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CENTRAL MORPHISMS AND CUSPIDAL AUTOMORPHIC

REPRESENTATIONS

JEAN-PIERRE LABESSE AND JOACHIM SCHWERMER

1. Introduction

1.1. Main theorem. Let F be a global field (of arbitrary characteristic) and denote by AF

its ring of adèles. Let G and H be two connected reductive group defined over F endowed
with an F -morphism f : H → G such that the induced morphism Hder → Gder on the
derived groups is a central isogeny. We study how automorphic representations behave,
under the morphism induced between groups of adélic points, via restriction and induction.
We also discuss similar statements for representations of groups over local fields.

Consider the restrictions to f(H(AF )) of a cuspidal representation π of G(AF ); it splits
into a possibly infinite sum of irreducible representations of H(AF ) and some of them may
not be automorphic. Conversely given a cuspidal representation σ of H(AF ) it is not always
possible to find it in the restriction of some cuspidal representation π of G(AF ). Our main
result is:

Theorem 1.1.1. Given any irreducible cuspidal representation π of G(AF ) its restriction to
f(H(AF )) contains a cuspidal representation σ of H(AF ). Conversely, assuming moreover
that f is an injection, any irreducible cuspidal representation σ of H(AF ) appears in the
restriction of some cuspidal representation π of G(AF ).

Experts in the theory of automorphic forms have expected such a natural result, already
known in some cases. In fact this is in agreement with Langlands functoriality conjectures
which relate local or automorphic representations for a group G to elements in the first
cohomology set H1(WF , Ǧ) of Weil groups with value in the dual group Ǧ and, in particular,
with lifting results established in [14] for the map H1(f̌) : H1(WF , Ǧ) → H1(WF , Ȟ) when
f is injective.

Local results, quite elementary when the characteristic of the field is zero and already
known in general to some extent (see for example [24]), are given here for the sake of
completeness. In the global case, we do not know of any published reference except when
H = SL(n), G = GL(n). For this pair of groups, Theorem 1.1.1 (or rather its reformulation
as in 5.3.4) is claimed in [17, Sect. 3] if F is a number field. Unfortunately, as was pointed
out by Laurent Clozel, the proof given in [17], which generalizes the argument given in [16]
for n = 2, does not apply for arbitrary n since we implicitly assumed the validity of the
local-global principle for the n-th powers in F , which may fail1. The argument is corrected
here.

This work was partly begun during the stay of the second author in the fall term 2017 at the School of
Mathematics, Institute for Advanced Study, Princeton, and then pursued at the Max-Planck-Institute for
Mathematics, Bonn; he gratefully acknowledges the funding at the IAS, provided by the Charles Simonyi
Endowment, as well as the support at the MPIM..

1The Grunwald-Wang Theorem [1, Chap. X, Thm. 1] computes the obstruction group to this local-global
principle and, in fact, this group can be non-trivial. This only happens in very special cases: in particular
8|n is among the necessary conditions.
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1.2. Organization of the paper. In Section 2, generalizing Clifford’s theory for finite
groups, we consider a pair B ⊂ A of a locally compact groups where B is a closed invariant
subgroup of A such that B\A is abelian and compact and we analyze, under a suitable
finiteness condition, the interplay via restriction and induction between irreducible unitary
representations π of A and σ of B. Results of Section 2 are used in Section 4 to investigate
extension, induction and restriction of irreducible unitary representations between pairs of
groups of points over local fields of arbitrary characteristic for pairs of connected reductive
groups G and H as above. The local results are summarizd in 4.1.3 and 4.2.3. Similar ques-
tions are studied in section 5 for cuspidal automorphic representations of groups of points
over adèles of global fields of arbitrary characteristic and our main results are Theorems
5.2.1 and 5.2.2. They imply in particular the above Theorem 1.1.1. We rely on structural
results taken care of in Section 3 or, by a very different approach, in the appendix provided
by B. Lemaire. We conclude the paper with a new multiplicity formula.

1.3. Acknowledgements. We thank Bertrand Lemaire for providing us with the appendix.
We also thank Gaetan Chenevier who drew our attention to his unpublished note [6] and
for pointing out a mistake in a previous version of the present note. Finally we are grateful
to Guy Henniart who suggested, following his paper [11], to consider not only inclusions
H ⊂ G but also morphisms H → G inducing central isogenies between derived groups.

2. Variation on a theme by Clifford

In this section we establish a variant of Clifford’s theory for finite groups [8] (already used
implicitly in [16] or explicitly in [11] but in a slightly different context). This is elementary
but, not knowing of any reference valid in our setting, it is given with some details for the
convenience of the reader. In particular, we prove2 a form of Frobenius reciprocity in 2.3.3.

2.1. Notation. It is understood that unitary representations are strongly continuous and
characters (i.e. one dimensional representations) are unitary. By abuse of notation we shall
often denote by the same symbol a quotient and a set of representatives for its elements.

Let A be a locally compact group and B a closed subgroup such that B\A has an A-
invariant measure. Let π be an irreducible unitary representation of A and σ an irreducible
unitary representation of B. Given g ∈ A we denote by σg the representation of B defined
by

σg(x) = σ(gxg−1) .

Let ρ be the induced representation

ρ = IndABσ .

We denote by < v,w >σ the scalar product of two vectors v and w in the space Vσ of the
representation σ. Recall that Vρ, the space of ρ, is the set of classes of measurable functions
from A to Vσ (up to equality almost everywhere), such that f(hg) = σ(h)f(g) and that are
square integrable on B\A.

2The reader may wonder why we give a proof of such a result since there are many references for instances
where Frobenius reciprocity is known to hold. In fact, for admissible representations of reductive groups over
non archimedean local fields Frobenius reciprocity is well known and could be used in certain sections below
where we deal with this specific case. Nevertheless more general groups and different kinds of representations
will occur and we did not find any reference for the form we need: for example Moore’s result (Section 4
of [20]), which is the closest to our needs we could find, applies only to finite dimensional representations;
similarly Mackey’s quite general theorems (e.g. Theorem 5.1 of [18]) does not seem to be of any help since
the representations we are dealing with may show up with measure zero in the spectral decomposition of
the right regular representations for the groups we study.
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2.2. A first finiteness assumption. Assume B\A is of finite volume.

