Taming Uncertainty

Ralph Hertwig, Timothy ]. Pleskac, Thorsten Pachur,
and The Center for Adaptive Rationality

The MIT Press
Cambridge, Massachusetts
London, England



8 The Weight of Uncertain Events

Thorsten Pachur and Ralph Hertwig

8.1 The St. Petersburg Paradox

Probably no decision problem has shaped the world of ideas as much as the
St. Petersburg game. Originally conceived by Swiss mathematician Nicolas
Bernoulli in the early 18th century, it was one of five problems he submitted
to Pierre Rémond de Montmort, a French mathematician and man of letters
who corresponded with eminent scholars such as Leibniz, Nicolas Bernoulli’s
cousin Daniel Bernoulli described the St. Petersburg game as follows:

Peter tosses a coin and continues to do so until it should land “heads” when it
comes to the ground. He agrees to give Paul one ducat if he gets “heads” on the
very first throw, two ducats if he gets it on the second, four if on the third, eight
if on the fourth, and so on, so that with each additional throw the number of
ducats he pays is doubled. Suppose we seek to determine the value of Paul’s expec-
tation. (Bernoulli, 1738/1954, p. 31)

The puzzling aspect of this seemingly straightforward problem resides in
the gap between the “rationally” determined value of the game (i.e., Paul’s
“expectation”) and people’s valuations of it (i.e., the price at which they
would sell the chance to play the game). According to expected value theory,’
which was the accepted method of calculating the expectation at the time,
the St. Petersburg game gives Paul the opportunity to win an infinite amount
of money. Theoretically, he should therefore demand a very high price for
it. In reality, “any fairly reasonable man would sell his chance, with great

1. As explained by Daniel Bernouili, “[e]xpected values are computed by multiplying
each possible gain by the number of ways in which it can occur, and then divid-
ing the sum of these products by the total number of possible cases” (Bernoulli,
1738/1954, p. 23).
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pleasure, for twenty ducats” (Bernoulli, 1738/1954, p. 31). This gap between
theory and reality constitutes the St. Petersburg paradox.

Why is the expected value of the St. Petersburg game infinitely large?
Expected value theory evaluates a risky option in terms of the sum of all
the possible payoffs, each multiplied by the probability of its occurrence.
The probability of Peter throwing heads the first time is .5; in this case, Paul
would receive 1 ducat, thus contributing 1x.5 to his expectation. The prob-
ability of Peter throwing tails on his first attempt and heads on his second
one is .25, thus contributing 2x.25 to Paul’s expectation. More generally,
the overall expectation of the game (in which, in theory, the coin could be
tossed an infinite number of times) is

N 1" n-1 1 Tl
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From this it follows that, given an infinite number of throws, Paul’s expec-
tation is infinite (Menger, 1934). As mentioned above, however, typical
valuations of the game are rather modest, often in the range of twice the
amount of money one would win if the game were to end with the first
throw (e.g., Hayden & Platt, 2009). How is it possible to explain the St.
Petersburg paradox—and to reconcile theoretical expectations with peo-
ple’s actual behavior?

Nicolas and Daniel Bernoulli came from one of the most iflustrious fami-
lies in the history of mathematics and science; it produced half a dozen
outstanding mathematicians in just a couple of generations. Daniel Ber-
noulli was intrigued by the St. Petersburg paradox and offered an explana-
tion that was to become the most influential theory of individual decision
making under risk—today known as expected utility theory (he referred to
“moral expectation”; Bernoulli, 1738/1954, p. 24). Specifically, he retained
the core of expected value theory—the multiplication and maximization
components—but suggested replacing objective monetary amounts with
subjective utilities. He argued that the pleasure, or utility, of money does
not increase linearly with the monetary amount (as assumed in expected
value theory); instead, the increases in utility diminish, with the result that
the expected utility of the St. Petersburg game becomes finite (and can
become rather small). A century later, the notion of diminishing sensitiv-
ity implied by the marginally decreasing utility entered psychophysics in
the form of the Weber-Fechner function, and economics in the concept of
diminishing returns.
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But Daniel Bernoulli's proposal was not the only possible solution to the
St. Petersburg paradox raised at the time {for overviews, see Hayden & Platt,
2009; Jorland, 1987; Menger, 1934). Another began with the observation
that for all practical purposes, the very rare possibility of the coin landing
heads up only after'very many tosses, which would lead to a large gain,
can be disregarded. Originally suggested by Nicolas Bernoulli himself (see
van der Waerden, 1975), this idea was further developed by French natural-
ist Buffon (1777). In one of the first scientific simulations (see 8. M. Stigler,
1991), Buffon had a child perform a series of 2,048 sets of coin tosses; each
tfime the set continued until the coin landed heads up. On the basis of the
resulting statistics, he concluded that the value of the game was about 5
ducats, irrespective of its theoretically infinite expected value. Taking this
value as an anchor, one may argue that small probabilities in the St. Peters-
burg game—specifically, probabilities smaller than 3% (i.e., throwing at least
five tails in a row)—can, will, or even should receive less weight than their
objective magnitude. In the extreme, they may be completely disregarded
(there is some debate about the exact threshold below which a probability is
disregarded; see Dutka, 1988).

