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Abstract

Background: Eukaryotic gene regulation is a complex process comprising the dynamic interaction of enhancers and
promoters in order to activate gene expression. In recent years, research in regulatory genomics has contributed to a
better understanding of the characteristics of promoter elements and for most sequenced model organism genomes
there exist comprehensive and reliable promoter annotations. For enhancers, however, a reliable description of their
characteristics and location has so far proven to be elusive. With the development of high-throughput methods such
as ChIP-seq, large amounts of data about epigenetic conditions have become available, and many existing methods
use the information on chromatin accessibility or histone modifications to train classifiers in order to segment the
genome into functional groups such as enhancers and promoters. However, these methods often do not consider
prior biological knowledge about enhancers such as their diverse lengths or molecular structure.

Results: We developed enhancer HMM (eHMM), a supervised hidden Markov model designed to learn the molecular
structure of promoters and enhancers. Both consist of a central stretch of accessible DNA flanked by nucleosomes
with distinct histone modification patterns. We evaluated the performance of eHMM within and across cell types and
developmental stages and found that eHMM successfully predicts enhancers with high precision and recall
comparable to state-of-the-art methods, and consistently outperforms those in terms of accuracy and resolution.

Conclusions: eHMM predicts active enhancers based on data from chromatin accessibility assays and a minimal set
of histone modification ChIP-seq experiments. In comparison to other ’black box’ methods its parameters are easy to
interpret. eHMM can be used as a stand-alone tool for enhancer prediction without the need for additional training or
a tuning of parameters. The high spatial precision of enhancer predictions gives valuable targets for potential
knockout experiments or downstream analyses such as motif search.
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Background
The phenotypic variety of cells in eukaryotic organisms
across tissues and developmental time is the result of the
intricate system of regulation of gene expression. There
are many levels on which gene regulation can be achieved,
be it on the transcriptional level or on further down-
stream levels such as post-transcriptional splicing or post-
translational modifications. Transcriptional regulation is
partly accomplished by the interplay of enhancers and
promoters through the activity of transcription factors
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and has been at the center of research inmolecular biology
for several decades [1]. Enhancers are thought to clearly
outnumber promoters [2, 3] andmany genetic diseases are
related tomutations in intergenic regions [4, 5], suggesting
that the major portion of transcriptional regulation can be
attributed to enhancers. However, their characterization
and localization has proven to be difficult.
In their 2015 review, Heinz et al. [6] describe active

enhancers as DNA sequences distal to transcription
start sites (TSS) with the potential to elevate basal
transcription levels of their target genes. They further
describe enhancers as heterogeneous genomic blocks
in terms of nucleosome occupation, consisting of a
central stretch of accessible, i.e. nucleosome-free DNA
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and the presence of flanking nucleosomes to both
sides. The accessible region provides the contact sur-
face for potential binding events of transcription factors
involved in the interaction with the transcription ini-
tiation machinery and the recruitment of downstream
factors. Chromatin accessibility is experimentally mea-
sured by assays such as ATAC-seq [7] or DNase-seq
[8]. The flanking nucleosomes delineate the boundaries
of the active enhancer and exhibit a distinct pattern
of histone modifications such as H3K27ac, H3K4me1
and low levels of H3K4me3 [9, 10]. Studies have shown
that enhancers typically co-localize with binding events
of the histone acetyltransferase p300 [11–13]. Other
features such as unique methylation dynamics [14–16]
and bi-directional transcription of so-called enhancer
RNA (eRNA) [17] have been described too, and recent
efforts in the field of chromatin architecture such as
the analysis of spatial chromatin interactions with Hi-C
[18] have provided yet another path to capture func-
tional enhancers. A simplified view of the epigenetic envi-
ronment at enhancers is outlined in Fig. 1a. Figure 1c
shows epigenetic signals in an example region around the
upstream end of an annotated gene.
Our goal is to integrate available data about enhancer

features into a classifier that predicts the genomic loca-
tions of enhancers in a genome-wide manner. While
some of the experimental methods producing the above-
mentioned features are rather laborious, chromatin
immunoprecipitation followed by sequencing (ChIP-seq)
[19] allows to retrieve the genomic locations of histone

modifications in a high throughput manner, making it a
widely used technique in many laboratories. Thus, many
computational enhancer prediction methods have been
developed that use histone modification ChIP-seq data as
input. These methods fall into two classes: unsupervised
methods that do not include prior biological knowledge
and require the user to interpret the predictions, and
supervised methods that rely on a set of positive samples
to train on, thereby yielding predictions that reflect the
properties of the training set. Many mathematical models
have been employed in both unsupervised and super-
vised manner (see [20, 21] for review), one of the most
prominent ones is the hiddenMarkov model (HMM) [22].
HMMs can be used to infer an unknown state associ-

