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2 The Robust Beauty of Heuristics in Choice
under Uncertainty

Ralph Hertwig, Jan K. Woike, Thorsten Pachur, and Eduard Brandstatter

2.1 Axiomatizing Rational Choice—within Two Hours

April 14, 1942. Today at Johnny’s: axiomatization of measurable utility together
with the numbers. It developed slowly, more and more quickly, and at the end,
after two hours (1) it was nearly completely finished. It gave me great satisfaction,
and moved me so much that afterwards I could not think about anything else....
(Oskar Morgenstern, cited in Leonard, 1995, p. 753)

The diary writer is the Austrian economist Oskar Morgenstern; Johnny is
the Hungarian-born mathematician John von Neumann. The two men first
met in the fall of 1938, by which time they had both left Europe for good
and were working at Princetorn:. The culmination of their collaboration, the
book Theory of Games and Economic Behavior (von Neumann & Morgen-
stern, 1944/2007), was an intellectual coup that would thoroughly trans-
form a range of fields. One major step on their route to game theory was
to formulate—within “two hours (!)”—an axiomatic foundation of Daniel
Bernoulli's (1738/1954) path-breaking expected utility theory. According
to this theory, a rational decision maker will choose among risky options
in such a way as to maximize expected utility. Von Neumann and Mor-
genstern derived a set of axioms—such as transitivity, completeness, and
independence (see Luce & Raiffa, 1957)—that the preferences and choices
of a decision maker obeying expected utility theory would have to satisfy.
The axiomatized version of utility theory swiftly became a framework for
research in areas as diverse as statistical decision theory, management science,
operation research, and the theory of the firm. Within a decade, expected
utility theory was generalized from “objective” probabilities (or “risk,” to
use Knight’s, 1921/2002, terminology) to “subjective” probabilities (Savage,
1954), giving rise to what is now called Bayesian decision theory. According
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to the Bayesian approach, a rational person can translate any uncertainty
into numbers, that is, subjective probabilities, which must, first and fore-
most, be consistent—but not necessarily plausible. Diehard Elvis Presley
fans who believe he is living among us, now in his early eighties, may esti-
mate this probability to be 99% and assign 1% to him being dead. Largely
unconstrained by facts, such beliefs can nevertheless be coherent.

2.2 The Olympian Model and lts Unrealistic Assumptions

Von Neumann and Morgenstern's {(1944/2007) axiomatized utility theory
also evoked fierce criticism. One challenge was empirical in nature. French
economist and later Nobel laureate Maurice Allais (1953) did not mince his
words: “Whatever their attraction might be, none of the fundamental postu-
lates leading to the Bernoulli principle as formulated by the American school
can withstand analysis. All are based on false evidence” (p. 505). Another
challenge was conceptual. Although Herbert Simon respected utility the-
ory’s normative appeal (at least for the domains in which its assumptions
hold)'—he profoundly criticized its unrealistic assumptions. In his article
A Behavioral Model of Rational Choice (1955), Simon spelled out the “severe
demands” of what he later described as an “Olympian model” (Simon, 1983,
p- 19)—an ideal that might work for omniscient gods, but was simply out of
place in the real world:

If we examine closely the “classical” concepts of rationality [...], we see immedi-
ately what severe demands they make upon the choosing organism. The organ-
ism must be able to attach definite pay-offs (or at least a definite range of pay-offs)
to each possible outcome. This, of course, involves also the ability to specify the
exact nature of outcomes—there is no room in the scheme for “unanticipated
consequences.” The pay-offs must be completely ordered—it must always be pos-
sible to specify, in a consistent way, that one outcome is better than, as good as,
or worse than any other. And, if the certainty or probabilistic rules are employed,
either the outcomes of particular alternatives must be known with certainty, or at
least it must be possible to attach definite probabilities to outcomes. (pp. 103-104)

In actual human choice, such demands are rarely met. Beyond what Sav-
age (1954) called “small worlds”—highly simplified environments such as

1. In fact, Simon (1945) wrote a glowing review of Theory of Games and Economic
Behavior.
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monetary gambles, where the consequences (e.g., monetary payoffs) and
probabilities of all outcomes are known (“decisions from description”;
Hertwig, 2015)—it is impossible for real people to live up to the decision-
making ideal of specifying all possible outcomes, assigning them probabili-
ties, and then maximizing the expected payoff. Instead, mere mortals often
have access to only some of the information, or are unable to integrate that
information in the sophisticated way mandated by expected utility the-
ory, and instead rely on simplifying procedures. What do these constraints
mean for the quality of people’s choices? Simon (1956) conjectured that real
organisms’ behavior, although adaptive and satisficing, probably “falls far
short of the ideal of ‘maximizing’ as postulated in economic theory” (Simon,
1956, p. 129, emphasis in the original). He further suggested that “the envi-
ronments to which organisms must adapt possess properties that permit
further simplification of its choice mechanisms” (p. 129),

Our goal in this chapter is to examine both of Simon’s key theses. First,
we investigate the price of simplicity: How far short of the ideal of maximi-
zation do simple choice strategies that fail to obey the demands of classical
rationality fall? Second, we examine which statistical properties of the envi-
ronment support or impede the performance of such heuristics. We analyze
both questions in the time-honored environment of monetary gambles,
that is, the very environment from which the concept of mathematical
expectation and the classic notion of rational choice emerged (Hacking,
1975/2006; see also chapter 8). We do not, however, implement the mon-
etary gambiles as “small worlds” (Savage, 1954), fully described and with all
outcomes and probabilities known; instead, we introduce uncertainty into
the simulated environment in the form of imperfect knowledge. Before we
describe this paradigm in more detail, let us briefly review two investiga-
tions that have inspired our own.