Building on Buffon’s account and emphasizing the role of probabilities,
Menger (1934) proposed a subjective function across the entire probability
range and argued that “chances are undervalued both where the probabili-
ties are very small (that is, close to 0) and where the probabilities are very
high (that is, close to 1). Only chances with medium probabilities are valued
in a way which begins to correspond to mathematical expectation” (p. 269).
Although this explanation of the St. Petersburg paradox focusing on the prob-
ability dimension received less attention than Daniel Bernoulli’s account,
which focused on the monetary dimension, it planted the idea that people
do not perceive or treat probabilities linearly when making risky decisions. In
the guise of probability weighting, it later became one of the cornerstones of
modern descriptive models of decision making under risk (e.g., Birnbaum &
Chavez, 1997; Edwards, 1962b; Kahneman & Tversky, 1979; Lopes & Oden,
1999; Luce, 2000; Prelec, 1998; Savage, 1954; Tversky & Fox, 1995; Tversky
& Kahneman, 1992).

Probability weighting also came to be used as a framework for concep-
tualizing and measuring how people respond to uncertainty. For instance,
it has been used to characterize decisions from experience, an important
type of decision under uncertainty, and to explain how they differ from
decisions from description (see chapter 7). In decisions from experience,



156 T. Pachur and R. Hertwig

there is always at least residual uncertainty about the actual probabilities of
the events experienced. Several analyses have suggested that one key dif-
ference between decisions from experience and decisions from description
consists in their different probability weighting patterns (e.g., Glockner,
Hilbig, Henninger, & Fiedler, 2016; Hertwig, Barron, Weber, & Erev, 2004;
Kellen, Pachur, & Hertwig, 2016; Regenwetter & Robinson, 2017}—that is,
in how much weight people give to the possible outcomes of an option as
a function of their probability of occurrence.

QOur goal in this chapter is to illustrate that the concept of probabil-
ity weighting—although rooted in Daniel Bernoulli’s utility framework,
which Herbert Simon (1955, 1983) criticized for making unrealistic assump-
tions about the decision maker (see chapter 2)—can help characterize and
measure how an adaptive and boundedly rational individual responds to
uncertainty. We start by sketching the historical roots of probability weight-
ing (see section 8.2) and reviewing studies that have compared patterns
of probability weighting in experience-based and description-based choice
(see section 8.3). Some analyses have concluded that people making deci-
sions from experience choose as if they underweight rare events; others
have found that rare events are overweighted, even more strongly than
in decisions from description. We clarify these divergent conclusions and
explain how, although seemingly contradictory, they can in fact coexist.
Second, we discuss how a pattern of probability weighting that overweights
small probabilities and underweights large probabilities can constitute an
adaptive response to uncertainty (see section 8.4). Third, we highlight how
heuristics that can be used to tackle uncertainty result in distinct shapes
of the probability weighting function (see section 8.5). In other words, we
identify which “footprints” specific choice heuristics leave when a prob-
ability weighting function is estimated for the choices that they generate.

8.2 A Brief History of Probability Weighting

Buffon’s (1777) simulation was probably the first investigation into the role
of (small) probabilities in decisions under risk. Probabilities again became
an explicit target of interest in the 20th century. Preston and Baratta (1948)
pioneered attempts to measure how people treat probabilities when making
decisions under risk. Their participants were presented with lotteries offer-
ing the chance of winning a number of points with some probability (e.8.
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250 points with a probability of 5%) and asked to make a bid for each lottery.
By comparing these bids with the lotteries’ expected values—determined by
multiplying the number of points by the probability of winning—Preston
and Baratta sought to establish the “psychological probability” (p. 189) of
outcomes. Not surprisingly, participants indicated higher bids for lotter-
ies offering a particular payoff with a higher probability than for lotteries
offering the same payoff with a lower probability. However, participants did
not seem to weight the possible payoffs according to their probabilities, as
expected value theory would predict. Instead, as shown in figure 8.1a, “the
mean winning bid exceeds the mathematical expectation for small values
of the probability and is less than the mathematical expectation for large
values of the probability” (p. 186). In other words, low probabilities seemed
to be overweighted in people’s bids relative to their objective probability,
and high probabilities seemed underweighted. This distortion of objective
probabilities in the decision weights that people attach to events seemed to
reflect their preferences to engage in risk when making a decision.

Edwards (1955) investigated choices between lotteries and likewise con-
cluded that probabilities, like monetary outcomes, are not taken at face value
but are subjectively represented in a distorted fashion (see also Edwards, 1962b;
Tversky, 1967). He even went so far as to conclude, more than 200 years after
Daniel Bernoulli (1738/1954), that subjective representations of probabilities
are much more important than utilities (Edwards, 1955, p. 214).

