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In this paper we construct a numerical technique capable of solving Maxwell’s equations in frequency domain, both
in vacuum and in cold magnetized plasma, with a boundary condition that guarantees the existence of a potential
associated with the radiofrequency electric fields tangential to certain surfaces. This potential is of interest to nonlinear
sheath physics, since it enables the calculation of the time-dependent sheath current excited by a single-frequency
electromagnetic wave, and thereby the associated DC sheath current and sheath potential.

I. INTRODUCTION

In plasmas in general, and tokamak plasmas in particular,
thermal sheaths form on all conductors in contact with the
plasma. In the presence of radiofrequency (RF) waves, such
as the ICRF (Ion Cyclotron Range of Frequencies) waves used
to heat the plasma, the sheaths are excited. The potential drop
across an excited sheath may be much larger than that across
a standard Bohm sheath. It is this potential drop which ac-
celerates ions towards the surfaces of the plasma-facing com-
ponents, and in particular towards the surfaces of the ICRF
antennas themselves.

Great progress has been made towards understanding and
suppressing this phenomenon1,2, but a key ingredient for mod-
elling sheaths in frequency domain in 3D is still missing: a
potential needs to be associated with the radiofrequency elec-
tric fields tangential to the plasma-facing components. In 3D,
it is hard to guarantee that this potential even exists.

In this paper, we develop a numerical technique to solve
Maxwell’s equations in 3D in cold magnetized plasma in
frequency domain in a way that guarantees the existence of
this RF potential. In section II, we briefly summarize the
“SSWICH” approach to sheath modelling, and the sheath
boundary conditions used therein. We relate these sheath
boundary conditions to other types of sheath boundary con-
ditions in section III. In section IV, we elucidate how the nor-
mal electric field components must constrain the tangential
electric field components. Then, in section V, we construct
a numerical scheme capable of solving Maxwell’s equations
with these boundary conditions, the main novelty of this pa-
per. To validate our numerical approach, we construct an exact
solution in section VI. Finally, in section VII, we compare our
numerical results with analytical results. The conclusion is in
section VIII.

Throughout this paper, we use the subscripts t and n for
tangential resp. normal quantities and operators. When more
concreteness is needed, we use x as the normal direction and
y,z as the tangential directions. We use a double arrow for
tensors such as

↔
ε , and a single arrow for vectors such as ~E.

a)Electronic mail: wtt@ipp.mpg.de

II. THE SSWICH APPROACH

Within the “SSWICH” (Self-Consistent Sheaths and Waves
for Ion Cyclotron Heating,1–3) approach, numerical modelling
of sheath excitation on ICRF antennas typically follows a 3-
step process: Solving Maxwell’s equations (section II A), cal-
culating the RF potential (section II B), and calculating the
DC potential and sheath thickness (section II C).

A. Step 1: Solving Maxwell’s equations

Solve Maxwell’s equations in frequency domain in cold
magnetized plasma near the antenna

∇× (∇×~E)+
ω2

c2
↔
ε ~E = iωµ0~Jant (1)

where ~E are the unknown electric fields near the antenna, ω

is the angular antenna frequency,
↔
ε is the cold plasma dielec-

tric tensor given in eqs. (15,16). Near any surface, we can
decompose ~E into a tangential component ~Et and a normal
component ~En

~E = ~Et +~En (2)

We typically solve eq. (1) with perfectly conducting boundary
conditions on the metallic surfaces (PEC, ~Et = 0), and per-
fectly matched layers (a type of absorbing boundary layer4)
in the plasma. In this paper we will consider dedicated sheath
boundary conditions: eqs. (10,11,12).

B. Step 2: Calculating RF potential

To find the RF potential ΨRF on a sheath surface, we need
to solve3,5–7

−∇tΨRF = ~Et (3)

The conditions under which eq. (3) can be solved will be dis-
cussed in section II D.
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C. Step 3: Calculating the DC potential

ΨRF rectifies the DC I−V characteristic of the sheath1 as
follows:

IDC = j+
(

1− exp
(

e
kBTe

(
Vf +Vb−VDC

)))
(4)

where the ion saturation current j+, the floating potential Vf ,
and the biasing voltage Vb are respectively

j+ =
1
2

enics (5)

Vf =
kBTe

2e
ln
(

2π
me

mi

(
1+

Ti

Te

))
(6)

Vb =
kBTe

e
ln
(

I0

(
eΨRF

kBTe

))
(7)

where I0 is the modified Bessel function of order 0, ni the
ion density, cs the speed of sound, Te,Ti the electron and ion
temperature. Eq. (7) is an approximation due to the two-
frequency approach of SSWICH: only the antenna frequency
and the DC frequency are considered, and other harmonics
which Vb contains are ignored.
We solve the continuity equation for DC currents in the
scrape-off-layer, in presence of anisotropic DC conductivity
↔
σ in the plasma volume

∇ · ~JDC =−∇ ·
↔
σ∇VDC = 0 (8)

using eq. (4) as boundary condition. This gives the DC
sheath potential VDC, and the sheath width δsh via the Child-
Langmuir law:

δsh = λDe

(
eVDC

kBTe

)3/4

(9)

where λDe is the electron Debeye length.

