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5 Strategic Uncertainty and Incomplete Information:
The Homo Heuristicus Does Not Fold

Leonidas Spiliopoulos and Ralph Hertwig

5.1 Strategic and Environmental Uncertainty

In the movie The Hunt for Red October, based on the novel by Tom Clancy
(1984) and set at the height of the Cold War, Soviet captain Marko Ramius
has been given command of a prototype nuclear submarine with a revolu-
tionary stealth propulsion system (Neufeld & McTiernan, 1990). Red Octo-
ber's new technology would allow it to approach the U.S. coast undetected
and initiate a first strike with little to no warning. Understanding the con-
sequences of this imbalance between the two superpowers, Captain Ramius
plans to defect to the United States, gifting to it the stealth technology
and thus eliminating the Soviets’ strategic advantage. As Ramius is heading
toward U.S. waters, the Soviets learn that he intends to defect and deploy
other submarines to stop him. The United States is now in a precarious
position. Soviet diplomats tell their U.S. counterparts that Captain Ramius
has gone rogue and intends to launch an unauthorized nuclear strike on
the United States; they ask for help in capturing him or déstroying Red Octo-
ber. The U.S. command brings in a CIA analyst, Jack Ryan, to assess the situ-
ation. Ryan tries to infer Ramius’s motivation, state of mind, and intentions:
Is he a rogue captain capable of launching a nuclear attack? Or does he have
some other (as yet unknown) motivation? Is he insane or sane? Drawing on
prior information about Captain Ramius and interpreting his actions during
the rapidly unfolding events, Ryan reaches the correct conclusion: Ramius
Intends to defect rather than to strike.

Uncertainty about an opponent’s characteristics—in terms of prefer-
ences, beliefs, or strategies—is termed strategic uncertainty. Ramius knows
his own intentions and preferences, but they are not common knowledge.
If the United States were persuaded by the Soviets’ framing of the situation,
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their best response—given their limited knowledge of the situation—would
be to help sink the vessel. In the long run, this would be to their disadvan-
tage, as they would lose access to the game-changing stealth technology.
But as the U.S. command is unaware of Red October’'s new technology, it
cannot properly evaluate the consequences of its actions. Thus, not only are
the U.S. decision makers exposed to strategic uncertainty about their oppo-
nent, but they are also uncertain or ignorant of the payoffs of their actions
{environmental uncertainty; see also chapter 12). The interaction of strategic
uncertainty and incomplete information makes this game a particularly dif-
ficult and unpredictable one—not least because it has no historical prec-
edent. In game theory, this “ahistorical” interaction is called a one-shot
game—in contrast to a repeated game, where the same game may be played
against the same opponent multiple times.

How can people resolve, teduce, or otherwise handle the various kinds
of uncertainty involved in strategic one-shot interactions—that is, inter-
actions that do not afford the opportunity for learning? Is this domain one
in which Homo heuristicus, equipped with computationally modest and
informationally frugal decision rules, will thrive or falter? Using computer
simulations, we compared the performance of random behavior (a base-
iine), eight heuristics, and a normative solution (the Nash equilibrium)
across environments with different levels of strategic and environmental
uncertainty. We refer to these collectively as decision policies. Our focus is
on heuristics for two key reasons: First, computation of the normative solu-
tion becomes so complex as to be psychologically implausible once strategic
and/or environmental uncertainty are entered in the equation. Second, sim-
ple heuristics can be as accurate as, and sometimes even more accurate than,
decision policies that take all the available information into account, includ-
ing optimization models (Gigerenzer & Brighton, 2009; see chapter 2}. This
finding—that simplicity does not necessarily come at the cost of accuracy—
has raised a crucial question: In which environments can a simple heuristic
outperform optimizing policies, and in which will it lag behind? In discuss-
ing the “right” environments for heuristics, the philosopher Sterelny (2003)
has suggested that they are likely to succeed only in nonsocial environ-
ments, that is, in environments that rarely involve “competitive, interacting,
responsive aspects of the environment” (p. 208}: “For it is precisely in such
situations that simple rules of thumb will go wrong.... Catching a ball is one
problem; catching a liar is another” (p. 53).
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Our goal is to examine precisely this question: Do heuristics fail in
the face of strategic uncertainty and incomplete information? We further
explore to what extent heuristics’ performance in strategic games is contin-
gent on characteristics of the environment—possibly suggesting a map of
bounded rationality that describes relationships between regions (proper-
ties) of the environment and properties of heuristics that can either boost
or undermine the accuracy of decisions.

