scalar and vector fields on the right hand side of the fall-
off conditions for {β, F , C I }, except for the fields F0 and C I

1, which 
as we will explain later constitute initial data, whose evolutions 
are determined by the conservation equations. The evolution equa-
tions then determine the evolution of D I J and E I J (as well as the 
other terms at higher powers in the 1/r expansion of hI J ), given 
prescribed initial data. Rather unusually, C I J (u, xI ) constitutes free 
data. Furthermore, note that the initial data are unconstrained, in 
contrast to a Cauchy formulation where they would satisfy elliptic 
constraints. The explicit Einstein equations for the metric compo-
nents are listed in section 2.2 of Ref. [11].

In summary, the Einstein equation is solved by prescribing ini-
tial data

{F0(u0, xI ), C I
1(u0, xI ), D I J (u0, xI ), E I J (u0, xI ), . . .},

where the ellipses denote terms at higher powers in the 1/r
expansion of hI J , and an arbitrary trace-free symmetric tensor 
C I J (u, xI ). The hypersurface equations then determine all scalar, 
vector and tensor fields in the expansions (1.2) on the initial hyper-
surface. Now, the evolution and conservation equations can be in-
tegrated to determine {F0, C I

1, D I J , E I J , . . .} at a time step u0 +�u, 
before iterating the above procedure to find the full solution at this 
time step and so on.

One of the hypersurface equations, arising at order 1/r3 of the 
�μ mν Gμν = 0 equation (see equation (2.16) of Ref. [11]), gives5

4 This assumption is formally consistent [12,13] in the sense that assuming such 
a fall off for the free initial data hI J (u0, r, xI ) implies a solution of the form defined 
in equation (1.2).

5 I, J , . . . indices are raised or lowered using ω I J or ωI J .
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C0
I = − 1

2 D J C I J , (1.13)

which determines C I
0 given the data C I J (u, xI ). Alternatively, we 

may view this equation as determining C I J given a choice of C I
0, 

up to functions of integration which may themselves be arbitrarily 
chosen. That is to say, we may exchange the freedom to choose a 
trace-free tensor C I J (u, xI ) with the freedom to choose a vector C I

0. 
It will be useful in what follows to take this perspective. Therefore, 
the data for the characteristic value problem are given by

{F0(u0, xI ), C I
0(u, xI ), C I

1(u0, xI ), D I J (u0, xI ), E I J (u0, xI ), . . .},
where we emphasise that the choice for C I

0 is not only an initial 
value choice as with the other fields, but that we have the freedom 
to choose the vector completely, as a function also of u.

Let us consider, briefly, the physical significance of these quan-
tities. The Bondi mass and angular momentum are given by [12,
13], [7]6

MB = − 1

8π

∫
S

d
(

F0 + 1

4
D I D J C I J

)
,

J B = 3

8π

∫
S

d sin2 θ Lφ, (1.14)

where

LI = 1

2
C I

1 + 1

3
C I J C0 J (1.15)

is the angular momentum aspect, so that if Lφ is constant then 
J B = Lφ . Moreover, we have that the dual Bondi mass or Bondi 
NUT charge is given by [7]

M̃B = 1

16π

∫
S

dC0, (1.16)

where C0 = C0 I dxI . Thus F0, C I
0 and C I

1 constitute the data de-
termining the Bondi mass, NUT charge and angular momentum. 
Furthermore, the other data given by terms at higher powers in 
the 1/r expansion of hI J correspond to subleading BMS charges 
[11], [5]. For example, D I J determines the BMS charge at or-
der 1/r2.

In this paper, our focus will be on constructing stationary so-
lutions, meaning that all the scalar, vector and tensor fields in the 
expansions (1.2) will be independent of the retarded time u. This 
means that the evolution and conservation equations (1.11) and 
(1.12) will now give rise to genuine constraints on the initial data. 
Thus, all stationary asymptotically flat solutions are given by pre-
scribing the following data

{F0(xI ), C I
0(xI ), C I

1(xI ), D I J (xI ), E I J (xI ), . . .}
subject to the constraints implied by equations (1.11) and (1.12).

2. C0 I as a Maxwell gauge field

As can be verified from the form of the BMS transformations 
in the notation of Ref. [11] that we are using here, under a su-
pertranslation with diffeomorphism parameter ξ = s(θ, φ) ∂u +· · · , 
we have

6 We work in units where G = 1. Note that the total derivative term D I D J C I J in 
the expression for the Bondi mass arises because the tensor C I J is not necessarily 
regular on the sphere [7].
δC0 I = ∂uC I
0 + D I

(
1

2
�s + s

)
. (2.1)

Thus, if

∂uC I
0 = 0, (2.2)

which is the case for stationary solutions, but also more generally, 
then

δC0 I = D I�, � = 1

2
�s + s. (2.3)

Thus, in a very real sense, one can think of a u-independent 1-form 
C0 as being analogous to a Maxwell gauge potential.

