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Abstract. Numerical evidence suggests that for only about 2% of pairs p, p+2

of twin primes, p+2 has more primitive roots than does p. If this occurs, we say
that p is exceptional (there are only two exceptional pairs with 5 6 p 6 10,000).

Assuming the Bateman–Horn conjecture, we prove that at least 0.47% of twin

prime pairs are exceptional and at least 65.13% are not exceptional. We also
conjecture a precise formula for the proportion of exceptional twin primes.

1. Introduction

Let n be a positive integer. An integer coprime to n is a primitive root modulo
n if it generates the multiplicative group (Z/nZ)× of units modulo n. A famous
result of Gauss states that n possesses primitive roots if and only if n is 2, 4, an
odd prime power, or twice an odd prime power. If a primitive root modulo n exists,
then n has precisely ϕ(ϕ(n)) of them, in which ϕ denotes the Euler totient function.
If p is prime, then ϕ(p) = p− 1 and hence p has exactly ϕ(p− 1) primitive roots.

If p and p + 2 are prime, then p and p + 2 are twin primes. The Twin Prime
Conjecture asserts that there are infinitely many twin primes. While it remains
unproved, recent years have seen an explosion of closely-related work [2,7,10]. Let
π2(x) denote the number of primes p at most x for which p+ 2 is prime. The first
Hardy–Littlewood conjecture asserts that

π2(x) ∼ 2C2

∫ x

2

dt

(log t)2
, (1.1)

in which

C2 =
∏
p>3

p(p− 2)

(p− 1)2
= 0.660161815 . . . . (1.2)

is the twin primes constant [5]. A simpler expression that is asymptotically equiv-
alent to (1.1) is 2C2x/(log x)2.

A casual inspection (see Table 1) suggests that if p and p+2 are primes and p > 5,
then p has at least as many primitive roots as p + 2; that is, ϕ(p− 1) > ϕ(p + 1).
If this occurs, then p is unexceptional. The preceding inequality holds for all twin
primes p, p+ 2 with 5 6 p 6 10,000, except for the pairs 2381, 2383 and 3851, 3853.
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p ϕ(p− 1) ϕ(p+ 1) δ(p) p ϕ(p− 1) ϕ(p+ 1) δ(p)

5 2 2 0 821 320 272 48

11 4 4 0 827 348 264 84

17 8 6 2 857 424 240 184
29 12 8 4 881 320 252 68

41 16 12 4 1019 508 256 252

59 28 16 12 1031 408 336 72
71 24 24 0 1049 520 240 280

101 40 32 8 1061 416 348 68

107 52 36 16 1091 432 288 144
137 64 44 20 1151 440 384 56

149 72 40 32 1229 612 320 292
179 88 48 40 1277 560 420 140

191 72 64 8 1289 528 336 192

197 84 60 24 1301 480 360 120
227 112 72 40 1319 658 320 338

239 96 64 32 1427 660 384 276

269 132 72 60 1451 560 440 120
281 96 92 4 1481 576 432 144
311 120 96 24 1487 742 480 262

347 172 112 60 1607 720 528 192
419 180 96 84 1619 808 432 376
431 168 144 24 1667 672 552 120

461 176 120 56 1697 832 564 268
521 192 168 24 1721 672 480 192
569 280 144 136 1787 828 592 236
599 264 160 104 1871 640 576 64

617 240 204 36 1877 792 624 168
641 256 212 44 1931 768 528 240
659 276 160 116 1949 972 480 492

809 400 216 184 1997 996 648 348

Table 1. For twin primes p, p + 2 with 5 6 p 6 2000, the difference δ(p) =

ϕ(p− 1) − ϕ(p+ 1) is nonnegative. That is, p has at least as many primitive

roots as does p+ 2.

If p, p+ 2 are primes with p > 5 and ϕ(p− 1) < ϕ(p+ 1), then p is exceptional.
We do not regard p = 3 as exceptional for technical reasons. Let πe(x) denote the
number of exceptional primes p 6 x; that is,

πe(x) = #
{
p 6 x : p and p+ 2 are prime and ϕ(p− 1) < ϕ(p+ 1)

}
.