5.2 The Unwieldy Normative Solution in Strategic Games

Let us first consider the normative solution. A set of strategies constitutes a
Nash equilibrium (see box 5.1 for an example} if no player can gain (increase
their payoff) by unilaterally changing their strategy. It is assumed that each
player’s beliefs about their opponent’s action are correct, that players are
fully tational—that is, they best respond to their beliefs—and that each
player is aware of the other player’s strategies (common knowledge assump-
tion). The crucial construct that clears up strategic uncertainty at the equi-
librium is the assumption that both players’ beliefs about their opponent’s
behavior are correct. :

In games of incomplete information with strategic and environmental
uncertainty, a refinement of the standard equilibrium solution, the Bayes-
jan Nash equilibrium (Harsanyi, 1968), assumes correct (probabilistic)
beliefs about the possible states of uncertain variables (e.g., payoffs, oth-
ers’ beliefs). In the Red October example, Captain Ramius can be modeled
as either insane or sane, with the respective state determining his payoffs
(assigning high positive or negative utility, respectively, to initiating a
nuclear strike). The Bayesian Nash equilibrium requires that people hold
consistent beliefs about the probability distribution of their opponent’s
preferences (e.g., Ramius is insane with p=0.6 and sane with p=0.4). Simi-
larly, the Bayesian Nash equilibrium requires consistent beliefs about the
distribution of the uncertain environmental payoffs (e.g., the payoff is
equal to x with p=0.3 or to y with p=0.7). Uncertainty is resolved through
the forced consistency of beliefs at the equilibrium, and the rationality cri-
terion is met by the choice of actions that represent the best responses
given those beliefs.

Typically, as illustrated in the example above, beliefs are modeled as exact
Probability estimates; in other words, the uncertainty associated with the
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incomplete information is assumed to be reducible to risk (a known probabil-
ity). But what if it is not possible to assign exact probabilities to the likelihood
that Ramius is sane or insane? Extending the Bayesian Nash equilibrium to
uncertainty makes it even more complex. In fact, it renders the solution prac-
tically intractable, as it would require second-order probability distributions
for all the uncertain variables. Note that the indiscriminate application of a
Bayesian approach to strategic decision making under uncertainty is widely
contested, as are the Bayesian Nash equilibrium’s demanding assumptions,
even by prominent game theorists (e.g., Binmore, 2007).

Another complication with the normative solution is that multiple Nash
equilibria may exist in a single game. Strategic uncertainty cannot be com-
pletely resolved in games with multiple equilibria, even under the strict
rationality postulates of the Nash equilibrium. Various theories of equilib-
rium selection address this uncertainty by whittling down the set of Nash
equilibria to a single one: payoff- versus risk-dominance equilibrium (Harsanyi
& Selten, 1988), trembling-hand equilibrium (Selten, 1975), or evolutionary
selection (Kandori, Mailath, & Rob, 1993). However, all of these modifica-
tions require ever more complex rationalizations and beliefs about how the
opponent selects the equilibrium. They are therefore unlikely to be good,
psychologically plausible descriptive models of human behavior—at least
in one-shot games.

In repeated games, where players can accumulate experience with the
same game and counterpart, it is possible that they inductively learn and
converge to the Nash equilibrium (Binmore, Swierzbinski, & Proulx, 2001;
Erev & Roth, 1998; Ochs, 1995; Roth & Erev, 1995). But what happens in
uncertain environments comprised of one-shot games against different
players? In these conditions, it is difficult or impossible to reduce uncer-
tainty by inductive learning. Are players able to deductively solve the Nash
equilibrium? The empirical findings suggest that most participants do not
play according to the Nash equilibrium. Instead, they appear to employ
various boundedly rational decision rules that we refer to as heuristics.

5.3 Why Do People Resort to Simple Heuristics in Strategic Games?

There are at least four answers to this question. First, people are simply
unlikely to be able to calculate the Nash equilibrium. The implication
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here is that they should use the Nash equilibrium (see box 5.1 for an
illustration)—but that in reality, as boundedly rational decision mak-
ers, they lack the cognitive capacity to do so (Kahneman, 2003b). Sec-
ond, along with high mental effort, computing the Nash equilibrium
exacts high decision costs. A perfectly 1ational player should take these
costs into account and optimize with respect to the time, computation,
money, and other resources incurred (e.g., Sargent, 1993). If the decision
costs are high enough, it may be rational to save resources—for instance,
by resorting to a simpler decision rule. Third, the Nash equilibrium is a
rational response only if a player believes that their opponent will also
behave rationally. If a rational player comes to believe that their oppo-
nent will, for whatever reason, deviate from the Nash equilibrium, they
may also switch gears.

Finally, we propose a fourth possibility that is not necessarily incompat-
ible with some of the previous ones. In uncertain environments, heuristics
often perform on par with or even better than more complex decision
rules. This has been repeatedly demonstrated in games against nature (e.g.,
Gigerenzer, Todd, & the ABC Research Group, 1999; Hertwig, Hoffrage, &
the ABC Research Group, 2013) but less so in games against others. Our
goal is to show that what holds for nonsocial environments, in which a per-
son plays against disinterested nature, also holds in environments involv-
ing other people. Social environments have often been characterized as
more challenging and intellectually demanding than nonsocial ones (see
Hertwig & Hoffrage, 2013). Yet, even here—or perhaps particularly here—
simple heursistics may be as accurate as, and sometimes even more accu-
rate than, policies that make the greatest possible use of information and
computation. We examined how several simple heuristics fare relative to
the normative solution in strategic one-shot games. We studied the heuris-
tics’ ecological rationality, seeking to identify the environmental properties
that are conducive to good performance. Our approach parallels investiga-
tions into cue-based inference (see Hogarth & Karelaia, 2006). Our aim was
to propose a first map of bounded rationality in strategic games, reveal-
ing properties of the games being played, and determining the degree of
environmental and strategic uncertainty under which heuristics perform
well—or fall behind.
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Box 5.1
The Nash equilibrium and strategic dominance.

