
Trends in Cell Biology
Review

The Benefits of Cotranslational Assembly:
A Structural Perspective
Andre Schwarz1,2 and Martin Beck1,3,4,*
Highlights
The cotranslational assembly of protein
complexes in eukaryotes is a more
prevalent phenomenon than previously
thought.

Cotranslational assembly of protein
complexes is likely to be interlinked with
various biological processes including
the regulation of local translation, buffer-
ing of protein complex stoichiometries,
orphan subunit degradation, and protein
evolution.
The faithful assembly of protein complexes in space and time is a hallmark of
cellular homeostasis. Complex assembly might be seeded already during trans-
lation, if interacting subunits are recruited to the nascent chain. Here, we review
recent discoveries suggesting that such cotranslational assembly is a prominent
feature throughout the proteome. It might contribute to the efficiency and
efficacy of assembly and occurs in coordination rather than competition with
chaperones. We discuss how cotranslational assembly structurally contributes
to the organizational order of assembly pathways and their surveillance. Taken
together, these novel insights suggest that cotranslational assembly is intimately
linked with the regulation of protein abundance, stability, and activity, offering an
attractive explanation for many cellular phenomena.
Structural constraints and theorder of pro-
tein complex assembly pathways might
necessitate cotranslational interactions.

Cotranslational assembly can increase
both the efficiency and the efficacy
of the process and generally occurs via
N-terminally biased interaction domains
in coordination with cotranslational
chaperones.
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Coordinating Protein Complex Assembly
Protein complexes are a key organizational unit of the proteome. The assembly of such com-
plexes is a nontrivial task in the crowded interior of a cell, where each protein is in frequent contact
with other macromolecules and therefore in competition for binding partners. Inevitably, cells had
to come up with strategies to ensure faithful and efficient assembly. For many complexes, assem-
bly based on the random collision of subunits is sufficient, as evidenced by assembly in vitro [1,2].
Others rely on the standard suite of cellular broad-specificity chaperones [3], have evolved ded-
icated chaperones [4], or even entire assembly organelles, as exemplified by ribosomal assembly
in the nucleolus [5]. In all cases, premature or unintended interactions of nascent peptides are
prevented, either by cotranslational binding of chaperones or by active transport to a suitable en-
vironment. There is, however, another way to achieve this; namely, through immediate
cotranslational folding and concomitant association of binding partners.

As early as the 1960s, researchers showed biochemically, in prokaryotes, that nascentmultimeric
enzymes already possess enzymatic activity before their release from polysomes [6,7], indicating
cotranslational folding and assembly. This notion later solidifiedwith the realization that several cy-
toskeletal elements, including intermediate filament and sarcomere components (notably exclud-
ing actin and tubulin), are constructed cotranslationally [8]. While these examples represented
homomeric or operon-encoded proteins, this concept was more recently extended to eukaryotic
heteromeric complexes [9–18]. Homomers and operon-encoded heteromers of prokaryotes
both emerge from a single mRNA, whereas heteromers in eukaryotes arise from several
monocistronic mRNAs, thus raising intriguing new questions. Is the translation of several tran-
scripts potentially coordinated in time and space? How does such regulation interplay with
other cellular mechanisms like the degradation of orphan subunits [19] or differential assembly
from different mRNA isoforms [14,20]?

To understand why cotranslational assembly has emerged as a pervasive part of the cellular as-
sembly system, one needs to consider many aspects of protein biology: local and coordinated
translation, folding, functional regulation, and cellular homeostasis. Just as every protein complex
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Glossary
Assembly domain: the part of a
protein that recruits interactors, here
cotranslationally.
cis: assembly in cis refers to assembly
from the same (polycistronic) transcript.
Directional: directional cotranslational
assembly means that a fully translated
subunit is recruited to the nascent chain.
Efficacy: the efficacy of cotranslational
assembly as used here refers to its
reliability in producing the desired
outcome (the correctly and entirely
assembled complex).
Efficiency: the efficiency of
cotranslational assembly as used here
describes how economical it is in
producing the desired outcome (time
and resources).
Moonlighting: refers to proteins that
have an additional function on top of
their canonical role and here is used to
refer to proteins that are members of
multiple complexes.
Symmetrical: symmetrical
cotranslational assembly means that
two nascent chains interact with each
other, thus linking two polysomes.
trans: assembly in trans refers to
translation from two spatially separated
transcripts.
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fulfills a specialized task in the cell, each has specific structural features that impose constraints on
its assembly and evolution [21–23]. Some subunits form complexes based on promiscuous inter-
faces [24] and thus their subunits need to be guided to the appropriate binding partners, others
are inherently aggregation prone [25], and yet others havemoonlighting (see Glossary) functions
[26,101]. A cellular assembly system needs to accommodate all of these features. How is it
ensured that closely homologous proteins faithfully form functional homodimers instead of
dimerizing with their close structural relatives? How is it ensured that potentially toxic proteins
quickly and faithfully associate with their inhibitors? How does the cell manage to quickly produce
more heteromeric ion channels on inhibition of a specific synapse? Cotranslational assembly
might provide an answer to many of these questions.