Lemma 2.2.1. There is an injective map

HomB(π|B, σ) → HomA(π, Ind
A
Bσ) .

If π|B and π′|B have a common constituent σ then π and π′ both occur in ρ = IndA
Bσ .

Proof. Consider an element Ψ ∈ HomB(π|B, σ) and w ∈ Vπ . The function

ϕw : g 7→ Ψ(π(g)w) for g ∈ A

defines a vector in Vρ. In fact this is a continuous function which satisfies the required
functional equation and whose square norm

g 7→ ||ϕw(g)||
2 :=< ϕw(g), ϕw(g) >σ≤ ||Ψ||2 < w,w >π

is bounded and hence integrable since B\A is of finite volume. The map

Φ : w 7→ ϕw

defines an element in HomA(π, ρ). The assignment Ψ 7→ Φ is obviously injective. The
second assertion follows immediately. �

Assume from now on that A is unimodular and B is an invariant closed subgroup. The
quotient group C = B\A is also assumed to be abelian compact and endowed with the
normalized Haar measure i.e. such that vol(C) = 1. Let X be the discrete group of characters

of C. We observe that if π occurs in ρ = IndABσ then, given χ ∈ X , the representation
π ⊗ χ also occurs in ρ with the same multiplicity.

Proposition 2.2.2. Given π and π′ two irreducible unitary representations of A whose
restrictions to B have a constituent σ in common, then there exist a character χ ∈ X such
that

π′ ≃ π ⊗ χ .

The representation ρ is an Hilbert direct sum of representations of the form π ⊗ χ.

Proof. Since both the restrictions of π and π′ to B have σ as a constituent in common,
Lemma 2.2.1 shows they both occur in ρ. Let us denote by Vπ the space of the representation
π. Let Ψ be a non-trivial intertwining operator in

HomB(π|B , σ)

and consider for w ∈ Vπ the function

ϕw : g 7→ Ψ(π(g)w) .

The closed subspace generated by the functions ϕwχ, where w varies in Vπ and χ varies
in X , is the space of a subrepresentation ρ′ of ρ, generated by a set of subrepresentations
isomorphic to π ⊗ χ. Let f be a function from A to Vσ that belongs to the orthogonal ρ′′

of ρ′. We have to show that f = 0. Let us denote by < ϕ, f >ρ the scalar product of two
functions ϕ and f in the space of ρ. By hypothesis

< ϕwχ, f >ρ=

∫

C

χ(g) < ϕw(g), f(g) >σ dġ = 0

for all w ∈ Vπ and all χ ∈ X . This implies that < ϕw(g), f(g) >σ= 0 for almost all ġ ∈ C
and all w ∈ Vπ. Now w 7→ ϕw(g) is an intertwining operator Ψg between π|B and σg, a
representation of B in Vσ which is irreducible; the image of Ψg equals Vσ and necessarily
f(g) = 0 for almost all g. �
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2.3. A second finiteness assumption. We denote by A(σ) the subgroup of A (containing
B) of g ∈ A such that σg ≃ σ and by X(π) the subgroup of χ ∈ X such that π ⊗ χ ≃ π.
We shall now moreover assume that X(π) is finite.

Proposition 2.3.1. Let π be an irreducible unitary representation of A such that X(π) is
finite. Its restriction π|B is a finite direct sum of irreducible unitary representations of B.
Let σ be an irreducible constituent of π|B. The vector space

V = HomB(π|B, σ)

is of finite dimension, say m. All other constituents are conjugates under A of σ and

π|B ≃
⊕

ġ∈A/A(σ)

V ⊗ σg

where B acts trivially on V . The algebra I(π), of intertwining operators for π restricted to
B, has a basis indexed by X(π) and

dim(I(π)) = card(X(π)) = m2 × card(A/A(σ)) .

Proof. For χ ∈ X(π) choose a non-trivial intertwining operator Uχ between π and π ⊗ χ.
According to Schur’s lemma, the operator Uχ is well defined up to a scalar. Consider
I ∈ I(π) and χ ∈ X , then the operator

Iχ =

∫

ġ∈C

χ(g).π(g)−1Iπ(g) dġ

is a scalar multiple of Uχ for χ ∈ X(π) and is zero if χ /∈ X(π). Fourier inversion shows
that

I =
∑

χ∈X(π)

Iχ =
∑

χ∈X(π)

cχUχ

with cχ ∈ C. This implies dim(I(π)) = card(X(π)). By assumption σ is an irreducible
constituent of π|B . The closed subspace generated by the isotypic components of σ and its
A-conjugates is an A-invariant subspace of Vπ, equal to Vπ since π is irreducible. Hence π|B
is isomorphic to a finite sum of irreducible representations of B that are A-conjugates of
σ. �

The group X(π) is of course finite when C is finite but there are many other instances of
it, in particular when dealing with admissible representations (see 4.1.1 and 5.1.1 below).

One should note that the algebra I(π) may not be isomorphic to the group algebra
C[X(π)]. This is the case when m ≥ 2. An example occurs in the study of inner forms of
SL(2) (cf. [16]) where one may have A(σ) = A while X(π) is an abelian group of order 4
but m = 2 and I(π) = M(2,C) the algebra of 2 × 2 matrices. Further examples are given
in [12].

Consider the subgroup B(π) of g ∈ A such that χ(g) = 1 for all χ ∈ X(π). If X(π) is
finite, B(π) is of index card(X(π)) in A and we have the following inclusions

B ⊂ B(π) ⊂ A(σ) ⊂ A .

Corollary 2.3.2. If X(π) is finite the representation σ of B can be extended to a represen-
tation σ̃ of B(π) in the same space.