Several theories have since introduced mathematical functions to
describe the transformation of objective probabilities into subjective deci-
sion weights (e.g., Birnbaum & Chavez, 1997; Lopes & Oden, 1999). Kah-
neman and Tversky (1979) coined the term probability weighting function
for these formal descriptions.? Arguably the most prominent theory pos-
tulating a probability weighting function is cumulative prospect theory

2. In some cases, the weighting function applies directly to the objective probability
of an outcome; in others, it applies to the rank-dependent, cumulative probability
distribution (e.g., Quiggin, 1982). For example, when deriving decision weights, n,
from cumulative probabilities for a lottery offering €20, €30, or €40 with probabili-
ties of 55%, 30%, and 15%, respectively, the decision weight for the outcome €30
would follow from the (transformed) probability of obtaining €30 or more, which is
W(-30+.15)=w(.45), minus the (transformed) probability of obtaining exactly €30,
which is w(.30). The function w(p) formalizes the transformation of the probability
(see box 8.1 for details).
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(a) Relationship between the objective probability of winning and the weight people
seem to attach to the possibility of winning, as derived from bids made in Preston
and Baratta (1948). (b) Cumulative prospect theory’s weighting function. The left
panel shows functions with varying values of the curvature parameter y (with y<1
yielding overweighting, reflecting low, medium, and high probability sensitivity,
and y>1 yielding underweighting). The right panel shows functions with varying
values of the elevation parameter & (with low, medium, and high levels of optimism
and pessimism in the gain and loss domain, respectively; see box 8.1 for details).



The Weight of Uncertain Events 159

(Tversky & Kahneman, 1992). Figure 8.1b illustrates cumulative prospect
theory’s probability weighting function. The function is parameterized,
allowing it to assume different types of curvature. Consistent with earlier
empirical observations (e.g., Edwards, 1955; Preston & Baratta, 1948; Wu &
Gonzalez, 1996; see ’figure 8.1a), the typically assumed curvature is inverse
S-shaped, indicating that small probabilities are overweighted relative to
their objective counterparts, and that intermediate and large probabilities
are underweighted. The parameterization also allows for different degrees
of over- and underweighting (see figure 8.1b). An inverse S-shaped curva-
ture of the weighting function can account for several notable violations
of expected value and expected utility theory, such as the fourfold pattern
(Tversky & Kahneman, 1992) and the Allais paradox (for an overview, see
Camerer & Ho, 1994). Ironically, an inverse S-shaped curvature cannot
explain the St. Petersburg paradox, the context from which the concept of
probability weighting emerged (Blavatskyy, 2005).

Two main characteristics of cumulative prospect theory’s weighting func-
tion, which are governed by separate parameters and by which the function
can vary gradually, are its curvature and its elevation (see box 8.1 for a for-
mal description or explore the shape of the probability weighting function
yourself in interactive element 8.1 at https://taming-uncertainty.mpib-berlin
.mpg.de/). As the left panel of figure 8.1b illustrates, the curvature reflects
how sensitive a decision maker is to differences in probability; with a more
pronounced curvature, the difference between, say, 30% and 50% is less
strongly reflected in differences in decision weights than with a less pro-
nounced curvature. As the right panel of figure 8.1b illustrates, the elevation
governs the absolute magnitude of the decision weights. For risky gains,
a higher elevation implies more optimistic (and thus more risk-seeking)
choices than a lower elevation; for instance, a person with a higher elevation
would be more willing to take a 10% chance of winning €1,000 (otherwise
nothing). For risky losses, a higher elevation implies more pessimistic (and
thus more risk-averse) choices. As is also shown in the left panel of figure
8.1b, the parameterization of the probability weighting function also allows
itto take an S-shaped form (specifically, when the curvature parameter y>1;
see box 8.1), such that small probabilities are underweighted, whereas inter-
mediate and large probabilities are overweighted. This form would be con-
sistent with the solution to the St. Petersburg paradox proposed by Nicolas
Bernoulli (see van der Waerden, 1975), Buffon (1777), and Menger (1934).
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Box 8.1
Formal description of cumulative prospect theory’s weighting function.

To account for choices between options, each having cutcomes xp>...>x 20
>y1>...> ¥, and corresponding probabilities p ... pr and g ... g, cumulative
prospect theory assumes a rank-dependent transformation of the outcornes’
probabilities into decision weights. More specifically, the weight n* () given
to a positive (or negative) outcome is the difference between the probability of
receiving an outcome at least as good (or bad} as x (or ¥} and the probability
of receiving an outcome better (or worse} than x {or ):

K;=W+(pm)

7 =w(gy)

AF=wWH(P+ et P)—WHP ot ) for 1Si<m
7537:“’?-{qi+"'*€fﬁ}"w_((ﬁ+}.+""1'qu} ﬁ)}'lﬁj<ﬂ, (B1)

The probability weighting functions for gains and losses—w" and W,
respectively—are typically assumed to have an inverse S-shaped curvature,
embodying the overweighting of rare events and the underweighting of
common events. Different types of weighting functions have been proposed
(e.g., Prelec, 1998; Tversky & Kahneman, 1992; for an overview, see Stott,
2006). One of the most common versions features two parameters that sepa-
1ate the curvature of the weighting function from is elevation (e.g., W. M.
Goldstein & Einhorn, 1987; R. Gonzalez & Wu, 1999
arpr
W= ____é—_qT‘__
g7 +(1-g¥

A+

(B2)