Computational evidence suggests that approximately 2% of twin primes are excep-
tional; see Table 2. We make the following conjecture.

Conjecture 1. A positive proportion of the twin primes are exceptional. That is,
limx→∞ πe(x)/π2(x) exists and is positive.

We are able to prove Conjecture 1, if we assume the Bateman–Horn conjecture
(stated below). Our main theorem is the following.

Theorem 1. Assume that the Bateman–Horn conjecture holds.

(a) The set of twin prime pairs p, p + 2 for which ϕ(p − 1) < ϕ(p + 1) has lower
density (as a subset of twin primes) at least 0.47%.

(b) The set of twin prime pairs p, p + 2 for which ϕ(p − 1) > ϕ(p + 1) has lower
density (as a subset of twin primes) at least 65.13%.
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p δ(p) π2(p) πe(p) πe(p)/π2(p) p δ(p) π2(p) πe(p) πe(p)/π2(p)

2381 −24 71 1 0.0140845 230861 −2304 2427 51 0.0210136

3851 −72 100 2 0.02 232961 −1952 2447 52 0.0212505

14561 −240 268 3 0.011194 237161 −784 2486 53 0.0213194
17291 −16 300 4 0.0133333 241781 −4232 2517 54 0.0214541

20021 −680 342 5 0.0146199 246611 −4440 2557 55 0.0215096

20231 −192 344 6 0.0174419 251231 −768 2598 56 0.021555
26951 −576 430 7 0.0162791 259211 −1392 2657 57 0.0214528

34511 −736 532 8 0.0150376 270131 −3256 2755 58 0.0210526

41231 −768 602 9 0.0149502 274121 −5376 2788 59 0.0211621
47741 −1152 672 10 0.014881 275591 −1136 2800 60 0.0214286

50051 −1728 706 11 0.0155807 278741 −6512 2827 61 0.0215776
52361 −2088 731 12 0.0164159 282101 −7632 2853 62 0.0217315

55931 −432 765 13 0.0169935 282311 −720 2855 63 0.0220665

57191 −912 780 14 0.0179487 298691 −3552 2982 64 0.0214621
65171 −552 856 15 0.0175234 300581 −3420 3000 65 0.0216667

67211 −312 876 16 0.0182648 301841 −3840 3012 66 0.0219124

67271 −96 878 17 0.0193622 312551 −4752 3103 67 0.021592
70841 −2492 915 18 0.0196721 315701 −9228 3130 68 0.0217252
82811 −720 1043 19 0.0182167 316031 −5376 3132 69 0.0220307

87011 −2112 1084 20 0.0184502 322631 −7200 3197 70 0.0218955
98561 −2132 1207 21 0.0173985 325781 −6012 3230 71 0.0219814
101501 −228 1235 22 0.0178138 328511 −5440 3259 72 0.0220927

101531 −240 1236 23 0.0186084 330821 −4284 3283 73 0.0222358
108461 −312 1302 24 0.0184332 341321 −2928 3354 74 0.0220632
117041 −4452 1388 25 0.0180115 345731 −5088 3388 75 0.022137
119771 −912 1420 26 0.0183099 348461 −3348 3413 76 0.0222678

126491 −1584 1482 27 0.0182186 354971 −7920 3459 77 0.0222608
129221 −2736 1508 28 0.0185676 356441 −4764 3473 78 0.022459
134681 −3420 1559 29 0.0186017 357281 −6264 3480 79 0.0227011

136991 −1568 1586 30 0.0189155 361901 −10232 3520 80 0.0227273
142871 −2688 1634 31 0.0189718 362951 −4080 3525 81 0.0229787
145601 −2448 1653 32 0.0193587 371141 −2736 3580 82 0.022905

150221 −1688 1703 33 0.0193776 399491 −6048 3800 83 0.0218421
156941 −2196 1772 34 0.0191874 402221 −11064 3818 84 0.022001
165551 −4768 1848 35 0.0189394 404321 −1584 3838 85 0.022147

166601 −1772 1855 36 0.019407 406631 −752 3862 86 0.0222683
167861 −3360 1869 37 0.0197967 410411 −15568 3887 87 0.0223823