Proof. Proposition 2.3.1 applied to the pairs (A,B) and (A,B(π)) tells us that the dimension
of the intertwining algebra for π|B(π) and π|B are both equal to card(X(π)) and hence the
irreducible constituents of π|B(π) remain irreducible when restricted to B. �
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Proposition 2.3.3. Let B ⊂ A be a pair of a locally compact groups where B is a closed
invariant subgroup of A such that B\A is a compact abelian group. Let π and σ be irreducible
unitary representations of A and B respectively. Assume that the group X(π), of characters
of B\A such that π ⊗ χ ≃ π, is finite. Then Frobenius reciprocity holds: the natural map

Frob : HomB(π|B , σ) → HomA(π, Ind
A
Bσ) .

is an isomorphism.

Proof. We have seen that σ can be extended to a representation σ̃ of B(π). Since A/B(π)

is finite all functions in the space of IndAB(π)σ̃ are continuous and evaluation at the origin
yields the Frobenius reciprocity, i.e. the following map is a bijection:

(a) HomB(π)(π|B(π), σ̃) → HomA(π, Ind
A
B(π)σ̃) .

On the other hand, there is an isomorphism

(b) HomB(π|B , σ) → HomB(π)(π|B(π), σ̃) .

Now σ̃ injects in Ind
B(π)
B σ: in fact the map

w 7→ fw with fw(x) = σ̃(x)w

is an intertwining operator since

ρ(y)fw(x) = fw(xy) = σ̃(xy)w = fσ̃(y)w(x),

and it follows form 2.2.2 that Ind
B(π)
B σ is the Hilbert direct sum of the σ̃ ⊗ ν where ν runs

over characters of B(π)/B while IndAB(π)σ̃ is a multiple of π. This implies that

(c) HomA(π, Ind
A
B(π)(σ̃ ⊗ ν)) = HomA(π, (Ind

A
B(π)σ̃)⊗ χ) = 0

unless χ, which is any extension of ν to A, belongs to X(π). Now induction by stages shows
that

IndAB σ =
⊕̂

ν
IndAB(π)(σ̃ ⊗ ν)

where ν runs over characters of B(π)/B and (c) implies

(d). HomA(π, ρ) = HomA(π, Ind
A
B σ) = HomA(π, Ind

A
B(π)σ̃)

In view of (a), (b) and (d) the proof is complete. �

3. The groups in question

Let k be a field. Let H and G be two connected algebraic groups over k with a morphism
f : H → G . Let ZG denote the center of G and ZH the center of H . Let Z be the connected
component of ZG; this is a torus.

3.1. Some crossed modules. We shall assume that the natural morphism Z ×H → G is
a central map which means that it is surjective and its kernel an abelian group scheme in
the center (see Appendix A). This is equivalent to ask that the morphism induced between
the derived subgroups

fder : Hder → Gder

is a central isogeny. This is also equivalent to asking that the induced map

fad : Had → Gad

between the adjoint groups is an isomorphism. The last isomorphism shows that G acts on
H by conjugacy and this implies that the complex [H → G] is a crossed-module. We refer
the reader to [15, Chap. 1] or [19, Appendix B] for this concept. The particular case where
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H = Gsc is the simply connected cover of the derived group has been extensively studied in
[15].

Lemma 3.1.1. Let TG be a maximal torus in G and let TH be its inverse image in H. The
map between complexes

[TH → TG] → [H → G]

induces a quasi-isomorphism between complexes of points over the separable closure.

Proof. Let ksep denote the separable closure of k. We want to prove that

[TH(ksep) → TG(ksep)] → [H(ksep) → G(ksep)]

is a quasi-isomorphism. In particular we need to compute the kernel and cokernel of the
map f sep. But then we are dealing with split groups and split tori. Since the unipotent
subgroups and Weyl groups are isomorphic [5, Théorème (2.20), page 260] and using Bruhat
decomposition, we are left with the kernel and cokernel of the induced map between the
tori. �

3.2. Crossed modules over local fields. In this subsection F is a local field; by this we
mean archimedean or non archimedean local field as well. As a convention for the Galois
cohomology with values in complexes [B → A] we take A in degree 0. This is the convention
used in [15].

We denote by H+ the subgroup of G(F ) generated by f(H(F )) and ZG(F ). The reader is
warned that although H+ is a Lie group when F is archimedean and a totally disconnected
group when F is non archimedean, it is not in general the group of points of an algebraic
reductive group over F .

Proposition 3.2.1. The group H+ is an invariant subgroup in G(F ). The quotient G(F )/H+

is abelian and compact; it is even finite for local fields of characteristic zero.

Proof. Replacing if necessary H by H ×Z which is again reductive and connected, we may
assume that the map f is surjective. Then it is enough to prove that, in such a case,
f(H(F ))\G(F ) is abelian, compact and even finite for local fields of characteristic zero.
Since quasi-isomorphisms between complexes of points on the separable closure compatible
with Galois action induce isomorphisms in Galois cohomology [15, Proposition 1.2.2], Lemma
3.1.1 implies that the map

H
0(F, [TH → TG]) → H

0(F, [H → G])

is an isomorphism and hence H
0(F, [H → G]) is abelian. One has an exact sequence

1 → f(H)\G → H
0(F, [H → G]) → H

1(F,H).

In particular f(H)\G is an abelian subgroup of finite index in H
0(F, [H → G]). There is

an exact sequence

1 → f(TH)\TG → H
0(F, [TH → TG]) → H

1(F, TH) .

Since H1(F, TH) is finite it remain to observe that f(TH)\TG is compact when f is surjective
(see for example Lemma A.1.1 in Appendix A). It is finite for local fields of characteristic
zero �

For an alternative argument independent of Galois hypercohomology see A.2.1 in Appen-
dix A.