This interesting observation is one reason why we chose to 
view C0 I rather than C I J as characteristic data in the previous sec-
tion.

3. Dirac monopole

Given the interpretation of a u-independent C0 as a Maxwell 
gauge field, it is natural to consider the case where this 1-form 
describes a Dirac magnetic monopole on the 2-sphere, with C0 of 
the form

C0 ≡ C0 I dxI = 2p cos θ dφ, (3.1)

where p is a constant. This 1-form is singular at the north and 
the south poles of the sphere. We shall look for solutions that are 
stationary and axisymmetric,7 so all the metric functions will be 
assumed to be independent of u and of φ. Of course, in order to 
specify a particular solution we must also prescribe initial data for 
the other fields. However, since we will have constraint equations 
implied by the requirement of stationarity, we choose for now to 
keep the other initial data arbitrary and choose them with the con-
straint equations in mind.

The singularities in the Dirac monopole gauge potential A =
2p cos θ dφ are purely gauge artefacts, with the field strength 
F = dA = −2p sin θ dθ ∧ dφ being perfectly regular on the sphere. 
The Dirac string or wire singularities in the gauge potential can 
be moved around by means of large gauge transformations A →
A + d�. For example, taking � = −2p φ gives A = −4p sin2 θ

2 dφ, 
which is singular only at the south pole, whilst taking � = 2p φ
gives A = 4p cos2 θ

2 dφ, which is singular only at the north pole.
By comparing with equation (2.3), and taking s to be a constant 

multiple of the azimuthal coordinate φ, we can perform precisely 
the kinds of gauge transformation we described above for the Dirac 
monopole.8 We may take as our starting point the slight generali-
sation of (3.1) where

C0 ≡ C0 I dxI = 2p cos θ dφ + 2k dφ, (3.2)

with k being a gauge-adjustable constant, which fixes the super-
translation gauge that we are working in. Already, it is clear that 
we are dealing with spacetimes that have a non-trivial NUT charge 
(1.16):

M̃B = − p

2
. (3.3)

7 The most general such solutions have been classified in Weyl coordinates, and 
are given by four functions that satisfy simple coupled partial differential equations 
in two variables. For details, see chapter 20 of Ref. [14].

8 The function φ is of course singular on the sphere. However, since we are 
already entertaining the idea of using a monopole configuration for C0 I that is 
singular on the sphere, there is no longer any reason to restrict ourselves to non-
singular supertranslation parameters.
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Using the fact that C I J is symmetric, trace-free and depends 
only on θ , by the axisymmetry assumption, we can substitute (3.2)
into (1.13) and solve to find

Cθθ = c1

sin2 θ
, Cφφ = −c1 ,

Cθφ = c2 + 4k cos θ + 2p cos2 θ

sin θ
, (3.4)

where c1 and c2 are constants of integration. These constants will 
contribute to subleading BMS charges, and as is evident from the 
definition (1.15) of the angular momentum aspect LI and the form 
of (3.2), c1 will also contribute to the angular momentum. Note 
that D I D J C I J = 0, and therefore c1 and c2 do not contribute to 
the Bondi mass given in (1.14).

It is interesting to note that although in general this solution for 
C I J is singular at one or both of the poles of the sphere, we can 
find a non-singular solution in the special case where we choose 
c1 = 0, c2 = −2p and k = 0, for which the only non-vanishing com-
ponents of the symmetric C I J are specified just by

Cθφ = −2p sin θ. (3.5)

Of course, since our starting point was C0 I having the form of a 
Dirac monopole, which is necessarily singular somewhere on the 
sphere, there is no particular reason why we should expect or re-
quire C I J to be non-singular. Indeed, as we shall see below, there 
are reasons to prefer different assignments for (c1, c2, k) for which 
C I J does have singularities.

As explained before, the other hypersurface equations are alge-
braic equations that determine the form of other fields given initial 
data. Therefore, we need not concern ourselves with those just 
yet. However, the evolution and conservation equations are now 
non-trivial equations, constraining the data. Therefore, we focus on 
these equations.