The parameters ¥ and v~ (both > 0) govern the function’s curvature in the
gain and loss domains, respectively, and indicate how sensitive choices are to
differences in probability {with smaller values of yreflecting lower sensitivity).
With y <1 the function has an inverse S-shaped form {indicating overweight-
ing of rare events); with y>1 the function has an S-shaped form (indicating
underweighting of rare events). The elevation of the weighting function is
controlled by the parameters 8" and § (both >0), respectively. As highlighted
by R. Gonzalez and Wu (1999), the elevation reflects the degree of risk aver-
sion (traditionally assumed to be captured by the curvature of the value func-
tion; but see Lopes, 1995; Wakker, 2010), with a lower (or higher} elevation
in the gain (or loss) domain indicating higher risk aversion (or pessimismj.
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In sum, people’s decisions under risk indicate that more probable events
receive more subjective weight than less probable events, but that rare events
are overweighted relative to their probabilities, whereas common events are
underweighted. The most prominent weighting function formally character-
izing the relationship between probabilities and subjective decision weights
was proposed in the context of cumulative prospect theory. It can assume
both an inverse S-shaped form (implying overweighting of rare events) and
an S-shaped form (implying underweighting of rare events). It also permits
different degrees of over- and underweighting. As we discuss next, the con-
cept of probability weighting has also been used to conceptualize and mea-
sure differences between decisions under risk, where probabilities of outcomes
are explicitly stated, and decisions under uncertainty, where probabilities are
only vaguely known or unknown.

8.3 Probability Weighting in Decisions under Uncertainty

What determines the shape of the probability weighting function—that is,
how sensitive people’s decisions are to differences in probability (expressed
in the curvature of the function) and how optimistic they are (expressed in
its elevation)? Kahneman and Tversky (1979) speculated that the uncer-
tainty of an outcome could play a role. For example, imagine you are
offered the chance of winning €200 as a function of the probability of an
epistemic event, such as the probability that the maximum daytime tem-
perature in downtown San Francisco on April 1 next year is between 65 °F
and 80 °F. How do you weight the possibility of winning €200 in this option
relative to an option where the probability of winning is explicitly stated
(e.g., 20%)? Tversky and Fox (1995) developed a formal account of probabil-
ity weighting for the first kind of option, in which probabilities are uncertain
(see also Tversky & Wakker, 1995). A crucial assumption is that before mak-
ing a choice, decision makers first estimate the probability of an outcome
(e.g., that the temperature will be between 65 °F and 80 °F) in such a situa-
tion. The decision weights are then inferred from their choices.

To illustrate how uncertainty impacts probability weighting, let us con-
sider a study by Tversky and Fox (1995). Participants chose between options
that could lead to different outcomes. In the risk condition, the probabilities
of the outcomes were precisely described (e.g., “Receive $75 if the number
on a single poker chip drawn from an urn containing 100 chips numbered
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consecutively from 1 to 100 is between 1 and 25.”). In the uncertainty con-
dition, the probabilities were not explicitly stated but participants could
consult their memory of the past tc estimate them (e.g., “Receive $75 if the
maximum daytime temperature in downtown San Francisco on April next
year is between 65 °F and 80 °E”). Tversky and Fox compared the weight-
ing functions obtained from participants’ choices in the two conditions
with regard to their subadditivity, a robust property of empirical decision
weights.® The greater the subadditivity, the lower the probability sensitivity;
in other words, subadditivity implies reduced sensitivity to probabilities.
Subadditivity of decision weights was found to be larger under uncertainty
than under risk—people’s decisions were less attuned to differences in prob-
abilities when the probability information was fraught with uncertainty.

In Tversky and Fox’s (1995) study, the probabilities were uncertain
because they were expressed in terms of epistemic events (e.g., the tem-
perature at a particular location on a particular day), where people’s beliefs
were informed by their knowledge stored in memory. We next turn to
research that has studied probability weighting when probabilities are ini-
tially unknown and people could learn about them by sampling from the
environment.

8.3.1 “As-H” Inferences about the Weighting of Objectively Rare

Events in Decisions from Experience

The goal of the initial studies on the distinction between decisions from
description and decisions from experience was to understand when and
why people’s choices deviate from expected value maximization—and t0
examine how this deviation differs between description and experience
(Barron & Erev, 2003; Hertwig et al., 2004; E. U. Weber, Shafir, & Blais,
2004). Evidence from this and subsequent research (e.g., Erev, Ert, Plonsky,
Cohen, & Cohen, 2017; Wulff, Mergenthaler-Canseco, & Hertwig, 2018)
suggests that experience- and description-based choices differ systemati-
cally in how they deviate from expected value maximization. Wulff et al.
(2018) conducted a meta-analysis of 33 datasets examining the difference

3. More precisely, a weighting function is subadditive when the decision weight for
the sum of probabilities of various individual events is smaller than the sum of the
decision weights for the probabilities of the individual events.
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between description and experience in the average proportion of choices
maximizing expected value. When choice problems involved a risky and
a safe option—the type of problem commonly used to infer risk prefer-
ence in economics and psychology—the size of the gap was rather large {(on
average, about 20 percentage points). Note that this gap in choice is not
premised on any particular theory of choice {e.g., one that assumes prob-
ability weighting).