Remark 3.2.2. In the case of a central isogeny H → G for groups over a non-archimedean
local field this result was stated (without proof) and used in [22].
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3.3. Crossed modules over global fields. In this subsection F is a global field. We shall
use the notation of [13] and [15] for adelic cohomology. The reader should be aware that the
degree conventions for hypercohomology of complexes are not the same in these references:
namely H

0(⋆,B → A) in [15] is H
1(⋆,B → A) in [13]. We shall use the convention of [15].

Lemma 3.3.1. Assume the morphism f : H → G is surjective. Then H
0(AF /F, [H → G])

is compact.

Proof. The quasi-isomorphism [TH → TG] → [H → G] implies isomorphisms in cohomol-
ogy. Hence it is equivalent to prove that

H
0(AF /F, [T

H → TG])

is compact. However, this is one of the statements in Lemma C.2.D, page 153, in [13] (up
to the shift in degree explained above). Although this reference is written for number fields
the proof extends verbatim to the case of arbitrary global fields. Namely, one has an exact
sequence

1 → D → H
0(AF /F, [T

H → TG]) → H
1(AF /F, T

H)

where
D = Coker[H0(AF /F, T

H) → H
0(AF /F, T

G)]

is compact if f is surjective while H
1(AF /F, T

H) is finite. �

Lemma 3.3.2. Assume f is surjective. Then G(F )f(H(AF ))\G(AF ) is compact.

Proof. Let us denote by K the complex [H → G]. The following diagram

H(F ) → H(AF ) → H
0(AF /F,H)

↓ ↓ ↓
G(F ) → G(AF ) → H

0(AF /F,G)
↓ ↓ ↓

H
0(F,K) → H

0(AF ,K) → H
0(AF /F,K) → Ker1(F,K)

↓ ↓

Ker1(F,H) → H
0(F,H) → H

0(AF , H)

is commutative with exact lines and columns. Now 3.3.1 and the finiteness of

Ker1(F,K) ≃ Ker1(F, [TH → TG])

(cf. [13]) imply that

Coker[H0(F, [H → G]) → H
0(AF , [H → G])]

is also compact. Thanks to the finiteness of Ker1(F,H) (cf. [15, Prop. 1.7.3] for number
fields, which rephrases results of Kottwitz and [7, Thm 1.3.3] for function fields. The latter
one relies on [10]) the image of G(AF ) in this cokernel is up to a finite subgroup isomorphic
to the quotient

G(F )f(H(AF ))\G(AF )

and hence this quotient is also compact. �

We now return to the general case where f : H → G need not be surjective.

Proposition 3.3.3. Let H+ := ZG(AF )G(F )f(H(AF )). The quotient H+\G(AF ) is an
abelian compact group.

Proof. Replacing if necessary H by H × Z this is a consequence of Lemma 3.3.2. �

For an alternative argument independent of adèlic hypercohomology see A.2.2 in Appen-
dix A.
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4. A first application of Clifford’s theory: the local case

In this section F is a local field. Some aspects of what follows have been observed by
various authors (see in particular [9], [11], [12], [16], [17], [22] and [24]).

4.1. The basic results. Consider G and H with a map f : H → G over F inducing a
central isogeny of their derived groups and consider H+ the subgroup of G(F ) generated by
f(H(F )) and ZG(F ). We denote by N the kernel of the map f : H → G.

Lemma 4.1.1. The quotient H+\G(F ) is abelian compact. If π is an irreducible unitary
representation of G(F ) then the group X(π) of characters χ of H+\G(F ) such that π⊗χ ∼= π
is finite.

Proof. We apply the results of section 2 to A = G(F ) and B = H+. The assertions are
obvious when C = H+\G is finite which is the case for local fields of zero characteristic
according to Proposition 3.2.1. For non archimedean fields of arbitrary characteristic we
appeal again to Proposition 3.2.1 or A.2.2 for the first statement. The finiteness of X(π) is
known for admissible irreducible representations ([11], [22]). To conclude we recall that the
subspace of smooth vectors in an irreducible unitary representation of the group of points of
a connected reductive group group over a non archimedean local field is admissible ([2]). �

Let F be a non archimedean local field, and assume G is a quasi-split connected reduc-
tive group, split over an unramified extension. Choose an hyper-special maximal compact
subgroup K ⊂ G(F ). We say that a representation π of G(F ) is unramified if the operator
π(K) fixes a non zero vector.

Lemma 4.1.2. If π is unramified, all elements in X(π) are also unramified.

Proof. Choose an Iwahori subgroup I ⊂ K; then there is a unique Borel subgroup P0 ⊂ G
with Levi decomposition P0 = T ⋉ U such that

I = (T (F ) ∩ I)(U(F ) ∩ I)(U (F ) ∩ I)

where U is the opposite unipotent subgroup. An unramified representation π is the spherical
subquotient of a principal series representation obtained by parabolic induction of a char-
acter λ of T (F ) which is trivial on T (F ) ∩ I. A character χ ∈ X(π) defines by restriction
a character χ̃ of T (F ). The representation π ⊗ χ is a subquotient of the principal series
representation obtained by parabolic induction of λχ̃. But since π ≃ π ⊗ χ one has

λχ̃ = s(λ) for some s in the Weyl group .

This shows that χ̃ = s(λ)λ−1 is trivial on T (F )∩I. Then χ must be trivial on the subgroup
generated by f(H(F )) and T (F ) ∩ I. Now f(H(F )) ⊃ U(F ) ⊃ U(F ) ∩ I and similarly for
U . Hence χ is trivial on I. Denote by K ′ the hyper-special subgroup in H(F ) such that
f(K ′) ⊂ K. Any s′ ∈ W ′ has a representative ws′ ∈ H(F ) ∩K ′. The Weyl group W ′ of
H(F ) maps bijectively via f onto the Weyl group W of G(F ) and hence any s ∈ W has a
representative

ws = f(ws′) ∈ f(H(F )) ∩K .

