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Abstract  1 

Adolescence is a time of pronounced cognitive, neural, and social change. 2 

Adolescents are prone to social influence from peers, with implications for 3 

development, both adaptive and maladaptive. However, the underlying cognitive 4 

mechanisms of this influence, as well as their neuro-developmental correlates and 5 

real-life social consequences are poorly understood. Here, we replicate a cross-6 

sectional effect of more susceptibility to peer influence in adolescents in a large 7 

dataset of 14 to 24 years old. Crucially, we extend this finding by adopting a 8 

longitudinal perspective, showing that a within-person susceptibility to social influence 9 

decreases over a 1.5 years follow-up time period. Exploiting this longitudinal design, 10 

we show that susceptibility to social influences at baseline predicts an improvement in 11 

peer relations over the follow-up period. Using a Bayesian computational model, we 12 

provide novel mechanistic insight into these effects, showing that in younger 13 

adolescents a greater tendency to adopt others’ preferences arises out of a higher 14 

uncertainty about their own preferences (a phenomenon called ‘taste uncertainty’). 15 

This taste uncertainty decreases over time and, in turn, leads to a reduced 16 

susceptibility of one’s own behaviour to an influence from others’. Neuro-17 

developmentally, we show that a measure of myelination within medial prefrontal 18 

cortex, estimated at baseline, predicts a developmental decrease in taste uncertainty 19 

at follow up. Thus, using computational and neural evidence, we reveal adaptive 20 

mechanisms underpinning susceptibility to social influence during adolescence.  21 

 22 

 23 
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Significance  29 

Adolescents are particularly susceptible to peer influences, and this can lead to 30 

maladaptive behaviours such as binge-drinking or unprotected sexual intercourse (1, 31 

2), often linked to impulsivity. Assessing impulsivity with a measure of temporal 32 

discounting in a large longitudinal study, we show that younger teenagers are more 33 

susceptible to social influence. However, this susceptibility to social influence is not 34 

associated with maladaptive real-life behaviours, but instead predicts an increase in 35 

quality of real-life social relations. Using computational modelling, we identify a 36 

mechanism underlying this higher susceptibility to social influence: younger 37 

adolescents’ higher uncertainty about what they like drives them to adopt peers’ 38 

behaviour more strongly. As they grow older, such ‘taste uncertainty’ decreases, 39 

diminishing this susceptibility to social influence. At a neural level, a measure of 40 

myelination within the medial prefrontal cortex predicted the observed developmental 41 

decrease in taste uncertainty. 42 

  43 
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Introduction 44 

Across many species adolescence is a key period for social development (3). Animal 45 

and human studies suggest social interactions are more salient for adolescents than 46 

for adults (4). Adolescence is also a period of enhanced susceptibility to peer influence 47 

(5-8), an effect which remains highly relevant in the digital age, where adolescents are 48 

increasingly exposed to a range of social media (9). Higher susceptibility to social 49 

influence is traditionally thought to have particular relevance for the emergence of 50 

psychopathology and health damaging real-life behaviours (2, 10-14).  Thus, 51 

adolescents smoke and drink more alcohol when in the presence of peers, and peers’ 52 

substance consumption is a predictor of a teenager’s own substance use (13, 15, 16). 53 

The prevalence of suicidal and self-injury behaviours, as well as unprotected sexual 54 

intercourse, are often related to a social contagion effect during adolescence (1, 17, 55 

18). However, the directionality of such associations is not clear and alternative 56 

accounts frame susceptibility to social influence during adolescence in a less 57 

maladaptive context. 58 

It is important to recognise that social influence can change behaviour for the better, 59 

an effect widely used for adaptive ends both in education and psychotherapy. 60 

Susceptibility to peer influence can be associated with higher psychosocial functioning 61 

in young adolescents (8), while an  enhanced impact of social influence is observed in 62 

neuro-typically developing, but not autistic, teenagers (19). These findings suggest 63 

that a higher tendency to integrate social influence into one’s own decisions might be 64 

an adaptive ingredient in healthy social development during adolescence, a period of 65 

life characterised by a shift in social orientation away from the parents towards one’s 66 

peer group. 67 

Although peer influences on decision-making during adolescence have been widely 68 

investigated, several important questions remain unanswered. Firstly, claims on social 69 

susceptibility and its real life consequences in adolescents mostly rely on cross-70 

sectional designs and modest sample sizes. Here, we applied a longitudinal design in 71 

a large cohort of adolescents and young adults to study peer influence on a well 72 

characterised task measuring delay discounting – a key measure of temporal 73 

impulsivity relevant for development and psychopathology (20, 21). Longitudinal 74 

designs are important for addressing developmental questions as they provide a basis 75 
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for disentangling cohort or sampling effects from developmental trajectories. We show 76 

that social susceptibility not only decreases with age cross-sectionally, but also 77 

longitudinally. Longitudinally, we demonstrate that susceptibility to peer influence at 78 

baseline predicts the quality of peer relationships over follow-up, highlighting an 79 

important adaptive role of social susceptibility in healthy adolescents.  80 

Secondly, though previous studies have established higher conformity towards 81 

peers in adolescents than in adults, it remains unclear why this is the case. The adult 82 

conformity literature suggests two distinct routes towards conformity, namely 83 

informational influences (‘copy-when-uncertain’, observing others to gain information 84 

regarding behaviours that are currently adaptive) and normative influences (adhering 85 

to social norms / expectations of the other, bringing direct benefits through  belonging, 86 

social tension reduction and acceptance (22, 23). Many findings on peer influence in 87 

adolescent psychology are implicitly interpreted within the framework of normative 88 

influence, suggesting the pursuit of social acceptance and sensitivity towards social 89 

evaluation by peers is a significant determinant of adolescent decision-making (3, 5, 90 

10, 24). Here, we tested an alternative hypothesis, namely that informational 91 

influences underlie higher conformity in adolescence. To this end, we built on our 92 

previously validated (Bayesian) probabilistic reasoning model (25) that describes 93 

conformity as a learning effect. In brief, If people are uncertain about exactly what to 94 

like (‘taste uncertainty’(26)), they can learn about what tastes to adopt by adopting the 95 

tastes of their peers’. Using this model, we show that such taste uncertainty decreases 96 

both with age and over the course of our longitudinal follow-up, and longitudinal 97 

change is strongest in the youngest of our sample. Crucially, both cross-sectional and 98 

longitudinal developmental effects on social susceptibility are explained by 99 

developmental changes in taste uncertainty, suggesting that higher taste uncertainty 100 

in younger adolescents is a key mechanism facilitating peer influence in teenagers. 101 

Thirdly, we were interested in the co-development of brain structures that are 102 

relevant for the expression of taste uncertainty. We previously found the medial 103 

prefrontal cortex (mPFC) mediating the influence of others’ preferences  (27). Building 104 

on this, and using novel in-vivo myelin-sensitive magnetization transfer MRI (28), we 105 

identify a myelin marker in medial prefrontal cortex that  predicts a developmental 106 

decrease in taste uncertainty over our longitudinal follow-up period.   107 
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Results 108 