173741 −56 1909 38 0.0199057 413141 −3744 3909 88 0.0225122
175631 −3232 1924 39 0.0202703 416501 −4272 3934 89 0.0226233
188861 −2472 2061 40 0.0194081 418601 −12812 3949 90 0.0227906

197891 −1392 2139 41 0.0191678 424271 −20448 3996 91 0.0227728

202931 −3672 2179 42 0.0192749 427421 −1352 4026 92 0.0228515
203771 −720 2190 43 0.0196347 438131 −4576 4114 93 0.0226057

205031 −1136 2204 44 0.0199637 440441 −20088 4120 94 0.0228155
205661 −3288 2208 45 0.0203804 448631 −13536 4184 95 0.0227055
206081 −468 2211 46 0.0208051 454721 −1044 4232 96 0.0226843
219311 −3936 2321 47 0.0202499 464171 −912 4299 97 0.0225634

222041 −1632 2347 48 0.0204516 464381 −2148 4302 98 0.0227801
225611 −5088 2381 49 0.0205796 465011 −9840 4309 99 0.0229752

225941 −432 2385 50 0.0209644 470471 −24336 4341 100 0.0230362

Table 2. The first 100 exceptional p. Here δ(p) = ϕ(p− 1) − ϕ(p+ 1).
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Figure 1. Numerical evidence suggests that limx→∞ πe(x)/π2(x) exists and

is slightly larger than 2%. The horizontal axis denotes the number of excep-
tional twin prime pairs. The vertical axis represents the ratio πe/π2.

Computations suggest that the value of the limit in Conjecture 1 is approximately
2%; see Figures 1 and 2. A value for the limiting ratio is proposed in Section 5.

It is also worth pointing out that this bias is specific to the twin primes since the
set of primes p for which ϕ(p− 1)−ϕ(p+ 1) is positive (respectively, negative) has
density 50% as a subset of the primes [3]. That is, if we remove the assumption that
p+2 is also prime, then the bias completely disappears. Although only tangentially
related to the present discussion, it is worth mentioning the exciting preprint [6]
which concerns a peculiar and unexpected bias in the primes.

2. The Bateman–Horn conjecture

The proof of Theorem 1 is deferred until Section 4. We first require a few
words about the Bateman–Horn conjecture. Let f1, f2, . . . , fm be a collection of
distinct irreducible polynomials with positive leading coefficients. An integer n is
prime generating for this collection if each f1(n), f2(n), . . . , fm(n) is prime. Let
P (x) denote the number of prime-generating integers at most x and suppose that
f = f1f2 · · · fm does not vanish identically modulo any prime. The Bateman–Horn
conjecture is

P (x) ∼ C

D

∫ x

2

dt

(log t)m
,

in which

D =

m∏
i=1

deg fi and C =
∏
p

1−Nf (p)/p

(1− 1/p)m
,

where Nf (p) is the number of solutions to f(n) ≡ 0 (mod p) [1].
If f1(t) = t and f2(t) = t + 2, then f(t) = t(t + 2), Nf (2) = 1, and Nf (p) = 2

for p > 3. In this case, Bateman–Horn predicts (1.1), the first Hardy–Littlewood
conjecture, which in turn implies the Twin Prime Conjecture.

Although weaker than the Bateman–Horn conjecture, the Brun sieve [8, Thm. 3,
Sect. I.4.2] has the undeniable advantage of being proven. It says that there exists
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(a) First 500 twin primes (b) First 8,000 twin primes

(c) First 600,000 twin primes (d) First 1.5 million twin primes

Figure 2. Plots in the xy-plane of ordered pairs (p, ϕ(p − 1)) (in red) and
(p + 2, ϕ(p + 1)) (in cyan) for twin primes p, p + 2. There are no exceptional

pairs visible in Figure 2a; that is, ϕ(p−1) > ϕ(p+ 1) in each case. The excep-

tional pairs 2381, 2383 and 3851, 3853 are visible in Figure 2b. A smattering
of exceptional pairs emerge as more twin primes are considered.

a constant B that depends only on m and D such that

P (x) 6
BC

D

∫ x

2

dt

(log t)m
= (1 + o(1))

BC

D

x

(log x)m

for sufficiently large x. In particular,

π2(x) 6
Kx

(log x)2

for some constant K and sufficiently large x. The best known K in the estimate
above is K = 4.5 [9].