The list of complexes known to assemble cotranslationally has increased rapidly in recent years
and unique features and common principles have started to emerge. Here, we review recent in-
sights into cotranslational assembly focusing on eukaryotic complexes and highlight the benefits
for individual complexes and whole cells. We specifically discuss the concepts of nascent chain
stabilization by interaction partners, the possibility of encoding assembly pathways by
multidomain subunits, and spatially directed assembly by local translation.

Efficiency and Efficacy
Thus far, many studies of cotranslational assembly focused on its identification, and thus a major
question central to any cellular phenomenon often remained unanswered: what is the benefit of
cotranslational assembly of complexes?

In rapidly proliferating cells, assembling complexes correctly in a timely manner is important and
thus their benefit might simply be a combination of efficiency and efficacy. However, to dem-
onstrate this benefit experimentally would require the specific disruption of cotranslational assem-
bly without disturbing its intimately linked translation, which has proved difficult. A successful
attempt was reported for a bacterial luciferase complex [27]. When expressed from differently
engineered operons encoded in Escherichia coli, the two subunits LuxA and LuxB preferentially
assemble in cis from the same mRNA during translation. When trans assembly is enforced
by artificial expression from distant sites of the genome on different mRNAs, luciferase
activity is reduced by ~40%. Interestingly, full-length LuxA binds to nascent LuxB but much
less so in the opposite direction, suggesting that LuxB contains a cotranslationally exposed
motif that recruits earlier-translated LuxA. This positive correlation between polycistronic genes
and assembly order also occurs on a proteome-wide level, with the exception of highly abundant
complexes that are less prone to stochasticity [28]. The development of selective ribosome
profiling (SeRP) (Box 1) allowed high-resolution positional information to be obtained about
the onset of cotranslational assembly during translation, in this case on the position of the LuxB
assembly domain.

Despite its proven usefulness in facilitating heteromeric cotranslational assembly in prokaryotes,
eukaryotes largely abandoned polycistronic transcripts during evolution. However, several
studies imply that cotranslational assembly is also a prevalent mechanism in eukaryotes [12,29].
To the best of our knowledge, experimental proof that assembly is rendered more efficient by
Box 1. Sequencing Technologies Driving the Discovery and Characterization of Cotranslational Assembly

The advancement of our understanding of cotranslational assembly is intimately linked to the development of suitable
technologies. Important objectives are, for example, the identification of cotranslational molecular interactions and their
spatiotemporal characterization, ultimately in the cellular context.
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Sequencing-Based Technologies

RNA immunoprecipitation coupled to microarray (RIP-chip) or coupled to sequencing (RIP-seq)

Immunoprecipitation techniques are commonly used for the identification of RNA substrates of RBPs. The target protein is
affinity enriched and the copurifying mRNAs are identified by reverse transcription and DNA microarray analysis or next-
generation sequencing [92]. In contrast to crosslinking immunoprecipitation (CLIP), RIP-chip/seq captures not only
primary protein–RNA interactions (Figure IA) but also indirect interactions (Figure IB) as they occur, for example, during
cotranslational association with nascent chains (Figure IC). To distinguish between nascent chain interactions and other
types of indirect RNA-binding events, polysomal integrity is perturbed (Figure IC′). Although the immunoprecipitation oc-
curs via a bait protein that binds to a nascent polypeptide, it is the mRNA (as a proxy for nascent chains) that is identified.
This has to be done for each interactor separately.