The Nash equilibrium of the game presented in table 5.1 is the combination of
player A’s Down strategy and player B’s Left strategy. It is calculated as follows:
for each combination of possible strategies, ask the question whether either
player has an incentive to change their strategy (assuming that the opponent’s
strategy remains the same). If the answer for both players is no, then the com-
bination of strategies constitutes a Nash equilibrium. Let us start in the upper
left cell of table 5.1: Up, Left. If player B chooses Left, does player A have an
incentive to switch from Up to another strategy? The answer is yes: the payoff
for Up is 58 units, but the payoff for Down is 70 units. Does player B have an
incentive to switch from Left (with a payoff of 57) to another strategy? Yes,
playing Center would give player B a payoff of 89. Therefore, the combina-
tion Up, Left is not a Nash equilibrium. The same reasoning can be applied
to every combination of strategies. Let us skip directly to the combination
Down, Left. Player A achieves a payoff of 70, the maximum available if player
B chooses Left. Player B receives a payoff of 74, the maximum available if
player A chooses Down. As neither player has an incentive to change, this
combination of strategies constitutes a Nash equilibrium.

Table 5.1 also illustrates strategic dominance. We begin with self-dominance.
Up dominates Middle for player A, because the payoffs for Up are always larger
than those of Middle, whichever strategy player B chooses. If player B chooses
Left, player A receives a payoff of 58 for Up relative to 34 for Middle. If player B
chooses Center, player A receives 32 for Up relative to 23 for Middle. If player
B chooses Right, player A receives 94 for Up and 37 for Middle. Therefore,
Middle is a dominated strategy. Analogous comparisons can be performed to
determine opponent-dominance.

5.4 Testing Simple Heuristics in Strategic Games

Herbert Simon (1955, 1956) saw bounded rationality in terms of two inter-
locking components: the limitations of the human mind and the structure
of the environment. The implications of this conceptualization are twofold.
First, models of simple heuristics need to reflect the mind’s actual capacities
rather than assume it to have unbounded capabilities. Second, the environ-
mental structure may be the key to a heuristic’s performance, to the extent
that the heuristic’s architecture successfully maps onto the structure of the
environment (or parts of it). For this reason, we now describe our computer
simulations in terms of the game environment and the competing heuristics.
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Table 5.1
An example of a 3x3 normal-form game.

Player B
Player A Left Center Right
Up 58,57 32,89 94, 41
Middle 34, 46 23,31 37,16
Down 70,74 41,12 23,53

5.4.1 The Strategic Games

The games are all one-shot normal-form games with simultaneous moves,
meaning that players make their decisions simultaneously—and therefore
independently, without first being able to observe the opponent’s choice.
Table 5.1 gives an examiple of a normal-form game with two players. Player A
can choose one of the strategies in the rows (Up, Middle, Down}; player B
can choose one of the strategies in the columns (Left, Center, Right). The
number of possible actions for each player is denoted by n—we assume that
it is the same for both players and refer to this as the size of the game.
The game in table 5.1 is therefore a 3x3 game, with each player having
three strategies at their disposal. The numbers represent the payoffs that
each player will receive for every possible combination of strategies. The
first number represents player A’s payoff; the second, player B’s payoff. For
example, if player A chooses Up and player B chooses Center, they receive
32 and 89 units, respectively.

The set of strategic games we investigated included, but was not restricted
to, widely researched 2x2 games such as the prisoner’s dilemma game, the
chicken game, and the stag hunt game. In fact, our analysis included all 78
types of 2x2 (ordinal) games taxonomized by Rapoport, Guyer, and Gor-
don (1976). Similarly, for nxn games where the size of the game is greater
than 2, we did not restrict our attention to a particular type of game. Pay-
offs for all games were generated by randomly sampling each payoff inde-
pendently from a normal distribution (with a mean of 0 and a standard
deviation of 100); therefore, every possible game has a nonzero probability
of being played. We chose the normal distribution, rather than a uniform
distribution, to capture the typically negative correlation between magni-
tudes in payoff (whether negative or positive) and the probability of their
occurrence in the real world (Pleskac & Hertwig, 2014; see chapter 3).
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5.4.2 The Properties of the Environment