D. Requirements for RF potential calculation

In this work, we are concerned with steps 1 and 2, and
specifically, with the boundary conditions that we must im-
pose while solving Maxwell’s equations (step 1) to guarantee
that an RF potential can be calculated (step 2). The goal is
to solve these steps together, provided that the sheath width
δsh is prescribed a priori. The sheath width can then be self-
consistently determined as in figure 1.

Eq. (3) states that the RF electric fields tangential to the
sheath surface are gradients of the RF potential ΨRF , a scalar
function on that surface. Under which conditions can a vector
field ~Et tangent to a surface be the tangential gradient of a po-
tential ΨRF defined on that surface? The vector field must be
conservative: (∇×~E)n = 0. In the context of time-harmonic
electrodynamics, this is strictly equivalent to Bn = 0 all over
the boundary. For 2D problems (invariant in the out-of-plane
direction) Bn = 0 is automatically fulfilled. To complement

the boundary conditions, one needs another scalar equation
defined on the boundary and describing the sheath properties
at the RF level (typically the RF impedance of the sheath).
This is the role of equation (11). Eqs. (10) and (11) are the
“asymptotic linear sheath boundary conditions” (SBC)3

(∇×~E)n = 0 or equivalently ∇t ×~E = 0 (10)
Dn = 0 (11)

If the sheath thickness δsh is known, we want to impose the
“non-asymptotic sheath boundary condition” instead3,8:

{
∇t ×~Et = 0

ΨRF = − δsh
εsh

Dn
(12)

where εsh an effective scalar dielectric constant of order 1
for capacitive sheaths. εsh = 1 represents a capacitive limit
in which there is no power dissipation in the sheath, but in
general there is also a resistive term5, and εsh may be com-
plex. The asymptotic sheath boundary conditions are a lim-
iting case of the non-asymptotic sheath boundary conditions9

as δsh→ ∞.

Maxwell’s equations
asymptotic SBC
eqs. (10,11)

Maxwell’s equations
non-asymptotic SBC
eq. (12)

DC plasma biasing eqs. (4,8,9)

�ΨRF
ΨRFδsh

FIG. 1. Given the ability to solve Maxwell’s equations with asymp-
totic SBCs (Eqs. 10,11) and non-asymptotic SBCs (eq. 12),
the sheath thickness δsh can be determined self-consistently by re-
peatedly iterating the DC biasing step (section II C), which deter-
mines δsh given ΨRF , and solving Maxwell’s equations with non-
asymptotic SBCs, which determines ΨRF given δsh.

Although eqs. (10) and (11) suffice to uniquely (and non-
trivially) define ΨRF , implementing these boundary condi-
tions within commercial Finite Element solvers has proven
challenging3. So far, SSWICH has gotten around this prob-
lem by resorting to 2D approaches1–3: in a 2D domain, eq.
(3) reduces to a 1D problem, and in 1D all vector fields are
conservative. Among the more sophisticated 2D approaches
is the “multi-2D” or “multislice” approach1–3,10 (figure 2), in
which the antenna is sliced up into multiple 2D radial-parallel
slices. The 2D problem is solved on each slice, and an attempt
is made to reconstruct 3D information by stitching the slices
together. Another possibility to take into account the 3D na-
ture of the original problem is to use a 2D slice with a Fourier
expansion in the vertical (poloidal) direction9. Both of these
approaches require the geometry to be invariant in that direc-
tion, which prevents us from taking into account the effect of
the Faraday screen, or study sheath formation on the upper
and lower limiters.
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FIG. 2. In the multi-2D approach, ΨRF is calculated on many 2D
radial-parallel slices (radial: red arrow, parallel (to the confining
magnetic field): cyan arrow). One such slice is shown here with
the flat RAPLICASOL model2,11,12 of the ASDEX Upgrade 3-strap
antenna. On every slice, eq. (3) reduces to a 1D problem so it can be
solved even if the 2D tangential fields are non-conservative.

III. SHEATH BOUNDARY CONDITIONS IN TIME AND
FREQUENCY DOMAIN

Jenkins and Smithe13–15 propose the following time-
domain sheath boundary condition. Ignoring loss terms, terms
related to dielectric coatings, and assuming known constant
sheath width δsh:

∂φRF

∂ t
=−δsh

ε0
~1n · ∑

s∈species

~Js(t) (13)

where~1n is the unit vector normal to the surface. We use φRF
instead of ΨRF for reasons that will become clear shortly. Eq.
(13) states that the sheath is excited by the normal component
of the currents of the plasma species that enter the sheath.