Another perspective on the description-experience gap was prompted
by the way Hertwig et al. (2004), Barron and Erev (2003), and E. U.
Weber et al. (2004) summarized their findings. These authors used an as-
if probability-weighting terminology stating, for instance, that “observed
choices indicated not overweighting of small-probability outcomes (hence-
forth, rare events), but rather the opposite: people made choices as if they
underweighted rare events; that is, rare events received less weight than
their objective probability of occurrence warranted” (Hertwig et al., 2004,
p. 535). This and sirnilar statements have invited the interpretation that the
description-experience gap consists mainly of a reversal of the probability-
weighting pattern. Consequently, numerous investigations have compared
probability weighting in experience and description (e.g., Abdellaoui,
LU'Haridon, & Paraschiv, 2011; Glockner et al.,, 2016; Hau, Pleskac, Kiefer, &
Hertwig, 2008; Kellen et al., 2016; Lejarraga, Pachur, Frey, & Hertwig, 2016;
Ungemach, Chater, & Stewart, 2009}.

Like Kahneman and Tversky (1979}, both Hertwig et al. (2004) and Bar-
ron and Erev (2003) made inferences about people’s probability weighting
directly from the observed choices. They did not formally estimate a weight-
ing function, nor were their analyses conditioned on people’s actual experi-
ence. In Hertwig et al. (2004), for instance, lottery problems were selected
such that systematically different patterns of choices would result if rare
events were accorded less weight in experience than in description. As a con-
sequence, the weighting was meant in an as-if sense (i.e., people behaved as
if rare events had less impact than they deserved). Further, the as-if weights
referred to the objective probabilities of the outcome distributions—that
s, the probabilities that governed the options’ payoff distributions—not to
the relative frequencies of the events that people had actually experienced.

To date, Regenwetter and Robinson (2017) have conducted the most
Systematic comparison of the weighting of objective probabilities in descrip-
tion and experience. After accounting for individual heterogeneity in
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preferences (their paramount concern), they found strong evidence for 2
description—experience gap in probability weighting and a choice pattern
consistent with the original conclusion that, relative to the objective prob-
abilities, rare events are overweighted in description and underweighted in
experience (for more details, see table 1 in Hertwig & Pleskac, 2018).

8.3.2 Weighting of Rarely Experienced Events

However, researchers soon began, for good reasons, to measure probability
weighting in decisions from experience based on people’s actual samples of
outcomes, rather than the objective probabilities. Is the shape of a probabil-
ity weighting function estimated on the basis of the relative frequency with
which events were actually experienced still different from that estimated
for decisions from description? Are rare events still underweighted? Such
underweighting could occur due to factors such as recency effects in mem-
ory (Ashby & Rakow, 2014; Wulff & Pachur, 2016). It is important to note
that even if description-based and experience-based decision weights did not
differ, choices in a given lottery problem could still systematically diverge:
relative experienced frequencies {or the perception thereof) can deviate sys-
tematically from objective probabilities due to sampling error, recency, and
other factors.

Table 8.1 (adapted from Wulff et al., 2018) shows the results of stud-
ies that have estimated probability weighting functions for decisions from
experience. As can be seen, there is considerable heterogeneity, with some
studies finding probability weighting functions consistent with the under-
weighting of rare events and others finding evidence for overweighting.
However, several of these analyses have methodological limitations. Take,
for instance, the study by Ungemach et al. (2009), who obtained evidence
for underweighting. In their analyses, parameters were estimated based on
a set of only six choice problems, and data from all participants were aggre-
gated for the estimation. Both aspects are likely to compromise the robust-
ness of the results (e.g., Broomell & Bhatia, 2014; Estes & Maddox, 2005;
Regenwetter & Robinson, 2017).

In a more rigorous analysis, Kellen et al. (2016) asked each participant to
make both experience-based and description-based decisions on a total of
114 choice problems from the gain, loss, and mixed domains. Each individ-
ual’s decisions were modeled with cumulative prospect theory, separately
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Table 8.1
Summary of parameter estimates on experience-based probability weighting in
decisions from experience (adapted from Wulff et al., 2018).

Inferred weighting
Study ' Description  Experience  of rare events
Sampling paradigm
Hau et al. (Z008) y=0.99 Linear weighting
Ungemach et al. (2009) — y>1 Underweighting
¥>1
- ’Y+ = [O: 2] -
¥=00,2]
— ¥>1 Underweighting
¥>1
— ¥>1° Underweighting
¥y>1
Camilleri & Newell (2011b) — y=10, 2] —
Camilleri & Newell (2013} =10, 2] y>1 Underweighting
v={0, 2] v>1 Underweighting
Frey, Mata, & Hertwig — ¥=1.3 Underweighting
(2015) =1
¥ =135
(6=1)
— ¥ =103 Underweighting
@=1
¥=1.05
&=1)
Lejarraga et al. (2016) v=0.89 v=0.81 Overweighting
8=0.96) (6=0.87)
v=0.20 v=0.53 Overweighting
6=4.33) (5=3.82) )
Glockner et al. (2016) y=0.73 v=0.56 Overweighting
6=0.55) (6=0.55)
y=0.73 v=0.55 Overweighting
©=0.32) 8=0.3%
v=0.96 y=0.55 Overweighting
8=0.70) (8=0.48)
¥=0.65 y=0.42 Overweighting
(83=0.80) (8=0.79)
y=0.59 v=0.91 Overweighting, but less
6=0.96) (6=1.04) pronounced relative to
description