ated with each position in a given sequence of observa-
tions. They assume that observations are generated by an
underlying hidden state emitting symbols according to a
particular probability distribution. HMMs are therefore
ideal for the task of recognizing chromatin states based on
the observed sequence of histone modification patterns,
and have repeatedly been used for that purpose in an
unsupervised, as well as a supervised fashion. Chromatin
annotation methods such as ChromHMM, EpiCSeg or
Genostan [23–25] implement an unsupervised HMM, i.e.
the main hyperparameter is the desired number of states.
These methods require the user to interpret and anno-
tate the learned states based on previous knowledge about
functional elements in the genome, e.g. that promoters
are enriched in H3K4me3 signal. Won et al. [26] turn this
approach around and use supervised HMMs with a left-

a b

c d

Fig. 1 The model. a Schematic illustration of the epigenetic environment at enhancers and promoters, derived from [6, 58]. b Schematic Markov
chain of the underlying constricted Hidden Markov Model. c Epigenetic features of an example genomic region. dModel parameters. Left: state
selection based on emission patterns of the foreground models. Selected states are encircled in green (enhancer nucleosomes), red (promoter
nucleosomes), and yellow (accessibility). Right: emission and transition parameters of the full model
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right structure to predict different genomic modules such
as enhancers, promoters and background, and incorpo-
rate the modules into one model. They integrate existing
knowledge into the model by learning the parameters on
preselected training sets. However, their model allows the
modules to be passed through in many different ways,
e.g. skipping the state representing the nucleosome-free
region where transcription factors can bind, leaving the
method very sensitive for detecting false positives. Unfor-
tunately, we were not able to test their method as the
software is not available. Other methods rely on different
mathematical models in order to predict enhancers [27–
29], and many of them do not consider prior biological
knowledge about enhancers such as their diverse lengths.
To address this, we designed enhancer hidden Markov

model (eHMM), a supervised hidden Markov model con-
sisting of three modules, each being learned on a des-
ignated training set for enhancers, promoters, and back-
ground, respectively. As promoters and enhancers exhibit
a substantial overlap in histone modification patterns,
this distinction helps the enhancer model not to primar-
ily detect annotated promoters. We acknowledge recent
reports attributing enhancer function to some promot-
ers [30], however, this dual role is not within the scope
of this article. eHMM implements enhancer and pro-
moter models reflecting the physical structure comprising
a central accessible stretch of DNA flanked by two nucle-
osomes. The enhancer and promoter modules, subse-
quently referred to as the foregroundmodules, can only be
reached through transitions from the background mod-
ule to a state representing the first nucleosome (Fig. 1b).
Aside from self-transitions, that state can only be left for
a chromatin accessibility state and from there further to
the second nucleosome and back to the background mod-
ule. This imposition of specific state transitions confers
the desired topology on the foreground modules.
In the following sections we describe the method, com-

pare the performance of eHMM to both unsupervised
and supervised methods within and across cell types and
show that eHMM outperforms previous methods in pre-
diction accuracy and resolution. Based on measuring the
area under the precision-recall curve, eHMM performs
at levels comparable to state-of-the-art methods. More-
over, eHMM is easy to interpret, yields predictions with a
high resolution and provides a pre-trained model that can
robustly be applied across samples.

Results
We developed eHMM in order to identify enhancers
throughout the genome. The model is designed to capture
an enhancer’s topology, consisting of a central accessi-
ble stretch of DNA flanked by two nucleosomes (see
Methods). Chromatin accessibility is measured with the
DNA accessibility assay ATAC-seq. Nucleosomes are

detected from the occurrence of ChIP-seq signals for
the three histone modifications H3K27ac, H3K4me1 and
H3K4me3. H3K27ac is generally associated with active
chromatin, whereas ratios of H3K4me1 over H3K4me3
are typically high at enhancers and low at promoters. This
small set of four features provides a maximal amount of
information while being minimally redundant at the same
time. Moreover, it consists of only the most prevalent his-
tone marks for which antibodies are available for many
species. In this section we discuss the performance of
eHMM within and across cell types and developmental
stages, compare it to state-of-the-art methods and study
the features of called enhancers and promoters.

Cross validation of enhancer predictions
The ENCODE consortium provides an extensive catalog
of functional genomic data including numerous ChIP-
seq experiments across many organisms, tissues, cell
types, developmental stages and treatments [3]. We use
ChIP-seq data for the histone modifications H3K27ac,
H3K4me1 and H3K4me3, as well as ATAC-seq data to
train the method on. The FANTOM consortium pro-
vides CAGE data for many of these tissue-stages [31],
enabling us to establish respective training sets on features
orthogonal to the histone modification ChIP-seq and
ATAC-seq used for learning. Together, these data sets
allow us to test ourmethod and compare it to state-of-the-
art software.
We performed a 5-fold cross-validation scheme on