23 How Short Do Risky Choice Heuristics Fall of the Ideal
of Maximization?

This analysis builds on the foundation of two previous investigations:
Thorngate’s (1980) strategy tournament and J. W. Payne, Bettman, and
Johnson’s (1988, 1993) influential research on the adaptive decision maker.
Both focused on simple choice strategies and analyzed how short-they fall
of maximization. They explored this question in the world of risk, in which
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each choice leads to one of a set of possible specified outcomes, and each
outcome occurs with a known probability (Luce & Raiffa, 1957, p. 13)—that
is, in a world in which there are no surprises.

2.3.1 Efficient Decision Heuristics and Measures of Success
Since the 1970s, many decision scientists have joined the quest to identify
systematic biases originating from people’s reliance on heuristics (Kahne-
man, Slovic, & Tversky, 1982), Ignoring the zeitgeist, Thorngate (1980)
instead asked how simple choice strategies can be: How much information
can they ignore and still permit successful choices? In one of the early com-
puter simulations in the decision sciences, he orchestrated a computer tour-
nament in which 10 choice heuristics competed against one another. The
heuristics were tested in a randomly generated choice environment involv-
ing choice problems with two, four, or eight options, with each option offer-
ing two, four, or eight outcomes (for details, see Thorngate, 1980). Here, we
focus on the performance of the two top-petforming heuristics in Thorn-
gate’s competition—the equiprobable heuristic and the probable heuristic—
and the worst-performing heuristic, the least-likely heuristic. The three
heuristics’ policies are outlined in box 2.1. Each of the heuristics ignores
a different aspect of the available information and thus implements a dif-
ferent variant of cognitive simplification (Gigerenzer & Gaissmaier, 2011).
The equiprobable heuristic ignores all probabilities, meaning that it does
not multiply (weigh) outcomes by their probabilities. Like Dawes’ (1979)
“improper linear models,” it simply calculates the arithmetic mean of all
outcomes per option and chooses the option with the highest mean. It thus
acts as if each outcome, no matter how small or large, is as probable as any
other outcome. The equiprobable heuristic thus embodies the “principle
of indifference,” a coinage attributed to Keynes (1921/1973b). It states that
whenever there is no evidence favoring one possibility over another, they
have the same probability (see also chapter 5). The probable heuristic, in
contrast, considers probabilities, but only to classify outcomes into two sets
(probable vs. improbable outcomes); it then removes all improbable out-
comes from consideration. The least-likely heuristic considers only one kind
of outcome per option, namely, the worst possible outcome, and chooses
the option with the smallest probability that this worst outcome will occur.
How high is the price that the heuristics pay for straying from the ideal
of maximization and ignoring some or much of the available information?
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Box 2.1
Heuristics for choices under risk and uncertainty.

We illustrate each heuristic’s policy and choice prediction with reference to
the following choice problem with four options:

A =50 with a probability of .2 and 250 with a probability of .8.
B —200 with a probability of .4 and 600 with a probability of .6.
C -400 with a probability of .1 and 500 with a probability of .9.
D 100 with a probability of .7 and 400 with a probability of .3.

The equiprobable heuristic calculates the arithmetic mean of all outcomes
within each option and chooses the option with the highest mean. It chooses
option D, because its mean (250) is higher than that of A (100), B (200), or
C (50).

The least-likely heuristic identifies each option’s worst outcome and selects
the option with the lowest probability of the worst outcome. It chooses option
C, where the probability of the worst outcome (-400) is .1, lower than in A
(.2), B(.4), or D (.7).

The lexicographic heuristic determines the most likely outcome of each
option and selects the option with the highest most likely outcome. If two or
more outcomes are equal, it determines the second most likely outcome of each
option and selects the option with the highest second most likely outcome. The
process is continued until a decision is reached. It chooses option B, because
it offers the highest outcome (6G0} among all options’ most likely outcomes.

The probable heuristic categorizes each option’s outcomes as “probable”
(i.e., p=.50 for a two-outcome option and p=.25 for a four-outcome option)
or “improbable” and ignores all “improbable” outcomes. It then calculates
the arithmetic mean of the remaining outcomes and selects the option with the
highest average outcome. It chooses option B, because its probable outcome
(600) is higher than that of A (250), C (500), or D (100).

The natural-mean heuristic calculates the average of all outcomes sampled
per option and divides the average by the number of sampled outcomes. It
chooses the payoff distribution with the highest average outcome. This choice
depends on the sample of experience. For instance, the heuristic may sample
five times from each of the four options and encounter the following sequences:

A 250, 250, 250, -50, 250
B 600, 600, -200, ~200, 600
C 500, 500, 500, 500, 500
D 100, 100, 400, 100, 400

The heuristic chooses option C, where the average of all outcomes (500)
is highest.
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Thorngate (1980) used the proportion of times a heuristic selected the
option with the highest expected value (henceforth, the “best” option) as
benchmark for its performance. Expected value is defined as

E(x)=ELpwx;, 00

where p; and x; are the probability and the amount of money associated
with each outcome (i=1, ..., n) of an option. Measured against this bench-
mark, all heuristics will, ignoring exceptional circumstances, perform worse
than expected value theory. In Thorngate’s tournament, all heuristics per-
formed better than chance, but two heuristics stood out: averaged across
all variants of the gambling environment, the equiprobable heuristic and
the probable heuristic chose the best option in 75.4% and 75.2% of cases,
respectively, From this, Thorngate concluded that a “wide variety of deci-
sion heuristics will usually produce optimal, or close to optimal, choice
and can thus be termed relatively efficient” (p. 223). Given that the best
heuristics’ performance lagged behind optimal performance (i.e., expected
value theory) by a hefty 25 percentage points, this conclusion seems some-
what overstated. Paradoxically, however, due to his choice of performance
metric, Thorngate may in fact have underrated the heuristics’ efficiency.

