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Abstract
This paper investigates the processes in comprehending

spoken noun-noun compounds, using data from the BALDEY
database. BALDEY contains lexicality judgments and reaction
times (RTs) for Dutch stimuli for which also linguistic infor-
mation is included. Two different approaches are combined.
The first is based on regression by Dynamic Survival Analy-
sis, which models decisions and RTs as a consequence of the
fact that a cumulative density function exceeds some threshold.
The parameters of that function are estimated from the observed
RT data. The second approach is based on DIANA, a process-
oriented computational model of human word comprehension,
which simulates the comprehension process with the acoustic
stimulus as input. DIANA gives the identity and the number of
the word candidates that are activated at each 10 ms time step.

Both approaches show how the processes involved in com-
prehending compounds change during a stimulus. Survival
Analysis shows that the impact of word duration varies during
the course of a stimulus. The density of word and non-word
hypotheses in DIANA shows a corresponding pattern with dif-
ferent regimes. We show how the approaches complement each
other, and discuss additional ways in which data and process
models can be combined.
Index Terms: Dynamic Survival, human word comprehension,
computational model, compounds

1. Introduction
A large body of psycholinguistic behavioral data, and MEG data
[1], in combination with findings from computational models
such as Shortlist-B [2], have led to substantial insight in how hu-
mans are able to identify words in the acoustic speech stream in
which cues for word boundaries are not or very weakly present
[3, 4]. In conversational speech, the search for the most plau-
sible word sequence is at least partly supported by the expecta-
tions based on contextual and pragmatic information, but these
top-down cues are weak or absent in the case of isolated words.
This raises the question how participants in an auditory lexical
decision experiment deal with word segmentation in long stim-
uli, and to what extent behavioral measures such as reaction
times can uncover underlying cognitive processes.

In recent years, many studies have dealt with the word seg-
mentation problem. An often-cited example in English is ’ship
inquiry’ [5]. In British English, this utterance has initial overlap
with the pronunciation of many other words such as ship, ship-
ping, choir, ink, inquire, inquiry, why, wire, wiry. Activated
embedded words slow down the reaction time in a lexical de-
cision task [3]. The competition between embedded candidate
words can become quite complex, especially if the remainder
has initial overlap with a real word (e.g., [6, 4]).

Several word competition effects can be explained by ex-
isting computational models of human word comprehension.
Most models (e.g., TRACE [7], the Cohort model [3], and

Shortlist-B [2]) assume that words that are compatible with
the input enter a competition which each other; in Shortlist-
B this competition takes place between sequences of candidate
words. All these computational models assume, in some way,
that the input speech can be represented in terms of a sequence
of phone-like symbols or (as in TRACE) as a sequence of fea-
ture vectors that may act as place holders for phones. In these
models, the output is defined by the match between signal and
word representations on a symbolic level. While a symbolic
account is usually insightful, it sidesteps part of the problem a
listener is actually confronted with: how to convert the contin-
uous signal into a sequence of discrete units. SpeM ([8]) ad-
dresses this by assuming a prelexical component which maps
the speech signal into a phone lattice that is then used as input
for a lattice-based word search, but it cannot deal properly with
mapping errors.

In this paper we address decoding of long spoken words
with two complementary approaches, both with the acoustic
signal as input. Both experiments use the same set of word stim-
uli. The first approach is based on statistical modeling of reac-
tion times (RTs). This analysis is based on reaction time data
on compounds in BALDEY [9], by using competing risks sur-
vival analysis by Generalized Additive Models [10, 11]. In risk
analysis, the regression is not explaining the RTs themselves;
instead, the parameters of the underlying decision process are
modeled from which the RTs are a consequence. In combina-
tion with regression splines, this allows to compute the regres-
sion coefficients changing as function of, e.g., time from stimu-
lus onset. This makes it possible to discover systematic changes
between early and late effects.

The second approach is based on DIANA. DIANA [12, 13,
14, 15] is a recently developed computational model of human
speech comprehension that takes the acoustic waveform as in-
put. For each 10 ms time step from stimulus onset, DIANA
produces a sorted list of activated word sequences and their ac-
tivation scores. DIANA does not assume a symbolic prelexical
representation to facilitate the match between acoustic input and
lexical representation, but directly maps the signal onto its word
representations [14].

Fig. 1 provides an example of the number of word embed-
dings in Dutch, by using the phonetic transcriptions of words. It
displays the average (±σ) number of embedded words (vertical
axis) as a function of phone length of the carrier word (horizon-
tal axis). The figure is based on the CELEX lexicon for Dutch
(nearly 322,000 unique lexical entries). The average number
of embedded words increases about linearly with carrier word
length. Embedded words occur like rain drops: their distribu-
tion appears close to the Poisson distribution, which explains
that the standard deviation is about the square root of the mean.