φRF is then coupled to Maxwell’s equations not via the tan-
gential fields, but by including a sheath term in Faraday’s law
in integral form, wherever the integration path passes through
a sheath. In fact, the total potential drop across the sheath is
assumed to be

ΨRF = φRF −δshEn,0 (14)

where En,0 is the normal component of the electric field just
outside the sheath (so φRF gives the potential drop “on top of”
En,0). The δshEn,0 term accounts for displacement currents,
the other term φRF is given entirely by particle currents.

In cold magnetized plasma, the dielectric tensor is Hermi-

tian, and can be written as a sum over the particle species16:

↔
ε = 1+ ∑

s∈species

↔
ε s (15)

↔
ε s =−


ω2

p,s
ω2 0 0

0
ω2

p,s
ω2−Ω2

s

Ωs
−iω

ω2
p,s

ω2−Ω2
s

0 Ωs
iω

ω2
p,s

ω2−Ω2
s

ω2
p,s

ω2−Ω2
s

 (16)

The specific form of the dielectric tensor in eq. (16) is valid
assuming the confining magnetic field B is along the x axis,
but this is not a necessary assumption anywhere in this pa-

per. ω is the (angular) antenna frequency, ωp,s =
√

nsq2
s

msε0
the

plasma frequency of a given species s, and Ωs =
qsB
ms

the cy-
clotron frequency of a given species s.

In frequency domain, the current associated with species s
is17,18 ~Js = ε0

↔
ε siω~E, so eq. (13) becomes

iωφRF =−δsh

ε0
~1n · ∑

s∈species
ε0
↔
ε siω~E (17)

φRF =−δsh~1n · ∑
s∈species

↔
ε s~E (18)

φRF =−δsh~1n · (
↔
ε −1)~E (19)

φRF −δshEn,0 =−δsh~1n ·
↔
ε ~E (20)

We recognize eq. (14) in eq. (20)

ΨRF =−δsh~1n ·
↔
ε ~E

=−δshDn (21)

which is the non-asymptotic sheath boundary condition eq.
(12) assuming εsh = 1.

We conclude that the time-domain sheath boundary con-
ditions of13–15, when transformed to frequency domain, are
nearly equivalent to the frequency-domain sheath boundary
conditions considered here, with the sole difference being the
value of εsh. They are exactly equivalent when εsh = 1, i.e. for
purely capacitive sheaths.

In line with the SSWICH approach to sheath modelling,
this paper will consider ways to solve Maxwell’s equations
with this boundary condition directly in frequency domain.

IV. RELATION BETWEEN TANGENTIAL AND NORMAL
ELECTRIC FIELD COMPONENTS IN PRESENCE OF
SHEATH BOUNDARY CONDITIONS

A. Relation between tangential and normal electric field
components for a SBC in vacuum

The boundary conditions eqs. (10) and (11) are physically
meaningful even in vacuum: they also describe the boundary
conditions at an interface vacuum / thin dielectric medium /
perfectly conducting ground plane. Then, ΨRF is the potential
across the dielectric layer.
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The electric fields at a sheath boundary in vacuum are de-
termined by

∇t ·~Et = −∂n~En No net charges (a)
∇t ×~Et = 0 Conservative ~Et (b)
~En = 0 Asymptotic SBC (c)

(22)

Thus, the tangential electric fields have known curl and diver-
gence, which suffices to uniquely specify them.

Inserting ~Et =−∇tΨRF into eq. (22) turns eq. (22.a) into a
Poisson equation, and (22.b) becomes trivially true. Thus, eq.
(22) is equivalent to eq. (23):

∇2
t ΨRF = ∂n~En Poisson equation for ΨRF (a)
~Et = −∇ΨRF Tangential ~E is conservative (b)
~En = 0 Asymptotic SBC (c)

(23)

There are reasons to prefer the “Poisson formulation” eq.
(23) over the “local formulation” eq. (22). First, the local
formulation does not generalize to the non-asymptotic sheath
bounrary condition eq. (12), which requires explicit knowl-
edge of ΨRF to constrain Dn. Second, we have found the Pois-
son formulation to be better conditioned numerically, which
will be discussed in the numerical examples (figure 14).