To examine this possibility, we replicated Thorngate’s (1980) simulation
(with 100,000 instead of 200 gambles) but used a different performance
metric. Specifically, how costly the failure to choose the best alternative will
be depends on the discrepancy between the expected values of the option
chosen and the best option. If the difference is small, the costs of deviating
from optimality will be minor; if the difference is large, they will be con-
sequential. In our simulation, we expressed performance on the 0%-100%
range defined by the sum of the expected values of the worst possible options
and the sum of the expected values of the best possible options. On this
metric, expected value theory will, by definition, score perfectly (100%),
whereas random choice will perform at around 50%. In our replication, the
equiprobable heuristic scored 94.1% and the probable heuristic, 94.6%. The
performance gap between these heuristics and expected value theory was
thus reduced to about 5-6 percentage points. In other words, in this simula-
tion, heuristics evidently tend to err in cases where the consequences are
relatively benign. Thorngate’s measure therefore underestimated the heuris-
tics’ performance (even the worst-performing heuristic, least-likely, jumped
from a meager 41.4% on Thorngate’s metric to 65.7% on ours).
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In sum, although Thorngate (1980) applauded the efficiency of the
heuristics, they fell noticeably short of the ideal of expected value maxi-
mization on his performance measure (which used the “best” option as a
benchmark). In contrast, on a performance measure that gauges how costly
it is to fail to choose the best alternative when choosing heuristically, we
found that simple choice policies fared substantially better. Furthermore,
Thorngate’s analysis did not address the role of environmental properties
in fostering or impeding the heuristics’ performance. For instance, how
robust will the top performer, the equiprobable heuristic, prove to be if the
environment’s probability distribution is skewed, causing high variance in
probability information and potentially rendering the assumption of equal
weights dangerously inaccurate?

2.3.2 The Adaptive Decision Maker

The interaction between environmental structures and the information-
processing architecture of heuristics was a focus of J. W. Payne et al.’s (1993)
research program. Its premise was that people can select from a multitude
of available strategies. Each strategy combines attractive properties (e.g., sim-
plicity, low cognitive effort, accuracy) with unattractive ones (e.g., higher
cognitive effort, lack of accuracy). The impact of these properties varies
across choice environments and conditions such as time pressure and cog-
nitive abilities. An adaptive decision maker considering candidate strategies
for a task will select the one that affords the best trade-off between antici-
pated accuracy and effort. The assumption here is that there is an inescap-
able and law-like accuracy—effort trade-off, meaning that the less information,
computation, or time a strategy requires and the decisioﬁ maker invests, the
less accurate (rational or optimized) the ensuing behavior will be.

J. W. Payne et al. (1988) used computer simulations to analyze this
accuracy-effort trade-off in risky and riskless choice in a range of environ-
ments and conditions. We focus on the simulation of risky choice and on
a single environmental condition: variance in probabilities. For example,
one option may have four possible outcomes, with probabilities of .28, .25,
.25, and .22, respectively. In this case, variance in probabilities is low. The
outcomes of another option may have probabilities of .7, .2, .08, and .02; in
this case, variance in probabilities is high. How did heuristics perform under
high and low probability variance? Here, we focus on the equiprobable heu-
ristic (or “equal-weight heuristic,” to use the terminology of J. W. Payne
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et al., 1988), the best performer in the Thorngate (1980) tournament, and
the lexicographic heuristic (LEX), the best performer in the J. W, Payne
et al. tournament. Like the other heuristics, LEX ignores part of the informa-
tion (see box 2.1). It is a noncompensatory strategy; note that the environ-
mental cue that in this heuristic overrides all other cues and determines the
choice depends on the properties of the choice problem at hand. Details of
the simulations are provided in J. W. Payne et al. (1988).

Three key results emerged (J. W. Payne et al., 1988). First, heuristics can
be highly competitive in one environment but fail in another. The lexi-
cographic heuristic, for instance, was very successful in the high-variance
environment, but its performance dropped by more than 20 percentage
points in the low-variance environment. No generalist heuristic emerged
that was able to perform consistently well in all environments. Second and
relatedly, variance in probabilities affected processing policies differently.
Whereas high probability variance fostered the performance of the lexi-
cographic heuristic, it undermined the success of the equiprobable heuris-
tic; low probability variance had the opposite effect. Third, when averaged
across all environments, the equiprobable heuristic and the lexicographic
heuristic chose the best option in 79% and 56% of cases, respectively (the
performance criterion in this simulation was equivalent to the expected
value criterion employed by Thorngate, 1980). That is, the two heuristics paid
a substantial premium for simplicity, similar in magnitude to that observed in
Thorngate’s analysis: the top choice performance was more than 20 percent-
age points below that of the expected value benchmark.