3. An heuristic argument

We give an heuristic argument which suggests that ϕ(p − 1) > ϕ(p + 1) for an
overwhelming proportion of twin primes p, p+2. It also identifies specific conditions
under which ϕ(p−1) < ϕ(p+1) might occur. This informal reasoning can be made
rigorous under the assumption of the Bateman–Horn conjecture (see Section 4).

Observe that each pair of twin primes, aside from 3, 5, is of the form 6n−1, 6n+1.
Thus, if p, p+2 are twin primes with p > 3, then 2|(p−1) and 6|(p+1). We use this in
the following lemma to obtain an equivalent characterization of (un)exceptionality.

Lemma 2. If p and p+ 2 are prime and p > 5, then

ϕ(p− 1) > ϕ(p+ 1) ⇐⇒ ϕ(p− 1)

p− 1
>

ϕ(p+ 1)

p+ 1
. (3.1)
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Proof. The forward implication is straightforward arithmetic, so we focus on the
reverse. If the inequality on the right-hand side of (3.1) holds, then

0 6 p
(
ϕ(p− 1)− ϕ(p+ 1)

)
+ ϕ(p− 1) + ϕ(p+ 1)

6 p
(
ϕ(p− 1)− ϕ(p+ 1)

)
+ 1

2 (p− 1) + 1
3 (p+ 1)

< p
(
ϕ(p− 1)− ϕ(p+ 1)

)
+ 5

6p

since 2|(p−1) and 6|(p+1). For the preceding to hold, the integer ϕ(p−1)−ϕ(p+1)
must be nonnegative. �

In light of (3.1) and the formula (in which q is prime)

ϕ(n)

n
=
∏
q|n

(
1− 1

q

)
,

it follows that p is exceptional if and only if p+ 2 is prime and

1

2

∏
q|(p−1)
q>5

(
1− 1

q

)
<

1

3

∏
q|(p+1)
q>5

(
1− 1

q

)
(3.2)

because 2|(p− 1), 3 - (p− 1) and 6|(p+ 1). The condition (3.2) can occur if p− 1 is
divisible by only small primes. For example, if 5, 7, 11|(p− 1), then 5, 7, 11 - (p+ 1)
and the quantities in (3.2) become

24

77

∏
q|(p−1)
q>13

(
1− 1

q

)
and

1

3

∏
q|(p+1)
q>13

(
1− 1

q

)
.

Since
24

77
≈ 0.3117 <

1

3
and 2 · 5 · 7 · 11 = 770,

one expects (3.2) to hold occasionally if p = 770n+1. Dirichlet’s theorem on primes
in arithmetic progressions ensures that p+2 = 770n+3 is prime 1/ϕ(770) = 1/240 =
0.4167% of the time. Thus, we expect a small proportion of twin prime pairs to
satisfy (3.2). For example, among the first 100 exceptional pairs (see Table 2), the
following values of p have the form 770n+ 1:

3851, 20021, 26951, 47741, 50051, 52361, 70841, 87011, 98561, 117041,
165551, 167861, 197891, 225611, 237161, 241781, 274121, 278741,
301841, 315701, 322631, 345731, 354971, 357281, 361901, 371141,
410411, 424271, 438131, 440441, 470471.

This accounts for 31% of the first 100 exceptional pairs. We now make this heuristic
argument rigorous, under the assumption that the Bateman–Horn conjecture holds.

4. Proof of Theorem 1

Assume that the Bateman–Horn conjecture holds. We first prove statement (a)
of Theorem 1. In what follows, p, q, r denote prime numbers.

Proof of (a). Consider twin primes p, p + 2 such that 5, 7, 11|(p − 1). Let π′2(x)
be the number of such p 6 x.

Step 1. Since 5 · 7 · 11 = 385, the desired primes are precisely those of the form

n = 385k + 1 6 x such that n+ 2 = 385k + 3 is prime.
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In the Bateman–Horn conjecture, let

f1(t) = 385t+ 1, f2(t) = 385t+ 3, and f = f1f2.