To probe a susceptibility to social influence, we used a social version of a delay 109 

discounting task (Figure 1). In short, this task allows us to measures a person’s 110 

temporal discounting coefficient (how much less a future reward is worth, depending 111 

on the delay of its delivery) as well as changes in their discount function pre vs. post 112 

learning about someone else’s discount preferences (See Figure 1, Supplementary 113 

Methods and (25, 27, 29) for details). Here, we defined susceptibility to social influence 114 

as the degree of change in one’s own discount rate towards the preference of a social 115 

partner, following exposure to the preferences of a social partner.  116 
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 117 

 118 

Figure 1. Social Delay Discounting Task. A) Example trial for “self” and “other” trial types. In 119 
self trials, participants see an offer of a smaller amount of money they can receive on the 120 
same day or a larger amount of money they can receive after a variable delay period. 121 
Subjects were instructed to indicate their preference according to their true personal taste 122 
and, to enforce expression of true preferences, they were told that one trial would be chosen 123 
at random to determine their pay out. In “other” trials, subjects chose between the smaller, 124 
immediate and the larger, delayed option on behalf of another person, and received 125 
feedback on these choice thereby enabling them to learn the others’ delay discounting 126 
preferences.  127 



9 
 

Development of susceptibility to social influence 128 

Cross-sectional baseline age effects  129 

At baseline, we observed a significant negative association between social 130 

susceptibility (indexed as the change in discount rate upon learning about the discount 131 

rate of another agent) and age, such that social influence declined with age (r=-.10, 132 

df=782, t=-2.94, p=.003, Figure 2a). Age explained about 1% of the variance in social 133 

susceptibility. Though this is significant, it is substantially lower than what has been 134 

observed in previous reports, as is often the case with larger, rigorously controlled, 135 

replication studies (30). 136 

 137 

Longitudinal analysis  138 

We tested whether social susceptibility also changed intra-individually, within the 1.5 139 

years follow-up period. Indeed, a factor time (baseline vs. follow-up) significantly 140 

predicted social susceptibility in a linear mixed effects model (F(1, 566.64)=5.11, 141 

p=.02), along with baseline age. Social susceptibility decreased intra-individually over 142 

the 1.5 years follow-up period. The interaction of baseline age with time was not 143 

nominally significant (F(1,568.31)=3.78, p=.05). Although not nominally significant,  144 

suggests that intra-individual change in susceptibility was most pronounced in the 145 

youngest subgroup of the sample.  146 

 147 

Retest Subsample - Testing for training vs. developmental effects in a 6-month follow 148 

up subsample of participants 149 

To determine whether the observed longitudinal differences were predominantly due 150 

to retest effects or development, we examined a sample of participants who were also 151 

tested 6 months apart ('short follow-up', judged to be a short time with respect to 152 

maturation). This comprised a sub-sample of n=55 of the total group who came to the 153 

lab three times (baseline, 6-month 'short' follow-up, 1.5-years 'long' follow-up), in the 154 

same manner as per our main sample (see Methods). Repeating the same analysis 155 

of longitudinal effects on social susceptibility in this short follow-up sample, we 156 

observed a significant effect of time point (baseline, short follow-up, long follow-up) on 157 

social susceptibility (F(2,104.926)=6.87, p=.002). Post-hoc analysis showed that 158 
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susceptibility decreased significantly over the 18-month period (t=3.47, p<.001), and 159 

between 6 and 18 month of follow-up (t=2.88, p=.005), but critically did not do so over 160 

the 6-month period from baseline (t=.59, p=.56). This pattern does not support a mere 161 

training effect, as if this was the case we would expect a stronger change after 6 162 

months than after 18 months. 163 

 164 

 165 

 166 
  167 
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 168 

 169 

 170 

Figure 2. Developmental effects on social susceptibility. A) A tendency to show a 171 
peer-induced shift in delay discounting preferences (positive values indicate a change 172 
towards the partner) declines with age. B) Susceptibility to peer influence also 173 

decreases within person over the course of the longitudinal follow-up period. The 174 

longitudinal change depends on baseline age and is more pronounced in younger 175 

participants. We plot posterior estimates from our mixed effects model. Note that age 176 
entered the model as a continuous regressor, here we plot 4-year-age bins ≤17 years 177 
old, >17 ≤21 years old, >21 years old), only for visualization purposes. 178 

  179 
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Relationship with the development of psychosocial functioning 180 

In previous work, we observed a positive association of susceptibility to peer influence 181 

and sociability in a smaller cross-sectional study, including young adolescents(8). 182 

Here we tested for this association again, including in a longitudinal manner, in our 183 

larger dataset. We used a bivariate latent change score model (31) to test for a co-184 

development of social susceptibility and quality of peer relationships, as measured by 185 

the Cambridge Friendship Questionnaire (CFQ(32, 33)) The model showed that the 186 

perceived quality of peer relations increased from baseline to long follow-up 187 

(significant intercept of the latent CFQ change score: z=2.28, p=.022, standardised 188 

estimate=.09). There was no significant covariation of social susceptibility and peer 189 

relations at baseline (z=-.77, p=.44, standardised beta=.03). However, the latent-190 

change model revealed a small, but significant, positive association between social 191 

susceptibility at baseline on rate of change in peer relation development from baseline 192 

to long follow-up. In effect, those who showed a higher tendency to shift their 193 

preferences towards their partners’ also reported larger gains in social integration from 194 

baseline to long follow-up (z=2.12, p=.03, standardised beta=.08).  195 

Previous findings (6, 8) show that developmental effects on social susceptibility might 196 

be particularly pronounced in younger teenagers. Thus, we repeated the path analysis 197 

separately on age specific subsamples of our main sample, namely a younger 198 

(participants who were < 18 at both baseline and long follow-up, n=116) and an older 199 

(participants who were adults, i.e. ≥ 18 years old, at both measurement time points, 200 

n=248) subsample. Comparing this model to a model where the path of interest (social 201 

susceptibility at baseline → quality change in peer relations at long follow-up) was 202 

constrained to be equal between the younger and older subsample, revealed a 203 

significant advantage of fitting an age-dependent sub-group-specific parameters (Log 204 

likelihood Ratio Test, Δχ2=6.20, Δdf=1, p=.01). This indicates differences in a younger 205 

vs. older subgroup regarding the degree to which social susceptibility at baseline 206 

influences real life social development.  207 

Analysing the path of interest separately for the younger (<18 years) and older (≥18 208 

years) subgroup revealed a significant effect of social susceptibility on social 209 

development in the adolescent (<18 years) group alone (z=2.31, standardised 210 

beta=.23, p=.02, see Figure 3), whereas there was no significant coupling of social 211 

susceptibility on social development in the young adult (<18 years) group (z=-.06, 212 
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beta=.003, p=.96). This suggests that greater susceptibility to social influence earlier 213 

in adolescence might be an important factor affecting development of integrative social 214 

relationships as we grow up. Subsequently, we repeated the structural equation model 215 

to analyse an association with selected maladaptive traits, which had been discussed 216 

in the context of delay discounting and peer influence in the literature (2, 34-36), 217 

namely externalising behaviours, and alcohol consumption, both assessed using the 218 

behaviours checklist questionnaire (37). In neither of these models did we find an 219 

association of social susceptibility with maladaptive behaviours (all standardised betas 220 