B. Relation between tangential and normal electric field
components for a SBC in plasma

Instead of ∇ · ~E = 0 (absence of net charges in vacuum),
in plasma we have ∇ · ~D = ∇ ·

↔
ε ~E = 0 (conservation of

displacement19,20 / microscopic current continuity). Thus, the
boundary conditions analogous to the local formulation eq.
(22) are

∇t ·~Dt = −∂n~Dn Microscopic current continuity (a)
∇t ×~Et = 0 Tangential ~E is conservative (b)
~Dn = 0 Asymptotic SBC (c)

(24)

It will be useful to have a plasma equivalent of the Poisson
formulation, eq. (23). For this, we need an operator

↔
ε t which

maps the tangential electric field ~Et = −∇tΨRF onto the tan-
gential electric displacement field ~Dt . In general, knowledge
of ~Et does not suffice to find ~Dt :

↔
ε may be a general 3× 3

matrix, and ~Dt may depend also on En. However, we can
use the asymptotic SBC Dn = 0 to obtain a unique mapping
↔
ε t : ~Et → ~Dt as follows: Suppose the tangential directions are
y,z, and the normal direction is x, then at the SBC we have

↔
ε

Ex
Ey
Ez

=

 0
Dy
Dz

 (25)

which can be solved for Dy,Dz and Ex in terms of Ey,Ez. This
solution defines

↔
ε t : (Ey,Ez)→ (Dy,Dz). Explicitly,

[
Dy
Dz

]
=
↔
ε t

[
Ey
Ez

]
⇐⇒


Dy = − (ε12ε21−ε11ε22)

ε11
Ey

− (ε13ε21−ε11ε23)
ε11

Ez

Dz = − (ε12ε31−ε11ε32)
ε11

Ey

− (ε13ε31−ε11ε33)
ε11

Ez

(26)

↔
ε t is Hermitian, like

↔
ε itself. If the confining magnetic field

is perpendicular to the sheath surface,
↔
ε t happens to equal a

2×2 sub-block of
↔
ε , but that is not true for general magnetic

field orientations.
Inserting ~Dt = −

↔
ε t∇ΨRF into eq. (24.a), we get the Pois-

son formulation

∇t ·
↔
ε t∇ΨRF = ∂n~Dn (27)

C. Non-asymptotic case

Consider the linear operator
[
ΨRF → ~Dt

]
which maps ΨRF

onto ~Dt :

~Dt =
[
ΨRF → ~Dt

]
ΨRF (28)

In vacuum,
[
ΨRF → ~Dt

]
=−ε0∇. In plasma with asymptotic

SBC,
[
ΨRF → ~Dt

]
= −

↔
ε t∇. In the non-asymptotic case, ~Dt

depends on ΨRF itself, not just on its gradient. We can no
longer factor

[
ΨRF → ~Dt

]
as a product of tensor and the gra-

dient operator, we can only define it by

~Dt =
[
ΨRF → ~Dt

]
ΨRF ⇐⇒

↔
ε

 Ex
−∂yΨRF
−∂zΨRF

=

− εsh
δsh

ΨRF

Dy
Dz


(29)

The Poisson-like equation at the non-asymptotic SBC, analo-
gous to eqs. (23.a) and (27), is

∇t ·
[
ΨRF → ~Dt

]
ΨRF = ∂n~Dn (30)

D. Boundary conditions for ΨRF

We have shown that ΨRF can be found by solving the
second-order partial differential equations (23.a),(27) or (30)
for the vacuum, plasma, and non-asymptotic cases respec-
tively. Still, ΨRF should be defined by the first-order equation
(3), and thus be defined up to a constant. This remains true
even when ΨRF is defined by one of the second-order partial
differential equations, but the details depend on the topology
of the surface on which ΨRF is defined, as shown in figure 3.
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PECPEC

PEC

PEC

SBC

FIG. 3. Left: If a surface with sheath boundary condition (SBC,
blue) is surrounded by surfaces with perfect electric conductor (PEC)
boundary conditions, or other boundary conditions on which the tan-
gential electric field is known, the integral of the known tangential
electric field along the boundary of the SBC surface (red) gives, up
to a constant, a Dirichlet boundary condition for ΨRF on the sheath
surface (blue). In the case of surrounding PEC boundary conditions,
the Dirichlet boundary condition is that ΨRF is constant along the
boundary of the SBC surface (red), and this constant may be arbi-
trarily chosen to be 0.
Right: If the surface with sheath boundary condition (SBC, blue) is
freely floating in the plasma, such as this sphere, then the second-
order Poisson-like equations define ΨRF up to a constant, due to the
non-existence of nontrivial solutions to ∇2 f = 0 on such a domain21.

V. A NUMERICAL APPROACH BASED ON FINITE
DIFFERENCES

A. Configuration

(0,0,0)
W

H

D

x

z

y

FIG. 4. Test geometry, with sheath surfaces in blue (x = 0,x = W )
and the surface with source boundary condition outlined in green
(y = 0). The three remaining surfaces have PEC boundary condi-
tions.

We solve Maxwell’s equations in a cuboid of size W ×D×
H as shown in figure 4. At x = 0,x = W we impose sheath
boundary conditions. At y = 0 we impose known tangential
fields as a source condition. On the three remaining sides we
impose PEC boundary conditions.

As discussed in section IV D, the PEC and source boundary
conditions give us the tangential electric field along the edges
of the sheath surfaces, which can be integrated to find ΨRF
along those edges, which gives us (up to an arbitrary constant)
a Dirichlet boundary condition for ΨRF .