Selective ribosome profiling (SeRP)

SeRP offers an extension to RIP-seq and provides mRNA-positional information about cotranslational interactions [93].
Translationally arrested polysomes are subjected to affinity purification targeting the (candidate) cotranslational interactor
(bait), such as another member of the desired protein complex. Ribosome protected fragments (rpfs) are prepared by nu-
clease digestion of both total RNA (total translatome) and the enriched RNAs and subjected to deep sequencing. The re-
spective reads are mapped onto the corresponding ORFs and normalized to the total translatome (Figure II). Ribosomes
that have not yet synthesized the relevant interaction domains that recruit the bait are not enriched and therefore do not
produce rpfs for the respective part of the mRNA (Figure II, left of broken line). The resulting profiles provide positional in-
formation along the ORF about where the bait protein binds to the nascent chain [29].
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Figure I. RIP-chip or RIP-seq as Tools to Identify Protein–RNA Interactions. RIP via a candidate RBP allows (A)
direct protein–RNA interactions and (B) indirect protein–protein–RNA interactions since it occurs under native conditions
without crosslinking. (C) Cotranslational assembly is a special case of indirect RNA binding via the nascent chain and the
ribosome. Copurified RNA is generally identified via reverse transcription followed by DNA microarray (RIP-chip) or next-
generation sequencing (RNA-seq) and compared with total RNA or mock pulldowns. (C′) Disappearance of RNA
enrichment after translation inhibition is commonly used as an indication of cotranslational interaction over other types
of indirect binding. Adapted and extended from [12].
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Figure II. SeRP Allows Identifi-
cation and Positional Charac-
terization of Cotranslational
Interactions. Extending RNA
immunoprecipitation, selective
ribosome profiling (SeRP) allows
high-resolution mapping of
cotranslational interactions. Pro-
tein–ribosome nascent chain
complexes (RNCs) are copurified
efficiently only if a sufficient portion
of the transcript was translated to
allow the emergence of the interac-
tion domains from the ribosome.
Ribosomes prior to this position
on the mRNA will not be captured.
Immunopurified RNCs are further
digested with nuclease to produce
ribosome protected fragments
(rpfs), reverse transcribed, and
subjected to deep sequencing.
Mapping of identified rpfs onto
the respective open reading frames
(ORFs), normalized to the total
translatome, allows precise deter-
mination of the degree of interac-
tions along the ORF.
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cotranslational association is still missing for eukaryotic heteromers. However, several groups have
shown that this assembly mode is advantageous in preventing aggregation or degradation [11,15,
16,29]; in short, the efficacy of assembly. By deleting one subunit at a time and assaying the effects
on abundance and solubility of the remaining members, a recent study has confirmed that the na-
scent subunit is generally more aggregation prone than its interactors [29]. Nine of 12 preselected
stable Saccharomyces cerevisiae complexes underwent cotranslational assembly and all that were
tested showed an increased misfolding propensity of the nascent chain subunit. The remaining
three complexes have a well-characterized set of assembly chaperones potentially fulfilling the
same role. However, even for those that do assemble cotranslationally, their interactions seem to
be coordinated with ribosome-associated Hsp70-family chaperones [29]. This crosstalk between
the nascent quality control system and the to-be-recruited partners that subsequently stabilize the
nascent chain highlights the ribosome exit tunnel as a central hub for cellular surveillance [30,31].

In addition to chaperones, N-terminal biasing of interaction domains [32] and translational paus-
ing at specific sites along the open reading frame (ORF) [9,33] have previously been suggested to
aid folding and assembly [32,34–37], potentially by providing additional time. Various studies in-
dicated the importance of these features [9,16–18,32,33,38–40] for cotranslational assembly,
but methodological limitations, in particular regarding precise positional information pinpointing
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interaction onset, had prevented more generic insights. This technical challenge has been ad-
dressed with the introduction of SeRP (Box 1). Shiber and colleagues confirmed an enrichment
of interaction domains towards the N terminus in their dataset. They observed that the emer-
gence of the full interaction domain from the ribosome exit tunnel almost perfectly coincided
with cotranslational binding and subsequently remained stable [29]. Although the N-terminal bias-
ing of assembly domains could explain how cells efficiently organize the assembly of heteromers,
it does not seem to apply to homomers [16]. In case of heteromers, cotranslational interactions
can conceptually occur either while both partners are still being synthesized and tethered to
the ribosome (here termed symmetrical) or with one mature subunit binding a nascent subunit
(here termed directional). Interestingly, more complexes seem to assemble in a directional fash-
ion, with some notable exceptions [16,17,29]. While it is certainly too early to draw conclusions
about cellular preferences, symmetrical assembly might require significantly more regulatory
effort to ensure the coordinated translation of more than one polypeptide simultaneously in
time and space (see Outstanding Questions). In the future, systematic mechanistic dissection
of the kinetics of both translation and chaperone involvement, as well as the placement of inter-
action and stalling domains within ORFs, will be needed to better understand the underlying
causality.