Since the ws and I generate K the character χ is trivial on K. �

Proposition 4.1.3. Given an irreducible unitary representation π of G(F ) its restriction
to H(F ) is a direct sum of finitely many irreducible unitary representations that are G(F )-
conjugate. Conversely, any irreducible unitary representation of H(F ) trivial on N occurs
in the restriction of some π and all such irreducible representations are of the form π ⊗ χ
with χ ∈ X the group of characters of G(F )/H+.
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Proof. We first restrict π to H+. In view of Lemma 4.1.1 we may use Proposition 2.3.1 with
A = G(F ) and B = H+. Hence this restriction is a direct sum of finitely many irreducible
unitary representations of H+ that are conjugate under G(F ). Then restriction from H+

to N\H(F ) preserves irreducibility.
Conversely, consider a representation σ of H(F ) and ω a character of ZG(F ) such that its

restriction to ZH(F ) is the character with which ZH(F ) acts via σ. One can extend σ to a
representation σ+ of H+ and then induce this representation from H+ to G(F ). According
to Proposition 2.2.2 this is a sum of representations of the form π ⊗ χ with π irreducible
and χ ∈ X the group of characters of H+\G(F ). The restriction of π to N\H(F ) contains
σ according to Proposition 2.3.3. �

We observe that if G and H are quasisplit, and if π is generic (i.e. has a Whittaker model
for some character of the unipotent radical of a chosen Borel subgroup) the restriction
π|f(H(F )) is multiplicity free (i.e. m = 1 in the notation of Proposition 2.3.1) as follows
from Proposition 2.3.3 using the uniqueness of Whittaker models and the compatibility of
Whittaker models with induction.

4.2. Two equivalence relations.

Definition 4.2.1. We say that two irreducible unitary representations σ and σ′ of H(F )
are in the same “G(F )-packet” if there exists an element g ∈ G(F ) such that σg ∼= σ′. We
denote by AG(H) the set of G(F )-packets of irreducible unitary representations of H(F )/N .

We observe that G(F )-packets coincide with L-packets when H = SL(n) and G = GL(n)
and for compatible inner forms as well. In general L-packets should be unions of G(F )-
packets since adjoint conjugacy is a special case of stable conjugacy.

Definition 4.2.2. We define two irreducible unitary representations π and π′ of G(F ) to
be EH-equivalent if there exists a character µ of G(F )/H+ such that π⊗µ ∼= π′. We denote
by EH(G) the corresponding set of equivalence classes.

Now, all elements in the EH -class of some π have equivalent restrictions to f(H(F )) and
all components of the restriction belong to the same G-packet. Let R be the map which
assigns to an EH-equivalence class represented by π the G(F )-packet of components σg of
the restriction of π to H(F ). The above Propositions and remarks can be summarized as

Proposition 4.2.3. The map R : EH(G) → AG(H) is a bijection.

5. Second application: the case of cuspidal representations.

Now F is a global field and we examine how cuspidal automorphic representation behave
under restriction and induction. By cuspidal representation we understand an irreducible
unitary automophic representation ocuring in the cuspidal spectrum. For a definition of
these objects over fields of arbitrary characteristics we refer the reader to [21]. We consider
two connected reductive groups with a map f : H → G over some global field F inducing a
central isogeny of their derived groups.

5.1. The key construction. We have introduced in subsection 3.3 the subgroup

H+ := ZG(AF )G(F )f(H(AF ))

in G(AF ). According to Propositions 3.3.3 or A.2.2 the quotient H+\G(AF ) is abelian and
compact.
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Lemma 5.1.1. Let π be an automorphic representation of G(AF ). Then the group X(π)
of characters of H+\G(AF ) such that π ⊗ χ ≃ π is finite.

Proof. We observe that H+ contains the product over all places v of groups H+
v generated

by f(Hv) and ZG
v . Let π be an automorphic representation of G(AF ). Thanks to Lemma

4.1.1 and 4.1.2 we know there is a compact open subgroup Kf of the finite adèles on which
any χ ∈ X(π) is trivial. Recall that H+

∞
is of finite index in G∞ when F is a number field.

In all cases Kf .H
+ is an open subgroup of finite index in G(AF ) on which any χ such that

π ⊗ χ ≃ π is necessarily trivial, hence X(π) is finite. �

Denote by N the kernel of the map fAF
: H(AF ) → G(AF ) . This is a subgroup in the

center of H(AF ) and we may identify N\H(AF ) with f(H(AF )). Let Z+ := ZG(AF )G(F ).
Observe that

Z+/G(F ) = ZG(AF )G(F )/G(F ) = ZG(AF )/Z
G(F ) .

Let
Z+
1 : Z+ ∩ f(H(AF )) and Z1 = f−1(Z+

1 ) .

Z1 is a closed subgroup in H(AF ) that contains and normalizes H(F ). Let

Γ+ = G(F ) ∩ Z+
1 = G(F ) ∩ f(H(AF )) and Γ = f−1(Γ+) .

The subgroup Γ in H(AF ) contains N.H(F ) and Z+
1 /Γ+ ≃ Z1/Γ . Thus, a unitary character

ω : ZG(AF )/Z
G(F ) → C×

defines a character of Z+, again denoted ω, and we obtain by restriction a character ω+
1 on

Z+
1 trivial on Γ+. Observe that conversely any character on Z+

1 /Γ+ extends to a character
of ZG(AF )/Z

G(F ). Denote by ω1 the character of Z1/Γ defined by ω+
1 .

Remark 5.1.2. Observe that if f is injective, i.e. if H is a subgroup of G, then

Γ = G(F ) ∩H(AF ) = H(F ) .

But when f is not injective it may happen that N.H(F ) is a strict subgroup of Γ. This is,
for example, the case if G = Gm, H = Gm and f : x 7→ xn when (F, n) is a counter example
to the local-global principle for n-th powers (see [1, Chap. X, Thm. 1]).