A large number of embedded words may lead to a combina-
torial explosion of word sequences. It is known, however, that
not all embedded words play the same role in word comprehen-
sion; this role depends on location of the embedding and the
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Figure 1: The average number (±1σ) of Dutch words (vertical
axis) that are phonetically embedded in a Dutch carrier word
as a function of phone length of the carrier word. In this com-
putation, word frequency is not taken into account.

listening condition [16]. In clear listening condition, embed-
ded words that comprise a large proportion of the carrier word
are activated regardless of their embedded position. Embedded
words that comprise a small proportion of the carrier word are
activated only when they are initial-embeddings. In BALDEY
all stimuli were clearly pronounced in clean condition.

On the basis of these findings, we hypothesize that the den-
sity of competing word candidates changes over time during the
unfolding of long words. In the survival risk analysis, such an
effect should be reflected by a time-varying evolution of the re-
gression between RT and word duration. In a complementary
way, this effect should also be visible in the density and type of
word decodings provided by DIANA as a function of time after
onset. This paper provides a comparison of these methods.

2. DIANA

DIANA [12, 13, 14, 15] aims to simulate participants’ behavior
in experiments in spoken word comprehension. DIANA has ac-
curately simulated lexicality judgments and corresponding re-
action times for several different lexical decision experiments
(Dutch: BALDEY, [9, 12, 13]; North-American: the Massive
Auditory Lexical Decision data (MALD)1 [14]), and behavioral
data as in [17, 15]. In this paper we focus on the structure of
DIANA’s word sequence hypotheses.

DIANA consists of three components: an Activation Com-
ponent, a Decision Component, and an Execution Component
(cf. Figure 2). Activation and Decision operate in parallel; once
the Decision Component has made a decision, the Execution
component is initiated. Being a computational model of the
cognitive processes involved in spoken word comprehension,
DIANA does not simulate humanly effects such as waning at-
tention or fatigue.

DIANA takes the acoustic speech signal as input, rather than
a symbolic phone-like representation. This is in line with recent
findings that indicate that phones cannot claim a plausible status
as units in the cognitive process of speech recognition (see [18]
in the context of perceptual learning; see [19] in the context of
cortical activations).

The current implementation of DIANA can handle lexicons
of about 40,000 entries. Each entry is accompanied by a prior
probability, derived from a text corpus.

In the output of the Activation Component, the activation
of a word sequence hypothesis is determined each 10 ms by
combining acoustic bottom-up information and top-down infor-

1http://aphl.artsrn.ualberta.ca/?p=517

Figure 2: DIANA consists of three interrelated components: (•)
an Activation Component that takes speech as input; its out-
put is a weighted lattice of hypotheses, evolving over time (•) a
Decision Component, which outputs the recognized word/non-
word item and an estimated RT (•) an Execution Component
which models the time it takes from the mental decision until
the eventual overt action (e.g., button press).

mation, based on the conditional prior probability of the words
in the hypothesis:

logP (signal[0:t]|word) + λ log(P (word|precontext)) (1)

in which the parameter λ governs the balance between the
bottom-up acoustic information (first term) and the top-down
linguistic information (second term). P (word|precontext) com-
bines a word entrance penalty ρ (ρ ≥ 0, modeling a ’0-gram’)
with an n-gram (n ≥ 1). A low value of ρ will lead to many
short word candidates; larger values of ρ yield longer words.
The parameter ρ models the perceptual/cognitive bias to com-
bine shorter words into a longer word (see, e.g., [4, 20]). Be-
cause this bias directly influences DIANA’s word search at a
low level, it is likely that it better describes the cognitive pro-
cess of finding embedded words than a conventional n-gram LM
would do, since an LM is trained on complete words in serial or-
der, rather than on partially pronounced embedded words within
carrier words.

The acoustic waveforms of the NN compounds in
BALDEY were used to construct input stimuli for DIANA. For
each 10 ms step from stimulus onset to offset, DIANA takes as
input the gated signal (signal[0 : t]). For the first steps into
the stimulus, evidently this output list only contains either very
short words (denoted SW) or words that are only partially pro-
nounced (’truncated’ words, denoted W?). When more acoustic
evidence becomes available, sequences of SWs or Ws emerge,
possibly followed by W?. DIANA’s lexicon consists of the 896
NN compounds and the 38,000 most frequent Dutch words.

3. Experimental set-up and data
Since there are many types of compounds with different cogni-
tive processing routes [20], we limited the stimulus set to noun-
noun (NN) compounds. We used the 896 NN compounds in
BALDEY [9]. The BALDEY dataset contains behavioral data
from a large-scale Dutch lexical decision experiment compris-
ing 5,541 different stimuli from 20 participants, with in total
over 110,000 RTs and lexicality judgments.