The nμ nν Gμν = 0 projection of the Einstein equation at order 
1/r2 implies the conservation equation [11]

∂u F0 = −1

2
D I D J ∂uC I J + 1

4
∂uC I J ∂uC I J , (3.6)

which is trivially satisfied in the stationary case. The other conser-
vation equation, which comes from the nμ mν Gμν = 0 projection 
of the Einstein equation at order 1/r3, then gives (see equation 
(2.26) of [11])

0 = 3∂uC I
1 = D I F0 − D J (D J C I

0 − D I C J
0 )

= D I F0 − D J F J I , (3.7)

where F I J = 2∂[I C0 J ] is the field strength associated with the 
gauge field C0. In the first line we have used equation (1.13), and 
the fact that ∂u C I J = 0. Since the only non-zero component of F I J

is F θφ = −2p/ sin θ , and

D J F J I = 1

sin θ
∂ J (sin θ F J I ) = 0, (3.8)

equation (3.7) then implies that F0 is independent of the coordi-
nates on the sphere. Hence, we choose

F0 = −2m, (3.9)

with constant m parameterising the mass of the asymptotically-flat 
spacetime.

Moving on to the evolution equations given by the
mμ mν Gμν = 0 projection of the Einstein equation, at order 1/r4, 
this gives [11]
0 = ∂u D I J = −1

4
F0C I J − 1

2
D(I C1 J ) + 1

4
C I J D K C K

0

+ 1

32
D I D J C2 − D(I (C J )K C K

0 ) − 1

8
D I C K L D J C K L

+ 1

4
ωI J

[
D K C K

1 − 1

16
�C2 + 2D K (C K L C L

0)

+ 1

4
D M C K L D M C K L

]
. (3.10)

With C0 and C I J given by (3.2) and (3.4), respectively, we may now 
seek to solve for C1 I (θ). Since the solutions are a little complicated 
in general we shall not present them here, but just remark that 
in general they involve terms that have power-law singularities at 
θ = 0 and θ = π , and also terms proportional to log cot θ

2 with 
logarithmic singularities at the poles of the sphere. The solution 
for C1 I will be free of logarithmic singularities if and only if we 
choose the c1 and c2 integration constants in (3.4) to be

c1 = 0 , c2 = 2p. (3.11)

The solution is then given by

C1 θ = c3 sin θ

+ 3k cos 4θ+4(k2+p2) cos 3θ−12kp cos 2θ−36(k2+p2) cos θ−55kp
4 sin5 θ

,

C1 φ = c4 sin2 θ − 4m(p cos θ + k), (3.12)

where c3 and c4 are constants of integration.
This is the most general solution for C1 I without logarithmic 

singularities, starting from the Dirac monopole connection (3.2). 
We may now evaluate the angular momentum given in (1.14), ob-
taining

J B = 1

2
(c4 − 6km). (3.13)

However, the Komar angular momentum

J K = 1

16π

∫
S

�dj
 (3.14)

with j = ∂/∂φ is divergent. This is easy to see, since

(�dj
)θφ = 2[2k sin θ + p sin 2θ] r

+ [2(c4 − 6km) sin θ − 6pm sin 2θ] +O(r−1). (3.15)

Therefore, before sending r to infinity, the right hand side of the 
expression for J K gives

kr + 1

2
(c4 − 6km) +O(r−1). (3.16)

A simple explanation for why the divergence above vanishes for 
k = 0 is that the wire singularity provides a divergent contribution, 
however, when k = 0 the divergent contributions from the wire 
singularities at the north and south poles cancel. There has been a 
proposal to resolve this divergence issue for general k in Ref. [15], 
by redefining the Komar integral. However, given that k parame-
terises a large gauge transformation, we may simply avoid these 
difficulties by choosing to set k = 0. (Recall that k is the gauge pa-
rameter appearing in (3.2).) Now, we obtain

J B = 1

2
c4. (3.17)

Thus, c4 is a Kerr-like angular momentum parameter, which, for 
simplicity, we shall for now set to zero. The integration constant c3
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will contribute to subleading BMS charges [11], [5], and we shall 
also set this to zero for simplicity.

With c3 = c4 = 0, and making the gauge choice k = 0 as dis-
cussed above, the expressions for C1 I in (3.12) become

C1 θ = −4p2 (2 + sin2 θ) cos θ

sin5 θ
, C1 φ = −4mp cos θ. (3.18)

The previous expressions (3.2) and (3.4) for C0 I and C I J then give

C0 θ = 0 , C0 φ = 2p cos θ,

Cθθ = 0 , Cφφ = 0 , Cθφ = 2p (1 + cos2 θ)

sin θ
. (3.19)

Substituting these expressions into the �μ nν Gμν = 0 component 
of the Einstein equation at order 1/r4 then gives

F1 = p2 (4 + 4 sin2 θ − 11 sin4 θ)

2 sin4 θ
. (3.20)

Comparing with the expressions in appendix A, we see that the 
above fields are in exact agreement with the corresponding com-
ponents in the expansion of the Taub-NUT metric in Bondi coordi-
nates, with p = �.