three different mouse samples (ESC E14, liver E12.5, lung
E16.5). We created unbalanced training and test sets with
the aim to reflect genomic proportions as described in
the “Methods” section, such that each test set contains
1/5 of the original enhancer training set. eHMM is able
to recall a very high fraction of the FANTOM5 enhancers
without capturing a lot of false positives, i.e. being very
precise at the same time, depicted by a sample-specific
area under the precision-recall curve (AUPRC) of 0.947 -
0.971 (Fig. 2a). Notably, even low threshold values yield
high precision while still capturing most enhancers from
the test set.
Often, enhancer predictions are desired in specific sam-

ples for which it is unfeasible to define a training set.
Thus, it is necessary to be able to train the method on
one sample and apply it to another. We tested eHMM’s
performance in cross-sample validation settings where we
used the model trained on ESC to predict FANTOM5
enhancers in liver E12.5 and lung E16.5. We used quantile
normalization (see Methods) to account for potentially
different read count scales between samples. As expected,
method performance decreases slightly in across-sample
validation compared to using a model trained on data
from the same sample. Areas under the precision-recall
curve of 0.928 and 0.865 for liver E12.5 and lung E16.5,
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Fig. 2 Validation. a Precision recall curves of eHMM in within and across sample validation schemes on the FANTOM5 data in mouse ESC, liver and
lung. Circles indicate prediction performance of the viterbi algorithm, while the lines represent precision and recall based on posterior probabilities
obtained from the forward-backward algorithm. b-c Comparison of areas under precision recall curve using different enhancer prediction methods
validated on regions from FANTOM5 (b) and Enhanceratlas (c). Legend acronyms: CV - within-sample 5-fold cross-validation. ESC - across-sample
validation using a model trained on ESC data including quantile normalization. ESC raw - across-sample validation using a model trained on ESC
data without normalization. n - number of states

respectively, still show very satisfying results. This demon-
strates the method’s great applicability with pre-trained
models. Moreover, we show the suitability of the quantile
normalization approach by comparing cross-sample val-
idations with and without normalization. Normalization
helps to improve prediction quality with an increase in
area under the precision-recall of 0.041 and 0.025 in liver
E12.5 and lung E16.5, respectively.

Comparison to existing methods
Numerous software packages exist for predicting reg-
ulatory elements, relying on various experimental data
[20, 21]. In this subsection we compare the prediction
performance of our method to ChromHMM [23], EpiC-
Seg [24] and REPTILE [32]. We chose these methods
for a variety of reasons. First, ChromHMM is a well-
established and widely used method that learns a hid-
den Markov model based on binarized input data in an
unsupervised fashion. EpiCSeg presents another unsu-
pervised HMM that also provided the foundation of the
implementation of eHMM. In contrast to ChromHMM,
it models the read count data using a negative multi-
nomial distribution instead of binarized data. Together,

these two methods allow us to compare our super-
vised HMM to two unsupervised HMMs and thus to
investigate the benefit of supervision. Finally, REPTILE
is a supervised method using a random forest clas-
sifier, which we train with the same training data as
eHMM in order to study the differences between two
supervised methods. As shown in their article [32],
He et al.’s REPTILE outperforms many previous methods
and therefore certainly serves as a challenging competitor
to eHMM.
ChromHMM and EpiCSeg were applied to whole

genome data with different numbers of states (6, 8, 10 and
12). We computed the maximum posterior probability of
every state in the test regions and report only the best per-
forming state. REPTILE and eHMM were tested within
cell types using 5-fold cross-validations on FANTOM5
data and across cell types by validating the performance of
a model trained on mouse ESC on enhancer regions from
FANTOM5 and EnhancerAtlas [33].

Within cell type validation Figure 2b shows a compari-
son of the AUPRC for predictions with eHMM, REPTILE,
ChromHMM and EpiCSeg in three different cell types.
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The unsupervised methods ChromHMM and EpiCSeg
were trained with different numbers of states n and in
most cases tend to perform best with n = 10 or n = 12.
The supervisedmethods eHMMand REPTILE performed
very similarly, with both of them clearly outperforming
ChromHMM and EpiCSeg and thus demonstrating the
benefit of supervised learning.

Cross cell type validation In order to test the supervised
methods’ performance across cell types, we applied ESC-
trained models to samples from different cell types. We
first tested their ability to predict the previously defined
FANTOM5 enhancers for liver E12.5 and lung E16.5. Con-
sistently, eHMM and REPTILE achieve higher prediction
accuracy than ChromHMM and EpiCSeg (Fig. 2b).
In addition, we compared the methods’ performance on

regions from the EnhancerAtlas for cell types ESC E14,
liver E14.5 and lung E14.5 (Fig. 2c). It is notable that all
methods perform better in lung and liver compared to
ESC. In all cell types, eHMM and ChromHMM perform
best. REPTILE struggles with this setting, possibly due to
overfitting of the learned models on the FANTOM5 data.
These results underline the robustness of eHMM under
different types of validation setups.