An environment ¢ is defined by the characteristics of the games that nature
randomly (or exogenously) determines are to be played. Each environment
is characterized by two variables: first, the size of the game, n (the players’
action space), and second, the probability that each payoff in the game
is missing or unknown to a player (in %). In an environment with m%
missing observations, each individual payoff is randomly determined to be
unavailable to the players with probability m. In other words, the player’s
state of knowledge is incomplete, inducing environmental uncertainty.
This procedure creates a problem, however. When numerous payoffs are
missing, it is unclear how to calculate best-response profiles. To solve this
problem, one would have to hypothesize about how a player chooses an
action under such circumstances. Because any hypothesis would (at this
point) be quite arbitrary, we chose a different solution. Relying on the prin-
ciple of vicarious functioning (see Brunswik, 1952; Dhami, Hertwig, & Hof-
frage, 2004), players can use available cues (here, payoffs) to infer unreliable
or unavailable cues (payoffs). For games with missing payoff information,
we therefore assumed that the heuristic imputes a value equal to the mean
of the player’s other payoffs (with small perturbations to avoid complica-
tions associated with equal payoffs and ties). In evaluating the heuristics’
performance, however, we assumed that the actual payoff a player receives,
depending on the heuristic chosen, is based on the true payoff values and
not on the thus inferred values. Let us emphasize that a Bayesian Nash
equilibrium would require that players impute the whole probability dis-
tribution of possible values for the missing payoffs—in other words, they
would need to calculate a decision rule repeatedly (a very large number of
times) to approximate the distribution of each possible realization of the
missing payoffs. Boundedly rational agents would be unlikely to carry out
this calculation.

In sum, the set of environments E we investigated consisted of all pos-
sible combinations of the sizes of the action space and the likelihood
of missing payoff information {n,m}, where ne N={(2,3,...,19,20} and
me M=/{0,5,10,...,70,75,80%)}. For example, a single environment e(n, m)
consists of a set of nxn games, sampled using the procedures noted above,
with a probability m of payoff values being missing. Using this implementa-
tion, we could examine the performance of the heuristics as a function of
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the size of the game and the degree of missing knowledge (environmental
uncertainty). For every environment, we simulated play for 10,000 randomly
drawn games, thereby fully covering the game space. An extended analysis of
a larger set of environments including different degrees of conflict or common
interest between the players can be found in Spiliopoulos and Hertwig (2018).

543 The Competing Decision Policies

Our analysis compared 10 decision policies: a set of eight heuristics that
have been identified as commonly employed by actual players in labora-
tory settings (Costa-Gomes, Crawford, & Broseta, 2001; Costa-Gomes &
Weizsdcker, 2008; Devetag, Di Guida, & Polonio, 2016; Polonio & Coric-
elli, 2015; Spiliopoulos, Ortmann, & Zhang, 2018; Stahl & Wilson, 1994,
1995), the (normative) Nash equilibrium, and a baseline random policy.
The decision policies are defined in table 5.2; more detailed examples of how
to compute them will be presented shortly. To play games against simulated
opponents using these decision policies, please visit interactive element 5.1
(at https://taming-uncertainty.mpib-berlin.mpg.de/).

We investigated the performance of level-k heuristics as well as some-
what naive heuristic solutions, such as choosing the action with the high-
est payoff. Level-k heuristics and cognitive hierarchy theory have been
particularly successful in modeling boundedly rational behavior (e.g., Cam-
erer, Ho, & Chong, 2004; Chong, Ho, & Camerer, 2016; Costa-Gomes et al.,
2001; Nagel, 1995; Stahl, 1996; Stahl & Wilson, 1995). Each of the policies
studied, with the exception of the (pure-strategy) Nash equilibrium, always
suggests a unique action for any normal-form game (with unique payoffs).
In order to resolve the coordination problem in the case of multiple Nash
equilibria, we assumed that players choose the equilibrium maximizing the
joint payoffs to both players. Some games may not have a pure-strategy
Nash equilibrium;! we assumed that in such cases the Nash equilibrium
strategy chooses an action randomly.

L. Although all finite-player, finite-action games—such as the ones we study in this
chapter—are guaranteed to have at least one Nash equilibrium, for some games this
Wwill be an equilibrium in mixed strategies, not pure strategies. We focused solely on
bure-strategy Nash equilibria because the calculation of a mixed-strategy Nash equi-
libriurn is extremely computationally demanding.
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The following examples illustrate how to compute each decision policy
from the perspective of player A in the game presented in table 5.1.

Maximax (MaxMax). Identify the action offering you the highest possible
payoff in the matrix (94). On this basis, choose action Up.

Maximin (MaxMin). Find the lowest payoff in each row—these are 32, 23,
and 23 in the first, second, and third rows, respectively. Identify the maxi-
mum of these lowest payoffs (32). On this basis, choose action Up, thereby
guaranteeing a payoff of at least 32.

Level-1 (L1). Sum your own possible payoffs in each row—these are 184,
94, and 134 for the first, second, and third rows, respectively. Identify the
row with the largest sum (184). On this basis, choose action Up.

Social maximum (SocMax). For each cell, calculate the collective sum of
payoffs to both players (e.g., 58+57 =115 for the upper-left outcome). Iden-
tify the maximum total payoff (lower-left outcome, 144). On this basis,
choose action Down.