Let us summarize the findings so far. The most successful choice heuristics
in Thorngate (1980) and J. W. Payne et al. (1988) represent two very different
paths to cognitive simplification (see box 2.1). Whereas the equiprobable
heuristic considers all outcomes per option but neglects probabilities alto-
gether, the lexicographic heuristic examines one cue at a time, ignoring
all others. Furthermore, low variance in outcome probabilities supports a
focus on outcomes, whereas high variance in probabilities is more compat-
ible with a noncompensatory choice policy. These insights were obtained
in the world of risk, where the probability and outcome space are known.
What will be the trade-off between performance and simplicity—or, to use
J. W. Payne et al.’s terminology, accuracy and effort—when knowledge is
imperfect and surprises can happen? In other words, how do the heuristics
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perform in a world of incomplete knowledge and uncertainty? The bias—
variance framework, originally developed in machine learning (Geman,
Bienenstock, & Doursat, 1992; T. Hastie, Tibshirani, & Friedman, 2001) offers
a conceptual approach for understanding the impact of uncertainty on pre-
diction models.

2.4 The Bias-Variance Dilemma

Bounds on people’s knowledge about the environment can be hugely conse-
quential, to the extent that limited knowledge intensifies the bias-variance
dilemma (e.g., Gigerenzer & Brighton, 2009; Katsikopoulos, Schooler, &
Hertwig, 2010). To introduce this concept, which is relevant for any kind of
prediction model, we offer an example. Bias and variance both contribute
to the total error committed by any prediction model. Let us imagine that a
prediction model is attempting to learn an underlying (true) function from
a sample of (potentially noisy) data that was generated by this function.
Averaged across all possible data samples of a given size, the bias of the
algorithm is defined as the difference between the underlying function and
the mean function computed by the algorithm from these data samples.
Consequently, if this mean function is the same as the underlying function,
bias will be zero. Variance reflects the sensitivity of the prediction model
to different samples drawn from the same environment. High variance
implies that the predictions of a model may differ greatly depending on the
specific properties of the observed samples. This type of variance increases
with model flexibility. For example, the more flexible the model, the more
likely it will capture not only the true structure (assuming that there is a true
structure and that the models are complex enough to capture it) but also
unsystematic patterns, such as noise. Bias and variance both depend on the
structure to be predicted (e.g., daily temperature across a year in a specific
location; daily stock market fluctuation across a year of a specific index),
and at least the variance also depends on how many sampled observations
are available for this structure. Therefore, it will not always be adaptive to
seek low bias in a prediction model by including as many adjustable com-
ponents as possible to flexibly capture patterns in the sampled data. Model
flexibility can itself become a curse when there is a high risk of increasing
error through variance. From this, it follows that a model should be complex
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enough to avoid excessive bias, but simple enough to avoid overfitting idio-
syncratic noise in the limited samples on which the estimates are made (e.g.,
Pitt, Myung, & Zhang, 2002).

The principles underlying the bias—variance dilemma can be applied to
decisions about monetary lotteries under uncertainty—that is, when the
task s to predict the value of the lotteries. Let us assume that choice strategies
do not enjoy perfect knowledge of outcomes and probabilities but instead
gauge them from samples drawn from the environment. Consequently, all
strategies face two sources of error—and the possible trade-off between them.
One source is error through variance. For illustration, expected value theory
assumes that outcomes are weighted (multiplicatively) by their exact prob-
abilities and then summed and maximized. Under conditions of imperfect
information, other, simpler forms of information integration—for example,
additive rather than multiplicative integration (Juslin, Nilsson, & Winman,
2009)—or forgoing integration altogether (e.g., lexicographic heuristic)
may be more robust and less likely to suffer from overfitting. Yet simplifica-
tions can go too far, causing a substantial bias in the choice strategy and,
consequently, prompting performance to deteriorate. How will these two
sources of error shape the performance of choice heuristics under uncer-
tainty? We examined this question by conducting a new set of simulations.

2.5 What Is the Price of Cognitive Simplicity in Choice
under Uncertainty?

The benchmark used in our simulations is the performance of the expected
value model under perfect knowledge. We call this model the omniscient
expected value model. In addition, we used the same performance metric
as in our reanalysis of the Thorngate (1980) competition. On this metric,
100% represents the sum of the expected values across choice problems in
the case that a choice strategy always selects the option with the highest
expected value (as the omniscient expected value model does); 0% repre-
sents the sum of the expected values across choice problems in the case
that a strategy always selects the option with the lowest expected value. All
heuristics were tested in environments in which the available information
on the options’ outcomes and probabilities was incomplete. Information
was acquired through repeated sampling of monetary outcomes. We define
a sample as the draw of a single monetary outcome from each option in
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a choice problem (with replacement). Each new draw thus offered infor-
mation about the gambles’ possible outcomes and their relative frequency
of occurrence (i.e., probability). Furthermore, after each new sample, each
heuristic rendered a choice, allowing us to analyze how the heuristics’ per-
formance changed as knowledge increased. In this simulated environment,
the uncertainty the decision maker faced concerned both the outcome
space (i.e., at any given point in time, the decision maker did not know
for certain whether they were aware of the full cutcome space) and the
probabilities (i.e., the decision maker estimated the probabilities from the
sequences of the encountered outcomes, meaning that the probabilities of
possible outcomes that had not been encountered were unknown and, for
known outcomes, the probabilities could only be estimated on the basis of
the experienced sample of draws).

