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Abstract10

Coupled MCMC has long been used to speed up phylogenetic analyses11

and to make use of multi-core CPUs. Coupled MCMC uses a number of12

heated chains with increased acceptance probabilities that are able to13

traverse unfavourable intermediate states more easily than non heated14

chains and can be used to propose new states. While more and more15

complex models are used to study evolution, one of the main software16

platforms to do so, BEAST 2, was lacking this functionality. Here, we17

describe an implementation of the coupled MCMC algorithm for the18

Bayesian phylogenetics platform BEAST 2. This implementation is able19

to exploit multiple-core CPUs while working with all models and packages20

in BEAST 2 that affect the likelihood or the priors and not directly21

the MCMC machinery. We show that the implemented coupled MCMC22

approach is exploring the same posterior probability space as regular23

MCMC when MCMC behaves well. We also show our implementation24

is able to retrieve more consistent estimates of tree distributions on a25

dataset where convergence with MCMC is problematic.26

27

1

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/603514doi: bioRxiv preprint first posted online Apr. 9, 2019; 

nicola.felix.mueller@gmail.com
r.bouckaert@auckland.ac.nz
http://dx.doi.org/10.1101/603514
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction28

Phylogenetic method are being increasingly used to study complex pop-29

ulation dynamics by using ever larger datasets. These analyses however30

also require an increasingly large amount of computational resources. Tree31

likelihood calculations (Suchard and Rambaut, 2009) often assume inde-32

pendent evolutionary processes on different branch and nucleotide site33

and can be easily parallelised (Suchard and Rambaut, 2009). In contrast34

to that, it can be very complex or even impossible to for example paral-35

lelise tree prior calculations to make use of multi-core CPUs. As a results,36

Markov chain Monte Carlo (MCMC) runs can be very time consuming,37

which limits the datasets that can be studied and the complexity of mod-38

els that can be used to do so. Alternatively, coupled Markov Monte Carlo,39

also called parallel tempering, Metropolis coupled MCMC, or MC3, can40

be used in Bayesian phylogenetics Altekar et al. (2004). This approach is41

based on running multiple MCMC chains, each at a different “tempera-42

ture”, which effectively flattens the posterior probability space. This leads43

to less favourable moves being accepted more often, and in turn increases44

the chance to travel between local optimas. After some amount of itera-45

tions, two chains are randomly exchanged in what is essentially an MCMC46

move. In such a move, the parameters of the two chains are exchanged,47

but each chain keeps its temperatures. While the heated chains do not48

explore the true posterior probabilities, the one cold chain does.49

In BEAST 2 (Bouckaert et al., 2014), where a lot of novel Bayesian50

phylogenetic model development takes place (Bouckaert et al., 2018), this51

approach is currently missing. Here, we provide such an implementation of52

the coupled MCMC algorithm of Altekar et al. (2004) in BEAST 2. This53

implementation makes use of multiple CPU cores, allowing virtually any54

analyses in BEAST 2 to be performed on multi-core machines increasing55

the size of datasets that can be analysed and the complexity of models56

that can be used to do so.57

We first show the correctness of our implementation of the coupled58

MCMC by comparing summary statistics of multi type tree distributions59

sampled under the structured coalescent (Vaughan et al., 2014) to the60

summary statistics received when using regular MCMC. Additionally, we61

validate that the inference between regular MCMC and our implemen-62

tation of coupled MCMC match, when applying both to infer the past63

population dynamics of Hepatitis C in Egypt (Ray et al., 2000; Pybus64

et al., 2003). We then compare MCMC with coupled MCMC using dif-65

ferent levels of heating on two different datasets. First, we apply it to66

the Hepatitis C dataset, where we do not expect regular MCMC to be67

stuck in local optimas. Then, we apply it to a dataset which has been68

described to be easily stuck in local optimas (Lakner et al., 2008; Höhna69

and Drummond, 2011).70

Methods and Material71

Background72

Coupled MCMC makes use of running n different chains i = 1, ..., n at dif-73

ferent temperature (Geyer, 1991; Gilks and Roberts, 1996; Altekar et al.,74

2004). Each of the different chains works similar to a regular MCMC75

chain. In regular MCMC, a parameter space is explored as follows: Given76

that the MCMC is currently at state x, we propose a new state x′ from77

a proposal distribution g(x′|x) given the current state. At this new state,78
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we calculate the likelihood P (D|x′) of the data D given the state and the79

prior probability of the new state P (x′) and compare it the to old state.80

The acceptance probability of accepting this new state is then calculated81

as follows:82

R = min
[
1,
P (D|x′)P (x′)