≤|.11|, all zs≤|1.27|, all ps>.203). 221 

  222 
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 223 

 224 

Figure 3. A) Latent change score model of the longitudinal development of social 225 
susceptibility in our task, the longitudinal development of real-life psycho-social 226 
functioning (perceived quality of peer relations) from baseline to long follow-up (~1.5 227 

years later) as well as their co-development. Social susceptibility at time point 1 228 
significantly predicts an increase in the quality of peer relationships within the follow-229 

up period. Solid lines: significant path, dashed line: non-significant path. B) This 230 
positive association was driven by the younger (≤ 18 years old) people in our sample, 231 
but was not significant in those aged 18 or older. The full set of parameter estimates 232 
is included in supplementary table 1. C) Change in the Quality of Peer Relations, 233 

plotted as a function of T1 Social susceptibility. 234 
 235 
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One reason for conformity is informational influence, whereby humans use 236 

observational information to reduce uncertainty about what to like, even if, as in our 237 

task, this does not produce immediate material benefits (16, 19). We tested the 238 

hypothesis that the observed developmental reductions on social susceptibility occur 239 

as a consequence of developmentally decreasing uncertainty about own preferences 240 

(“taste uncertainty”). Thus, in a next step, we used a previously validated formal 241 

computational model (19) to estimate an individual ‘taste uncertainty’ parameter (see 242 

supplementary results for effects of other parameters of the model). This allowed us 243 

to test for developmental effects on taste uncertainty and whether this accounts for the 244 

observed susceptibility to social influence.  245 

 246 

Computational modelling: Developmental Effects on taste uncertainty  247 

Taste uncertainty predicts susceptibility to social influences 248 

Taste uncertainty was significantly associated with social shift at both measurement 249 

time points, consistent with an informational account of conformity (all r>.50, all 250 

t>15.57, all ps<2.2e-16, see S-Figure 1).   251 

Cross-sectional baseline age effects  252 

At baseline, taste uncertainty negatively correlated with age (r=-.16, t=-4.56, df=780 253 

p=5.869e-05, Figure 4a).  254 

Longitudinal Analysis 255 

A linear mixed effects model revealed a significant effect of baseline age 256 

(F(1,564.53)=14.22, p<.001),  time (F(1,564.86)=5.71, p=.017), (F(1,564.53)=5.71, 257 

p=.017) and an interaction of baseline age and time (F(1,565.41)=9.29, p=.002) on 258 

taste uncertainty. To visualise the latter interaction, we plot longitudinal (intra-259 

individual) change as a function of age at baseline in Figure 4b. Figure 4b suggests 260 

that relevant longitudinal changes in taste uncertainty were strongest in those that 261 

were ≤17 years of age at baseline. 262 
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 263 
 264 
 265 
Figure 4. Taste uncertainty decreases cross-sectionally (panel a) and over the 1.5 266 
years follow-up (panel b). This decrease is most pronounced in the youngest 267 
participants. We plot posterior estimates of our mixed model analysis. Note that age 268 
entered the model as a continuous regressor, here we plot 4-year-age bins ≤17 years 269 
old, >17 ≤21 years old, >21 years old), only for visualization purposes. 270 

  271 
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Retest Subsample - Testing for training effects in a 6-month follow up subsample of 272 

participants. 273 

In line with findings in our main study sample, we observed a significant effect of time 274 

on taste uncertainty (F(1,105.29)=3.57, p=.032) in the ‘short follow-up’ subsample. 275 

Post-hoc inspection revealed that taste uncertainty decreased within-person over the 276 

three measurement time points in the reduced subsample. Post hoc tests showed that 277 

a contrast of first and last (1.5 years follow-up) time points was significant (t=2.670, 278 

p=.009), whereas the change between first and 6-month follow-up was not (t=1.23, 279 

p=.220). This pattern of findings is inconsistent with changes being due to a mere 280 

training effect, as we would expect stronger change after 6 compared to 18 months. 281 

Mediation analyses: Taste uncertainty explains developmental effects of social 282 

susceptibility 283 

Our computational model of social shifts posits a specific mechanism by which social 284 

influence arises, namely a reduction in one’s own taste uncertainty by learning how 285 

someone else performs a task (22, 25). As taste uncertainty declines with age, and 286 

decreases longitudinally within person, this raises a possibility that age-related 287 

changes in social susceptibility (as found here and in previous studies) is driven by the 288 

age-related change in taste uncertainty. To test this, we first set up a model where we 289 

tested a possible mediation of the cross-sectional age effects on preference shift by 290 

taste uncertainty on baseline (baseline) data. We found that an effect of age on 291 

preference shift was accounted for by the mediating effect of taste uncertainty, 292 

corresponding to a significant full mediation (significant proportion of mediation (38): 293 

estimate=.72, z=3.03, p=.002, Figure 5A, Table 1). That is, the significant age effects 294 

on social susceptibility, as found here and in many previous studies, are, in this study, 295 

explained by age effects on taste uncertainty.  296 

In a next step, we examined the covariation of longitudinal change in taste uncertainty 297 

with longitudinal change in social susceptibility, using latent change score modelling. 298 

To do so, we changed the autoregressive and coupling effects to co-variances, 299 

to display and model the unconditional change scores. We observed a significant 300 

covariation of rates of change in both parameters (raw beta=.41, standardised 301 

beta=.21, z=3.82, p<.001), in line with our assumption that development of social 302 

susceptibility is accounted for by development of taste uncertainty. 303 
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path notation est 
(unst) 

 

se z p lower 
CI 

upper 
CI 

est 
(stand) 

social 
susceptibility ~ 

age 

c’ -0.01 0.02 -0.86 0.39 -0.04 0.02 -0.03 

social 
susceptibility ~ 

taste uncertainty 

b 0.80 0.07 11.82 <.001 0.66 0.93 0.50 

taste uncertainty ~ 
age 

a -0.05 0.01 -4.37 <.001 -0.06 -0.02 -0.15 

indirect 
(mediation) path 

a*b -0.04 0.01 -4.08 <.001 -0.05 -0.02 -0.08 

total c’+(a*b) -0.05 0.02 -2.71 .007 -0.08 -0.01 -0.11 

proportion 
mediated 

indirect/tot
al 

.72 .24 3.03 .002 .255 1.19 0.72 

     Table 1. Mediation results: T1 data
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 304 

Figure 5. A) Mediation analysis for preference shift as predicted from age and 305 

mediated by taste uncertainty at T1. Age predicted taste uncertainty (path a). The 306 

mediator (taste uncertainty) predicted preference shift (path b, controlled for the age 307 

effect on taste uncertainty). Importantly, the mediation effect was significant (path 308 

ab). The direct path c’, namely the age effect on preference shift after accounting for 309 

the mediation, was not significant. The proportion of total variance explained by the 310 

mediation effect was significant. Thus, the age effect on social susceptibility at 311 

baseline was accounted for by taste uncertainty. See table 1 for the full set of 312 

parameter estimates including standardised an unstandardised betas. B) In line with 313 

our assumption that development of social susceptibility is accounted for by 314 

development of taste uncertainty, the bivariate latent change score model not only 315 

showed a significant covariation of taste uncertainty with social susceptibility at T1, 316 
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but also significant covariation of the rate of change in both domains. The full set of 317 

parameter estimates is included in supplementary table 3. 318 

  319 
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Co-Development of brain structural correlates and taste uncertainty 320 