2.5.1 Competitors

We tested the equiprobable, the probable, and the lexicographic heuristics—
the three top performers in the simulations by Thorngate (1980) and
J. W. Payne et al. (1988)—as well as the least-likely heuristic, the worst-
performing heuristic in Thorngate’s competition. In addition, we tested the
natural-mean heuristic (Hertwig & Pleskac, 2008, 2010), whose policy is
described in box 2.1. This heuristic has some interesting characteristics. For
one, it predicts the same choice as expected value theory if the latter also
bases its choices on samples of experience rather than on perfect knowl-
edge. It thus defines the level of accuracy of a sampling-based expected
value theory (without Bayesian priors). However, the heuristic rests on a
much simpler processing policy than expected value theory. Instead of
multiplying each sampled outcome by its inferred (sample-based) probabil-
ity and summing up the products, the heuristic simply totals up all expe-
rienced outcomes per lottery and then divides this sum by the sample size
per option. In other words, it replaces the multiplicative core of expected
value theory by simple summing and division, thus requiring no explicit
representation of probabilities.

25.2 Environments

We implemented 20 choice environments, designed by combining five
outcome distributions with four ways of constructing the associated prob-
abilities (see also chapter 3). The outcome distributions consisted of a
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rectangular, a normal, an exponential, a Cauchy, and a lognormal distribution.
These distributions permitted us to implement varying degrees of outcome
variance. All five outcome distributions were symmetrical (for details, see
figure S2.1 and table S2.1 in the online supplement at https://taming-uncer
tainty.mpib-berlin.mpg.de/). The four construction mechanisms producing
the probabilities (i.e., rectangular, U-shaped, exponential, and skewed), hence-
forth P-generators, were chosen with the goal of obtaining different degrees
of variance among probabilities (see J. W. Payne et al., 1993). As figure S2.2
in the online supplement illustrates, the four P-generators yielded markedly
different probability distributions depending on the number of outcomes in
the gamble. Table $2.2 in the online supplement quantifies the degrees of
probability variance within options, giving a more direct measure of prob-
ability variance. Finally, each choice problem consisted of two, four, or eight
options, with each option having the same number of outcomes (two, four, or
eight). Here, we focus on the condition with two options per choice problem;
this resulted in 60 sets of choice problems (i.e., 20 environments consisting
of two, four, or eight cutcomes).

2.5.3 Learning by Sampling

All heuristics learned about the properties of the choice problem in question
by sequentially taking one draw at a time from each of the two options.
Based on this information, the heuristics chose what they inferred to be
the best option after each sample. The heuristics thus advanced from com-
plete ignorance to progressively more knowledge and less uncertainty with
each round of sampling. To experience the consequences of this type of sam-
pling and heuristic choice for yourself, please visit interactive element 2.1
(at https://taming-uncertainty.mpib-berlin.mpg.de/). In our simulation,
learning stopped after 50 rounds (resulting in 50 sampled outcomes for
each option and 100 sampled outcomes for each choice problem with two
options). For each of the 20 environments, 6,000 choice problems were ran-
domly generated (2,000 each for choice problems containing options with
two, four, and eight outcomes). Each heuristic therefore made 50 x 6,000
choices, amounting to 300,000 choices per environment (when a heuristic
was unable to reach a choice, a random choice between the options was
implemented). How did uncertainty and the successive reduction of uncer-
tainty through learning affect the heuristics’ performance? We first turn to
how the heuristics fared in the environment that Thorngate (1980) analyzed
(i.e., rectangular outcome and probability distributions); we then consider
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their performance across all 20 environments and, finally, examine the inter-
action between the specific simplifying assumptions made by each heuristic
and its performance in specific environmental structures.

2.5.4 How Do Heuristics Fare When Uncertainty Rules?

Figure 2.1 plots the performance of the five competitors as a function of
learning for choice problems involving two options. The figure plots the
average expected value of the option chosen by each heuristic, relative to
chance level {50%) and to the performance of omniscient expected value
theory (100%). Let us highlight four observations. First, there was sub-
stantial variability in performance, with the least-likely heuristic again (as in
Thorngate’s, 1980, tournament) lagging far behind. Second, in some cases,
performance increased little with learning—or even decreased (e.g., the lexi-
cographic heuristic); in others, it increased substantially (e.g., the probable
heuristic). Third, the natural-mean and the equiprobable heuristics clearly
outperformed the lexicographic heuristic and, by a smaller margin, the prob-
able heuristic. Fourth, when learning samples were small, the equiprobable
heuristic performed as well as or even slightly better than the natural-mean
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Figure 2.1

Average performance for each of the five heuristics (see box 2.1): the natural-mean
(NM), equiprobable (E), probable (P), lexicographic (LEX), and least-likely (LL) heu-
ristics in the environment that Thorngate (1980) implemented (rectangular outcome
and probability distributions) as a function of learning (5, 20, and 50 samples per
option) for choice problems involving two options (and averaged across two, four
and eight outcomes). The performance benchmark for omniscient expected value
theory is 100%. The dotted line represents the average performance across the three
sample sizes.
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heuristic; once more knowledge became available, the latter had the edge.
Averaged across the number of outcomes, and with performance expressed
relative to the range of best possible to worst possible performance (as in
our reanalysis of the Thorngate environment), the equiprobable heuristic
scored 92.1% (5 samples), 95.1% (20 samples), 94.8% (50 samples}, with a
mean of 94.0%; the natural-mean heuristic scored 91.7% (5 samples), 97.3%
(20 samples), 98.6% (50 samples), with a mean of 95.9%. The latter repre-
sents the performance of expected value theory, assuming it lacks omni-
science and has to make do with sampled slices permitting a noisy glimpse
of the environment. Thus, the advantage of expected value theory decreases
from 5-6 percentage points under conditions of perfect knowledge in our
reanalysis of the simulation by Thorngate (1980) to 1.9 percentage points
under conditions of imperfect knowledge. Will these findings generalize
across environments beyond the specific environment that Thorngate chose
for his simulations?