P (D|x)P (x)

g(x|x′)
g(x′|x)

]
(1)

If R is greater than a randomly drawn value between [0, 1], the new state83

x′ is accepted as the current state, otherwise it is rejected and we remain84

in the same state. If we keep proposing new states x′ and accept these85

using (1), we eventually explore parameter space with the frequency at86

which values of a parameter are visited being its marginal probability87

(Geyer, 1991).88

One of the issues of using this approach is that acceptance probabilities
can be quite low, which makes it hard to move between different states
in parameter space. Alternatively, an MCMC chain can be heated by
using a temperature scaler βi = 1

1+(i−1)∆t
, with i being the number of

the chain (Altekar et al., 2004). Heating of an MCMC chain changes its
acceptance probability Rheated to:

Rheated = min
[
1,
(P (D|x′)P (x′)

P (D|x)P (x)

)βi g(x|x′)
g(x′|x)

]
For a heated chain however, the frequency at which a value of a parameter
is visited does not correspond to its marginal probability any more. How-
ever, heated chains can be used as a proposal to update the non heated
chain by using what essentially is an MCMC move. This move proposes
to swap the current states of two random chains i and j with the temper-
ature βi and βj such that βi < βj . Exchanging the states of chains i and
j is accepted with an acceptance probability Rij of:

Rij = min
[
1,
P (xi|D)βjP (xj |D)βi

P (xi|D)βiP (xj |D)βj

]
As for a regular MCMC move, swapping the states of the two chains is89

accepted when a randomly drawn uniformly distribution value in [0, 1] is90

smaller than Rij .91

Implementation92

In our implementation of the coupled MCMC, we run n different MCMC93

chains, with each chain i ∈ [1, . . . , n] running at a temperature βi =94

1
1+(i−1)∆t

. Chain number 1 is therefore the only cold chain and explores95

the state space like a regular MCMC chain.96

Upon initialisation, we first sample at random at which iteration the97

states of two chains with which number are proposed to be exchanged. We98

then initialise each chain to be run in its own Java thread using multiple99

CPU cores, if available. Each chains is then run for as many iterations100

until it reaches the next time an exchange of states with another chain101

is proposed. This means than every chain runs independently of each102

other until an iteration at which it actually participates in a proposed103

exchange, minimising the crosstalk between threads Altekar et al. (2004).104

If the exchange of states between different chains is accepted, we exchange105

the temperature of the two chains instead of the states themselves. The106

states can be quite large and exchanging them across different chains107

is potentially quite time consuming. Alongside exchanging the states, we108
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Figure 1: Comparison of inference between coupled and regular
MCMC. A Comparison of the distribution of tree heights and tree lengths
sampled under the structured coalescent using MultiTypeTree (Vaughan et al.,
2014). The inferred distribution of tree heights and tree lengths match up be-
tween MCMC and the cold chains in coupled MCMC. B Comparison of the
distribution of posterior probability estimates of a Bayesian Coalescent Sky-
line (Drummond et al., 2005) analysis of Hepatitis C in Egypt (Ray et al.,
2000).