To establish whether there is a structural neural correlate for developmental effects on 321 

taste uncertainty, we used bivariate latent change score modelling testing for the co-322 

development of cognitive and brain structural development in a subsample of subjects 323 

who underwent both our experimental sessions (baseline and 18 months) and 324 

structural MRI (n=186, see Methods). Here, we focussed on myelination, given its 325 

pivotal role in adolescent brain development, and building on recent findings on its 326 

association with trait measures in adolescent development (28). In a similar 327 

discounting task, utilizing repetition-suppression to assess neural plasticity, we 328 

previously showed that medial prefrontal cortex (mPFC) is the principal region 329 

expressing within-task plasticity as preferences shift (27). See supplementary 330 

methods for pre-processing of the MRI data.  331 

Using an anatomically defined mPFC mask (based on the Harvard-Oxford atlas, see 332 

SI), we extracted estimates of a myelin-sensitive marker, Magnetisation Transfer 333 

saturation (MT). This allowed us to investigate a cross-domain coupling that captures 334 

the extent to which change in one domain is a function of the starting level in the other 335 

using latent change score modelling (model fit indices: pChi2=.22, CFI=.96, 336 

RMSEA=.04, SRMR=.03). Sex, age, scanning site and general IQ were included in 337 

the analysis as covariates (28). We observed that baseline intra-cortical mPFC MT 338 

was predictive of the longitudinal change in taste uncertainty (raw beta=-3.92, 339 

standardised beta=.-13, z=-2.12, p=.03, Figure 6), i.e. more intra-cortical mPFC myelin 340 

lead to a more pronounced reduction in taste uncertainty over the 1.5 year follow-up. 341 

Taste uncertainty did not significantly predict longitudinal brain development, and there 342 

was no covariance in rates of change in both domains (all betas .10≤ all ps ≥ .13, see 343 

S-Table 3 for full output of the latent change score model). Repeating the same 344 

structural equation model using estimates of myelin in the visual cortex as a control 345 

region (model fit indices: Chi2=.38, CFI=.99, RMSEA=.02, SRMR=.03) (39), we did 346 

not observe any cross-domain coupling of our task measure with myelination across 347 

development (all beta<.033, all p>.51). 348 
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 349 

Figure 6.  A) Bivariate latent change score model. Three developmental brain-350 
behaviour relationships are possible and tested for by the model: 1) differences in 351 

myelin at baseline affect the rate of taste uncertainty decrease; 2) taste uncertainty at 352 
baseline predicts the degree of myelin gain between baseline and long follow-up, 3) 353 
correlated change (the degree of reduction in taste uncertainty is correlated with the 354 
degree of myelin change). While the path indicating the mPFC myelin marker as a 355 
significant predictor of longitudinal change in taste uncertainty was significant (beta=.-356 
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13, p=.03), the other cross-domain coupling paths were not. Solid lines: significant 357 
path, dashed line: non-significant path. No means are displayed for clarity; the full set 358 
of parameter estimates is included in supplementary table 3. B) Higher values of the  359 
mPFC myelin marker at measurement timepoint 1 led to a more pronounced 360 

longitudinal change in taste uncertainty (note that a stronger longitudinal decline is 361 
coded as positive (“more change”) for illustration purposes). C) Longitudinal change 362 
in Taste Uncertainty as a function of different levels of T1 myelin marker values. 363 

  364 
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Discussion 365 

In adolescence, a greater susceptibility to social influence is considered a  driver of 366 

maladaptive real-life behaviour (e.g. drinking, reckless driving, delinquency, suicidal 367 

behaviours) (10-13, 15, 16). Here, using a longitudinal design involving a large cohort 368 

of 14-24 year-olds, combined with quantitative brain imaging, we replicate a finding of 369 

increased social susceptibility in adolescents and characterise its neurodevelopmental 370 

and computational basis.  371 

We replicate previous developmental effects on social susceptibility in the 372 

paradigmatic case of delay discounting, showing that social susceptibility decreases 373 

with age from adolescence to adulthood. We extend on this previous finding in a 374 

number of ways. Firstly, we provide longitudinal evidence for a developmental 375 

decrease in susceptibility to social influences. Secondly, we show that social 376 

susceptibility in young healthy adolescents is adaptive with respect to longitudinal 377 

improvements in peer relationships. Thirdly, we outline a cognitive and computational 378 

basis for these effects, showing that higher social susceptibility in younger adolescents 379 

is  best explained by this age defined population being more uncertain about what they 380 

like, thereby rendering them more prone to adopt others’ preferences. Over the course 381 

of development this ‘taste uncertainty’ decreases, which in turn attenuates a need, 382 

and consequential impact of, social influences on one’s own behaviour. Lastly, we 383 

identify a candidate  neuro-developmental correlate of this effect by showing that a 384 

myelin sensitive marker within mPFC, a key region mediating  social preference shifts,  385 

predicts  longitudinal change in taste uncertainty. 386 

We replicate our previous finding, from a young adult sample, showing delay 387 

discounting preferences can be systematically changed by  learning about another’s 388 

delay discounting preferences (27, 29). Extending these findings, we now show that 389 

the degree of a preference shift is, in this sample of 14-24 years olds, most pronounced 390 

during younger adolescence, a developmental period characterised by significant 391 

social-affective transformations (3). Importantly, our longitudinal design allowed us for 392 

the first time to demonstrate a within-person developmental decrease in this social 393 

susceptibility. A separate analysis in a retest sample showed that these observations 394 

could not be explained by a training effect.  395 
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Importantly, we found that such higher susceptibility at a younger age has an important 396 

adaptive, rather than maladaptive, role in this healthy population. Exploiting our 397 

accelerated longitudinal design (28, 31, 33, 40), we demonstrate that the 398 

developmental improvements in real-life psycho-social functioning, assessed by the 399 

perceived quality of peer relations after 1.5 years, is predicted by higher susceptibility 400 

to social influence, particularly in younger teenagers. This extends cross-sectional 401 

findings in healthy younger adolescents which  showed that behavioural contagion 402 

was associated with a higher degree of social functioning (6). Notably, in previous 403 

accounts, susceptibility to social influence was mostly highlighted in the context of 404 

maladaptive real-life behaviours in teenagers. For example, both real-life and digital 405 

peer influence is suggested to lead to higher rates of delinquency, real-life risk-taking, 406 

unprotected sexual intercourse, substance consumption and suicidal behaviours (1, 407 