Since the group Z1 normalizes H(F ), it acts via left translations on H(F )\H(AF ), hence
on the space

L2(H(F )\H(AF ), ω0)

of functions that are square-integrable modulo the center on H(F )\H(AF ) and that trans-
forms according to ω0 some automorphic character of the center of H(AF ). The latter space
is endowed with the right regular representation ρω0

of H(AF ).
The space of left Γ invariant functions that are square-integrable modulo the center on

H(F )\H(AF ) can be decomposed according to the characters of Γ\Z1 and this decompo-
sition is compatible with the spectral decomposition of the right regular representation.
Observe that the action of Z1 preserves cuspidality. Now, given ω and ω1 as above consider
a function ϕ on H(AF ) which satisfies the condition

ϕ(ch) = ω1(c)ϕ(h) for all c ∈ Z1, h ∈ H(AF ) .

There exists a unique function ϕ+ on H+ such that

ϕ+(zγg) = ω(z)ϕ+(g)

for any z ∈ ZG(AF ), γ ∈ G(F ), g ∈ H+, and moreover (using ẋ to denote f(x))

ϕ+(ζḣ) = ϕ(ch) = ω1(c)ϕ(h)
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whenever ζ = ċγ with c ∈ Z1, γ ∈ G(F ) and h ∈ H(AF ). This yields a bijection

L2(H(F )\H(AF ), ω1)−̃→L2(G(F )\H+, ω),

that preserves cuspidality. Here cuspidality for representations of H+ has the obvious defini-
tion namely the vanishing of integrals over quotients U(F )\U(AF ) of non trivial “unipotent
subgroups” that are isomorphic images in G(F )\H+ of quotients of unipotent subgroups in
H(AF ). Hence one obtains a bijection between the cuspidal spectra

(⋆) L2
cusp(H(F )\H(AF ), ω1)−̃→L2

cusp(G(F )\H+, ω).

It is known that the right regular representation ρcusp,ω1
of H(AF ) in

L2
cusp(H(F )\H(AF ), ω1)

splits into a direct Hilbert sum with finite multiplicities. This implies that the right regular
representation of H+ in ρ+cusp,ω in L2

cusp(G(F )\H+, ω) also splits into a direct Hilbert sum
with finite multiplicities.

Now we observe that L2(G(F )\H+, ω) is the space of the representation

ρ+ω = IndH+

Z+ ω,

while L2(G(F )\G(AF ), ω) is the space of the representation

ρω = Ind
G(AF )
Z+ ω.

Thus, since induction preserves cuspidality, we see that

ρcusp,ω = Ind
G(AF )
H+ ρ+cusp,ω.

5.2. Main results.

Theorem 5.2.1. The restriction to N\H(AF ) of any cuspidal representation π of G(AF )
contains a cuspidal representation σ of H(AF ).

Proof. Any cuspidal automorphic representation π of G(AF ) with central character ω occurs
in

ρσ+ = Ind
G(AF )
H+ σ+

for some constituent σ+ of ρ+cusp,ω. It follows from Lemma 5.1.1 and Proposition 2.3.3 that

σ+ occurs in the restriction of π to H+. But the isomorphism (⋆) shows that the restriction
of σ+ to N\H(AF ) is a direct sum of cuspidal representations. �

Theorem 5.2.2. Any cuspidal representation σ of H(AF ) that can be realized in a space
of functions on Γ\H(AF ) appears in the restriction of some cuspidal representation π of
G(AF ). This is in particular true for any cuspidal representation of H(AF ) when f is
injective.

Proof. Consider H the subspace of left Γ-invariant functions in the space of cuspidal square
integrable functions modulo the center

L2
cusp(H(F )\H(AF ), ω0)

where ω0 is the character by which σ acts when restricted to the center of H(AF ), The space
of the isotypic component, say Wσ, of σ in H can be decomposed according to characters of
Γ\Z1 with Z1 acting on the left. Let ω1 be a character that occurs and consider the subspace
Wσ(ω1) of Wσ cut out by this character. Choose ω extending ω1 to Z+. Then Wσ(ω1) can
be mapped into a subspace of ρ+cusp,ω via (⋆) and let σ+ be an irreducible constituent of the
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subspace generated by the image of Wσ(ω1) under the action of H+. We get a family of
cuspidal representations for G by decomposing the induced representation

ρσ+ = Ind
G(AF )
H+ σ+

According to 2.2.2 the various representations that occur in ρσ+ are of the form π⊗χ for some
π where χ runs over characters of G(AF )/H

+. Thanks to Lemma 5.1.1 and Proposition 2.3.3
we know that σ+ occurs in the restriction of π to H+ and, in turn, by construction, σ occurs
in the restriction of σ+ to N\H(AF ). The last statement follows from 5.1.2. �

5.3. A reformulation.

Definition 5.3.1. We denote by AG(H,AF ) the set of G(AF )-conjugacy classes of irre-
ducible unitary representations of H(AF ) trivial on N.

Definition 5.3.2. Two irreducible unitary representations π and π′ of G(AF ) are said to
be EH-equivalent if there exists a character µ of G(AF )/H(AF ) such that π ⊗ µ ∼= π′. We
denote by EH(G,AF ) the corresponding set of equivalence classes.

All elements in the EH -class of some global π have equivalent restrictions to H(AF ) and
all components of the restriction belong to the same G-packet. Let

R : EH(G,AF ) → AG(H,AF )

be the map which assigns to an EH -equivalence class represented by π the G(AF )-packet
of components of π|H(AF ). Observe that R is the restricted product of local restrictions.
This makes sense since, for almost all places v, the restriction to Hv of an unramified
representation of Gv contains a unique constituent that is unramified.

Proposition 5.3.3. The map

R : EH(G,AF ) → AG(H,AF )

is a bijection.

Proof. The local analogue 4.1.1 implies the injectivity of R. The surjectivity follows from the
local analogue and the fact that if Gv and Hv are unramified any unramified representation
of Hv occurs in the restriction of an unramified representation of Gv. �

We denote by AG,cusp(H,AF ) the subset of AG(H,AF ) of G-packets that contain some
cuspidal automorphic representation of H(AF ).