exchange the operator specifications and logger. We exchange the operator109

specifications such that the step size of operators can be optimized to run110

at specific temperatures. The loggers are exchanged such that each heated111

chain logs its states to the log file that corresponds to its temperature and112

not the number of the chain.113

We implemented the coupled MCMC algorithm such that finished runs114

to be resumed. In case that chains did not fully convergence just yet, it115

is not necessary to restart the analysis scratch, which is of great practical116

value.117

Usually, a graphical user interface called BEAUti is used to set up118

BEAST 2 analyses. Setting up analyses with coupled MCMC works dif-119

ferently depending on whether a BEAUTi template is needed to set120

up an analysis as required for some packages. If no such template is121

needed, an analysis can be set up to run with coupled MCMC directly122

in BEAUTi and we provide a tutorial on how to do this on https:123

//taming-the-beast.org/tutorials/CoupledMCMC-Tutorial/ (Barido-124

Sottani et al., 2017).125

Data Availability and Software126

The BEAST 2 package coupledMCMC can be downloaded by using the127

package manager in BEAUti. The source code for the software pack-128

age can be found here: https://github.com/nicfel/CoupledMCMC. The129

XML files used for the analysis performed here can be found in https:130

//github.com/nicfel/CoupledMCMC-Material. All plots were done using131

ggplot2 (Wickham, 2016) in R (Team et al., 2013).132

Validation133

Similar to the validation of MCMC operators, we can sample under the134

prior to validate the implementation of the coupled MCMC approach. To135

do so, we sampled typed trees with 5 taxa and two different states under136

the structured coalescent using MultiTypeTree (Vaughan et al., 2014).137
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Figure 2: Convergence of coupled MCMC and regular MCMC using
posterior ESS values and Kolmogorov Smirnov distances. A Here, we
show the distribution of posterior ESS values after 4 ∗ 107 for regular MCMC
and after 1 ∗ 107 for coupled MCMC with 4 chains. The cold scenario uses
coupled MCMC, but does not use any heating. The warm scenario uses slightly
heated chains and the hot scenario relatively hotter chains. B Here we show the
distribution of Kolmogorov Smirnov distances between individual runs and the
concatenation of all individual runs. We assume that all 400 runs concatenated
describe the true distribution of posterior values and then take the KS distance
as a measure of how good an individual run approximates that distribution. The
smaller a KS value, the better the true distribution was approximated.

We did this sampling once using regular MCMC and once using coupled138

MCMC. If the implementation of the coupled MCMC algorithm explores139

the same parameter space as regular MCMC, parameters sampled us-140

ing both approaches should match. We ran coupled MCMC proposing to141

exchange states between chains every 1000 iterations. In figure 1A, we142

compare the distribution of different summary statistics of typed trees143

between MCMC and coupled MCMC. For all the summary statistics con-144

sidered here, the distributions are the same.145

Next, we validate that the coupledMCMC package estimates the same146

parameters in a Bayesian coalescent skyline (Drummond et al., 2005) anal-147

ysis of Hepatitis C in Egypt (Ray et al., 2000). To do so, we analysed the148

Hepatitis C dataset once using coupled MCMC with 4 chains and once us-149

ing regular MCMC. We find that the inferred posterior probability density150

is the same between the two approaches(see figure 1B).151

Results152

The effect of heating on exploring the posterior153

In order to explore how heating affects exploring the posterior probability154

space, we first compare effective sample size (ESS) values between regular155

and coupled MCMC at different temperatures on a dataset where we do156

not expect any problems in exploring the posterior space caused by several157

local optimas. To do so, we ran the Bayesian coalescent skyline (Drum-158

mond et al., 2005) analysis of Hepatitis C in Egypt (Ray et al., 2000)159

for 4 ∗ 107 iterations using regular MCMC in 100 replicates. Additionally,160

we performed 100 replicates using coupled MCMC on 4 different chains161

for 1 ∗ 107 iterations using 3 different temperature scalers referred to as162

cold, warm and hot. The different chains lengths are chosen such that the163

overall number of iterations over the cold and heated chains is the same164

for coupled as for regular MCMC. In the cold scenario, we did not use any165
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heating and exchanges between chains were accepted with a probability166