Nascent Chain Stabilization and Orphan Protein Degradation
That certain subunits of a multiprotein complex are inherently unstable in isolation is well known to
many biochemists and particularly structural biologists. Many complexes can therefore be
efficiently produced recombinantly only by coexpression of their subunits [41,42]. Similarly, in
cell biology, there are often complex-specific limits to the overexpression of a certain subunit
that cells will tolerate before the excess is degraded [43]. Last, the deletion or reduction of a
TrendsTrends inin Cell BiologyCell Biology

Figure 1. The Multiple Fates of Nascent Polypeptides. On emergence from the ribosome exit tunnel, nascent proteins can engage in a variety of processes
depending on cellular context and function. These include but are not limited to the following. (A) Engagement of signal recognition particles (SRPs) and delivery to the
rough endoplasmic reticulum for cotranslational translocation. (B) Cotranslational folding and association with other complex members. (C) Cotranslational chaperoning
to aid proper folding and subsequent handoff to interaction partners. Successful engagement by the nascent chain in any of these processes generally leads to
stabilization as indicated by a clock turned green. If these processes are not satisfied and completed within a certain timeframe, the cellular quality control system takes
over (clock turned orange and red). (D) Cotranslational degradation by the cellular quality control system.
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protein complex member often results in a reduction of other members alongside [44]. Each of
these widely observed phenomena could be explained by the clearance of unassembled
subunits, termed orphan protein degradation [19]. Although it was long suspected, it is only
recently that more and more studies have found cotranslational assembly to be involved in
mediating this quality control pathway [11,16,29].

Analogous to other cotranslational events such as translocation or chaperoning, assembly is likely
to protect correctly associated subunits from degradation (Figure 1). Depending on the fate of the
nascent chain, this is mediated by quality control mechanisms that sense the completion of each
complex’s cellular maturation program. Failure to do so, due to lack of interaction partners, im-
proper folding, or mislocalization, generally results in clearance (Figure 1D) [19]. These events
are not mutually exclusive but interconnected, as exemplified by the cotranslational assembly
of transmembrane proteins [39] or the coordination with Hsp70 chaperones [29]. In this section,
we discuss recent literature that highlights the interplay between cotranslational assembly and or-
phan subunit degradation.

The catalytic subunit Set1 of Saccharomyces cerevisiae has a central role during the
cotranslational assembly of the histone methyltransferase complex COMPASS [11]. Identified
during a test for COMPASS RNA binding by RNA immunoprecipitation coupled to microarray
(RIP-chip) (Box 1), Set1’s own RNA appeared as the top hit. A subcomplex of three core proteins
(Swd1/Cps50, Shg1, and Spp1/Cps40) stabilized the nascent Set1 protein. Deletion of either
Swd1/Cps50 or its partner Swd3/Cps30 led to drastically reduced Set1 levels (Figure 2A, left).
As the remaining stabilizing interactors still bound to Set1’s nascent chain and its translation
was undisturbed, the authors concluded that excess Set1 that fails to find its partners in time is
degraded. Complementary strong RNA overexpression led to only a very modest increase in
Set1 concentration, presumably again due to the lack of stabilizing partners. The authors sug-
gested that this removal of unbound nascent protein might occur via the proteasome, and later
work identified N-terminal degradation signals [45]. Interestingly, the human Set1 homolog MLL
is a substrate of the E2/E3 ubiquitin ligase Ube2O, marking it for degradation by the proteasome
[46]. How exactly Ube2O recognizes orphan proteins to trigger their degradation [47,48] remains
to be further characterized but could entail the recognition of exposed degradation signals that
would otherwise be shielded in the fully assembled complex [47]. It thereby seems to compete
for the same binding sites as nuclear transport receptors and assembly chaperones and prefer
basic and hydrophobic stretches as shown for the ribosome or α-globin [47,48].