Whole genome enhancer predictions in mouse ESC
We used eHMM for a genome wide search for enhancers
in mouse embryonic stem cells. The model returns the
most likely global path (see “Methods” section), resulting

in the prediction of 5357 enhancers and 8040 promoters
without the need to select a prediciton threshold. Depend-
ing on the prediction threshold c, REPTILE predicts
between 2604 (c = 0.9) and 12,830 (c = 0.1) enhancers.
Varying the number of states n, ChromHMM finds
between 19,643 (n = 12) and 88,716 (n = 6) enhancers,
EpiCSeg between 37,911 (n = 12) and 103,293 (n = 6).
In the remaining subsection we discuss the properties

of eHMM’s predicted enhancers and promoters in mouse
ESC as depicted in Fig. 3a.

Histonemodifications The identified regulatory regions
exhibit the anticipated presence or absence of particu-
lar histone modifications, e.g. predicted enhancers show
on average higher levels of H3K4me1 than promot-
ers, while in turn promoters exhibit higher levels of
H3K4me3. Notably, all histone modifications show a dis-
tinct bimodality while transcription factor binding events
are unimodally distributed with centered peaks, providing
evidence for our initial biological assumption.

Binding of transcription factors and chromatin
remodelers Further, predicted enhancers show enriched
binding of ESC specific transcription factors Nanog, Oct4
and Sox2. It is worth noting that these lineage-specific
transcription factors are enriched more strongly in pre-
dicted enhancers compared to promoters, in line with
the hypothesis that enhancers are more lineage-specific
than promoters, and that promoters can be regulated by

a b

c

Fig. 3 Whole genome predictions in mouse ESC. aMean feature distributions of predicted enhancers and promoters in mouse ESC. b Example
genomic region with predictions from eHMM and REPTILE (threshold = 0.5). The color code in the eHMM segmentation track is equal to Fig. 1c.
c Distance distributions of predicted enhancers to closest ATAC-seq peak (MACS2) and TSS (UCSC knownGene database) in mouse ESC for eHMM
and REPTILE (threshold = 0.9)



Zehnder et al. BMC Bioinformatics          (2019) 20:157 Page 6 of 12

different sets of lineage-specific enhancers depending on
the cell type [34]. In addition, predicted enhancers show
elevated levels of the histone acetyltransferase p300, an
enzyme involved in transcriptional regulation via chro-
matin remodeling and associated with active enhancers
[13]. Binding events of CCCTC-binding factor (CTCF),
a protein involved in the regulation of the three dimen-
sional chromatin structure [35] and often co-occurring
with the borders of topologically associated domains, are
enriched in enhancers, implying the enhancers’ role in
the mediation of enhancer-promoter contacts and DNA
looping [36, 37].

DNA methylation and sequence conservation Both
enhancers and promoters show a dip in DNA methyla-
tion measured by MeDIP-seq. This effect appears to be
stronger in predicted promoters, confirming recent stud-
ies that suggest that DNA methylation levels negatively
correlate with H3K4me3 [16] and are low at promot-
ers in general [14]. Promoters exhibit increased sequence
conservation across species as measured by phastCons.
Enhancers indicate this feature as well, but to a much
lower extent, confirming previous reports [38, 39].

RNA Polymerase II Finally, promoters exhibit high lev-
els of RNA Polymerase II, indicating transcription initia-
tion events. Enhancer elements show a similar pattern but
at lower levels, confirming that the input data from FAN-
TOM5 reflects the information about the bidirectional
transcription initiation which had originally motivated
our choice of the training set.

Spatial accuracy of predictions
In addition to the reassuring properties of the predicted
enhancer regions, eHMM also provides predictions that
are spatially highly accurate, because the model distin-
guishes between nucleosomal and accessible states. We
assessed the spatial accuracy of predicted enhancers using
the distances of their centers to the closest ATAC-seq
peak. We used a prediction threshold of 0.9 for REPTILE
as this produced lowest distances. eHMM predictions are
on average around eight times closer to the center of an
accessible region compared to REPTILE (median of 42 bp
and 343 bp, respectively, Fig. 3c). Other features such as
DNA methylation might improve REPTILE’s spatial pre-
diction accuracy, however, at the expense of requiring
additional data.

False enhancer predictions near promoters
Promoters and enhancers are mainly distinguished by
the degree of methylation of lysine 4 at histone 3. Pro-
moters generally show strong H3K4me3 signals in the
immediate proximity to their center. Moving away from
a promoter’s center, this signal usually decreases fast

and H3K4me1 levels rise, resembling the nucleosomes of
a typical enhancer. However, these nucleosomes are in
the periphery of promoters and do not border accessi-
ble chromatin. Figure 3b illustrates this problem, showing
an example gene where eHMM correctly predicts a pro-
moter at the upstream end of a transcribed gene, while
REPTILE misclassifies the adjacent region as an enhancer.
We quantified this effect by calculating the fraction of
genome-wide predicted enhancers that overlap an anno-
tated TSS. Depending on the prediction threshold c, the
fraction of enhancers predicted by REPTILE that overlap
an annotated TSS ranges from 17.8% (c = 0.9) to 35.0%
(c = 0.2), whereas this measure is 3.2% for enhancers pre-
dicted by eHMM. Distances of predicted enhancers to the
closest annotated TSS are unimodally distributed in the
case of eHMM with an interquartile range spanning from
11 kb to 85 kb (Fig. 3c). Enhancers predicted by REPTILE
exhibit an additional mode that centers at approximately
1 kb.