Then

Nf (p) =


1 if p = 2,

2 if p = 3,

0 if p = 5, 7, 11,

2 if p > 13.

(4.1)

Since p 6 x, we must have k 6 (x− 1)/385. For sufficiently large x, the Bateman–
Horn conjecture predicts that the number of such k is

π′2(x) = (1 + o(1))
(x− 1)/385

(log((x− 1)/385))2

∏
p>2

(
1−Nf (p)/p

(1− 1/p)2

)

= (1 + o(1))

(
2x

385(log x)2

)∏
p>3

(
1−Nf (p)/p

(1− 1/p)2

)

= (1 + o(1))

(
2x

385(log x)2

) ∏
p=5,7,11

(
1

(1− 1/p)2

) ∏
p>13

or p = 3

(
1− 2/p

(1− 1/p)2

)

= (1 + o(1))

(
2x

385(log x)2

)∏
p>3

(
1− 2/p

(1− 1/p)2

) ∏
p=5,7,11

(1− 2/p)
−1

= (1 + o(1))

(
2x

385(log x)2

)∏
p>3

(
p(p− 2)

(p− 1)2

)
5 · 7 · 11

(5− 2)(7− 2)(11− 2)

= (1 + o(1))
2C2x

135(log x)2

= (1 + o(1))
π2(x)

135
> 0.00740740π2(x). (4.2)

Step 2. Fix a prime r > 13. Let π′2,r(x) be the number of primes p 6 x such that
p, p + 2 are prime, 5, 7, 11|(p − 1), and r|(p + 1). The desired primes are precisely
those of the form

n = 385k + 1 6 x such that n+ 2 = 385k + 3 is prime and r|(385k + 2).

In particular, k must be of the form

k = k0 + r`,

in which k0 is the smallest positive integer with k0 ≡ −2(385)−1 (mod r). Let
br = 385k0 + 1. Then

n = 385r`+ br and n+ 2 = 385r`+ (br + 2), (4.3)

are both prime, n 6 x, and

` 6
x− br
385r

.

In the Bateman–Horn conjecture, let

f1(t) = 385rt+ br, f2(t) = 385rt+ (br + 2), and f = f1f2.
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Then Nf (p) is as in (4.1) except for p = r, in which case Nf (r) = 0. Indeed,

f1(t) ≡ br ≡ 385k0 + 1 ≡ −1 (mod r) and f2(t) ≡ br + 2 ≡ 1 (mod r)

for all t. As x → ∞, the Bateman–Horn conjecture predicts that the number of
such ` is

π′2,r(x) = (1 + o(1))
(x− br)/(385r)

(log((x− br)/(385r)))2

∏
p>2

(
1−Nf (p)/p

(1− 1/p)2

)

= (1 + o(1))
x

385r(log x)2

∏
p>2

(
1−Nf (p)/p

(1− 1/p)2

)

= (1 + o(1))
2x

385r(log x)2

∏
p>3

(
1−Nf (p)/p

(1− 1/p)2

)

= (1 + o(1))
2x

385r(log x)2

∏
p=5,7,11,r

(
1

(1− 1/p)2

) ∏
p=5,7,11,r

(
1− 2/p

(1− 1/p)2

)
= (1 + o(1))

(
2x

385r(log x)2

)∏
p>3

(
p(p− 2)

(p− 1)2

)
5 · 7 · 11 · r

(5− 2)(7− 2)(11− 2)(r − 2)

= (1 + o(1))
2C2x

135(r − 2)(log x)2

= (1 + o(1))
π2(x)

135(r − 2)
. (4.4)

Step 3. Suppose that p is counted by π′2(x); that is, suppose that p, p+2 are prime
and that 5, 7, 11|(p− 1). Then 6|(p+ 1), 5, 7, 11 - (p+ 1), and

ϕ(p− 1)

p− 1
6

∏
q=2,5,7,11

(
1− 1

q

)
=

24

77
.

If the pair p is unexceptional, then Lemma 2 ensures that

1

3

∏
r|(p+1)
r>13

(
1− 1

r

)
=
ϕ(p+ 1)

p+ 1
6
ϕ(p− 1)

p− 1
6

24

77
.