(continued}
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Table 8.1 (continued)

Inferred weighting
Study Description  Experience  of rare events

Kellen et al. (2016) v=0.66 v=0.53 Overweighting
(3"=0.81, ¥'=0.71,
§=1.53) & =1.66)

Markant, Pleskac, —_ v=1.41 Underweighting
Diederich, Pachur, & ®=1)
Hertwig (2015)
o y=1.15 Underweighting
(6=1.61)
— v=0.92 Overweighting
©=1.3)

Variants of the sampling paradigm

Abdellaoui et al. (2011) ¥'=0.65 ¥ =0.66 Overweighting, but less
(8"=0.70) (5°=0.59) pronounced relative to
¥=073 ¥ =0.74 description
(6 =0.78) (8 =0.67)

(Nonparametric Overweighting, but less
estimation) pronounced relative to
description

Camilleri & Newell (2011b) — v>1 Underweighting
— v>1 Underweighting

Jarvstad, Hahn, Rushton, &  (Qualitative evaluation; Underweighting

Warren (2013) experienced frequencies)

(Qualitative evaluation; Overweighting
experienced frequencies)

Zeigenfuse, Pleskac, & Liu — vy=0.7 Overweighting

(2014) 6=0.3)

Kemel & Travers (2016) — v=0.68 Overweighting

(8=0.68)

_— v=0.59 Overweighting
(6=0.78)

— v=0.74 Overweighting
(6=0.66)

— v=0.63 Overweighting

(6=0.83)
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Figure 8.2

Individual-level probability-weighting functions (in gray), separately for decisions
from description and decisions from experience in Kellen et al. (2016). The results are
shown for the gain domain (differences between description and experience in the
loss domain were similar). The black lines show the functions based on the group-
level parameters.

for each learning mode. For experience-based decisions, the authors used
the outcomes that each participant had actually experienced and, as prob-
abilities, the relative frequencies of those outcomes in each participant’s
samples (thus taking sampling error into account). As figure 8.2 shows,
the resulting probability weighting function for decisions from experience
was inverse S-shaped, suggesting overweighting of rare events—the quali-
tatively same pattern observed for decisions from description. Importantly,
however, the curvature was even more pronounced in‘experience than in
description. This finding indicates, consistent with Tversky and Fox’s (1995)
analyses of decisions under uncertainty, reduced sensitivity to probabilities
in decisions from experience (see also Glockner et al., 2016; Lejarraga et al.,
2016). At the same time, Kellen et al. (2016; see their table 1) obtained a
choice pattern (on the respective choice problems) that was similar to the
one that led Hertwig et al. (2004) to conclude that rare events are under-
weighted. Thus, although decision weights expressed relative to the objec-
tive probabilities suggest underweighting of rare events in decisions from
experience—as in Hertwig et al.’s (2004) conclusions (see also Regenwet-
ter & Robinson, 2017)—decision weights estimated using the probability
information that people have actually experienced suggest overweighting.
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Both patterns, over- and underweighting of rare events, can be obtained,
depending on how probability weighting is estimated.

Another important factor that seems to systematically affect the type
of probability weighting in decisions from experience is the type of choice
problem. For choice problems containing two risky options (making up
the large share of problems in Kellen et al., 2016), there is rather consistent
evidence for a stronger overweighting of rare events in experience than in
description. For problems containing a safe and a risky option, by contrast,
the probability weighting function seems to be more linear in experience
than in description (Gldckner et al., 2016; see figure 10 in Wulff et al,
2018). These differences between problem types suggest that the pattern
of probability weighting is sensitive to the variability of the outcomes that
people encounter during information search (see chapter 7)—and is there-
fore not easily generalizable, In sum, in investigations where probabilities
are uncertain and people could reduce the uncertainty by sampling from
memory, there is a regressive pattern. In addition, in investigations where
probabilities are uncertain and people could reduce the uncertainty by sam-
pling from the envircnment, there also seems toc be a regressive pattern
when both options are risky. Next, we discuss a possible explanation for
this pattern in probability weighting—namely, that it represents a reason-
able response to uncertainty.

8.4 Nonlinear Probability Weighting as a Rational Response
to Uncertainty

From the perspective of expected value theory, that people’s decision
weights show a regressive, nonlinear distortion of the probabilities repre-
sents a clear violation of how a rational mind should respond to risk. S0
should nonlinear probability weighting be considered irrational? Fennell
and Baddeley (2012) demonstrated that, far from being irrational, regres-
sive probability weighting can reflect a rational response to uncertainty.
They argued that people may internally “correct” probability information
by integrating it with relevant background knowledge consistent with 2
rational Bayesian updating mechanism. Specifically, the stated probabil-
ity of an event is viewed against the previously experienced probability
distribution of similar events (“inference priors”) as well as the expected
probability distribution assuming a complete lack of knowledge about the
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class of events (“ignorance priors”). If the stated probability is compati-
ble with the previous experience, the inference prior is used to correct the
stated probability; otherwise the ignorance prior is used. Fennell and Bad-
deley showed that this approach leads to “corrected” probabilities that are
regressed relative to the original probability information—in line with an
inverse S-shaped weighting function.