Clearly we could in principle continue to arbitrarily high or-
ders in the 1/r expansions of the Einstein equation. In particular, 
the structure of the constraint equations coming from the evo-
lution equations should be clear now. For example, at the next 
order (see equation (2.21) of [11]), the equation implied by the 
u-independence of E I J implies an ordinary differential equation 
for D I J (θ). Following this iterative process, and making appropri-
ate choices for constants of integration as they arise, reproduces 
the Taub-NUT metric in Bondi coordinates to any desired order. 
Note that had we not chosen to set k = 0, we could have obtained 
the Bondi metric corresponding to the Taub-NUT metric with the 
string singularity correspondingly shifted.

Other choices of the integration constants will give more gen-
eral solutions, generically presumably with more severe singular 
behaviour on the sphere, such as the logarithmic behaviour in C1 I
that we avoided above by the judicious choice (3.11) for the con-
stants of integration c1 and c2.

We have already seen, (3.17), that the constant of integration c4

in the expression (3.12) for C1 φ is related to angular momentum. 
In fact, if we turn off the Dirac monopole altogether by choosing 
p = 0 (and k = 0), i.e. setting C0 I = 0, and letting c3 = 0 and c4 =
2ma, we find that our solution (3.12) becomes

C1 θ = 0 , C1 φ = 2ma sin2 θ. (3.21)

As can be seen from the expressions in appendix A of [7], the C1 I
above is precisely that of the Kerr metric in Bondi coordinates, 
where a is the Kerr rotation parameter. In fact the Kerr metric 
could be derived in Bondi coordinates by using the same iterative 
technique we have illustrated in this paper for the Taub-NUT met-
ric, by starting with F0 = −2m, C0 I = 0 and C1 I given by (3.21), 
and then sequentially solving the Einstein equation order by or-
der in powers of 1/r with the evolution equations determining 
lower order powers of hI J , under the assumption of stationarity. 
Of course one could also derive the Kerr-Taub-NUT metric in Bondi 
coordinates, by starting out as we did above for Taub-NUT, but now 
at the stage where we obtained the expressions (3.12) for C1 I we 
would take c4 to be non-zero.

4. Discussion

We showed that, in a stationary setting, starting from a choice 
of the gauge field C0 as the Dirac monopole, we can integrate 
the vacuum Einstein equation to recover the Taub-NUT solution 
in Bondi coordinates. Assuming the solution to be stationary, the 
evolution and conservation equations transformed into constraint 
equations on the other characteristic data. For example, we found 
that F0 must be constant, giving a Bondi mass. Solving another 
of the constraint equations, we found C I

1 up to two constants of 
integration. One of these constants corresponded to a Kerr-like an-
gular momentum parameter. Working through the other constraint 
equations would also generate other constants, which contribute 
to subleading BMS charges. Therefore, what the Dirac monopole 
actually generates is a family of Taub-NUT-like solutions, of which 
the usual Taub-NUT solution is one member. In general, the other 
members of the family would correspond to other stationary ax-
isymmetric Weyl solutions with a non-trivial NUT charge.

The 1-form C0 can in fact be regarded as a gauge connection 
more generally, namely in any spacetime, even a time-dependent 
one, provided that C0 itself is still time-independent. Therefore 
the iterative procedure that we carried out, starting with a Dirac 
monopole configuration, can be repeated in a more general non-
stationary setting. It would be interesting to see if dynamical solu-
tions with Taub-NUT charge can be constructed this way.

Moreover, in this work, for simplicity, we have assumed a 
1/r-expansion of the Bondi metric, at least for the first few orders. 
However, this is not necessary and only simplifies the hypersur-
face, (1.10), and evolution, (1.11), equations. Therefore, one could 
consider the more general system of equations with weaker fall-off 
conditions, which would presumably be necessary when consider-
ing time-dependent solutions.
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Appendix A. Taub-NUT metric in Bondi coordinates

Here, we construct the Taub-NUT metric in Bondi coordinates, 
working in the “symmetric” coordinate gauge where there are 
string singularities at both the north and south poles. The start-
ing metric in this case is the standard one,

ds2 = − f (r̄) (dt̄ + 2� cos θ̄ dφ̄)2 + f (r̄)−1 dr̄2

+ (r̄2�2) (dθ̄2 + sin2 θ̄ dφ̄2) . (A.1)