2.5.5 Generalization: Does the Performance Gap Close

More Generally?

We next examined the heuristics across all 20 choice environments imple-
mented (see section 2.5.2). We again focused on choice problems involving
two options; the results for problems with more options were not qualita-
tively different. Figure 2.2 plots the heuristics’ performance as a function of
learning. As before, the natural-mean and the equiprobable heuristics were
the frontrunners. Averaged across S, 20, and 50 samples, the former scored
97.2% and the latter 93.8%—resulting in a difference of 3.4 percentage
points, almost half the size of the gap (6 percentage points) found in our
reanalysis of Thomgate’s (1980) data. In particular, under high uncertainty
(5 samples), the performance of the two heuristics was nearly identical: 93.2%
vs. 93.9%. The next-best heuristic was again the probable heuristic (aver-
age score: 90.7%), followed by LEX (87.4%). These findings show that the
equiprobable heuristic, which ignores all probabilities, lagged behind the
natural-mean heuristic by just 3.4 percentage points when averaged across
all sample sizes; when uncertainty was pronounced, their performance was
nearly indistinguishable. As mentioned in section 2.5.1, the latter heuristic
is equivalent to expected value theory without the gift of omniscience. In
summ, across two simulations, we found that the advantage of expected value
theory over simple heuristics shrank substantially, or even reversed slightly,
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Figure 2.2

Average performance for each of the five heuristics (see box 2.1): the natural-mean
(NM), equiprobable (E), probable (P), lexicographic (LEX), and least-likely (LL) heu-
ristics across all 20 environments. The results are plotted as a function of learning
(5, 20, and 50 samples per option) and are limited to choice problems with two options
(and averaged across two, four and eight outcomes). The dotted lines represent the
heuristics’ performance averaged across 5, 20, and 50 samples.

when all strategies were tested under realistic assumptions of imperfect
knowledge relative to perfect knowledge.

We next turn to Simon’s (1956) second proposal: “The environments to
which organisms must adapt possess properties that permit further simpli-
fication of its choice mechanisms” (p. 129). Taking advantage of the various
environments we implemented, we are now, like J. W. Payne et al. (1993), able

to examine the impact of distinct environmental structures on the heuristics’
performance.

2.5.6 What Are Heuristics’' Environmental Allies?

According to J. W. Payne et al.’s (1988) observations, variance in probability
information is an environmental ally of the lexicographic heuristic but a
foe of the equiprobable heuristic. Our multiple combinations of outcome
distributions and probability mechanisms permitted us to systematically
analyze the impact of variance (see table $2.2), separately for the dimen-
sions of probability and outcome. In the following analyses, we focus on
choice problems with two options and eight possible outcomes per option,
making it easier to detect possible dependencies between environmental
structures and heuristic policies. Moreover, we limmil our analysis to two
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heuristics with different policies—lexicographic and equiprobable—and
use the natural-mean heuristic as a benchmark; again, the latter is compa-
rable to expected value theory in the context of sampling, where knowl-
edge is limited.

Our first analysis combined the rectangular outcome distribution with
the probability distributions obtained from the four P-generators: rectan-
gular, U-shaped, exponential, and skewed (see figure 52.2 and details in
the online supplement). Figure 2.3 plots the three heuristics’ scores as a
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Figure 2.3

Average expected score for the natural-mean (NM), equiprobable (E), and lexico-
graphic (LEX) heuristics as a function of learning (n=1-50 samples per option) and
of four construction principles for the probability information (rectangular, expo-
nential, U-shaped, and skewed). In each case, the distribution of the outcome infor-

mation is rectangular. The results refer to choice problems with two options and
eight outcomes.
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function of learning, by probability distribution. When variance in prob-
abilities was relatively small—as was the case for the rectangular and the
U-shaped P-generators—the equiprobable heuristic outpaced the natural-
mean heuristic for small to medium sample sizes; in addition, the perfor-
mance of the lexicographic heuristic did not improve with learning. The
reason for this lack of learning is that the “most likely” outcome (LEX's
top priority) tends to be experienced early in the learning process; more
sampling tends not to yield previously unknown outcomes. When variance
in probabilities was high, as was the case for the exponential and skewed
P-generators, the natural-mean heuristic clearly outstripped the equiprob-
able and lexicographic heuristics. Under this condition, the accuracy of
the equiprobable heuristic decreased with learning. This phenomenon is
explained by the disproportional impact of rare outcomes. Specifically, a
heuristic that keeps learning will eventually encounter relatively rare out-
comes. This causes a problem for the equiprobable heuristic: no matter how
rare an outcome is, the equiprobable heuristic will keep assigning it the
same weight as it assigns to much more common outcomes. Consequently,
the equiprobable heuristic “overweights” rare outcomes (see chapter 8).
The lexicographic heuristic does not fall into the same trap, because its top
priority is the most likely outcome.