Depending on N-terminal amino acid residues (N-end rule), acetylation status, translation effi-
ciency, or disorder, a large proportion of nascent chains may never be completed in the first
place [49–51], as a considerable portion of the proteome is subject to cotranslational degrada-
tion. The N-end rule-mediated degradation of orphan proteins has been shown for several
Figure 2. Structural Commonalities of Cotranslationally Assembling Complexes. Structural models of several complexes utilizing cotranslational assembly.
Molecular structures are displayed as surface representations and color coded based on the role of the subunit during assembly. The nascent chain is further color coded
from the C terminus (dark red) to the N terminus (bright red). (A) Saccharomyces cerevisiae COMPASS histone methyltransferase [Protein Data Bank (PDB): 6BX3 [65]]. The
catalytic Set1 extends from the center of the complex to the periphery, forming interactions with the previously identified cotranslational interactors Cps40/Cps50 [11]. The
box shows a proposed model of Set1 assembly (adapted from [11]). Cotranslational formation of an initial stabilizing complex is followed by maturation via the recruitment of
additional partners. Deletion of one of these stabilizers leads to the degradation of Set1. (B) Model of two partial chimeric Ino80 chromatin remodeler structures bound to a
nucleosome (PDB: 6fml [68], 5nbn [67]) and schematic representation (both adapted from [67]). The central Ino80 ATPase subunit extends throughout the complex,
recruiting three distinct modules along its path. Depicted in the structure is the deep C-terminal insertion into Rvb1/2 and the cotranslational interface with Arp8. (C) Model of
the human TFIID BC core (PDB: 6mzc [70]). Highlighted are two distinct pairs of identified cotranslational interactors. Left: The nascent Taf8 again stretches throughout the
entire complex, interacting with Taf10 at its N-terminal domain. Right: Taf6 and Taf9 are assembled symmetrically via the same domain. (D,D′) Model of S. cerevisiae SAGA-
DUB (D) and human TREX-2 (D′) with the shared subunit ENY2/Sus1. The two homologs adopt highly similar conformations, embracing the different central nascent
subunits. Cotranslational assembly has been identified for both complexes in human cells [16], but yeast SAGA-DUB is shown as the human structure is not available.
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complexes and could be rescued by coexpression of its partners [52]. In the case of fungal α6β6
fatty acid synthase (FAS), orphan Fas α is ubiquitinated by the N-end rule ubiquitin ligase Ubr1
and degraded by the proteasome in collaboration with Hsp70-family chaperones. Consequently,
Fas α is prone to aggregation during stress and to degradation in the absence of Fas β [29].
Mature Fas β binds to nascent Fas α, which also appears to be coordinated with Hsp70
chaperone binding [29]. Given the highly intertwined interaction domains, it is unsurprising that
such an interface has to form concomitantly with folding [29,53].

The question of howwell expression of protein complex members is coordinated remains subject
to active research [54–56], but it is likely that inherent stochasticity at each level from transcrip-
tional to post-translational regulation ultimately prevents perfect coordination. It is interesting to
note that the stoichiometry of protein complexes is post-translationally buffered [57] and
less clearly reflected in ribosomal profiling and gene expression data than protein abundances
[57,58]. Fully assembled complexes, however, seem to need a sufficient concentration of struc-
turally relevant subunits to be stable [57]. The concept of ‘driver subunits’ [59], whose expression
levels ultimately determine the abundance of the entire complex and thus are more tightly regu-
lated than other subunits that are produced in excess, might be in good concordance. Further,
many complexes have evolved shared or moonlighting subunits [26], expanding the complexity
of coordinated expression. The generation of orphan proteins thus seems inevitable. It has
been estimated that N10% of the proteome undergoes nonexponential decay predominantly
within the first hours after synthesis and a large fraction of the affected proteins are known protein
complex members [60]. Since cotranslational assembly and orphan subunit degradation appear
to be intimately interlinked processes, it is interesting to ask how exactly the cell detects and
removes orphan proteins (reviewed in [19]) (see Outstanding Questions). While cotranslational
chaperones are in control over the fate of many proteins, designated interaction partners in a pro-
tein complex seem to fulfill a similar role for a surprising number of them. One might thus envision
a continuum with certain proteins in high need of chaperone attention on the one end and pro-
teins that are content with their natural partners on the other.

Extended Nascent Subunits as Common Structural Features of Cotranslationally
Assembling Complexes
The order in which protein complexes assemble appears to be important and subject to evolu-
tionary pressure. It is often preserved across species [61], despite the impact of drastic evolution-
ary events such as gene fusions. To abide by this evolutionary constraint and retain a degree of
flexibility in subunit composition and relative positions, it is appealing to envision a coordinating
subunit that encodes assembly order within the polypeptide chain. Like pearls on a string, this
protein uses a sequence of small domains or short linear motifs (SLIMs) to form interactions
and ‘capture’ its partners one by one as its domains emerge from the ribosome. Intrinsic disorder
would greatly facilitate this, by acting as ‘molecular glue’ to bring together various subunits while
retaining flexibility [62,63]. As mentioned earlier however, disorder would potentially also attach a
sort of molecular timer to these interactions as disordered proteins aremore prone to degradation
if sensitive sites are not sequestered [64]. By kinetic competition, each interaction would have to
be shielded or satisfied within a certain timeframe to escape quality control (Figure 1B,D), which
might focus the stoichiometric control of an entire complex onto a single rate-limiting ‘driver’
subunit [59].