Run times
We estimated empirical run times for model training and
prediction on mouse ESC data and compared them to
those of REPTILE, EpiCSeg and ChromHMM. All meth-
ods ran on 21 cores in parallel as far as the respective
implementation allowed it. Run times per core are shown
in Table 1. REPTILE uses the least total CPU time, but
the longest real time, indicating a lack of efficiency in
leveraging multithreading.

Discussion
We developed an enhancer hidden Markov model called
eHMM with the goal of detecting enhancers with vari-
able lengths throughout mammalian genomes. eHMM
features three sub-models for enhancer, promoter and
background, each being trained in a supervised fashion
on predefined training sets. The enhancer and promoter
models consist of a particular architecture that captures
the biological topology of these regulatory elements, i.e. a
central accessible stretch of DNA flanked by nucleosomes
to each side.
Our method performs very well in cross-validation tests

(AUPRC > 0.94, Fig. 2a), showing that the proposed phys-
ical model is present in the data and captured by eHMM.
Moreover, eHMM incorporates a quantile normalization
step that makes it well applicable across samples, e.g. a
model trained on one cell type or developmental stage
can be used for predictions on another. Based solely on
the area under the precision-recall curve as a perfor-
mance measure, eHMM achieves similar results as the
top-performing state-of-the-art software REPTILE when
testing on the FANTOM5 data set, and outperforms
it when validating on regions from the EnhancerAtlas.
These results suggest overfitting of the models learned
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Table 1 Run times

Real time [s] CPU time [s]

Method Training Prediction Total Training Prediction Total

eHMM 2.961 43.636 46.597 15.337 155.820 171.157

REPTILE 1.461 89.456 90.917 5.162 140.388 145.550

EpiCSeg 36.327 352.294

ChromHMM 50.401 282.909

by REPTILE and underline the robustness of eHMM’s
predictions over different validation setups. Notably, there
are apparent performance differences between cell types,
in particular the prediction performance on ESC is gen-
erally lower compared to lung and liver. This is likely due
to the fact that EnhancerAtlas regions were predicted on
the basis of agreement of different source tracks such as
TFBSs, eRNA, histone modifications, chromatin accessi-
bility and more. Here, we use only chromatin accessibility
and histone modifications, and we would thus expect
the tested methods to perform best in cell types where
these features were most informative for the EnhancerAt-
las predictions. The results suggest that ESC regions in the
EnhancerAtlas were not primarily predicted on the basis
of the features used in this study.
The outcome of unsupervised methods such as

ChromHMM and EpiCSeg is uncertain as they perform
well in some conditions and poorly in others, and it is
not apparent how to judge the quality of a segmentation
without a test set. In addition, state interpretation is not
trivial and highly affects the prediction quality.
Genome-wide detected enhancers and promoters in

mouse ESC exhibit expected properties, confirming pre-
diction quality. For example, lineage-specific transcription
factors are enriched at enhancers, and promoters exhibit
low DNA methylation levels and an abundance of RNA
Polymerase II. In contrast to previous work focusing on
sequence conservation in cis-regulatory regions [40, 41],
our results show that the sequence of predicted enhancers
is less conserved in comparison to predicted promot-
ers. This seeming contradiction between observing strong
binding of lineage-specific transcription factors and low
levels of sequence conservation could suggest functional
conservation while the enhancers’ genomic locations are
highly dynamic in evolutionary terms as suggested by
Schmidt et al. [38], manifesting itself in a lower sequence
conservation across species. The lower number of pre-
dicted enhancers with the supervised methods eHMM
and REPTILE reflects their higher specificity compared
to the unsupervised methods ChromHMM and EpiCSeg.
While REPTILE enforces this specificity rather arbitrar-
ily by calling only the most certain enhancer among
multiple neighboring predictions, eHMM achieves this
by the potential presence of enhancer- and promoter-

like states in the background model that compete with
the topology-respecting foreground model. eHMM thus
ultimately reduces the false-positive rate by emphasiz-
ing the importance of the enhancers’ molecular structure,
which in turn results in higher spatial accuracy (see exam-
ple in Fig. 3b). Further, eHMM returns themost likely path
according to the Viterbi decoding algorithm and therefore
does not require the definition of an arbitrary prediction
threshold.
REPTILE often predicts enhancers right next to pro-