Equality (Eq). For each cell, calculate the absolute difference in the players’
payoffs (e.g., 94-41=53 for the upper-right outcome). Identify the min-
imum absolute difference (upper-left outcome, 1). On this basis, choose
action Up,

Dominance-1 (D1). Examine whether your opponent has any dominated
actions. Player B’s Left action dominates their Right action: regardless of
your actions, player B will always have a higher payoff from the former
than the latter. Eliminate the dominated strategy (Right) from consider-
ation and perform an L1 calculation on the remaining strategies (Left and
Center). The possible payoffs are 58+ 32 =90 for Up, 34+23 =57 for Middle,
and 70+41=111 for Down. Therefore, choose Down, which yields the
highest mean payoff over player B’s nondominated actions.

Level-2 (L2). Sum player B’s payoffs for each action—these are 177, 132,
and 110 for the first, second, and third columns, respectively. Assume that
player B uses L1 and will choose the action with the highest sum, Left.



100 L. Spiliopoulos and R. Hertwig

Identify your highest possible payoff in that column (70) and choose the
corresponding action, Down.

Level-3 (L.3). Assume that player B is an L2 player. By definition, an L2
player assumes that their opponent uses L1. Apply the L1 strategy to your
own payoffs—as described above, this will result in the choice of action
Up. As an L2 player, player B will respond by searching for their high-
est possible payoff in the row corresponding to Up, and will play Center.
Choose the best response to this action by identifying your maximum
possible payoff in the column associated with Center. The corresponding
action is Down (41).

Nash equilibrium (NE). Identify the maximum payoff in each row (i.e.,
the best response to the assumption that player B has played each col-
umn). These are 70, 41, and 94 for actions Left, Center, and Right, respec-
tively. The corresponding best response actions are Down, Down, and Up,
respectively. Perform the same operations for player B’s payoffs when you
play each row. The corresponding best responses are Center, Left, and Left
for your actions Up, Middle, and Down, respectively. Determine for which
actions these two best responses coincide. In this case, this occurs for the
combination Down, Left. Therefore, you would choose Down and player
B would choose Left.

5.4.4 Classification of Heuristics’ Paths to Simplification

Of the policies we simulated, the Nash equilibrium is the most complex
computationally. The heuristics implemented represent different paths to
reduce computational complexity: by reducing the amount of information
required, by rendering the process of integrating information less complex,
or by simplifying the assumptions made about an opponent or their beliefs.
Spiliopoulos et al. (2018) measured the complexity of the eight heuristics
examined in terms of the number of elementary information processing
units required to execute each heuristic (see J. W. Payne, Bettmann, &
Johnson, 1993; for an alternative approach to measuring complexity, using
a cognitive architecture, see Fechner, Schooler, & Pachur, 2018). The paths
taken to reduce complexity can be broadly categorized as payoff-based or
probability-based simplification.
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Payoff-based simplification. A heuristic can choose to completely ignore
the opponent’s payoffs and thus act as if the game were a nonstrategic task.
The heuristics that do so are MaxMax, MaxMin, and L1 (see table 5.2; similar
heuristics, applied to games against nature, are also discussed in chapter 8).
All other heuristics in table 5.2 require information about both the player’s
own payoffs and the opponent’s payoffs.

Probability-based simplification. Another path to simplification involves
the beliefs held by a player about the probability with which the opponent
will play each of the actions (see table 5.1). One simple assumption is that
the probabilities of each action are equal, resulting in an equal weighting
of the player’s own payoffs—this can be viewed as a strategic variant of
the equal-weighting principle proposed for prediction (Dawes, 1979). The
heuristics that make this assumption are L1 and D1. The latter first removes
the opponent’s dominated actions, and only then assigns equal weights to
the remaining actions. The L1 heuristic is of particular interest because it
is known to be frequently recruited by real players in strategic games (see
Costa-Gomes et al., 2001; Costa-Gomes & Weizsdcker, 2008; Devetag et al.,
2016; Polonio & Coricelli, 2015; Spiliopoulos et al., 2018; Stahl & Wilson,
1994). It both ignores the opponent’s payoff and assumes that the oppo-
nent randomizes over their actions with probability 1/n. Alternatively, a
heuristic can forgo beliefs about the opponent’s behavior and focus solely
on payoff information. This applies to SocMax and Eq. These two heuristics
do not weight payoffs according to the likelihood of the relevant outcomes
being obtained. Instead they involve either the addition or subtraction,
respectively, of the player’s own payoff and the opponent’s payoff for every
possible outcome, and then perform ordinal comparisons only. Finally,
an even more Spartan process is not integrating the player’s own payoffs
with the opponent’s payoffs but instead making a choice based on a single
payoff. This approach avoids both weighting and adding and completely
forgoes any belief formation. MaxMax and MaxMin belong to this compu-
tationally simplest class of heuristics. MaxMax chooses the action with the
highest payoff for the player; MaxMin, the action with the highest payoff
for the player in the worst-case scenario. Both heuristics involve only ordi-

nal comparisons among the player’s own payoffs based on max and min
Operations.
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5.4.5 The Role of Strategic Dominance