This configuration, though it is very much a test case to

validate the numerics, is not as completely unrealistic as one
might think: suppose the y = 0 plane (green in figure 4) is
the aperture of an ICRF antenna, just in front of the Faraday
screen. If the waves decay quickly enough in the y direction
such that reflection at the y = D plane can be neglected, ΨRF
on the x = 0 and x = W planes (blue in figure 4) is the RF
potential on the antenna limiters.

B. Discretisation

∆

FIG. 5. The test geometry is discretized using Yee cells of side length
∆, where the electric field components (black arrows) are associated
with cell edges, and the magnetic field components (not shown) with
cell faces.

We fill the cuboid with standard Yee cells (figure 5, see
also22) of size ∆×∆×∆ (and let W,D,H be integer multiples
of ∆). Suppose our vector of discretized electric resp. mag-
netic field components is E resp. B, and the finite-difference
curl operator is C. Then, the standard finite-difference dis-
cretisation of Maxwell’s equations is

CE =−iωB (31)

CT B = iωε0µ0E (32)

We will denote by Ex=q the subset of discretized electric field
components at x = q. By the Yee cell’s construction, if q is
an integer multiple of ∆, Ex=q only contains discrete Ey and
Ez components (parallel to the sheath surfaces), and when q
is a half-integer multiple of ∆, Ex=q only contains discrete Ex
components (normal to the sheath surfaces).

In what follows, we will require the solution of equations
(23.a),(27) and (30) (with Dirichlet boundary conditions im-
posed by the neighbouring source and PEC planes as dis-
cussed in section IV D). With minor abuse of notation we
will write

∇
2
t ΨRF = ∂n~En ⇐⇒ ΨRF = (∇2

t )
−1

∂n~En (33)

∇t ·
↔
ε t∇tΨRF = ∂n~Dn ⇐⇒ ΨRF = (∇t ·

↔
ε t∇t)

−1
∂n~Dn (34)

∇t ·
[
ΨRF → ~Dt

]
ΨRF = ∂n~Dn ⇐⇒

ΨRF =
(

∇t ·
[
ΨRF → ~Dt

])−1
∂n~Dn (35)
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We will also assume that these solutions can be found on the
discrete 2D Yee grid that is the sheath surface. The theory
of solving Poisson-like equations on such grids is well-known
and needs not be repeated here23,24.

C. In vacuum

We first consider the vacuum case. We need to solve
CE = −iωB everywhere

CT B = iωε0µ0E not at SBC

Ex=0 = −∇t(∇
2
t )
−1 Ex=∆/2−0

∆/2 left SBC

Ex=W = −∇t(∇
2
t )
−1 0−Ex=W−∆/2

∆/2 right SBC

(36)

The discrete operator ∇t(∇
2
t )
−1, when expressed as a matrix,

is not sparse. This is not a real problem (unless we insist on
using direct solvers), since to solve eq. (36) iteratively, we
merely need to be able to evaluate ∇t(∇

2
t )
−1 acting on some

vector, we do not need its explicit matrix form.
If we do want to solve a sparse system of equations, we can

equivalently solve

CE = −iωB everywhere
CT B = iωε0µ0E not at SBC

∇t ·Ex=0 = −Ex=∆/2−0
∆/2 left SBC

∇t ×Ex=0 = 0 left SBC

∇t ·Ex=W = − 0−Ex=W−∆/2
∆/2 right SBC

∇t ×Ex=W = 0 right SBC

(37)

This requires some care to make sure that the discrete curl
and divergence equations at the sheaths add up to full-rank
systems of equations of the desired size (figure 6), but is oth-
erwise equivalent to eq. (36).

	 	 	

	 	 	

	 	 	

FIG. 6. Suppose this 3× 3 Yee grid is the x = 0 sheath surface. 12
degrees of freedom are not prescribed by other boundary conditions
(blue arrows). There are 4 natural points to enforce ∇ ·~E = 0 (black
dots), and 9 natural points to enforce ∇t ×~Et = 0 (indicated by 	).
Provided the other boundary conditions (red arrows) are compatible
with the existence of a potential, that is, provided the red arrows
integrate to 0, the 9 curl equations have rank 8, giving a total of 12
distinct equations to enforce on the surface - enough to fully specify
the 12 tangential field unknowns (blue arrows). This observation
generalizes to rectangular grids of arbitrary size.