Many of the recently identified nascent chains that form cotranslational interactions with other
complex members appear to be built according to this blueprint. In two recent high-resolution
structures of S. cerevisiae COMPASS [65,66], the central Set1 polypeptide winds throughout
the entire complex, forming contacts with all but one peripheral subunit (Figure 2A). On its path,
798 Trends in Cell Biology, October 2019, Vol. 29, No. 10
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it interacts with Cps30, Cps40, and Cps50, and its catalytic SET domain is positioned in the cen-
tral junction of the complex. These are three of the four subunits mentioned earlier that were found
to be crucial in stabilization [11]. Interestingly, the most important early stabilizer, Cps50 [11], itself
winds throughout the entire complex as well, providing a scaffold alongside [65,66]. Unsurpris-
ingly, the entire N terminus of Set1 harboring the identified degradation signals [45] has been ac-
tively removed during the structure determination projects, pointing to additional contacts that yet
remain to be unraveled.

Nuclear chromatin remodeling complexes also appear often to assemble cotranslationally, pos-
sibly in encoded order. The central Ino80 subunit of the eponymous S. cerevisiae remodeler is
a prime example, where its N-terminal domain recruits a subcomplex of four proteins [67], its cen-
tral domain binds to a set of actin-related proteins (Arps) that are shared amongmany remodelers
[67], and its C terminus is inserted into the RuvA/B helicase [68] (Figure 2B). In doing so, it adapts
an extended conformation that could recruit one module after the other on emergence from the
ribosome. The same general architecture also applies to other family members, such as SWR1,
SWI/SNF, and RSC [67,69]. Several Schizosaccharomyces pombe Arp-family members have in-
deed been found to bind cotranslationally to their respective nascent central subunits including
Ino80 and the SWI/SNF central subunit Snf22 [12]. Another recently discovered example is the
nuclear transcription factor TFIID. It is assembled in the cytoplasm, where its subunit Taf10
binds to the nascent Taf8 subunit and the Taf10 protein colocalizes with TAF8mRNA in cytoplas-
mic foci. This interaction was lost on mutation of the N-terminal interaction domain of Taf8 [16]. In
the complex, Taf8 is extended, forming interactions with the majority of subunits and binding
Taf10 at its N-terminus (Figure 2C, left) [70]. In total, TFIID houses three identified pairs of
cotranslational assembly, all relying on the same histone-fold domains as also shown by Taf6–
Taf9 (Figure 2C, right) [16]. As a final example, ENY2 (Sus1 in yeast) is a shared component of
the TREX-2 and SAGA complexes. In human cells, it stabilizes different nascent chains in the
two complexes (Figure 2D,D′) [16], exemplifying how moonlighting is accomodated by
cotranslational assembly. With the rapidly growing structural repertoire of large complexes,
cotranslational assembly might be predicted from structural databases in the future or even
exploited to engineer artificial and novel complex topologies.

Protein Complexes Can Associate Cotranslationally with Their Regulators
To prevent toxicity, the activity of certain proteins has to be effectively inhibited in time or space
without leakage. This can be achieved by cotranslationally attaching specific regulators to
their targets. The caspase-activated DNase CAD is one of these particularly sensitive cases. In
proliferating cells, CAD is kept inactive by its inhibitor ICAD, and acute depletion of ICAD triggers
nuclear fragmentation and cell death [71]. Fittingly, CAD can fold only in the presence of
ICAD [72]. Dissection of the molecular timing in in vitro translation systems has proved that
Hsp70–Hsp40 cotranslational chaperones are needed to keep CAD in a ‘quasi-native state’
after which the handoff to ICAD for maturation occurs [72].

While not as deleterious for the cell as CAD, cyclin-dependent kinases (CDKs) take center stage in
terms of cell cycle timing and progression and are therefore regulated at several levels. This in-
cludes cyclin-dependent activation, phosphorylation, localization, and inhibition [73]. In
S. pombe the CDK protein Cdc2 is the only member and is sufficient to drive the cell cycle with
a single cyclin partner [74]. In their systematic investigation into S. pombe cotranslationally
interacting proteins, Duncan andMata probed the interactors of this essential kinase. The authors
emphasize that, despite dozens of known interactors and substrates of Cdc2, it specifically
enriched two mRNAs encoding the cyclin cdc13 (a positive regulator) and the CDK inhibitor
rum1 (a negative regulator) [12], although other interactors are several-fold more abundant in
Trends in Cell Biology, October 2019, Vol. 29, No. 10 799
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the cell. Why only one of its cyclins – Cdc13 – and not others requires this type of rapid assembly
remains enigmatic.