The heuristics differ on another important dimension—namely, their
adherence (or lack thereof) to the principle of strategic dominance—and
their assumptions about whether or not the opponent adheres to this prin-
ciple. If one of a player’s (pure) strategies is better than another strategy—
independent of the strategy chosen by the opponent—then that strategy
dominates the other strategy (the latter is the dominated strategy). If a strat-
egy dominates all other strategies in a game, it is referred to as a domi-
nant strategy. We use the term self-dominance to describe the relationship
between the player’s strategies and opponent-dominance to describe the rela-
tionship between the opponent’s strategies. Box 5.1 gives examples of the
comparisons necessary to determine dominance in the game outlined in
table 5.1. It is always beneficial to avoid a self-dominated strategy, regard-
less of any strategic uncertainty about the opponent’s behavioz, because a
dominated strategy is, by definition, inferior to a dominant strategy for all
possible actions available to the opponent. Of the heuristics in table 5.1, L1
and MaxMax adhere to the principle of self-dominance but do not assume
that the opponent will do so. D1, L2, L3, and NE adhere to both strategic
dominance principles. Whether the assumption of opponent-dominance is
realistic depends on the heuristic employed by the opponent. It is not real-
istic if opponents use SocMax or Eq, neither of which systematically adheres
to self-dominance.

Whether or not it is advantageous to adhere to the principle of domi-
nance in a particular environment alsc depends on the probability that
dominated actions exist in each of the environment’s games. The propor-
tion of games that have at least one dominated action quickly approaches
zero as the size of the game increases from three onwards.? Therefore, the
importance of recognizing dominance can be expected to decrease with
larger games. For example, because L1 and D1 differ only in the first-step
dominance check performed by D1, they will converge in their recom-
mended actions as the number of actions increases (and the probability
of a dominated action decreases).> However, in terms of processes and

2. The probability forn=2, 3, 4, §, 10, and 20 is 0.5, 0.53, 0.48, 0.4, ¢.08, and 0.0004,
respectively.

3. Inspecting a game for the existence (or lack thereof) of dominated or domi-
nant strategies can reveal further relationships between strategies. As observed by
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information needs, D1 would still require more steps to arrive at the same
recommendation than L1.

5.4.6 Measuring the Competing Decision Policies’ Performance
We measured the success of each decision policy against a performance cri-
terion that we refer to as the Indifference criterion. Before we describe this cri-
terion, let us briefly outline the reasoning that informed its choice. In the
simulations, we matched each of the competing policies (see table 5.1) as
opponents in 10,000 randomly drawn games (for each environment) to
approximate the performance of pairs of competitors within an environ-
ment. Each policy also played against itself. Imagine each player choos-
ing in advance which decision policy to use across all games in a specific
environment. Now consider how strategic uncertainty affects the choice of
policy. If a player knows the opponent'’s policy, they can easily figure out
the policy offering the best response. If they do not know the opponent’s
policy, they may form beliefs about the distribution of decision policies in
the population and, at least in theory, calculate the expected payoffs for
each policy conditional on those beliefs. This is a probabilistic quantity:
it requires weighting the expected payoff against each decision policy by
the probability of being matched with a player using that particular policy.
However, as we argued before, it will be very difficult to learn this distri-
bution. Consequently, players face strategic uncertainty—that is, they are
unable to assign probabilities to the distribution of policies in the popula-
tion. Luce and Raiffa (1957) argued that decisions in such large worlds (Sav-
age, 1954) may be enabled by the principle of indifference (also known as
the principle of insufficient reasoning). This principle informs our perfor-
mance criterion.

According to the principle of indifference, each decision policy is equally
likely to be used by the opponent (see also chapter 2 on the role of this
assumption in individual choice). A player’s expected payoff over the whole

i

Costa-Gomes et al. (2001), a level-k heuristic’s proposed action is identical to that of
the Nash equilibrium for games that are solvable by k rounds of iterated dominance
(in pure or mixed strategies). Dk heuristics are identical to the Nash equilibrium in
games that can be solved by k+1 rounds of pure strategy dominance. In many 2x2
games, there is significant overlap between strategies, enabling many simpler heuris-
tics to emulate the Nash equilibrium.
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set of games in an environment is then simply an average of the expected
payoffs against each decision policy. We define this as the Indifference cri-
terion.* It is the expected payoff a decision policy will achieve if (a) the
policy plays against a population of policies that are uniformly distributed
in the player population, or (b) it plays against a single decision policy, but
is unaware which one it is, and believes that the policy is drawn with equal
probability from the set of 10 decision policies.

More formally, let the action space A (A”) of a player (opponent) denote
the set of actions a, (@'») available. The number of actions for each player (or
size of the action space) is denoted by N and N'. We assume that this is the
same for both players and therefore refer to the common value N as the size
of a game. A normal-form game g is defined by a mapping from the action
spaces of both players to payoff functions z/(a., a’») and n'ya,, a’y). That is,
the combination of actions (4., @’») determines the payoffs of both players.
Let the decision policy space D (D) of a player (opponent) denote the set of
policies d (d') available.