moters where the promoter-specific histone modification
H3K4me3 decreases while H3K4me1 remains. The imple-
mented promoter model as well as the aforementioned
model topology enables eHMM to distinguish between
the two regulatory elements and to refrain from calling
enhancers in promoter-associated regions merely on the
basis of a decreasing promoter signal.
In addition, eHMM provides a high resolution of pre-

dicted regions, allowing to accurately target regulatory
subunits such as nucleosomal or accessible regions for
potential downstream analyses. Moreover, eHMM allows
inspection of model parameters that provide information
about both transition dynamics between states and each
state’s signal emission distribution, standing in contrast to
“black box” methods such as random forests. These prop-
erties facilitate interpretability of the learned parameters
and the predicted regions.
Finally, we show how to use hidden Markov models in a

supervised fashion with genomic data, and how different
models learned on various training sets can be combined
in order to obtain one global model containing supervised
modules with well-defined topologies.
Taken together, the minimal feature requirements, good

performance within and across samples, the predictions’
high spatial accuracy as well as interpretability and reso-
lution makes eHMM a very powerful and feasible tool for
enhancer prediction.

Conclusion
In summary, we have presented enhancer hidden Markov
model (eHMM), which predicts enhancers based on data
from histonemodification ChIP-seq and chromatin acces-
sibility assays. eHMM is easy to use since it does not
require user decisions such as state examination or the
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choice of a prediction threshold, and it comes with a pre-
trained model as well as the option to let it learn a model
on self-designed training sets.

Materials &methods
Data types
We used data from chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-seq) experiments for histone
modifications (HM) and transcription factors (TF). ChIP-
seq uses protein-specific antibodies to isolate DNA that
physically interacts with the protein of interest. Chro-
matin accessibility was studied using data from an Assay
for Transposase Accessible Chromatin using sequenc-
ing (ATAC-seq). ATAC-seq uses hyperactive prokaryotic
transposase T5, an enzyme that targets accessible DNA in
a sequence-unspecific manner.
We investigated five specific cell types, i.e. mouse

embryonic stem cells E14 (ESC), mouse embryo liver
E12.5 and E14.5 and mouse embryo lung E14.5 and E16.5.
ATAC-seq and HM ChIP-seq data from liver and lung
samples were obtained from ENCODE [3]. We down-
loaded ESC HM and TF ChIP-seq and Methylated DNA
immunoprecipitation followed by sequencing (MeDIP-
seq) data fromGene ExpressionOmnibus (GEO) [42], and
converted genome coordinates from mm9 to mm10 with
crossmap [43]. We obtained sequence conservation data
using phastCons conservation scores from UCSC [44]. An
overview of all used data and their accession numbers is
given in Table 2.

Data processing
We downloaded the raw data fastq files using the SRA
toolkit [45] and processed fastq to bam files using the
Burrows-Wheeler Alignment tool (BWA) [46] for map-
ping and SAMtools [47] for filtering, sorting and removing
duplicates. eHMM implements the algorithm bamsignals
[48] to calculate read counts for bins with a width of
100 bp. In order to estimate the fragment centers and
with an expected fragment length of 150 bp, bamsignals
adds a default shift of 75 bp to ChIP-seq reads. In con-
trast, chromatin accessibility assays are treated with a shift
of zero as the interest of these experiments lies on the
actual cutting sites. We added a pseudo-count of 1 to
prevent taking logarithms of entries with value zero (see
“Emission distributions” subsection).
Data from different ChIP-Seq experiments may vary in

their total number of reads and their read count distri-
butions may be scaled differently. Therefore, in order to
apply a model learnt on a specific cell type to another
cell type, input data has to be brought to the same scale.
We used quantile normalization to adjust the statistical
properties of a query distribution (the data the model
is applied to) to a reference distribution (the data the
model was learned on) [49]. This method minimizes the

Table 2 Data sources. Accession numbers containing GSE were
obtained from GEO [59–62], those starting with ENC from
ENCODE

Cell type Experiment Target Accession Format

ESC E14 ATAC-seq - GSE120376 fastq

ChIP-seq H3K27ac GSE120376 fastq

H3K4me1 GSE120376 fastq

H3K4me3 GSE120376 fastq

Nanog GSE11431 fastq

Oct4 GSE11431 fastq

Sox2 GSE11431 fastq

CTCF GSE29184 fastq

p300 GSE29184 fastq

Pol II GSE29184 fastq

MeDIP-seq - GSE3859 fastq

liver E12.5 ATAC-seq - ENCSR302LIV bam

ChIP-seq H3K27ac ENCSR136GMT bam

H3K4me1 ENCSR770OXU bam

H3K4me3 ENCSR471SJG bam

liver E14.5 ATAC-seq - ENCSR032HKE fastq

ChIP-seq H3K27ac ENCSR075SNV bam

H3K4me1 ENCSR234ISO bam

H3K4me3 ENCSR433ESG bam

lung E14.5 ATAC-seq - ENCSR335VJW fastq

ChIP-seq H3K27ac ENCSR452WYC bam

H3K4me1 ENCSR825OWH bam

H3K4me3 ENCSR839WFP bam

lung E16.5 ATAC-seq - ENCSR627OCR fastq

ChIP-seq H3K27ac ENCSR140UEX bam

H3K4me1 ENCSR387YSD bam

H3K4me3 ENCSR295PFM bam

distance between the query and reference cumulative dis-
tributions by an order-preserving rescaling of the query
count values.