Localized Construction of Protein Complexes
Despite the lack of operons in eukaryotic cells, there arguably is a yet-bigger need for spatial
coordination because they are considerably larger. Eukaryotic mRNAs are packed into
messenger ribonucleoprotein (mRNP) particles, clusters of protein and mRNA that regulate the
fate of a given transcript. In a theoretical framework termed the ‘post-transcriptional operon’
hypothesis, it is these contained RNA-binding proteins (RBPs) that substitute for physical
operons by coregulating functionally related mRNAs [75]. By tethering them together in an
area, the problem of slow, diffusion-based encounters of subunits is reduced dramatically and
may be more achievable within the timeframe of translation.

The regulation of RNA localization has received tremendous attention since the realization that a
large percentage of transcripts display specific subcellular localization [76]. While RNA localiza-
tion, local translation, and cotranslational assembly are distinct mechanisms, and can occur inde-
pendently of each other, their benefits for the efficiency and regulation of protein complex activity
are often complementary. The regulation of local translation jointly with cotranslational assembly
would offer an attractive concept to control the composition of protein complexes, in particular
those containing moonlighting or closely related subunits that potentially assemble in a promiscu-
ous manner. However, generating direct experimental evidence for the association of the two
processes remains challenging and is often restricted to specialized tissues or biological condi-
tions. Examples include the formation of the higher-order structure of sarcomeres into the typical
band pattern in muscle cells, which requires the coordinated expression and assembly of the my-
osin heavy chain, titin, and other proteins. Nascent chains of several of these proteins were found
stably attached to the cytoskeleton while still bound to ribosomes (reviewed in [8]). The localiza-
tion of the corresponding transcripts using fluorescence in situ hybridization (FISH) (Box 2) re-
vealed the same sarcomeric periodicity [77] and ribosomes appeared to be arranged in regular
arrays in the muscle filament lattice [78]. In a more recent study, two mRNAs encoding regulatory
subunits of the human proteasome were found to colocalize to cytosolic foci coined
‘assemblysomes’ under stress conditions [17]. In the same study, their S. cerevisiae homologs
were shown to assemble symmetrically during translation, indicating evolutionary conservation.
Box 2. RNA, Protein, and Translation Visualization Techniques

While SeRP provides positional information about interactions along the mRNA sequence, the cell lysis during the proce-
dure eliminates any higher-order spatial information about their position within the cell. As protein–nascent chain interac-
tions have to occur in proximity to the translating polysomes, visualizing them in the cellular context is important.

The current gold standard for RNA visualization in fixed tissues is single-molecule FISH (smFISH) and variations thereof. By
hybridization of short (20–50 nt) direct fluorescently labeled DNA oligonucleotides to target RNAs, transcripts are visualized
with single-molecule sensitivity [94,95]. Proteins can be imaged in the same samples using immunofluorescence
microcopy but generally lack the same single-molecule sensitivity. Direct one-to-one comparison of individual RNA and
protein molecules is therefore very limited for traditional immunofluorescence and fluorescent protein tagging. This might,
however, become more feasible thanks to the development of bright molecular probes (e.g., peptide arrays coupled to
fluorescent binders as described below) and advanced imaging techniques in the future. For live imaging of RNAs, genet-
ically encoded aptamers such as the MS2 system are widely used [96,97].

To visualize translating mRNAs and nascent polypeptides simultaneously, orthogonal techniques were developed that uti-
lize genetically encoded N-terminal arrays of short epitopes, which are recognized by fluorescently labeled binders
[88,98–100]. Although this relatively new class of techniques has, to the best of our knowledge, not yet been used to probe
cotranslational assembly, the simultaneous visualization of RNA and nascent protein holds great potential and allows the
spatial characterization of translation parameters such as elongation speed, pausing, or binding events.

800 Trends in Cell Biology, October 2019, Vol. 29, No. 10



Outstanding Questions
What are the molecular determinants for
and what fraction of the proteome is
subject to cotranslational assembly?
Proteome-wide RIP-Seq/SeRP studies
and the development of bioinformatics
predicting cotranslational assembly will
represent important milestones to
answer these questions in the future.

Orphan subunit degradation and
cotranslational complex assembly
seem to compete for nascent chain
association. Whether the fate of the
nascent polypeptide is chosen solely
based on kinetic restraints or regulated
in a more multifaceted manner remains
unclear.

Does the combination of local translation
and cotranslational association prevent
promiscuous assembly and allow
biasing of protein complex composition?