2, 10-16, 18). In this study of healthy adolescents however, susceptibility to social 408 

influences did not relate to externalizing psychiatric symptoms or substance 409 

consumption, nor did it predict such potentially maladaptive behavioural tendencies in 410 

a longitudinal fashion. This discrepancy might suggest that the impact of higher 411 

susceptibility to peer influence in teenagers depends on the very nature of social 412 

influence, including the nature of the role models who exert this influence. Being 413 

behaviourally responsive to peers may be generally thought of as functional and 414 

predictive of resilience in the face of adversity. In our sample of relatively healthy 415 

teenagers, it indeed led  to successful social adaptation in real life, a key requirement 416 

of adolescent development. However, it is equally the case that maladaptive 417 

consequences might arise if teenagers have to navigate less advantageous or 418 

unstable conditions, where they are likely to be  confronted with less desirable role 419 

models. For example, as recent models of conduct problems emphasize, sensitivity to 420 

peer influence for  youth in distressed urban neighbourhoods may carry risk when a 421 

teenager overgeneralizes and automatically, without mentalizing, deploys a learnt 422 

response (e.g. fighting back aggressively when challenged) in a setting where it is not 423 

adaptive, such as in school (41). 424 

Finally, using computational modelling, we provide a mechanistic account for the 425 

frequent previous observation of adolescents being more prone to peer influence than 426 

adults (e.g.(5, 6, 8)). In principle, two routes to conformity are possible, normative 427 

influences (adhering to social norms and expectations to gain interpersonal benefits 428 
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such as being part of a group (16), and informational influences (reducing uncertainties 429 

about the world and the self by observing others). In the existing literature, peer 430 

influences on decision-making are generally implicitly interpreted within a normative 431 

account of conformity. Using a Bayesian model, previously validated on this same task 432 

(19), we specifically probed the latter hypothesis. We show that uncertainty about 433 

one’s own preferences predicted social shift, and that developmental differences in 434 

susceptibility to social influences are fully explained by decreasing uncertainty as 435 

participants aged. This provides a novel interpretation of our current and previous 436 

findings. Intriguingly, it places susceptibility to social influence into an adaptive context 437 

– as a rational means to reduce one’s own uncertainty.  438 

Future studies of adolescent development may usefully manipulate both informational 439 

and normative sources of conformity to disentangle their respective effects on 440 

adolescent behaviour, and to test for putative interactions between these processes. 441 

For example, is social influence on adolescents highest when they are uncertain and 442 

feel an enhanced need to conform in order to be accepted by peers? The Bayesian 443 

model applied here might prove useful for this question, as it enables modelling of 444 

relevance of the source of social influence in addition to taste uncertainty (19). Future 445 

studies should investigate the ecological selection of influencers and modulation of 446 

taste shift, as a function of the quality of earlier development. Bayesian modelling can 447 

then dissect the cognitive process of healthy social adaptation, a key requirement of 448 

adolescent development, as opposed to the maladaptive influence of undesirable role 449 

models. 450 

In our structural brain imaging analysis, we uncovered a neural correlate of taste 451 

uncertainty. Using the same social delay discounting task, during functional 452 

imaging,we have shown that mPFC expresses neuronal plasticity that predicts 453 

preference malleability (27).  Myelin maturation unfolds throughout adolescence and 454 

into young adulthood and is a key mechanism underlying neuronal plasticity (42, 43). 455 

This motivated an hypothesis that a marker of myelin in the mPFC would relate to 456 

developmental effects on taste uncertainty. Indeed, we found that baseline MT in this 457 

region was predictive of a greater reduction in taste uncertainty over time. In contrast, 458 

baseline taste uncertainty did not predict changes in MT, and there was no association 459 

between the rates of change in both measures. This suggests that the observed 460 

longitudinal reduction in taste uncertainty over time is accelerated when myelin in the 461 
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mPFC is at a more mature absolute level, underscoring the importance of brain 462 

structural maturation in cognitive development during adolescence. This is consistent 463 

with myelination specifically being a key neuro-developmental process relating to 464 

important dispositional differences in this period of life (28). 465 

Notably, the effect size of the developmental effects on susceptibility to social 466 

influence was lower than previously reported in theoretical accounts and lower sample 467 

size studies. This is consistent with reports on large-scale replication efforts of original 468 

findings in psychological science in bigger sample sizes, which reported only effect 469 

sizes on average of ½ the originally reported effects (30). On the one hand, it highlights 470 

the need for larger sample sizes and replication in order to estimate meaningful effect 471 

sizes in the field of developmental psychology. It may, however, also be dependent on 472 

precise methodological details and the specific demographics of our sample, e.g., on 473 

the fact that our sample did not include very young adolescents for whom strong 474 

susceptibility effects have been reported previously (6, 8). Our findings stress the 475 

importance of longitudinal designs for developmental psychology. Indeed, the 476 

association of peer susceptibility with real-life social functioning, as well as neuro-477 

developmental markers, were only observed within-person, but not across-participant, 478 

potentially due to the higher power of within-subject designs as compared to between-479 

subject designs. 480 

In sum, our study showcases the role of computational modelling and large-scale, 481 

longitudinal developmentally sensitive studies (44, 45), identifying the psychological 482 

mechanisms and neuro-developmental processes which underpin the phenomenon of 483 

susceptibility to social influences over adolescent to young adult development. 484 

  485 
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Materials and Methods 486 

Main Sample 487 

The experimental task was delivered as part of a task battery administered to a sample 488 

of community dwellers between the ages of 14 and 24 in Cambridgeshire and London, 489 

as part of the Neuroscience in Psychiatry Network (NSPN) project (40). All participants 490 

provided written informed consent. The Cambridge Central Research Ethics 491 

Committee approved the study (12/EE/0250). Data for this task was available from 492 

n=784 (401 female) participants for baseline. N=738 of this baseline data has informed 493 

a previously published computational model validation paper (25). Participants were 494 

14.10-24.99 years old (mean=19.05, sd=2.96) at baseline. 569 (284 female) 495 

participants returned for a second assessment approximately 1.5 years later. Mean 496 

age at follow-up was 20.28 years (range: 15.11- 26.48 years, sd=2.97) while mean 497 

time between first and second assessment was 1.48 years (range: 0.98-2.62 years, 498 

sd = 0.30). Structural imaging and task data were available (and passed quality 499 

assessment) for n=184 participants for both measurement time points (97 females). 500 

Retest Subsample: Testing for training effects in a 6-month follow up subsample 501 

of participants 502 

A subsample of n=55 participants completed the task three times, with an additional 503 

interim session after a ~6 month follow-up period. This “retest sample” allows us to 504 

index short-term changes (over 6 months), indicative of training effects, from long-term 505 

changes (over ~1.5 years) indicative of developmental change. 506 

 507 

 508 

  509 
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Computational Modelling 510 

Our model was first introduced and validated on the majority of baseline datasets of 511 

this study in (25). In short, we adopt a Bayesian approach to model a change in belief 512 

in one’s own delay discounting preferences as a function of I) “taste uncertainty” (as 513 

reflected in a participants’ choice variability), that is how uncertain a person is about 514 

their own preferences in the delay discounting task prior to any social exposure in the 515 

task and ii) relevance of the social influence source. The model describes that subjects 516 

hold a Gaussian belief distribution over their log-discounting coefficient (they are 517 

uncertain about their discounting preferences). In previous work  (25) we found based 518 

on model selection that decision variability during the task was best described as 519 

reflecting uncertainty about discounting preference, as opposed to decision noise 520 

added after evaluation (as, for example, in the softmax rule). See SI and (25) for 521 

details. 522 

 523 

Statistical Analysis 524 

All data were analysed using R (46) . Mixed models for longitudinal analyses included 525 

a categorical within-subject factor ‘measurement time point’ (baseline vs. follow-up) 526 

and a random intercept per subject. They were fit and p-values were calculated based 527 

on a Kenward-Roger approximation for degrees-of-freedom using the R package afex 528 