The first number in each cell of a normal-form game, as presented in
table 5.1, represents player A’s payoff; the second, player B’s payoff. For
example, if player A chooses a; and player B chooses a’;, then the former
receives a payoff of 32 and the latter 89. According to the Indifference crite-
rion, denoted by 7(d|e), the performance of a decision rule d in an environ-
ment e consisting of a set of games G, is given by:

1

Z(dle) = D]

> oo Eolz(ald), a(@)). ()

As mentioned in section 5.4.5, the L1 and D1 policies make identical
choices for games without dominated strategies. Consequently, the L2 pol-
icy is the best response to both of these policies in such games, giving it an
unfair advantage over other policies (which at most are best responses to
only one other policy; e.g., NE is the best response to NE, L3 to L2, L1 to
Random). We leveled the playing field by assigning half the weight to L1
and D1 when calculating the Indifference criterion. Including both with

4. A larger set of performance criteria, including one based on Wald’s (1945) maxi-
min model and another examining the robustness of policies to different (nonuni-
form) distributions of policies in the player population, can be found in Spiliopoulos
and Hertwig (2018).
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full weight does not alter our findings significantly, although as expected it
does give L2 a small boost in performance.

In a nutshell, the Indifference criterion captures policies’ average perfor-
mance against the whole set of possible opponent policies, assuming each
is equally likely. We now turn to the results of the competition to examine
how well or poorly the heuristics fared when facing both strategic and envi-
ronmental uncertainty.

5.5 Decision Policies’ Performance as Measured by the
Indifference Criterion

Figure 5.1 shows the performance of the competing policies across the set
of environments, measured in terms of the Indifference criterion. The size
of the action space (or game) n is shown along the y-axis; the percentage of
missing information, along the x-axis. Each heatmap depicts the perfor-
mance of one policy. As a benchmark, the two top-left panels show the
performance of random choice and the Nash equilibrium. The darker the
shading, the better the performance. The robustness of a policy is a func-
tion of how large the area of dark shading is: the larger the area, the more
robust the policy’s performance over a range of game sizes and degree of
payoff uncertainty. In general, the findings presented in figure 5.1 suggest
that some heuristics exhibit consistently good performance over the whole
set of environments and can even outperform the Nash equilibrium. Other
heuristics perform well only in specific regions. We now move on to sum-
marize the key results. Recall that performance when operationalized in
terms of the Indifference criterion (figure 5.1) assumes that each opponent
policy is equally likely. The effects of changing the distribution of decision
policies in the population can be viewed in interactive element 5.2.

The first result is that assuming equal weighting pays off. The L1 and
D1 heuristics, both of which assume equal weighting of the player’s own
payoffs, are the best performers on average across all the environments, and
show robustness to limited payoff knowledge regardless of the size of the
game. The next best policies (averaged across all the environments) are the
SocMax and L2 heuristics. Note that the former outperforms the L1 and D1

heuristics in niche environments comprised of large games and high payoff
uncertainty.
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Results of the competition among policies, with performance operationalized in
terms of the Indifference criterion. The average percentage of missing payoffs ranges
from 0% to 80%; the size of the action space ranges from 2 to 20. The darker the
shading, the better the performance.
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The second result is that there is such a thing as too much simplification.
Two of the computationally simplest heuristics, MaxMax and MaxMin, do
not perform well. They achieve moderately high mean payoffs in just a small
subset of environments, namely, games involving few actions (2-5) and low
payoff uncertainty. The extreme simplification embodied in these heuristics
seems to overshoot the mark, leading to poor performance.

The third result is that assuming higher rationality in the other player
leads to poorer performance. The L1 and D1 heuristics are the most robust
policies, achieving excellent performance across the environments. Their
performance decreases only when knowledge about payoffs is extremely
limited—however, all policies’ performance declines under this condition.
Increasing the level of rationality attributed to the opponent leads to a fur-
ther decrease in performance. Although the L2 and L3 decision rules still
perform reasonably well, they are less robust than L1 and D1, especially as
game size increases. Similarly, the Nash equilibrium policy, which makes
the strongest assumptions about the opponent’s rationality, performs worse
than the L2, L3, and L1 and D1 heuristics (which attribute a lower level of
rationality to the opponent). Importantly, the Nash equilibrium achieves
relatively high payoffs only in very small games with low payoff uncertainty.

The final result is that the top-performing policies obey the self-dominance
principle. According to the Inditference criterion, the best performing heu-
ristics are L1 and D1, in terms of robustness to both limited knowledge
and game size. Both heuristics obey the self-dominance principle; D1 also
assumes the opponent obeys the dominance principle. Note that the L2 heu-
ristic, which also performs well, obeys both self- and opponent-dominance.

3.6 The Robust Beauty of Simplicity

We investigated the performance of a variety of policies in the face of
strategic and environmental uncertainty. All alternatives to the norma-
tive Nash equilibrium policy simplify the decision process. Some, such as
L1 and MaxMax, make strong simplifying assumptions and, for instance,
take no account of the opponent'’s strategic concerns (see table 5.1); others,
such as D1 and L2, take those concerns into account, albeit in a somewhat
simplified manner, by making weaker assumptions about an opponent’s
rationality or common knowledge of rationality. We also investigated the
heuristics’ performance as a function of environmental uncertainty, that is,
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the degree of knowledge about the player’s own payoffs and the opponent’s
payoffs. Finally, we varied the games’ complexity, that is, the number of
actions available to each player.