We have placed bars on the coordinates, because we now make an 
expansion of the form described in [7], imposing the Bondi metric 
conditions grr = guθ = guφ = 0, and det(hI J ) = det(ωI J ), order by 
order in the expansion in 1/r. Proceeding to the first few orders, 
we find

t̄ = u + r + 2m log r − 4m2 − 2�2 (csc2 θ + csc4 θ − 11
4 )

r

− 2m [2m2 + �2 (3 − 2 csc2 θ)]
r2

+ · · · ,

φ̄ = φ − 2� cos θ

r sin2 θ
− �3 (sin4 θ + 4 sin2 θ − 20

3 )

r3 sin6 θ

− 2m �3 cos3 θ

4 4
+ · · · ,
r sin θ
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r̄ = r + �2 (4 csc4 θ − 3)

2r
− 2m�2 cot2 θ

r2

+�4 (−6 + 16 sin2 θ + 11 sin4 θ − 25 sin6 θ + 45
8 sin8 θ)

3r3 sin8 θ

+ m�4 (7 cos 2θ + 1) cos2 θ

r4 sin6 θ
+ · · · ,

θ̄ = θ + 2�2 cos θ

r2 sin3 θ
+ 2�4 (sin4 θ + 10 sin2 θ − 15) cos θ

3r4 sin7 θ

+ 4m�4 cos3 θ

r5 sin5 θ
+ · · · . (A.2)

We have actually worked to a higher order than the terms pre-
sented here, sufficient for our later purposes. Using these expan-
sions, we then obtain the Taub-NUT metric in Bondi form, finding

guu = −1 + 2m

r
+ 2�2

r2
+ m�2 (1 − 4 csc4 θ)

r3

− 2�2 [2�2 (sin4 θ − 2) + m2 sin 2θ]
r4 sin4 θ

+O(r−5) ,

gur = −1 + �2 (1 + cos2 θ)2

2r2 sin4 θ

+ �4 [6 − 28 sin2 θ + 15 sin4 θ + 8 sin6 θ − 21
8 sin8 θ]

r4 sin8 θ

+O(r−5) ,

guθ = 4�2 (2 − sin2 θ + sin4 θ) cos θ

r sin5 θ
+ 4m�2 (cot2 θ − 1)

r2

− 2�4 (8 − 28 sin2 θ + 50
3 sin4 θ − 4 sin6 θ + 3 sin8 θ) cos θ

r3 sin9 θ

+O(r−4) ,

guφ = −2� cos θ + 4m� cos θ

r
+ 4�3 cos θ

r2

+ 2m�3 (1 − 4 csc4 θ) cos θ

r3
+O(r−4) ,

grr = O(r−6) , grθ = O(r−5) , grφ = O(r−5) ,

gθθ = r2 + 2�2 (1 + cos2 θ)2

sin4 θ
− 4m�2 cot2 θ

r

− 2�4 (40 − 16 sin2 θ − 45 sin4 θ + 27 sin6 θ)

3r2 sin6 θ
+O(r−3) ,

gθφ = 2�r (1 + cos2 θ)

sin θ
+ �3 (8 − 20

3 sin2 θ + 6 sin4 θ − 5 sin6 θ)

r sin5 θ

− 10m�3 cos2 θ

r2 sin θ
+O(r−3) ,
gφφ = r2 sin2 θ + 2�2 (1 + cos2 θ)2

sin2 θ
+ 4m�2 cos2 θ

r

+ 2�4 (8 − 16
3 sin2 θ − sin4 θ − sin6 θ)

r2 sin4 θ
+O(r−3) . (A.3)

Comparing with the expansions for the Bondi metric as defined in 
(1.2), we have, for example,

C I J : Cθθ = 0 , Cφφ = 0 , Cθφ = 2� (1 + cos2 θ) csc θ ,

D I J : Dθθ = −4m�2 cot2 θ , Dφφ = 4m�2 cos2 θ ,

Dθφ = �3 (8 − 20
3 sin2 θ + 6 sin4 θ − 5 sin6 θ) csc5 θ ,

C0 I : C0 θ = 0 , C0 φ = 2� cos θ ,

C1 I : C1 θ = −4�2 (2 + sin2 θ) cot θ csc4 θ ,

C1 φ = −4m� cos θ ,

F0 = −2m , F1 = �2 (4 + 4 sin2 θ − 11 sin4 θ)

2 sin4 θ
. (A.4)
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