The 896 compounds were either real words or pseudo
words. All pseudo-word compounds in BALDEY were the
combination of two shorter pseudo words. Of all 17,786 re-
sponses, 8,915 and 8,871 responses were given to real and
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Table 1: Results of the risk model

test on significance of predictor β’s
word resp. pseudo-word resp.

Predictor statistic p statistic p
(Intercept) 10.65 0.000 4.23 0.0000
FormFreqSc 3.34 0.014 1.54 0.4638
WordDurSc 5.32 0.000 3.60 0.0026
realword 4.57 0.000 7.37 0.0000

Kolmogorov Smirnov test on constancy
statistic p statistic p

(Intercept) 1.336 0.0956 0.0127 0.0002
FormFreqSc 0.689 0.0290 0.0013 0.7114
WordDurSc 0.247 0.0000 0.0085 0.0000
realword 2.277 0.0306 0.0212 0.0300

pseudo-word stimuli, respectively. RTs below 100 ms were dis-
carded, leaving 17,786 responses pertaining to NN compounds.

The average duration of all NN compound stimuli is 938
ms (σ = 136 ms); the average stimulus duration in BALDEY
is 690 ms (σ = 183 ms).

The RTs pertaining to the NN compounds available in
BALDEY form the basis for the risk analysis; the acoustic stim-
uli of the NN compounds form the input for DIANA.

4. Results
4.1. Risk analysis

We applied the following risk model on the RT data for the
BALDEY NN compounds. The risk analysis model uses
the pair (RT, cause) as dependent variable, in which the
’cause’ is either a ’real word’ or ’pseudo-word’ judgment.
As predictors, we used the conventional predictors ’form fre-
quency’, ’stress pattern’, ’stimulus duration’, and ’real/pseudo
word’. Intercepts are included as random effect (called ’clus-
ter’) under subject.

comp.risk(Event(RT, cause) ∼
FormFreqSc+ const(initial stress) +

WordDurSc+ realword+ cluster(cluster),

data = data, cause = 1, resample.iid = 1,

n.sim = 5000,model = ”additive”)

Table 1 presents the results of the risk model that was sig-
nificantly better than models in which predictors were modified
or deleted. The first and last 2 columns refer to real word re-
sponses and pseudo-word responses, respectively. The upper
table presents the result in terms of regression coefficients. For
word responses, intercept and the βs of all predictors are signif-
icantly different from 0; the word frequency (FormFreqSc) has
the lowest significance. For pseudo-word responses, word fre-
quency looses significance (which is not surprising since these
responses are given to the pseudo word stimuli that are all al-
lotted a low frequency). The lower panel shows the result of
a Kolmogorov-Smirnov test which indicates whether the β’s in
the upper half of the table are constant or changing over time.
The impact of word duration is clearly significantly different
from a constant, which shows that the effect of word duration
on RT changes during the unfolding of the stimulus.

Figure 3 displays the results in another way. Each subplot
shows the dependency of the β of a predictor as a function of
time (t). The six plots show this dependency for the intercept

Figure 3: Output of the risk model.

(left two subplots), the form frequency (middle two subplots)
and the word duration (right two subplots). The horizontal axis
is the time (in ms) after stimulus onset. The black curve shows
the mean, the red curves at either side mark the confidence range
at ±2σ. The upper and lower row show separate risk analyzes
for the ’real word’ and ’pseudo word’ responses, respectively.
The somewhat noisy effects beyond 3500 ms are due to the
small number of late RTs in the data.

The figure shows (in line with Table 1) a very significant ef-
fect of word duration on the β related to word duration: across
the time interval from 1 to 3 s after onset, the effect first be-
comes negative, but increases again to become positive around
3 s after onset, showing that the pattern in the RT data changes
during the unfolding of the stimulus. For pseudo word re-
sponses this ’early vs. late’ effect comes later and is smaller
in size. The risk analysis does not directly provide insight into
these effects, but we will show below that the analyses by DI-
ANA might provide a useful clue.