How do the protein subunits involved
in cotranslational complex assembly
find each other to begin with? For
symmetrical assembly, what are the
relative contributions of RBP-mediated
versus nascent chain-mediated recruit-
ment? For directional assembly, do
the mature partners find their corre-
sponding nascent chains via simple diffu-
sion or is an active transport mechanism
involved?
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Arguably themost familiar cellular location for local translation, however, is the rough endoplasmic
reticulum (ER). Either actively tethered by RBPs or passively attached via nascent chain–
translocon interactions (Figure 1A), numerous mRNAs are actively translated in polysomes on
its surface, giving it the characteristic rough appearance [79]. However, even within the broad
surface of the ER, there is suborganellar RNA localization that is relevant for cotranslational
events. In example, both homomeric [39] and heteromeric [80] voltage-gated K+ ion channels
(Kv) assemble cotranslationally via their N termini on insertion into the ER [39]. One family
member, the cardiac Kv channel hERG [14], is a pseudoheteromer that is assembled from two
isoforms of the same transcript differing in those N termini. While the cotranslational interactions
of the proteins are mediated by the respective domains, the association of the two transcripts is
translation independent and possibly mediated by RBPs [14]. Furthermore, the translation of
these voltage-gated ion channels regulated on a higher order spatial scale. The mRNA encoding
the largely brain-specific Kv1.1 channel is locally translated in dendrites on mTOR or synaptic
inhibition [81]. In dendrites, its transcripts form large, immobile clusters termed ‘translational
hotspots’, from which new protein emerges. It is likely that this local translation still occurs on
distant outposts of ER and mRNAs are possibly even transported alongside ER vesicles, as
has been shown for several examples (reviewed in [82]).

Besides secretory or membrane proteins, the ER is a cellular hub for the translation of various cy-
tosolic and nuclear proteins [83]. In this, mRNAs are not distributed evenly but follow a higher-
order, mesoscale organization [83]. Consistent with this is the recent discovery of an ER
subdomain called the TIGER domain [84], which opens an intriguing new level of cellular complex-
ity. Mediated by the broad-specificity RBP TIS11B, this biomolecular condensate selectively en-
riches or depletes transcripts and thereby influences their fate by biasing protein complex
compositions. This results in scenarios where identical polypeptides such as CD47, expressed
from isoforms with varying 3′ UTRs (untranslated regions), end up at either the plasmamembrane
or the ER [20]. On a molecular level, this is achieved by interactions of RNA-bound effector pro-
teins with the nascent chain inside but not outside the granule.

In light of the prominence of shared subunits and evolutionarily related proteins among com-
plexes assembling cotranslationally, it is tempting to speculate that biasing of certain complex
compositions by differential recruitment of mRNA isoforms is a more commonly used mecha-
nism. This would allow tuning of the interactome despite identical or highly similar polypeptides.
Among those identified so far are three kinesin and kinesin-like proteins [12], all five S. pombemy-
osins [85] as well as the myosin-like Nup211 [12], five TATA-binding protein (TBP)-associated
factors and TBP [16], three chromatin remodeler ATPase subunits [12], eight Arps [12], and sev-
eral voltage-gated ion channels [14,39]. While there is no direct evidence of localization-based in-
teractome biasing for these related proteins so far, several members of these protein families
were recently found to form so-called ‘assembly particles’ or translation hotspots [81,85–91].
At some point during assembly, their nascent proteins seem to exist in large cytosolic foci
surrounded or filled by their own mRNAs. Often colocalized with chaperones, these granules
are speculated to provide the proper milieu for translation, folding, and assembly prior to the re-
lease of their matured contents for their final function [85].

Concluding Remarks
In summary, it appears likely that the cotranslational assembly of protein complexes in eukaryotes
is more prevalent than previously thought, but challenging to characterize because only a very
minor fraction of the molecular species in a cell are engaged in assembly. It however offers an at-
tractive explanation for various commonly observed phenomena, such as that faithful protein
complex assembly requires the coexpression of multiple subunits, the fact that the order of
Trends in Cell Biology, October 2019, Vol. 29, No. 10 801
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assembly pathways imposes a strong evolutionary restraint, the post-translational buffering of
complex stoichiometries, the necessity of orphan subunit degradation, and the existence of driver
subunits whose regulation seems to ultimately control protein complex abundance. Further char-
acterization of these processesmight be fundamental for our understanding of protein homeosta-
sis in eukaryotic cells that is of high relevance for aging and human disease (see Outstanding
Questions).
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