To illustrate this point, Fennell and Baddeley {2012) demonstrated how
probabilities for two classes of events—namely, positive events (e.g., birth-
days, weddings) and negative events (e.g., earthquakes, house fires}—should
be revised in light of one’s knowledge about the frequency distribution of
positive and negative events in the real world. In a first step, the authors
analyzed Internet blogs to estimate the ecological distribution of the prob-
ability of these events occurring. This ecological analysis showed that in
the blogs, both positive and negative events had an average (across differ-
ent types of events) probability of occurring of less than 50%. Moreover,
positive events were more likely than negative events, and the spread of
the distribution for positive events was wider. In a second step, the authors
used the Bayesian approach sketched earlier in this section as well as the
results from their ecological analysis to derive, for different probability lev-
els, posterior (i.e., “corrected”) probability assessments. In other words, they
determined how a Bayesian mind would assess probability information
about positive and negative events against the background of the respective
probability distributions in the world at large. When the original probabili-
ties were mapped against the resulting posterior probabilities, the functions
showed a regressive trend, with the probability assessments for lower prob-
abilities being pushed upwards toward 50%, and the probability assessments
for higher probabilities being pushed downwards. In addition, the regressive
trend was more pronounced for positive than for negative events, reflecting
the greater uncertainty associated with the former (i.e., the wider spread of
the probability distribution).

The key insight from Fennell and Baddeley’s (2012) results is that non-
linear weighting of probabilities is not necessarily a sign of irrationality.
Instead, a regressive, inverse S-shaped probability weighting pattern is con-
sistent with how a Bayesian mind would rationally respond to uncertainty
(leaving aside the question of how exactly the mind may implement or
approximate a Bayesian updating process). The amount of uncertainty
is evidently higher in decisions from experience than in decisions from
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description. One interpretation of the regressive probability weighting pat-
tern obtained by, for instance, Kellen et al. (2016) is thus that it represents a
rational response to the uncertainty in decisions from experience.

8.5 Probability Weights as Reflections of Heuristics

Up to now, we have discussed several reasons why people might weight
events differently than the probability of those events would imply. For
instance, they may ignore events with small or very small probabilities
because their experience tells them that they barely matter. Fennell and
Baddeley (2012) demonstrated that a regressed, nonlinear probability
weighting pattern is the natural consequence of a Bayesian mind dealing
with uncertainty. Let us add another possible reason for the emergence of
nonlinear probability weighting. It reconciles probability weighting—a
notion rooted in the Bernoullian utility framework of decision making—
with the Homo heuristicus (see chapter 1; Gigerenzer, Hertwig, & Pachur,
2011). Specifically, different kinds of nonlinear probability weighting may
arise when decision makers rely on different boundedly rational heuristics.

Let us first turn to a heuristic that was proposed as a decision tool to be
used in the face of uncertainty. Savage (1954) suggested that one way to
deal with situations in which probabilities are unknown is to expect that
the worst possible outcomes occur and to decide accordingly. The minimax
heuristic, which implements this notion in games against a dispassionate
nature, chooses the option whose worst cutcome is more attractive. Impor-
tantly, probabilities play no role at all in the minimax heuristic. What form
does cumulative prospect theory’s probability weighting function take when
decision makers apply this and, by extension, other heuristics? To answer
this question, Pachur, Suter, and Hertwig (2017; see also Suter, Pachur, &
Hertwig, 2016) fitted cumulative prospect theory to choices produced by
five heuristics in the context of a computer simulation. The heuristics rep-
resent distinct policies in the face of risk and uncertainty: the minimax heu-
ristic, the maximax heuristic, the priority heuristic (a lexicographic strategy),
the least-ikely heuristic, and the most-likely heuristic. Box 8.2 describes
their policies in detail. The procedure was as follows: first, Pachur, Suter,
and Hertwig determined the choices of each of the five heuristics for various
types of choice problems (in the gain, loss, and mixed domain); second, they
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Box 8.2
Definitions of the five heuristics tested in Pachur, Suter, and Hertwig (2017).

We illustrate each heuristic’s policy and choice prediction with reference to
the following choice problem with two options:

A 500 with a probability of .4 and 2000 with a probability of .6.
B 450 with a probability of .7 and 3500 with a probability of .3.

The minimax heuristic identifies the worst outcome of each option and selects
the option with the more attractive worst outcome. If the options’ worst
outcomes are identical, minimax chooses randomly. It never considers prob-
ability information. Minimax chooses option A, because its worst outcome is
higher than that of option B (500 vs. 450).

The maximax heuristic identifies the best outcome of each option and
selects the option with the more attractive best outcome. If the options’ worst
outcomes are identical, maximax chooses randomly. It never considers prob-
ability information. Maximax chooses option B, because its best outcome is
higher than that of option A {3500 vs. 2000).