We define EH,cusp(G,AF ) to be the subset of EH(G,AF ) of EH -equivalence classes that
contain some cuspidal automorphic representations of G(AF ).

Theorem 5.3.4. Assume that Γ = N.H(F ) (this is true in particular when f is injective).
The map

R : EH(G,AF ) → AG(H,AF )

induces a bijection
EH,cusp(G,AF )−̃→AG,cusp(H,AF ) .

Proof. In view of Propositions 4.2.3, 5.3.3 and Remark 5.1.2 this is nothing but a reformu-
lation of Theorems 5.2.1 and 5.2.2. �

Observe that when Γ is strictly bigger than N.H(F ) (in particular f is not injective) the
map

EH,cusp(G,AF ) → AG,cusp(H,AF )

may not be surjective: an example is given in Remark 5.1.2. The image consists of classes
of cuspidal representations that can be realized in a subspace of Γ-left-invariant functions.
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Remarks 5.3.5. The reader should be aware of the following pitfalls.
1 - If σ is a cuspidal representation of H(AF ) it is not always the case that all conjugates
σg for g ∈ G(AF ) are automorphic. Examples of this fact do occur in the case H = SL(n)
and G = GL(n) for representations that are “endoscopic” (see [16] for the case n = 2).
2 - Consider two cuspidal automorphic representations π and π′ that are of the form π′ ≃
π⊗µ; it may happen that µ cannot be chosen to be automorphic (see [3] where examples are
constructed for H = SL(n) and G = GL(n) provided n ≥ 3).

5.4. A multiplicity formula. We assume moreover from now on that f is injective. Given
an irreducible unitary representation π of G(AF ) the restriction of π to H(AF ) splits into a
direct sum with finite multiplicities if πv is generic almost everywhere. In fact the restriction
to Hv of an unramified representation contains a unique constituent that is unramified. The
representation π|H(AF ) is the direct sum of the restricted products of the constituents of
the πv|Hv

. We know that locally everywhere the multiplicity is finite (cf. 4.1.1). But,
whenever πv has a Whittaker model, the restriction is multiplicity free. Hence the global
decomposition is a direct sum (infinite in general) and with finite multiplicities if πv is
generic almost everywhere.

We observe that given π the set components of π|H+ is finite according to Propositions
2.3.1 and 5.1.1, but one should be aware that not all such representations will show up in
ρ+cusp,ω. In fact, for example, if G = GL(n) only one such σ+, in the restriction to H+

of a given π, may occur in ρ+cusp,ω since otherwise this would contradict the multiplicity
one theorem for cuspidal representations of GL(n). On the other hand there may be more
than one σ+ in the space generated by the isotypic component of some σ and they may be
inequivalent. This is in fact the case when considering cuspidal representations of SL(n)
with multiplicity greater than one (which may exist for n ≥ 3). In such a case the various
π’s containing σ in their restriction to H(AF ) may differ by non automorphic characters
(see [3]). More generally we have the following multiplicity formula.

Theorem 5.4.1. Assume G and H quasi-split. Let π be a generic cuspidal representation
for G and σ a generic cuspidal representation for H that occurs in the restriction of π to
H(AF ). Let Y (π) be the group of characters µ of G(AF )/Z

G(AF )H(AF ) such that π⊗ µ is
also a cuspidal representation. Let Xloc(π) the subgroup of characters µ ∈ Y (π) such that
π⊗µ ≃ π. This is the restricted product over the set of places of F of the X(πv). Let m(π)
be the multiplicity of π in the cuspidal spectrum for G. Then, the multiplicity m(σ) of σ in
the cuspidal spectrum of H is given by

m(σ) =
∑

µ∈M(π)

m(π ⊗ µ)

where M(π) = Y (π)/Xloc(π).X.

Proof. The uniqueness of Whittaker models tells us that the restriction of π to H(AF ) is
multiplicity free. In particular any π defines a unique σ+ in ρ+cusp,ω and conversely this σ+

is associated to the set of cuspidal representations of the form π ⊗ χ with χ ∈ X i.e. trivial
on H+, in particular χ is automorphic. Now the set of representations π′ in ρcusp,ω whose
restriction to H(AF ) contains σ, is the set of π′ = π ⊗ µ with µ ∈ Y (π). �

5.5. Miscellaneous remarks. Assume again f injective. Let Z0 = ZG(AF )∩H(AF ). The
group

Z1 = ZG(AF )G(F ) ∩H(AF )

is often equal to Z0.H(F ). For example, this latter equality holds in the case G = GL(n)
and H = SL(n) whenever the local-global principle for nth-roots of unity holds for F and n.
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In fact, if zγ ∈ Z1 which means det(zγ) = 1 then det(γ) is locally everywhere an nth-power,
and, if the local-global principle holds, this means that det(γ) is itself an nth-power and γ
can be rewritten as ζ.η with ζ ∈ ZG(F ) and η ∈ H(F ), hence zγ = z0η with z0 ∈ Z0. This
shows that, in this case, the new argument is essentially identical to the argument used in
[17, Sect. 3].

Transfer results similar to Theorem 5.2.1 and Theorem 5.2.2 for cuspidal automorphic
forms, have been obtained by Chenevier [6] under the condition Z1 = Z0.H(F ).

As observed in the introduction the map f : H → G induces a map f̌ between dual
groups which in turn defines a map

H1(f̌) : H1(WF , Ǧ) → H1(WF , Ȟ)

between cohomology sets for Weil groups with values in dual groups. The induced corre-
spondence between packets of representations for H to packets for G provided by Langlands
functoriality conjectures should fit with 4.1.3 and 5.2.1. If f is injective Proposition 4.2.3
and Theorem 5.3.4 are compatible with lifting Theorems 7.1 and 8.1 in [14].