Consequently, ∏
r|(p+1)
r>13

(
1 +

1

r − 1

)
>

77

72
,

in which r is prime. Let

F (p) =
∑

r|(p+1)
r>13

log

(
1 +

1

r − 1

)
.

Step 4. We want to count the twin primes pairs p, p + 2 with p 6 x, F (p) >
log(77/72), and 5, 7, 11|(p− 1). To do this, we sum up F (p) over all twin primes p
counted by π′2(x) and change the order of summation to get

A(x) =
∑

p counted by
π′
2(x)

F (p)
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=
∑
r>13

π′2,r(x) log

(
1 +

1

r − 1

)

6
∑

136r6z

π′2,r(x) log

(
1 +

1

r − 1

)

+
∑

z<r6(log x)3

π′2,r(x) log

(
1 +

1

r − 1

)

+
∑

(log x)3<r6x

π2,r′(x) log

(
1 +

1

r − 1

)
= A1(x) +A2(x) +A3(x), (4.5)

in which z is to be determined later. We bound the three summands separately.

(a) If 13 6 r 6 z, then (4.4) asserts that

π′2,r(x) = (1 + o(1))
π2(x)

135(r − 2)

uniformly for r ∈ [13, z] as x→∞. For sufficiently large x we have1

A1(x) 6 (1 + o(1))
π2(x)

135

 ∑
136r6z

1

(r − 2)
log

(
1 +

1

r − 1

)
6 (1 + o(1))

π2(x)

135

∑
r>13

1

(r − 2)
log

(
1 +

1

r − 1

)
6 (1 + o(1))

0.0241504

135
π2(x)

< 0.000178892π2(x).

(b) If z < r 6 (log x)3, we use the Brun sieve and manipulations similar to those
used to obtain (4.4) to find an absolute constant K such that

π′2,r(x) 6
K(x/(135r))

(log(x/(135r)))2

for sufficiently large x. Since r 6 (log x)3,

log(x/(135r)) > log(x1/2) > (log x)/2

holds if x > 1014. Then (1.1) ensures that

π′2,r(x) 6
4Kx

135r(log x)2
6

5Kπ2(x)

135(r − 2)

for sufficiently large x. Now we fix z such that 5K/(135(z− 2)) < 10−9. Since
log(1 + t) < t for t > 0, for sufficiently large x we obtain

A2(x) =
∑

z<r6(log x)3

π′2,r(x) log

(
1 +

1

r − 1

)

1Since log(1 + t) 6 t for t > 0, the terms of the series are O(1/r2) and hence it converges rapidly
enough for reliable numerical evaluation. Mathematica provides the value 0.0241503330316.
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6
5Kπ2(x)

135

∑
r>z

1

r − 2
log

(
1 +

1

r − 1

)
<

5Kπ2(x)

135

∑
r>z

1

(r − 2)(r − 1)

=
5Kπ2(x)

135

∑
r>z

(
1

r − 2
− 1

r − 1

)
6

5Kπ2(x)

135(z − 2)

< 10−9 π2(x).

(c) Suppose that (log x)3 < r 6 x. By (4.3), the primes counted by π′2,r(x) lie in
an arithmetic progression modulo 385r. Thus, their number is at most

π2,r(x) 6
⌊ x

385r

⌋
+ 1 6

x

385r
+ 1.

Since log(1 + t) < t, for sufficiently large x we obtain

A3(x) =
∑

(log x)3<r6x

π2,r′(x) log

(
1 +

1

r − 1

)
6

∑
(log x)3<r6x

1

(r − 1)

( x

385r
+ 1
)

6
x

385

∑
r>(log x)3

1

r(r − 1)
+

∑
(log x)3<r6x

1

r − 1

6
x

385

∑
r>(log x)3

(
1

r − 1
− 1

r

)
+

∫ x

(log x)3−2

dt

t

6
x

385((log x)3 − 1)
+

(
log t

∣∣∣t=x
t=(log x)3−2

)
6

2x

385(log x)3
+ log x

=

(
1

385C2 log x
+

(log x)3

2C2x

)
2C2x

(log x)2

= (1 + o(1))

(
1

385C2 log x
+

(log x)3

2C2x

)
π2(x)

< 10−9 π2(x).