(47). In all mixed models, discounting preference of the other was included as a 529 

covariate. When analysing social susceptibility, i.e. social shift towards the other, own 530 

discounting preference was included as a covariate. All continuous predictors were 531 

centred on zero. Post-hoc contrasts were computed using the R package emmeans 532 

(48). Latent change score models were fit using the package lavaan (49) with R code 533 

provided in (31), freely available at https://osf.io/4bpmq/files/. In all models, we used 534 

a robust estimation procedure (‘mlr’ implemented in lavaan) to account for non-535 

normality in the data. Plots were generated using ggplot2 (50). Scripts for all statistical 536 

analyses are available via https://osf.io/9qu4w/.  537 

https://osf.io/4bpmq/files/
https://osf.io/9qu4w/
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Supplemental Material 

Supplementary Methods 

Task 

We used a social version of a delay discounting task (Figure 1) described in detail 

elsewhere (25, 27). The task consisted of three phases. In phase 1, participants played 

60 trials of a temporal discounting task where they had to decide whether to choose 

between a smaller amount of money paid out immediately or a larger amount paid out 

at an indicated time in the future. Phase 1 decisions were used to determine their initial 

value kphase1 in a standard hyperbolic discounting model (51): 

𝑉𝐷 =
𝑅𝐷

1 + 𝐾𝐷
 

where 𝑉𝐷 is the delay-discounted value of a reward, R is the reward, D is the delay, 

and K is the hyperbolic discounting parameter.  

The 60 trials of phase 1 included 30 offer pairs from a standard set covering a wide 

range of values of K. Half of the trials were an interleaved set of 30 from an adaptive 

algorithm which calculated a probability distribution over possible values of K and then 

selected a pair of options likely to reduce the entropy of that distribution as much as 

possible (see (25) for details). Participants were instructed to respond according to 

their own true preferences.  

In phase 2, a second player was introduced. Participants were instructed to make 

choices in the same delay discounting task for the other player so as to learn the 

discounting preferences of the other. This preference of the other person was based 

on the baseline preference of our participant. In a between-subjects manner, the 

observee’s delay discounting preferences was manipulated such that the other was 

chosen to be either more or less patient than the participant himself. More specifically, 

in 2/3 of the cases, the observee was chosen to have kother  shifted from kself_phase1 by 

one standard deviation towards the mean of the population distribution, and in 1/3 of 

cases away from it (in log space). Participants received feedback as to whether their 

choice on behalf of the other was correct in terms of the other’s discounting preference. 

where correct choices were defined using a simulation of the other's choice based on 

their discounting preference. In case the participant’s response matched the 
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simulation’s prediction, the choice was coded as correct. These “learning about the 

other” trials were presented until either the participant got 8 correct answers out of the 

most recent 10, or until 60 learning trials were completed.  

In phase 3, we interleaved mini-blocks of 10 trials 'choose for self', which were as in 

phase 1, and 10 trials 'choose for other', in order to keep the other’s discounting 

preference. This allowed us to estimate social shift scores (log kself_phase3 – log 

kself_phase1) that evaluate a change in delay discounting preference pre- vs. post 

learning about the other, and thus inter-individual differences in susceptibility to social 

influence. 

We informed participants that one of the 'choose for self' trials from the entire task would be 

chosen at random and the choice they made paid out for real at the appropriate 

delay. Participants were instructed that there was no financial incentive to make 

correct choices in the 'choose for other' trials. The task was programmed in MATLAB 

2012a using the Cogent graphics toolbox  (http://www.vislab.ucl.ac.uk/Cogent/). 

 

Computational Modeling 

The model assumes that both the subject and the social partner come from the same 

reference distribution 𝑁(𝑘,  𝜎2), the width of which describes the relevance of the other 

and is a fitted parameter of the model (see supplementary results). By observing the 

preference choice data of the other, dO, subjects can update their own preference belief 

distribution 𝑝(𝑘) in light of what they learn about the other. In this Bayesian formulation, 

the more uncertain subjects are about their preferences, the more they shift after 

learning about others. Thus, this model formalizes the notion of informational 

conformity, namely conforming with others to reduce one’s own uncertainty. Please 

refer to (25) for the algorithmic implementation. In this previous model validation study, 

we found that participants’ behaviour showed evidence for taste ‘shifting’ correlated to 

their baseline decision variability, as would be expected if the latter represented 

uncertainty, upon which Bayesian updating then operated (25). 
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Psychometric Measures 

Perceived quality of peer relations 

We used the Cambridge Friendship Questionnaire (CFQ) to assess the perceived 

quality of peer relations (33), a measure available as part of a Home Questionnaire 

Pack delivered close in time to the in-lab measurements (40). The CFQ assesses the 

number, and quality of friendships via self-report (e.g. “Do you feel that your friends 

understand you”, “Can you confide in your friends”). Higher scores signify higher 

satisfaction with peer relations. 

 

MRI pre-processing and Region of Interest extraction 

Of the participants who completed the task, 318 participated in an additional MRI arm 

of the study. Participants were scanned at T1 (N=318) and T2 (N=235) on identical 

Siemens Magnetom TIM Trio whole-body 3T MRI scanners in Cambridge and London 

as per the quantitative multi-parameter mapping (MPM) protocol (Weiskopf et al. 

2013). This included a whole-brain multi-echo FLASH magnetization transfer weighted 

contrast at 1mm isotropic resolution (TR: 23.7, α =6°, 176 sagittal slices, FOV=256 

mm × 240 mm, matrix = 256 × 240 × 176). Quantitative magnetization transfer 

saturation (MT) maps were derived using biophysical models with the hMRI toolbox 

(www.hmri.info) for SPM (Wellcome Centre for Human Neuroimaging, London, UK, 

http://www.fil.ion.ucl.ac.uk/spm). These maps have been shown to correlate highly 

with histological measures of myelin (52, 53).  

MT maps were spatially pre-processed using a standard pipeline as implemented in 

the hMRI toolbox. Maps were segmented using unified segmentation (54) and 

normalised to MNI space using Diffeomorphic Anatomical Registration using 

Exponentiated Lie Algebra (DARTEL(55)), followed by spatial smoothing (6mm full-

width half-maximum) using tissue-weighted smoothing to preserve grey matter / white 

matter boundaries. Rigorous quality assessment was applied (for details compare(28)) 

which led to the exclusion of a total of n=55 datasets. 

We created an anatomically defined mask of the mPFC based on the probabilistic 

Harvard-Oxford cortical structural atlas (thresholded at 30%). Mean MT values from 

within this mask region were extracted from each map using FSL 
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(www.fmrib.ox.ac.uk/fsl/) as a proxy for intra-cortical mPFC myelination. Using the 

same approach, we also extracted mean MT values of the visual cortex (V1) as a 

control region. 