4.2. DIANA

Fig. 4 shows an example of the complexity that arises as DIANA
decodes the Dutch compound ’kasteelhoeve’ (kasteel castle +
hoeve farm). Along the horizontal axis, the time t (in 10 ms
steps) ranges from stimulus onset (0) to offset (840 ms). Ac-
tivation is displayed along the vertical axis. Each trace shows
the first-best hypothesis on the 84 gated signals signal[0 : t].
Each hypothesis may consist of either a truncated word (e.g.,
’kasteelhoe’ (orth.), /k A s t e l h u / (phon.)) or a sequence of
shorter words (SWn), optionally followed by a truncated word
(SWn W?). For the sake of clarity, the decoding result is only
shown for a subset of the candidate sequences (truncated words
are phonetically represented). The figure shows that until about
250 ms into the word all hypotheses have about the same ac-
tivation score. After 250 ms, activations diverge, and later in
the word a further ramification of candidates takes place. In-
terestingly, we observe a ’garden path’ (’late revision’) effect at
around 600 ms and 750 ms after onset: hypotheses that seem to
win in the beginning loose in the light of later acoustic evidence.
These late-revision effects occur in 93% of the NN compounds
in BALDEY.

Similar to Fig. 4, decoding data by DIANA were collected
for each of the 896 noun-noun compounds, for a range of values
of ρ, for each 10 ms gate step (t). The decoding results are
summarized in Fig. 5, for real and pseudo compounds. The
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Figure 4: DIANA’s decoding results for the compound ’kasteel-
hoeve’. Along the horizontal axis, the time t is displayed until
which the speech signal is presented (input = signal[0 : t]).
Along the vertical axis, the activation is shown of the first-best
word sequences matching the gated input.

horizontal axis displays the word duration (relative: 0 = onset,
1 = offset); the vertical axis shows ρ. Each point (t, ρ) is labeled
with the majority of types of DIANA decoding results for that
(t, ρ)-combination.

These figures are best interpreted in terms of regime
changes along horizontal lines, i.e., along the time axis. For
high values of ρ, the majority of decoding results consist of
single truncated words; only in case of a real compound, the
compound pops up towards offset (Fig. 5 top-right corner). For
lower values of ρ, DIANA shows a tendency to break up the
decoding result into shorter chunks. At the beginning of the
stimulus, this necessarily leads to a single short word or a trun-
cated word; when more evidence becomes available, DIANA
produces sequences of short words, possibly followed by an un-
finished word. For very low values of ρ, the decoding of com-
pounds nearly always leads to combinations of shorter words.
This models the case in which a listener interprets a long stimu-
lus in sequences of very short words. In general, five or six dif-
ferent ’decoding regimes’ can be distinguished. The common-
ality between both plots are the similar regimes until around
2/3 of the stimulus, while the major difference between real and
pseudo compounds occurs at around 2/3 of the stimulus dura-
tion (i.e., about 600ms after compound onset).

5. Discussion and conclusion
The psycholinguistic literature on the comprehension of com-
pounds shows that there are several complex issues involved in
their processing. In this paper, this complexity is shown in two
complementary ways that are consistent with each other. The
risk modeling suggests that, for real-word judgments, the RTs
between 1000-1500 ms from word onset undergo a change in
terms of a significantly different β value related to the stimulus
duration. A similar effect, albeit a bit later and with a smaller
size, holds for the pseudo-words responses. It has been shown
that the influence of the word priors in lexical decision experi-
ments is usually small ([15] and references therein); this is again
supported by this risk analysis (Table 1).
DIANA’s results provide a clue for explaining this ’early vs.
late’ effect, in terms of the density of revisions along the de-

(a)

(b)

Figure 5: DIANA’s decoding regimes in case of real compounds
(upper plot) and pseudo compounds (lower plot).

coding path, especially in the first 2/3 into the word. Until
about 2/3 of the stimulus, the variation in terms of decoding
results and the garden path effects are more frequent than there-
after. This supports the dynamic behavior of word duration in
Figure 3. It must be observed that the overt effects in the RT
emerge at 1000 ms after onset, which is about 200-300 ms after
the regime change detected in DIANA’s decoding output.
In DIANA’s output, the structure of the decoding (in terms of
short words, sequences of short words, truncated words) is de-
termined by the weighting between the acoustic model (bottom
up) and the language model (top down) in Eq. 1, more specif-
ically by the penalty ρ to enter a new word candidate. For the
modeling of compounds, ρ is the most important parameter in
DIANA. We argue that small changes in the parameter ρ may
reflect subtle differences in the participant’s interpretation of the
instruction in a lexical decision experiment (e.g., ”press the but-
ton as soon as you have heard a complete word” versus ”press
the button as soon as you think you hear a word”).
In [15], an analysis was presented how to combine the infor-
mation from data-oriented models (such as regression models,
including the GAM) and process-oriented models such as DI-
ANA. The results presented in this paper show that this is a
fruitful path, but many details in line with [16] must be fur-
ther investigated for a complete picture. It would be interesting
to investigate human data on gated compound stimuli, but also
challenging: in order to be insightful, such an experiment might
turn out to be much larger than BALDEY.
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