of about 100%. In the other two scenarios, we used heating such that ex-167

changes between chains were accepted with around 50% in the warm and168

with about 25% in the hot scenario. After running all 4 times 100 anal-169

yses, we computed the ESS values of the posterior probability estimates170

using loganalyser in BEAST 2 (Bouckaert et al., 2014).171

As shown in figure 2, the average ESS values are highest for the cold172

scenario when using coupled MCMC and drop the stronger the temper-173

ature scaler becomes. Regular MCMC gets in average slightly lower ESS174

values when using 4 times longer chains. The trends of ESS values are the175

same when calculating ESS values using coda (Plummer et al., 2006) (see176

figure S1).177

In order to assess if coupled MCMC approximates the true distribution178

of posterior values better than regular MCMC, we compared Kolmogorov-179

Smirnov (KS) distances between individual runs and the true distribution180

of posterior values. Since we can not directly calculate the true distribution181

of posterior values, we concatenated the 400 regular and coupled MCMC182

runs and used the concatenated distribution of posterior values as the183

true distribution. Figure 2 shows the distribution of KS distances between184

individual runs using regular and coupled MCMC to what we assume to185

be the true distribution. In contrast to the comparison of ESS values,186

we find that the distribution of KS distances is fairly comparable across187

all methods. This indicates that in this analysis, coupled MCMC with 4188

individual chains performs equally well as regular MCMC run for 4 times189

as long.190

We next compare the inference of trees on a dataset DS1 that has191

proved problematic for tree inference using MCMC (Lakner et al., 2008;192

Höhna and Drummond, 2011; Maturana Russel et al., 2018). This dataset193

has many different tree island, transitioning between which is highly un-194

likely due to very unfavourable intermediate states (Höhna and Drum-195

mond, 2011).196

We ran the dataset using regular MCMC for 5∗107 iteration and cou-197

pled MCMC for 5 ∗ 107 with 4 different chains. We ran coupled MCMC198

without heating (cold) with a maximum temperature of 0.2 (warm) and199

the maximum temperature being 1.0 (hot). MCMC converges to different200

optimas, resulting in differences between inferred clade credibilities across201

different runs (see figure 3). The clade credibilities are more comparable202

when using multiple chains but no heating (cold). The increased consis-203

tency of clade credibilities across runs is in this case due to the main204

chain essentially being an average over 4 MCMC runs. When using heat-205

ing (warm and hot), the heated chains are able to more easily cross the206

unfavourable intermediate states in tree space, resulting in a better con-207

sistency of clade credibilities across different runs for the warm scenario208

and essentially the same clade credibilities across different runs in the hot209

scenario.210

Conclusion211

Next generation sequencing has made ever larger datasets of genetic se-212

quence available to researcher. To study these, more and more complex213

models are developed, many of which are implemented in the Bayesian214

phylogenetic software platform BEAST 2 (Bouckaert et al., 2014). Par-215

allelising these models can often be hard or even impossible and MCMC216
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Figure 3: Inferred clade probabilities between different replicate runs.
Here we compare inferred clade credibilities between one run (y-axis) and four
replicates from different starting points (x-axis) using MCMC and coupled
MCMC run at different temperature increments.
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analyses often have to be run on single CPU cores. Alternatively, coupled217

MCMC can make use of multiple cores, but a full featured version was218

so far not available in BEAST 2. Here, we provide an implementation of219

the coupled MCMC algorithm for BEAST 2.5 (Bouckaert et al., 2018).220

We showed that this implementation explores the same posterior space as221

regular MCMC and we give an example for when the heating of chains222

can drastically improve convergence. While ESS values are higher on cou-223

pled MCMC runs with 4 chains and no heated than on regular MCMC224

runs that are run for 4 times longer, the distribution of posterior proba-225

bility values was not better approximated by those runs. This indicates226

that convergence statistics like the scale reduction factor (Brooks and227

Gelman, 1998), might be better suited to assess convergence than ESS228

values. Since the coupled MCMC runs required 4 times less iterations of229

the cold chain to approximate the distribution of posteriors values as well,230

coupled MCMC can help speed up analysis by a factor that is approxi-231

mately proportional to the number of CPU’s used. This implementation232

is compatible with other BEAST 2 packages, so works with any model233

that works with MCMC.234
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