Appendix A. Central Morphisms

By Bertrand LEMAIRE

Let k be a field. Recall that a morphism of algebraic groups f : H → G (over k) is said
to be central if the schematic kernel of f is contained in the schematic center of H , which
means that for any commutative k-algebra A, we have the inclusion

Ker (fA : H(A) → G(A)) ⊂ Z(H(A)),

where Z(H(A)) denotes the center of H(A).3 From [4, 22.4] we know that, given a connected
reductive k-group G, the product morphism ZG × Gder → G where ZG and Gder are
respectively the (set-theoretic) center and the derived group of G, is a central k-isogeny.

Let F be a global field. We denote by AF the adèle ring of F . If v is a place of F its
completion Fv is either R or C or a non-Archimedean local field (i.e. a finite extension of
Qp, resp. Fp((t))).

A.1. Surjective maps of tori.

Lemma A.1.1. Let f : T → S be a surjective morphism of tori.

(1) For any place v, the group S(Fv)/f(T (Fv)) is compact.
(2) The group S(AF )/f(T (AF ))S(F ) is compact.

Proof. We only give a proof for assertion (2), the proof of (1) being essentially the same but
simpler. Let Sd be the maximal F -split subtorus of S, and X(Sd) the group of algebraic
characters of S (they are all defined over F ). Let us fix a finite place v of F , and a uniformizer
element ̟v of the completion Fv of F at v. The set

S(̟v) = Hom(X(S), ̟Z

v )

is a free abelian group of finite rank, and a co-compact subgroup of Sd(Fv). It also naturally
identifies with a subgroup of Sd(AF ). Moreover Sd(̟v) ∩ Sd(F ) = {1} and the group
Sd(AF )/Sd(̟v)Sd(F ) is compact. Now let S = S/Sd. It is an F -anisotropic torus, hence

3Note that if k is of caracteristic p > 0, a surjective central k-morphism (e.g. a central k-isogeny) may
be inseparable: for example, the map t 7→ t2 from the multiplicative group Gm into itself, with p = 2.
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the group S(AF )/S(F ) is compact [23, 3.5], which implies the group S(AF )/Sd(AF )S(F ) is
compact. Since

Sd(AF ) ∩ (Sd(̟v)S(F )) = Sd(̟v)Sd(F ),

we obtain the group S(AF )/Sd(̟v)S(F ) is compact. On the other hand, f induces a
surjective F -morphism fd : Td → Sd which sends Td(̟v) onto a sub-lattice of Sd(̟v).
Hence the group S(AF )/f(Td(̟v))S(F ) is compact. This implies (2). �

A.2. Central surjective morphisms of reductive groups.

Proposition A.2.1. Let f : H → G be a surjective central morphism of connected reductive
groups.

(1) For any place v, the quotient G(Fv)/f(H(Fv)) is an abelian compact group.
(2) The quotient G(AF )/f(H(AF ))G(F ) is an abelian compact group.

Proof. As above, we only give a proof of assertion (2). From [5, 2.2, 2.6] (see [5, 2.3]), there
exists an F -morphism κ : G×G → H such that for all x, y ∈ H , we have

κ(f(x), f(y)) = xyx−1y−1.

So the commutator map G×G → G, (x, y) 7→ [x, y] = xyx−1y−1 coincides with f ◦ κ, and
we have

[G(AF ), G(AF )] = f ◦ κ(G(AF )×G(AF )) ⊂ f(H(AF )).

Hence f(H(AF )) is an invariant subgroup of G(AF ), and the group G(AF )/f(H(AF )) is
abelian. A fortiori the quotient G(AF )/f(H(AF ))G(F ) is an abelian group. It remains
to prove the compacity. Let S be a maximal F -split torus in G, and M = ZG(S) the
centralizer of S in G. Let P be a (minimal) parabolic F -subgroup of G with Levi component
M , and U = UP the unipotent radical of P . From [4, 22.6], the inverse image S′ of S in
H is a maximal F -split torus in H , and the inverse image P ′ of P in H is a minimal
parabolic F -subgroup of H . Put M ′ = ZH(S′) and U ′ = UP ′ . From loc. cit., f induces a
surjective F -morphism M ′ → M and an F -isomorphism U ′ → U . Moreover, M ′ → M is
central. On the other hand, we have the Iwasawa decomposition G(AF ) = KP (AF ) where
K =

∏
v Kv is an M -admissible maximal compact subgroup of G(AF ). Hence the product

map K × P (AF ) → G(AF ) gives a surjective map

K × (P (AF )/f(P
′(AF ))P (F ) → G(AF )/f(H(AF ))G(F ).

Since f(U ′(AF )) = U(AF ), we have

P (AF )/f(P
′(AF ))P (F ) = M(AF )/f(M

′(AF ))M(F ).

So we just need to prove the compacity of the quotient (that we already know to be an
abelian group) M(AF )/f(M

′(AF ))M(F ). Since the quotient M = M/S is a connected
reductive F -anisotropic group, the set M(AF )/M(F ) is compact [23, 3.5], which implies the
set M(AF )/S(AF )M(F ) is compact. A fortiori the quotient

M(AF )/f(M
′(AF ))S(AF )M(F )

is compact. Since

f(M ′(AF )) ∩ (S(AF )M(F )) = f(S′(AF ))S(F ),

we are reduced to prove the compacity of the group S(AF )/f(S
′(AF ))S(F ). It is given by

the Lemma A.1.1. �

Corollary A.2.2. Let f : H → G be an F -morphism of connected reductive groups such
that the induced morphism fder : Hder → Gder is a central isogeny.
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(1) For any place v, the quotient G(Fv)/Z
G(Fv)f(H(Fv)) is an abelian compact group.

(2) The quotient G(AF )/Z
G(AF )f(H(AF ))G(F ) is an abelian compact group.

Proof. The morphism

id × fder : Z
G ×Hder → ZG ×Gder

and the product morphism ZG×Gder → G are central F -isogenies. The composition of these
two morphisms ZG ×Hder → G is also a central F -isogeny. This implies the corollary. �

Remarks A.2.3. In the corollary, we may replace ZG by its connected component Z, which
is the maximal central F -torus in G; the product morphism Z ×Gder → G is still a central
F -isogeny.
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