Training regions
To date, there is no gold standard set of true enhancers.
However, there is a plethora of experimental approaches
for identifying enhancers [31, 50]. Since the model
learns patterns of ATAC-seq and HM ChIP-seq sig-
nals, we defined the training set based on criteria
independent of HM ChIP-seq. FANTOM5 is a project
of the FANTOM consortium that uses Cap Analysis of
Gene Expression (CAGE) sequencing on RNA samples
in order to detect short abortive bi-directional transcrip-
tion events throughout the genome [31]. We applied the
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following protocol to the publicly available CAGE data
sets for mouse embryonic stem cells E14, liver E12 and
lung E17 in order to define our enhancer training regions:
We set a minimal threshold of 11 (ESC) and 5 (liver,

lung) CAGE-tags per region resulting in 5573, 537 and
642 regions, respectively. We performed k-means cluster-
ing on the regions’ ATAC-seq, H3K27ac and H3K4me1/3
ChIP-seq signals with k = 5 and selected the cluster with
the strongest active enhancer signature consisting of 920
regions in ESC. The discarded clusters exhibited typical
patterns of promoters, poised enhancers, or were depleted
of any signal. The model topology requires the training
regions to be accurately defined, i.e. to start and end at
nucleosome positions. To that end, we used MACS2 [51]
with default settings to determine H3K27ac - ATAC-seq -
H3K27ac peak triplets with a width of less than 2 kb
overlapping with the active enhancer regions, followed by
the removal of neighboring regions (pairwise distance of
less than 2 kb). This procedure resulted in a set of 647
active enhancer regions in ESC, from which 300 regions
were sampled randomly. We applied the same proce-
dure to annotated promoters from the UCSC knownGene
database [52]. From the resulting 3029 regions with a

H3K27ac signal above the minimum of the previously
defined active enhancer regions, 300 were randomly sam-
pled to give rise to the training set for the ESC promoter
model. Training sets for liver and lung were obtained
analogously.
In order to define a background training set represent-

ing everything except enhancers and active promoters, we
defined the proportions of functional elements in mam-
malian genomes by roughly approximating the numbers
reported for the human genome by Kellis et al. [53]. This
resulted in 10% enhancers, 5% active promoters, 5% inac-
tive promoters, 10% genic and 70% intergenic regions.
The training set for the background model was obtained
by randomly sampling 2 kb genomic regions according
to these proportions with respect to UCSC knownGene
annotations, leaving out regions annotated as enhancers
or active promoters. Figure 4 shows the average signal
distributions for the enhancer, promoter and background
training regions in all three cell types.

Test regions
We used the previously described training regions in ESC,
liver E12.5 and lung E16.5 for cross-validation as well as

a

b

Fig. 4 Read counts. a Distribution of normalized read counts for training regions of mouse ESC E14, mouse embryonic liver E12.5 and mouse
embryonic lung E16.5. b Histograms of read count data (grey) and fitted log-normal distributions (red) of an unsupervised 10-state HMM learned on
whole genome ESC data
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cross cell type validation. In addition, we defined test sets
in ESC, liver E14.5 and lung E14.5 using regions from
the EnhancerAtlas [33]. We processed the data sets by
combining regions within 500 bp, excluding regions that
are located within 2 kb of annotated promoters from the
UCSC knownGene database and centering on the high-
est overlapping ATAC-seq peak in order to emphasize our
intention to focus on functional enhancers. Notably, this
led to data set reductions of 68%, 83% and 66% for ESC,
liver and lung, respectively. We complemented the test
sets with randomly sampled regions according to the pro-
portions of functional elements in mammalian genomes
with respect to UCSC knownGene annotations.