The priority heuristic goes through the attributes in the following order:
minimum gain, probability of minimum gain, and maximum gain. It stops
examination if the minimum gains differ by 1/10 (or more) of the maximum
gain; otherwise, it stops examination if the probabilities differ by 1/10 (or
more) of the probability scale. The heuristic selects the option with the more
attractive gain (probability). For options with more than two outcomes, the
search rule is identical, apart from the addition of a fourth attribute; probabil-
ity of maximum gain. For loss options, the heuristic remains the same except
that “gains” are replaced by “losses.” For mixed options, the heuristic remains
the same except that “gains” are replaced by “outcomes.” The priority heu-
ristic sometimes considers probability information, depending on whether
the minimum outcomes differ or not. In the example, the priority heuristic
chooses option A, because the option has a lower probability than option B of
leading to the minimum gain (.4 vs. .7).

The least-likely heuristic identifies each option’s worst outcome and selects
the option with the lowest probability of the worst outcome. It always consid-
ers probability information. Least-likely chooses option A, where the probabil-
ity of the worst outcome (500) is .4, lower than in option B (.7).

The most-likely heuristic identifies each option’s most likely outcome and
selects the option with the more attractive most likely outcome. It always
considers probability information. Most-likely chooses option A, where the
most likely outcome is 2000, higher than in option B (450).
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estimated the parameters of cumulative prospect theory for the set of choices
produced by each heuristic.

As figure 8.3 shows, the heuristics produced distinctly shaped curves. For
instance, the weighting functions estimated for the choices produced by
minimax and maximax showed a strongly inverse S-shaped curvature, indi-
cating low probability sensitivity., This finding echoes the previous result
that people display lower sensitivity to probability information under uncer-
tainty than under risk. Moreover, low probability sensitivity is consistent
with the information processing architecture of the minimax and maximax
heuristics, which are blind to probabilities. For the priority heuristic, the
curvature was less pronounced, indicating somewhat higher probability sen-
sitivity. Again, the shape of the weighting function is meaningfully related
to the heuristic’s policy: this heuristic sometimes relies on probabilities to
make a choice—namely, when the options’ worst possible outcomes are
similar—but it sometimes ignores probabilities, depending on the character-
istics of the choice problem (see box 8.2). For the most-likely and the least-
likely heuristics, the weighting function was least strongly curved, reflecting
that these heuristics always take probabilities into account when making a
choice.

Furthermore, the elevations of the resulting weighting functions point
to differences between the heuristics in the degree of “optimism” (i.e., risk
attitude) they embody. For instance, whereas in the gain domain minimax
resulted in a weighting function with a very low elevation, indicating highly
pessimistic decision weights (and thus risk aversion), maximax produced 2
weighting function with a very high elevation, indicating highly optimistic
decision weights (and thus risk-seeking). In the loss domain, this patten
was reversed. These results thus reveal another property of the heuristics’
policies—namely, their risk attitude (see also Lopes, 1995). Whereas mini-
max aims to protect against the worst possible outcomes, maximax reaches
for the stars and aims to maximize the best outcomes.

In summary, probability weighting as assumed, for instance, in cumu-
lative prospect theory is agnostic with regard to the cognitive processes
that shape the probability weighting function (but see Bordalo, Gennaioli,
& Shleifer, 2012; Hogarth & Einhorn, 1990; Johnson & Busemeyer, 2616).
Surprisingly, however, the probability weighting function is a construct
at which theories of boundedly rational choice heuristics (see chapters 1
and 2) and neo-Bernoullian theories of choice can meet. Moving toward
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Figure 8.3

Cumulative prospect theory’s weighting function estimated for the choices of five

heuristics that differ in their consideration of probability information {from Pachur,

Suter, & Hertwig, 2017). The functions show the relationship between the objective

probability, p, and the transformed probability, w(p), separately for gains (dark gray)
and losses (light gray).



174 T. Pachur and R. Hertwig

integration of theories for decisions under risk and uncertainty, Pachur, Suter,
and Hertwig (2017) demonstrated that heuristics with distinct information-
processing policies result in distinct shapes of the probability weighting
function. In terms of their suggested probability sensitivity and optimism,
these shapes are meaningfully related to differences in the heuristics’ infor-
mation processing policies. One practical implication of this finding is that
analyses of probability weighting can be employed to track the operations
of the Homo heuristicus as well as the underlying cognitive processes (e.g.,
Pachur, Schulte-Mecklenbeck, Murphy, & Hertwig, 2018; Suter et al., 2016).

8.6 Probability Weighting: A Window onto Uncertainty

Scholars’ attempts to explain how the mind weighs risky or uncertain events
date back to at least the 18th century and to perhaps the most influential
game in the history of economics and psychology: the St. Petersburg game.
Our historical account of work motivated by this game prompts an inter-
esting thought experiment: What kinds of theories of choice would have
evolved had Nicolas Bernoulli’s (see van der Waerden, 1975) and Buffon's
(1777) explanations of the St. Petersburg paradox won the day? Perhaps
even more would be known about the causes and (adaptive) logic behind
different kinds of nonlinear probability weighting in the face of risk and
uncertainty. Yet what we have nevertheless begun to discern is that probabil-
ity weighting offers a window onto how much uncertainty people perceive
in the environment—and possibly onto the kind of simple strategies they
recruit to deal with it.