 

Supplementary Results 

Computational Modelling – ‘relevance of the social partner’ 

Note that apart from taste uncertainty, which is the focus of our developmental study 

here, also a second parameter, namely ‘relevance of the other’ ( see (25) and Methods 

for details) accounts for social shift in our computational model (all r <-.25, all t<-6.24, 

all p<8.4e-10). There was no significant age correlation with the ‘relevance of the other’  

parameter (r=.006, t=0.19, df=780 p=.848). Whilst our developmental hypothesis and 

the current design was indeed focussed on the taste uncertainty parameter of the 

model, it is interesting to speculate that a different experimental design explicitly 

manipulating the relevance of the social influence (e.g., as a function of age group 

(compare, e.g. (6, 8)), might indeed lead to age-related differences in the ‘relevance 

of the social partner’ parameter. 

  538 
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S-Table 1 539 

Bivariate latent change score model: Co-development of Social susceptibility and Perceived Quality of Peer Relationships 540 
(Cambridge Friendship Questionnaire). est: unstandardized estimate, se: standard error, CI: confidence interval. est (stand): 541 
standardised estimate. 542 

Parameter est se z p CI low CI up est 
(stand) 

Adults (≥18)  

     
 

Change Intercept in Social 
Susceptibility 0.0401 0.5564 0.0721 0.9425 -1.0505 1.1307 0.0215 

Mean social Susceptbility at T1 0.3940 0.0925 4.2609 <.001 0.2128 0.5752 0.2706 

Change Variance in Social 
Susceptibility 2.1064 0.3715 5.6704 <.001 1.3783 2.8345 0.6032 

Social Susceptbility at T1Variance 2.1206 0.3170 6.6891 <.001 1.4993 2.7420 1.0000 

Intercept Change in Friendship Quality 11.6726 1.2558 9.2953 <.001 9.2114 14.1338 3.4302 

Mean Friendship Quality at T1 23.2946 0.2414 96.4908 <.001 22.8214 23.7678 6.1825 

Change Variance Friendship Quality 8.3720 0.9609 8.7127 <.001 6.4887 10.2554 0.7230 

Friendship Quality at T1 Variance 14.1965 1.7565 8.0823 <.001 10.7538 17.6391 1.0000 

Regression Paths  

     

 

Change in Friendship Quality~Social 
Susceptibility at T1 0.0070 0.1256 0.0561 0.9553 -0.2392 0.2532 0.0030 

Change in Social Susceptibility ~ 
Friendship Quality at T1 0.0096 0.0231 0.4141 0.6788 -0.0357 0.0548 0.0193 

Self Feedback: Change in Friendship 
Quality -0.4754 0.0518 -9.1750 <.001 -0.5770 -0.3739 -0.5264 

Self Feedback: Change in Social 
Susceptibility -0.8090 0.0771 

-
10.4906 <.001 -0.9602 -0.6579 -0.6305 

Covariance Paths  

     

 

Social Susceptibility at T1 Friendship 
Quality at T1 0.2496 0.3262 0.7652 0.4441 -0.3897 0.8889 0.0455 

Change in Social Susceptibility and 
Change in Friendship Quality 0.6662 0.2816 2.3657 0.0180 0.1143 1.2182 0.1586 

Adolescents (<18)  

     
 



35 
 

Intercept Change in Social 
Susceptibility 0.5961 0.6313 0.9442 0.3450 -0.6412 1.8335 0.3267 

Mean social Susceptibility at T1 0.7942 0.1358 5.8486 <.001 0.5281 1.0604 0.5430 

Change Variance in Social 
Susceptibility 1.1585 0.3369 3.4389 <.001 0.4982 1.8187 0.3479 

Social Susceptibility at T1 Variance 2.1391 0.4851 4.4093 <.001 1.1883 3.0900 1.0000 

Intercept Change in Friendship Quality 12.5330 2.0764 6.0358 <.001 8.4633 16.6027 3.1627 

Mean Friendship Quality at T1 22.6078 0.3622 62.4240 <.001 21.8980 23.3177 5.8212 

Change Variance in Friendship Quality 10.6887 2.6383 4.0514 <.001 5.5177 15.8596 0.6807 

Friendship Quality at T1 Variance 15.0832 2.2863 6.5973 <.001 10.6022 19.5642 1.0000 

Regression Paths  

     

 

Change in Friendship Quality~ 
Social Susceptibility at T1 0.6240 0.2697 2.3138 0.0207 0.0954 1.1526 0.2303 

Change in Social Susceptibility ~ 
Friendship Quality at T1 -0.0025 0.0283 -0.0885 0.9295 -0.0580 0.0529 -0.0053 

Self Feedback: Friendship Quality -0.5132 0.0906 -5.6673 <.001 -0.6907 -0.3357 -0.5030 

Self Feedback: Social Susceptibility 
-1.0079 0.0881 

-
11.4428 <.001 -1.1805 -0.8353 -0.8078 

Covariance Paths  

     

 

Social Susceptibility at T1 Friendship 
Quality at T1 -0.3267 0.4426 -0.7380 0.4605 -1.1942 0.5409 -0.0575 

Change in Social Susceptibility and 
Change in Friendship Quality -0.2359 0.4264 -0.5533 0.5801 -1.0715 0.5997 -0.0670 

543 
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S-Table 2  

Latent change score model: Longitudinal development of Social susceptibility and Taste uncertainty. Taste uncertainty covaries with 

social susceptibility at T1 and longitudinal change in taste uncertainty covaries with longitudinal change in social susceptibility. est: 

unstandardised estimate, se: standard error, CI: confidence interval, est (stand): standardised estimate. 

Parameter est se z p lower 
CI  

upper 
CI 

est 
(stand) 

Intercept Change in Social 
Susceptibility  

-0.17589 0.08154 -2.1573 0.03099 -0.3357 -0.01609 -0.09404 

Mean Social Susceptibility at T1 0.598969 0.06001 9.98161 <.001 0.481357 0.716582 0.598969 

Variance Change in Social 
susceptibility 3.498715 0.39361 8.88881 <.001 2.727256 4.270175 1 

Variance Social susceptibility at 
T1 

1.925826 0.20384 9.44770 <.001 1.526306 2.325347 1 

Intercept change in taste 
uncertainty 

-0.1064 0.04591 -2.3173 0.0205 -0.19639 -0.01641 -0.09957 

Mean taste uncertainty at T1 1.276897 0.03625 35.2251 <.001 1.205849 1.347945 1.276897 

Variance Change in Taste 
uncertainty 

1.141947 0.10468 10.9093 <.001 0.936786 1.347109 1 

Variance Taste uncertainty at T1 0.674559 0.06177 10.9208 <.001 0.553495 0.795623 0.674559 

Covariation taste uncertainty at 
T1 and change in Taste 
uncertainty 

-0.55496 0.07682 -7.2240 <.001 -0.70553 -0.40439 -0.51932 

Covariation Social Susceptibility 
at T1 and Change in Social 
susceptibility -1.60497 0.24836 -6.4622 <.001 -2.09175 -1.11819 -0.85805 

Covariation Social Susceptibility 
at T1 and Taste uncertainty at T1 

0.309783 0.04521 6.85223 <.001 0.221175 0.398391 0.309783 

Covariation Change in Social 
Susceptibility ~ Change in Taste 
uncertainty 

0.409025 0.10722 3.81476 <.001 0.198874 0.619177 0.204632 
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S-Table 3 

Bivariate latent change score model: Co-development of Taste uncertainty and intra-

cortical myelin in mPFC. est: unstandardised estimate, se: standard error, CI: 

confidence interval, est (stand): standardised estimate. 