eHMM algorithm
Probabilistic model Our method eHMM implements a
probabilistic framework based on a multivariate HMM
[22, 54] with specific constraints. HMMs are used to
model a series of observations emitted by a sequence of
n distinct hidden states. An HMM is characterized by
the n × n transition matrix containing the probabilities
of moving between states and a set of emission distribu-
tions defining the probability by which a particular state
emits an observation. Standard HMMs are unsupervised
and typically learn the transition and emission parame-
ters for a given number of states using the Baum-Welch
algorithm [22].
Our approach differs from a conventional HMM in

that it is built from three parts: an enhancer model, a
promoter model (in combination referred to as the fore-
ground model) and a background model. The key char-
acteristic of both foreground models is directionality, as
depicted in the corresponding Markov chain in Fig. 1b:
Both enhancer (E) and promoter (P) models can only be
reached through transitions from the background (BG) to
states representing the first nucleosome (N1), from which
accessible-chromatin states (A) and later a second nucleo-
some state (N2) have to be visited before returning to BG.
In addition, self-transitions allow the model to capture
regulatory elements of variable lengths.
All three sub-models are learned in a supervised man-

ner on predefined training sets. For the enhancer and
promoter models, this is achieved by a two-step learn-
ing process. First, a conventional 5-state HMM is learned
on the training set, followed by a state selection step
where states are assigned to represent either accessibility
(A-states) or nucleosome (N-states) based on their emis-
sion parameters (see example in Fig. 1c). The automated
state selection assigns the two states with the highest
ATAC-seq/H3K27ac (or DNase-seq/H3K27ac) ratio to
A. From the remaining three states, the two with the
highest (enhancer model) or lowest (promoter model)
H3K4me1/H3K4me3 ratio are selected as N-states. The
ratios are calculated on the mean of the fitted log-normal

distributions. Then, N-states are duplicated to N1 and
N2 and arranged in a directed order together with the
A-states. Transitions conflicting with the directionality,
e.g. from N2 back to A, are forbidden by setting the
corresponding transition probabilities to zero. See Fig. 1b
for illustration.
We use Viterbi training [55, 56] instead of the Baum-

Welch algorithm, which allows to force the regions to end
in a N2-state. Viterbi training is a simplification of the
Baum-Welch algorithm and its result is an approximation
of the maximum likelihood estimate. Instead of account-
ing for all possible paths, only the most probable path
is considered during parameter re-estimation. In addi-
tion, during Viterbi training we only allow the transition
parameters to change while emission parameters are fixed,
thereby preventing states previously assigned to a partic-
ular class to adapt [57]. With these constraints we hope
to achieve an accurate representation of enhancer and
promoter characteristics reflected by both emission and
transition parameters.
The backgroundmodel is a conventional 10-state HMM

learned on a predefined unbalanced training set that
represents the aforementioned proportions of functional
elements in mammalian genomes.
Next, the three sub-models are combined into one

model consisting of all states (see example in Fig. 1c).
Transitions between states of different sub-models are
either set to zero because they are not allowed, or esti-
mated in the case of BG-N1 or N2-BG transitions. For
the first, we refer to the estimated number of enhancers
(399,124) and promoters (70,292) in the human genome
as stated by the ENCODE consortium [3], as well as to the
total human genome size of roughly 3 billion bp accord-
ing to genome assembly GRCh38, and a bin size of 100 bp.
These numbers lead to estimated BG-N1 transition rates
of 1.33% and 0.23% for enhancers and promoters, respec-
tively, and we expect them to be good estimates for other
mammalian genomes, too. We set N2-BG transitions to
the learned values of N1-A transitions as the sizes of N1
and N2 are expected to be equal.
The algorithm is incorporated into the EpiCSeg frame-

work [24] and offers the user the choice between learning
a model from given training sets or using the provided
pre-trained model, whose learned parameters are dis-
cussed in “Results” section.

Emission distributions Mammana et. al [24] show that
multivariate read count data can be accurately modeled
using the negative multinomial distribution. However, the
fitting procedure for negative multinomials requires a
complex numerical approximation. Instead, we fitted the
read count data with independent log-normal distribu-
tions, which appear to be both a better fit for the data as
well as the analytical fitting procedure being much easier.
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Fit quality is demonstrated in Fig. 4b, showing the read
count data and the fitted log-normal distributions in an
unsupervised 10-state model learned on whole genome
ESC data. Kolmogorov-Smirnov (KS) distances between
the data and the fits were computed for all features and
states, ranging from 0.00 to 0.49 with a median of 0.08.
Some components model a single coverage value and we
assume here that such states have a KS distance of 0. In
contrast, marginal negative binomial fits show KS dis-
tances ranging from 0.02 to 0.29 with a median of 0.09
(data not shown).

Decoding and scoring There are several decoding algo-
rithms that yield a state sequence from a learned HMM.
Posterior decoding determines the path with the most
probable state at any time point. However, it may not pre-
serve the model’s grammar, which is essential in order
to prevent forbidden transitions e.g. from a state repre-
senting an accessible region to a background state. Hence,
we use the Viterbi decoding algorithm, which returns the
globally most likely path, resulting in a particular number
of predicted enhancers without the requirement for find-
ing an optimal prediction threshold. However, while these
predictions all belong to the globally most likely path,
theymight differ in local certainty. The posterior decoding
algorithm provides a posterior probability for the respec-
tive state at each position, considering all possible paths.
Summing over the posteriors of the states representing
accessibility at every position provides a measure of pre-
diction certainty with expected maxima at the center of
predicted enhancers.
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