How did the heuristics fare? Consistent with findings on inferential as
well as preferential choice (Gigerenzer, Hertwig, & Pachur, 2011; see chap-
ter 2), simplicity was more robust to strategic and environmental uncer-
tainty than was complexity. The normative Nash equilibrium policy was
only relatively competitive for precisely the kind of games typically used
in experimental investigations of strategic behavior: complete knowledge
of payoff information and game sizes of roughly 2-5 actions. Furthermore,
making specific assumptions about an opponent’s behavior (e.g., predict-
ing, as an L3 player, that the opponent will behave as an L2 player) may
risk misrepresenting actual heterogeneity among players. By contrast, the
equal-weighting L1 and D1 heuristics, both of which attach the same likeli-
hood to each of an opponent’s possible actions (the latter after removing
dominated actions), were the best performers, followed closely by 1.2 and
SocMax.

The L1 heuristic is particularly adapted to environments in which
knowledge about payoffs is severely limited. It performs very well, despite
turning a strategic task into a nonstrategic one by completely ignoring the
opponent’s payoffs. Echoing results in games against nature, there is also a
“robust beauty” (Dawes, 1979, p. 571) to this improper decision policy in
strategic games.

5.7 Sterelny’s Error

Sterelny (2003} argued that simple rules of thumb are likely to fail in com-
petitive interactions. Yet we found that even in environments marked by
both strategic and environmental uncertainty, heuristics that abandon
normative axioms and Bayesian principles need not buckle. In fact, it was
typically sufficient that a heuristic obeyed the self-dominance principle,
which even the simple L1 heuristic does, and refrained from making precise
assumptions about an opponent’s behavior. Two simplifications were par-
ticularly successful: equal weighting and ignoring an opponent’s payoff (or,
equivalently, the strategic component of the game). But let us also empha-
size the limits of oversimplification. Decision policies that base decisions
on a single piece of information without weighting, such as MaxMax and
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MaxMin, typically performed worse than other heuristics in terms of the
Indifference criterion. Apart from oversimplification, being overly confi-
dent in the ability to predict how an opponent is likely to play also repre-
sents a risk. For instance, precise assumptions or beliefs about what other
players will do often came at a high price. The L3 heuristic and the Nash
equilibrium are cases in point.

If anything, our analysis may have underestimated the performance of
simple heuristics relative to more complex processes in strategic interac-
tions. First, we assumed that each policy was perfectly executed. Yet the
more complex a policy is, the more difficult it will be for it to achieve
perfect execution. Consequently, the Nash equilibrium and the relatively
complex high level-k heuristics are more susceptible to execution errors. If
these errors were random, the performance of policies prone to execution
errors would be a linear combination of their performance assuming per-
fect execution and the performance of the random choice rule (worst com-
petitor). Thus, execution errors would further attenuate the performance
of more complex policies relative to simpler ones such as L1. Second, a
policy’s complexity is likely to be positively correlated with its execution
time. Therefore, a decision maker using a heuristic would have more time
available to play more games. In other words, if performance were normal-
ized per execution time, the performance of simpler policies would increase
relative to that of more complex policies.

5.8 Conclusion

Experimental studies of strategic interactions have found evidence for the
frequent use of heuristics (see Spiliopoulos & Hertwig, 2018). Our results cast
new light on this finding. The established narrative attributes it to humans’
inability to reason according to the complex Nash equilibrium. Alternatively,
it has been argued that people still optimize their choice of policy but do
$O subject to a constraint based on the decision costs, leading to the use
of simpler policies. This argument is based on the accuracy-effort (speed)
trade-off, often seen as a general law of cognition (see chapter 2): those who
invest less mental effort will pay a price in terms of lower accuracy (perfor-
mance). From this perspective, heuristics are, by definition, always second
best; people use them because they take a rational approach to their cogni-
tive limitations. Were resources unlimited, more computation and more
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time would, from this perspective, always be better. Our analyses show that
the accuracy-effort trade-off is not ubiquitous. Simpler solutions such as
level-k heuristics—in particular, L1 and D1—do not inevitably sacrifice per-
formance relative to the Nash equilibrium policy. In fact, they can achieve
high performance and robustness in the face of substantial environmental
and strategic uncertainty. This does not mean, however, that there are no
limits to the benefits of simplicity. As we have also observed, simplifying
assumptions can be too naive and too minimal.

1t has often been argued that “choice in social interaction harbors a level
of complexity that makes it unique among natural decision-making prob-
lems, because outcome probabilities depend on the unobservable internal
state of the other individual” (Seymour & Dolan, 2008, p. 667). We agree that
social environments are different from physical ones to the extent that the
presence of others along with their strategic intentions and counterstrategies
represent additional and important sources of uncertainty. Yet our results
challenge the common wisdom that social complexity necessitates cognitive
complexity (e.g., Humphrey, 1976, 1988; Whiten & Byrne, 1988). Even in
environments fraught with environmental and strategic uncertainty, simple
heuristics can reach surprisingly accurate decisions and prevent people from
making overly bold, demanding, and specific assumptions about others.