Variance in probabilities is thus an environmental property that clearly
impacts the performance of heuristics. The same does not hold for vari-
ance in outcomes. Following the same logic as in the previous simulation,
in a second analysis we combined the rectangular P-generator with five
outcome distributions: the rectangular, normal, exponential, Cauchy, and
lognormal distributions (see figure $2.1 in the online supplement). The
equiprobable heuristic outpaced the natural-mean heuristic across all dis-
tributions (and degrees of outcome variance) when uncertainty was pro-
nounced (i.e., 20 samples or fewer). It was only after substantial learning
that the natural-mean heuristic gained the upper hand. The lexicographic
heuristic performed on a much lower level; in addition, it failed to benefit
from learning. The reason is that, even in very small samples, LEX settles
on the most likely outcome—and the most likely outcome will occur early
on, irrespective of how much return it offers. Consequently, rare but (very)
large outcomes that are experienced with more sampling are unlikely to lead
to a different choice for LEX because they cannot replace the “most likely
outcome,” to which LEX gives priority.
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Taken together, these results help to reveal the relative match (or lack
thereof) of choice heuristics to environmental structures: we can thus
identify environmental properties that support or hamper the heuristics’
performance under uncertainty. First, when variance in probability infor-
mation is relatively high, boldly ignoring all probabilities—that is, applying
the equiprobable heuristic—is detrimental to performance (see figure 2.3).
Under these conditions, the equiprobable heuristic risks attaching too
much weight to rare events by giving each outcome the same weight. In
contrast, noncompensatory heuristics such as the lexicographic heuristic,
which shields itself against overweighting low-probability events, learn
and perform better than a unit-weight policy. When, however, variance in
probability information is relatively low, the equiprobable heuristic, which
sums across all outcomes, offers the better simplification policy. For small
samples, it even eclipses the natural-mean heuristic. In this environment,
the noncompensatory policy of the lexicographic heuristic falls behind.
Variance can also occur on the dimension of outcomes. The equiprobable
heuristic proves utterly robust against this source of variance. Regardless of
whether outcome variance is low or high, the policy of simply summing all
(nonweighted) outcomes excels when probability variance is low. In addi-
tion, when uncertainty is high to medium (small samples), the equiprob-
able heuristic even eclipses the natural-mean heuristic.

2.6 Theoretical Realism and Imperfect Knowledge

As Nobel laureate Kenneth Arrow (1951) stressed, incomplete knowledge
is the key property and condition of many real-world choices (see chap-
ter 18). People have to choose between actions without being fully aware
of the consequences. What theories of choice respect the limits of time,
knowledge, and computational power under these ubiquitous environmen-
tal and psychological conditions? In Simon's (1956, 1983) view, the classi-
cal economic framework makes unrealistic demands on people. Instead, he
suggested that most tasks are mastered by “approximate methods” (Simon,
1990, p. 6). However, there are costs to using these methods rather than the
optimal model. When Simon first proposed the notion of bounded ratio-
nality, he stated that approximate methods are likely to fall far short of the
ideal of maximizing as postulated in economic theory (Simon, 1956). He
thus appears to have assumed what J. W. Payne et al. (1988, 1993) later por-
trayed as an accuracy-effort trade-off. The less information, computation,
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or time a decision maker invests, the less accurate their behavior (choice,
inferences, and so on) will be. This appears to be an inescapable and law-like
truth about the mind’s decision-making machinery. Indeed, both Thorngate
(1980) and J. W. Payne et al. (1993) observed evidence in support of this trade-
off, notwithstanding the relatively high level of accuracy that some heuristics
achieved in their computer tournaments. These tournaments did not, how-
ever, implement imperfect knowledge. Instead, the analyses were focused on
“small worlds” (Savage, 1954), decisions from descriptions (Hertwig & Erev,
2009), and decisions under risk (as defined by Knight, 1921/2002, and Luce
& Raiffa, 1957), where the possible outcomes and their probabilities are pre-
cisely known. Without doubt, such choice situations exist, but they may be
the exception rather than the rule.

How pronounced is the accuracy—effort trade-off in environments charac-
terized by uncertainty, imperfect information, and the need for search? We
addressed this question in the context of monetary gambles, that portray
decision making in terms of just two basic dimensions: outcomes and prob-
abilities. Admittedly, this environment is somewhat odd, divorced as it is
from any real content and context. Yet it would be difficult to overstate the
role that monetary gambles have played in the development of normative
and descriptive theories of choice (e.g., Allais, 1953; Bernoulli, 1738/1954;
Kahneman & Tversky, 1979). Moreover, it is the context in which the ideal
of rational decision making in terms of weighting and summing all pieces
of information was originally conceived. From expected value theory and
expected utility theory to the other descriptive neo-Bernoullian choice theo-
ries such as cumulative prospect theory (Tversky & Kahneman, 1992)—all
suggest, once interpreted as information-processing theories, that people
have to weight and sum. Heuristic policies that forgo weighting or summing
can lead to surprisingly accurate performance; moreover, our simulation
results (see figure 2.2) suggest that—to the extent that an accuracy—effort
trade-off exists—it is less severe under incomplete knowledge (uncertainty)
than under perfect knowledge (risk).