Parameter est se z p lower 
CI 

upper 
CI 

est 
(stand) 

Change intercept taste uncertainty 5.10494 1.592517 3.205579 0.001 1.983663 8.226217 4.572613 

Mean taste uncertainty at T1 3.09042
1 0.606216 5.097891 <.001 1.90226 4.278582 3.555317 

Change variance taste uncertainty 0.59380
8 0.118516 5.010384 <.001 0.361522 0.826094 0.476424 

Taste uncertainty at T1 variance 0.72562
4 0.128672 5.639346 <.001 0.473432 0.977816 0.960358 

Change intercept mpfc myelin 0.52287
1 0.053562 9.761948 <.001 0.417891 0.627851 14.52002 

Mean mpfc myelin at T1 0.73812
5 0.029111 25.35556 <.001 0.681068 0.795181 20.59784 

Mpfc myelin change variance 0.00077 0.000105 7.308699 <.001 0.000563 0.000976 0.593755 

Mpfc myelin variance 0.00116
2 0.000156 7.438966 <.001 0.000856 0.001468 0.904871 

Regression Paths 
      

 

Change mpfc myelin ~ mean taste 
uncertainty at T1 0.00398 0.002608 1.525937 <.001 -0.00113 0.009092 0.096068 

Change taste uncertainty ~ mean 
mpfc myelin at T1 

-
3.88844 1.815342 -2.14199 0.031 -7.44645 -0.33044 -0.12481 

Self Feedback mpfc myelin -
0.63165 0.071022 -8.8938 <.001 -0.77085 -0.49245 -0.62858 

Self Feedback taste uncertainty -
0.91709 0.070924 -12.9306 <.001 -1.0561 -0.77808 -0.71405 

Covariance Paths 
      

 

Covariance Taste uncertainty at T1 
and mpfc myelin at T1 

0.00086
8 0.001911 0.454303 0.645 -0.00288 0.004614 0.000868 

Covariance change in taste 
uncertainty and change in mpfc 

myelin at T1 
-

0.00149 0.001421 -1.05187 0.293 -0.00428 0.00129 -0.06988 

Covariates 
      

 

Age 
      

 

Taste uncertainty~age -
3.28956 1.925836 -1.70812 0.087 -7.06413 0.485012 -0.11019 

Change in taste uncertainty ~ age 1.98188
8 2.146281 0.923406 0.356 -2.22475 6.188522 0.05169 

Myelin at T1 ~ age 0.25454
1 0.094091 2.705261 0.007 0.070126 0.438957 0.206826 

Change in myelin ~ age 0.07330
1 0.076986 0.952137 0.341 -0.07759 0.224191 0.059271 

Age variance 0.00084
8 6.50E-05 13.03554 <.001 0.00072 0.000975 1 

Age intercept 0.18921
9 0.002135 88.62727 <.001 0.185035 0.193404 6.498467 

Sex (dummy-coded) 
      

 

Taste uncertainty~sex 0.04286
2 0.123555 0.346903 0.729 -0.1993 0.285025 0.024649 

Change in taste uncertainty ~ sex 0.19574
5 0.113827 1.719663 0.085 -0.02735 0.418843 0.087646 
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Myelin at T1 ~ sex 0.00814
9 0.004967 1.640642 

0.1008
72 -0.00159 0.017883 0.113671 

Change in myelin ~ sex 0.00916
4 0.004113 2.228238 

0.0258
65 0.001103 0.017224 0.127208 

Sex variance 0.24988
4 0.000788 317.0144 <.001 0.248339 0.251429 1 

Sex intercept 0.48924
7 0.036653 13.34797 <.001 0.417408 0.561086 0.978721 

IQ 
      

 

Taste uncertainty~IQ -1.1602 0.467127 -2.48369 0.013 -2.07575 -0.24465 -0.15027 

Change in taste uncertainty ~ IQ -
1.32668 0.468555 -2.83142 0.005 -2.24503 -0.40833 -0.13379 

Myelin at T1 ~ IQ 0.00643
6 0.021587 0.298161 0.766 -0.03587 0.048746 0.020221 

Change in myelin ~ IQ -
0.03075 0.015901 -1.93363 0.061 -0.06191 0.000419 -0.09613 

IQ variance 0.01267
5 0.0013 9.749059 <.001 0.010127 0.015224 1 

IQ intercept 1.10865
6 0.008258 134.2551 <.001 1.092471 1.124841 9.847329 

Site (dummy-coded) 
      

 

Myelin at T1 ~ site 1 at T1 -
0.01503 0.006667 -2.25512 0.024 -0.0281 -0.00197 -0.14548 

Myelin at T1 ~ site 2 at T1 -
0.01614 0.007867 -2.05094 0.040 -0.03155 -0.00072 -0.15614 

Myelin at T2 ~ site at T2 -
0.00178 0.004757 -0.37521 0.708 -0.01111 0.007538 -0.01906 

Site 1 at T1 variance 0.12024
5 0.018318 6.56445 <.001 0.084343 0.156147 1 

Site2 at T1 variance 0.12024
5 0.018318 6.56445 <.001 0.084343 0.156147 1 

Site at T2 variance 0.11634
3 0.018287 6.3621 <.001 0.080501 0.152185 1 

Site 1 at T1 intercept 0.13978
5 0.025426 5.497727 <.001 0.089951 0.189619 0.403113 

Site2 at T1 intercept 0.13978
5 0.025426 5.497727 <.001 0.089951 0.189619 0.403113 

Site at T2 intercept 0.13440
9 0.02501 5.374196 <.001 0.08539 0.183427 0.394055 

Residual Covariances 
      

 

Age~~IQ 0.00040
1 0.000231 1.733565 0.082 

-5.24E-
05 0.000854 0.122298 

Sex~~IQ -
0.00198 0.004081 -0.48616 0.623 -0.00998 0.006014 -0.03525 

Site1 at T1 ~~Site at T1 -
0.01954 0.0046 -4.24791 <.001 -0.02856 -0.01052 -0.1625 

Site1 at T1 ~~Site at T2 0.11562 0.018188 6.357108 <.001 0.079973 0.151267 0.977531 

Site2 at T1 ~~Site at T2 -
0.01879 0.004484 -4.19015 <.001 -0.02758 -0.01 -0.15885 
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S-Figure 1 
 

 
 
Taste uncertainty significantly predicted social susceptibility at both T1 and T2, in line 
with an informational account of conformity(22). 
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