D. In plasma

Analogous to eqs. (36) and (37), we have

CE = −iωB everywhere
CT B = iωε0µ0

↔
ε E not at SBC

Ex=0 = −∇t(∇t ·
↔
ε t∇t)

−1 (
↔
ε E )x=∆/2−0

∆/2 left SBC

Ex=W = −∇t(∇t ·
↔
ε t∇t)

−1 0−(
↔
ε E )x=W−∆/2

∆/2 right SBC

(38)

CE = −iωB everywhere
CT B = iωε0µ0

↔
ε E not at SBC

∇t · (
↔
ε tE )x=0 = − (

↔
ε E )x=∆/2−0

∆/2 left SBC
∇t ×Ex=0 = 0 left SBC

∇t · (
↔
ε tE )x=W = − 0−(

↔
ε E )x=W−∆/2

∆/2 right SBC
∇t ×Ex=W = 0 right SBC

(39)

The minor additional difficulty here lies in the construction
of discrete versions of

↔
ε and

↔
ε t . On a Yee grid, this is not

entirely trivial14,16,25 unless
↔
ε is diagonal: in general, calcu-

lating ~D from ~E requires knowledge of all three components
of ~E at the same point. Some interpolation as shown in figure
7 is therefore necessary.

FIG. 7. Shown are 5 discretized electric field components on a slice
of the Yee grid. In order to calculate ~Dy = (

↔
ε ~E)y, where

↔
ε is the 3×

3 dielectric tensor, at the desired point (red), it is necessary to know
all 3 electric field components at that point, so some interpolation is
needed (gray dashed).

E. Non-asymptotic case

After discretizing the normal derivative, eq. (30) becomes

∇t ·
[
ΨRF → ~Dt

]
ΨRF =

Dn(x = ∆/2)−Dn(x = 0)
∆/2

(40)

Using the non-asymptotic SBC,

∇t ·
[
ΨRF → ~Dt

]
ΨRF =

Dn(x = ∆/2)+ εsh
δsh

ΨRF

∆/2
(41)
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Thus(
∇t ·
[
ΨRF → ~Dt

]
− 2εsh

δsh∆

)
ΨRF =

Dn(x = ∆/2)
∆/2

(42)

ΨRF =

(
∇t ·
[
ΨRF → ~Dt

]
− 2εsh

δsh∆

)−1 ~Dn(x = ∆/2)
∆/2

(43)

~Et =−∇t

(
∇t ·
[
ΨRF → ~Dt

]
− 2εsh

δsh∆

)−1 ~Dn(x = ∆/2)
∆/2

(44)

Thus, analogous to eq. (38), the discretized equations for the
non-asymptotic case are

CE = −iωB

CT B = iωε0µ0
↔
ε E

Ex=0 = −∇t

(
∇t ·
[
ΨRF → ~Dt

]
− 2εsh

δsh∆

)−1 (
↔
ε E )x=∆/2−0

∆/2

Ex=W = −∇t

(
∇t ·
[
ΨRF → ~Dt

]
− 2εsh

δsh∆

)−1 0−(
↔
ε E )x=W−∆/2

∆/2

(45)

VI. AN EXACT VACUUM SOLUTION TO VALIDATE THE
NUMERICAL APPROACH

Let us consider the vacuum case, where exact solutions of
Maxwell’s equations are most easily constructed.

The vacuum dispersion relation is k2 = k2
x + k2

y + k2
z = ω2

c2 .
Let us assume the fields vary either as exp(i(kyy + kzz +
ωt))cos(kxx) or as exp(i(kyy+kzz+ωt))sin(kxx), and let the
sheath boundary condition (∇t ×~E = 0,~Dn = 0 ⇐⇒ ~En = 0)
be at x = 0.

We expect the electric field to be of the form

~E
eiωt = η1ei(kyy+kzz)~1x sin(kxx)

+η2

(
∇t × ei(kyy+kzz)~1x

)
sin(kxx)

+η3

(
∇tei(kyy+kzz)

)
cos(kxx) (46)

Note that the second and third terms are the Helmholtz de-
composition of the 2D vector field given by the y and z com-
ponents of ~E: only the curl-free part (the third term) is nonzero
at x = 0, which immediately implies that eq. (46) obeys the
asymptotic sheath boundary condition by construction. All
we have to do is find η1,η2,η3 based on the wave equation

~k× (~k×~E)− ω2

c2
~E = 0 (47)

We find

~E
eiωt = α1ei(kyy+kzz)~1x sin(kxx)

+α2
c
ω

(
∇t × ei(kyy+kzz)~1x

)
sin(kxx)

+α1
kx

k2
y + k2

z

(
∇tei(kyy+kzz)

)
cos(kxx) (48)

where α1,α2 are amplitudes for the two linearly independent
solutions, with units of electric field strength (V/m). ~1x is the
unit vector in the x direction.