2.7 The Strategy Selection Problem and Uncertainty

Our results suggest an interesting twist to a key question: How does the
mind select a heuristic from the adaptive toolbox? The simulations of
choice heuristics by Thorngate (1980) and J. W. Payne et al. (1988), as well
as those in this chapter, demonstrate one thing: there is great variability in
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the performance of heuristics, and choosing the wrong one in a given envi-
ronment may prove costly. How does the mind figure out which heuristic
to select? Selection could be guided by individual reinforcement learning
(e.g., Rieskamp & Otto, 2006), by teaching (e.g., physicians, firefighters, and
pilots are taught which cues to consult, in which order, and how to process
them), by social learning (e.g., when procedures and strategies are copied
from peers or other models), or by meta-inductive strategies that consider
heuristics’ past successes (Schurz & Thorn, 2016). The process might also
involve systematic change and adaptation on an evolutionary time scale,
as with rules of thumb for predation and mate search in animal species
(Hutchinson & Gigerenzer, 2005). There is, however, another answer. The
good average performance of the equiprobable heuristic under conditions
of highly limited knowledge (see figure 2.2)—a result that held across envi-
ronmental structures—suggests that some heuristics may offer good fallback
options when an informed strategy selection is not possible. In the domain
of inference, people have indeed been found to rely more on such unit-
weighting strategies under conditions of greater uncertainty (i.e., when the
cue hierarchy is unknown) than under conditions of lesser uncertainty (e.g.,
Pachur & Marinello, 2013).

2.8 Obijectives beyond Expected Value Maximization

Our results from the preferential domain of monetary gambles demon-
strate that the dynamic of the accuracy-effort trade-off differs, depending
on whether performance is tested under “small world” conditions or under
realistic conditions of incomplete knowledge and uncertainty. Similar
results have been found in the inference domain (Gigerenzer & Brighton,
2009; Gigerenzer, Hertwig, & Pachur, 2011). However, let us emphasize one
important point. Simplification in the choice process can go too far. Heu-
ristics with a strong bias (see discussion of the bias-variance dilemma in
section 2.4)—for instance, the least-likely heuristic (see figures 2.1 and 2.2)—
fall far behind the best-performing heuristics. One could, however, argue
that this heuristic achieves a very different objective than expected value
theory—namely, it minimizes the risk of ending up with a bad outcome, or
even the worst possible outcome. In future analyses, it will therefore be
important to evaluate these heuristics against diverse objectives, includ-
ing risk aversion. Future simulations can also examine the extent to which
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imperfection in the process of learning outcomes and probabilities, as well
as the forgetting of experiences, affects the performance of normative and
heuristic models of choice. We suspect that such factors might compromise
the more complex normative models to a greater extent than the simpler
heuristics, thus bringing them even closer together.

2.9 Do People Use the Simplification Policies Studied?

Models of heuristics are realistic insofar as they respect constraints such as
imperfect knowledge, time pressure, and limited computational resources.
But do people actually use these heuristics? Relatively little is known about
the extent to which people employ the equiprobable, lexicographic, and
natural-mean heuristics in choices under uncertainty (e.g., decisions from
experience; Hertwig & Erev, 2009; for choices under risk, see Brandstatter,
Gigerenzer, & Hertwig, 2006; Glockner & Pachur, 2012; Pachur, Hertwig,
Gigerenzer, & Brandstitter, 2013). However, the equiprobable and lexico-
graphic heuristics have been observed to be used in the domain of inference
(e.g., Broder, 2011; Pachur & Marinello, 2013). Drawing on a meta-analysis
of over 45,000 sampling sequences and subsequent decisions from experi-
ence (Wulff, Mergenthaler-Canseco, & Hertwig, 2018), Hertwig, Wulff, and
Mata (2018) analyzed the ability of various heuristics to predict people’s
choices. Of the heuristics implemented here, the natural-mean heuristic
was best at predicting people’s choices, outperforming, for instance, cumu-
lative prospect theory (Tversky & Kahneman, 1992; assuming existing sets
of parameter values); on average, it correctly predicted 73.2% of choices
(Hau, Pleskac, Kiefer, & Hertwig, 2008). This does not imply that the people
in question used this or other heuristics to make those choices. But it suggests
that heuristics represent a class of models that should always be taken into
account when the aim is to provide a realistic account of how people make
choices under uncertainty.

2.10 Revisiting Simon’s Expectation

To conclude, the results of the pioneering computer tournaments by Thorn-
gate (1980) and J. W. Payne et al. (1988, 1993) supported Simon’s expectation
that relying on simple decision strategies necessarily comes at a price: their
choices will fall short of the ideal of maximization postulated in economic



50 R. Hertwig, ). K. Woike, T. Pachur, and E. Brandstitter

theory (Simon, 1956). Our simulations substantially qualify both Simon’s
expectation and the conclusions drawn from the past computer tourna-
ments: in the context of more realistic choices, where the state of knowledge
is not perfect, the performance gap between simple choice heuristics and
maximization is much smaller than previously thought. It is considerably
smaller under uncertainty than under risk, and under some environmental
conditions heuristics even take the lead. This is an important result. Heuris-
tics are applied not only because the mind’s cognitive resources are inevitably
limited when measured against the world’s complexity. Equally impor-
tant, the environment often deprives decision makers of the information
required by computationally and informationally more complex strategies.
The Olympian models—such as the expected utility theory as proposed by
Bernoulli (1738/1954) and axiomatized by von Neumann and Morgenstern
(1944/2007)—require perfect knowledge of probabilities. When objective
probabilities are unknown or only imprecisely known, the decision maker
therefore needs to estimate subjective ones, as in Savage’s (1954) subjective
expected utility theory. Or—and this is the alternative that emerges from our
analyses, as exemplified by the good performance of both the natural-mean
heuristic and the equiprobable heuristic—they can do without knowledge
of probabilities. In many environments, doing without may be a better bet
than running the risk of making consequential errors when estimating sub-
jective probabilities out of thin air.