The RF potential is readily apparent from eq. (48):

ΨRF =−α1
kx

k2
y + k2

z
ei(kyy+kzz)+Ψ0 (49)

where Ψ0 is an arbitrary constant, which we will take to be 0
in the rest of this paper. Note that eq. (49) obeys eq. (23.a):

∇
2
ΨRF =−∇

2
α1

kx

k2
y + k2

z
ei(kyy+kzz)

=−(−k2
y − k2

z )α1
kx

k2
y + k2

z
ei(kyy+kzz)

= α1kxei(kyy+kzz)

= α1ei(kyy+kzz)
∂x sin(kxx)

∣∣∣
x=0

(50)

VII. RESULTS

A. In vacuum

The problem parameters are as follows: W = 1m,H =
1m,D = 0.5m,kx = 3π/W,kz = 3π/H, f = 36.5MHz. The
number of Yee cells is 30× 20× 30. The Yee cells thus
have size (1/30)m× (1/40)m× (1/30)m, more than enough
to resolve the vacuum wavelength of λ = 8.2m, as well as
the wavelengths in the x− and z−directions 2π/kx =

2
3W and

2π/kz =
2
3 H, and the evanescence length in the y− direction

1/|ky|= 7.5cm.
The source at y = 0 is

~Et =−41.6sin(kxx)sin(kzz)~1x

+(41.9cos(kxx)+0.28isin(kxx))cos(kzz)~1z (51)

1. Comparison with exact solutions

We start from the exact solution eq. (48). To obey the PEC
boundary conditions at z = 0,z = H, we pick a linear combi-
nation of the upward-propagating and downward-propagating
(kz = ±3π/H) versions of eq. (48), such that Ex,Ey become
proportional to sin(kzz) rather than exp(ikzz).

In figures 8, 9 and 10, we show the numerical results ob-
tained with the numerical scheme of section V C (specifically
eq. (36)) and compare them with this exact result. We see
that both components of the tangential electric field, and the
RF potential ΨRF , are calculated correctly by this numerical
scheme.

We do not plot Ex, the normal component. In the Yee cells,
there are no degrees of freedom associated with Ex on the sur-
face, so plotting Ex on the surface would amount to plotting 0,
and tell us nothing about the correctness of this scheme.



Maxwell’s equations with linear sheath boundary conditions 8

0 5 10 15
y (∆y)

0

5

10

15

20

25

30

z 
(∆

z
)

Re Ey (numerical)

0 5 10 15
y (∆y)

Re Ey (exact)

45 30 15 0 15 30 45

FIG. 8. Tangential Ey field at the x = 0 plane where a SBC is applied.
Left: numerical, right: exact.
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FIG. 9. Tangential Ez field at the x = 0 plane where a SBC is applied.
Left: numerical, right: exact.

2. Equivalence of eqs. (36) and (37)

In sections V C and V D, we derived equivalent “Poisson”
and “sparse”/“local” formulations. The “Poisson” formula-
tions should be solved iteratively (we use python’s gmres
solver26), and require the solution of a Poisson-like equation
at every iteration. Figures 11 and 12 demonstrate that both
formulations give the same ΨRF .

To solve the Poisson-like equation at every iteration, we use
a direct solver (figure 13). The size of the system of equations
to be solved for the Poisson-like equations on the sheath sur-
faces is proportional to the sheath’s surface area, and is only
a tiny fraction of the total number of degrees of freedom in
3D. In figure 14, we compare the convergence of the Pois-
son approach with that of the sparse approach. We see that

0 5 10 15 20
y (∆y)

0

5

10

15

20

25

30

z 
(∆

z
)

Re Ψ (numerical)

0 5 10 15 20
y (∆y)

Re Ψ (exact)

4 3 2 1 0 1 2 3 4

FIG. 10. RF potential ΨRF at the x= 0 plane where a SBC is applied.
Left: numerical, right: exact. The tangential components in figures
8 and 9 are the negative gradient of this potential. Note that the very
existence of this potential is only guaranteed thanks to the SBC.

the Poisson approach converges much faster. The sparse ap-
proach does not converge within a reasonable number of iter-
ations, and requires a direct solver, which can rapidly become
very memory demanding.
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0

5

10

15

20

25

30

z 
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z
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Re Ψ (sparse)

0 5 10 15 20
y (∆y)
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4 3 2 1 0 1 2 3 4

FIG. 11. Left: RF potential ΨRF in vacuum as calculated numerically
using the sparse formulation eq. (37) and a direct solver. Right:
the same, calculated with the Poisson formulation eq. (36) and an
iterative solver.

B. In plasma

We use a very tenuous hydrogen plasma with ne = np =

1.0 · 1013m−3 and B0 = 2T in the x-direction (perpendicu-
lar to the sheaths). Again W = 1m,H = 1m,D = 0.5m,kx =
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FIG. 12. 1D slice of figure 11 at z = H/2. This again confirms the
equivalence of the “Poisson” and “sparse” formulations. Note that
the exact solution neglects reflections at y = D = 20∆y, hence the
slight deviation at high y.

Iterative solver (gmres)

Matrix-vector multiplication

Direct Poisson
solver (on surfaces)

Sparse matrix-vector
multiplication (in bulk)

repeatedly uses

usesuses

FIG. 13. An iterative solver for a linear system of equations Ax = b
does not need an explicit expression for the matrix A, merely the abil-
ity to compute matrix-vector multiplications Ax. In the Poisson ap-
proach, the matrix-vector multiplication makes use of a direct solver
for the Poisson equations on the sheath surfaces.

3π/W,kz = 3π/H, f = 36.5MHz. The corresponding dielec-
tric tensor (see eq. (16)) is

↔
ε =

0.395 0 0
0 0.999 −(13 ·10−4)i
0 (13 ·10−4)i 0.999

 (52)

The number of Yee cells is 60×20×60.
Corresponding with these values of kx,kz,ω , there are four

possible values for ky, two for the fast wave and two for the
slow wave, both of which are evanescent:

k2
y,1 =−92.5m−2 (53)

k2
y,2 =−98.1m−2 (54)

We use a source of the form Ex = sin(kxx)sin(kzz). This
implies that the Dirichlet boundary condition for ΨRF is that
ΨRF is constant on all four edges, and we arbitrarily chose this
constant to be 0. The resulting ΨRF is shown in figure 15. It

0 50 100 150 200 250 300 350 400
iteration

10 3

10 2

10 1

100

er
ro

r n
or

m

Poisson equation
Sparse matrix

FIG. 14. Convergence using the gmres iterative solver, when solv-
ing eq. (36) (by solving a Poisson equation at every iteration of the
solver), vs. eq. (37) (by solving a purely sparse system of equations).
The sparse approach eq. (37) converges either very slowly or not at
all, we must use a direct solver if we want to use it.

looks like

ΨRF ∝ sin(kzz)(exp(−|ky,1|y)− exp(−|ky,2|y)) (55)

which is what we should expect: this is the only linear combi-
nation of complex exponentials with the expected wavenum-
bers that obeys the Dirichlet boundary conditions.
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FIG. 15. RF potential ΨRF in plasma with dielectric tensor given by
eq. (52), with asymptotic sheath boundary conditions, as calculated
numerically using eq. (38).

A denser and more tokamak-relevant plasma, with ne =
np = 1.0 · 1016m−3 and other parameters the same as before,
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with dielectric tensor

↔
ε =

−604 0 0
0 −0.09 −1.31i
0 1.31i −0.09

 (56)

has fast and slow waves with evanescence lengths 1
|ky| = 7cm

and 1
|ky| = 0.1cm respectively. We chose a much smaller ∆y =

4 · 10−4m to (barely) resolve the evanescence length of the
slow wave, and also reduce the vertical range to just half a
vertical wavelength π

kz
. The numerically determined ΨRF is

shown in figure 16, and, like figure 15, it appears to behave
like eq. (55).

0 100 200 300 400 500
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z
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FIG. 16. RF potential ΨRF in plasma with dielectric tensor given by
eq. (56), with asymptotic sheath boundary conditions, as calculated
numerically using eq. (38).

VIII. CONCLUSION

In this paper, we discussed boundary conditions of
Maxwell’s equations, both in vacuum and in cold magnetized
plasma, which guarantee that the electric fields tangential to
certain surfaces are conservative, even at nonzero frequency.
Thus, a potential can be associated with these tangential fields,
which is of great interest to sheath physics. We constructed
and validated a numerical scheme by which Maxwell’s equa-
tions (in cold plasma in frequency domain) can be solved with
these boundary conditions. This scheme requires the solution
of a Poisson-like equation on the sheath surfaces at every it-
eration of an iterative solver, in order to constrain the electric
field components tangential to the surface.

We have given numerical examples in a simple cuboid with
a Yee cell discretisation, but that is for simplicity of imple-
mentation rather than being a real constraint: the Poisson-
like equations that define the radiofrequency potential on
the sheath surface, and thereby the tangential electric fields

(eqs. (23.a),(27) and (30) for the vacuum, plasma, and non-
asymptotic cases respectively), can easily be discretized on
any surface with any type of polygonal mesh24,27.

Although the inability to solve Maxwell’s equations with
the sheath boundary conditions discussed here has been a rea-
son why the SSWICH sheath-modelling code remains 2D, it
is not the only reason: there is also the need to resolve char-
acteristic length scales of both the fast wave and the slow
wave. These length scales typically differ by a factor of the
order

√
me/mi, and resolving both may require a very dense

mesh28, an issue already encountered in our numerical exam-
ples. In some realistic cases, a mesh density may be required
that is denser than what is feasible with available computa-
tional resources.

In future work, we intend to implement this technique in a
Finite Element solver11,12,19,20, which will enable greater ge-
ometrical flexibility than the Finite Difference approach dis-
cussed here. We will integrate it within the wider SSWICH
framework (section II) to enable true 3D calculation of the
DC sheath potential.
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