Step 5. Returning to (4.5) and using the preceding three estimates, we have

A(x) = A1(x) +A2(x) +A3(x)

< 0.000178892π2(x) + 10−9 π2(x) + 10−9 π2(x)

< 0.000179π2(x).

for sufficiently large x.

Step 6. Let U(x) be the set of primes p counted by π′2(x) that are unexceptional;
that is, ϕ(p − 1)/(p − 1) > ϕ(p + 1)/(p + 1) by Lemma 2. As we have seen, if
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p ∈ U(x), then F (p) > log(77/72). Thus,

0 6 #U(x) log(77/72) 6
∑

p∈U(x)

F (p) 6 A(x) 6 0.000179π2(x),

from which we deduce that

#U(x) 6

(
0.000179

log(77/72)

)
π2(x) < 0.002667π2(x).

The primes p counted by π′2(x) which are not in U(x) are exceptional; that is
ϕ(p − 1)/(p − 1) < ϕ(p + 1)/(p + 1). By (4.2) and the preceding calculation, for
large x there are at least

π′2(x)−#U(x) > (0.00740740− 0.002667)π2(x)

> 0.0047π2(x)

such primes. This completes the proof of statement (a) from Theorem 1.

Proof of (b). This is similar to the preceding, although it is much simpler. As
before, p, q, r denote primes. If p, p+ 2 are prime and p is exceptional, then

1

2

∏
r|(p−1)
r>5

(
1− 1

r

)
=
ϕ(p− 1)

p− 1
6
ϕ(p+ 1)

p+ 1
6

1

3

since 3 - (p− 1) and 6|(p+ 1). If we let

G(p) =
∑

r|(p−1)
r>5

log

(
1 +

1

r − 1

)
,

then G(p) > log(3/2) holds for all exceptional primes p. Let πe(x) denote the
number of exceptional primes p 6 x. Then

πe(x) log(3/2) 6
∑

p counted
by π2(x)

G(p)

=
∑

p counted
by π2(x)

∑
r>5

r|(p−1)

log

(
1 +

1

r − 1

)

6
∑

56r6x

log

(
1 +

1

r − 1

) ∑
p counted by π2(x)

p≡1 (mod r)

1

6 (1 + o(1))π2(x)
∑
r>5

1

(r − 2)
log

(
1 +

1

r − 1

)
< 0.14137π2(x),

which shows that there are at least

π2(x)− πe(x) > π2(x)

(
1− 0.14137

log(3/2)

)
> 0.6513π2(x)

unexceptional primes at most x. �
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5. Conjectured density

Below we conjecture a value for the density of the exceptional primes relative to
the twin primes. In what follows, we let P (n) denote the largest prime factor of n
and let p(n) denote the smallest. We let µ denote the Möbius function and remind
the reader that µ2(n) = 1 if and only if n = 1 or n is the product of distinct primes.

Conjecture 2. The density of the exceptional twin primes is

lim
x→∞

πe(x)

π2(x)
= lim
ε→0

∏
56q6 1

ε

(
q − 4

q − 2

)( ∑
a,b

µ2(ab)=1
56p(ab)6P (ab)6 1

ε
ϕ(a)
2a 6ϕ(b)

3b

∏
p|ab

(
1

p− 4

))
. (5.1)

A few remarks about the imposing expression (5.1) are in order. First of all,
for each fixed ε > 0, the sum involves only finitely many pairs a, b. Indeed, the
condition µ2(ab) = 1 ensures that ab is a product of distinct prime factors. The
restriction 5 6 p(ab) 6 P (ab) 6 1

ε implies that only finitely many prime factors are
available to form a and b. In principle, the right-hand side of (5.1) can be evaluated
to arbitrary accuracy by taking ε sufficiently small. Unfortunately, the number of
terms involved in the sum grows rapidly as ε shrinks and we are unable to obtain
a reliable numerical estimate from (5.1).

As a brief “sanity check,” we also remark that the limit in (5.1), if it exists, is
at most 1. Without the condition

ϕ(a)

2a
6
ϕ(b)

3b
,

the inner sum in (5.1) is∑
a,b

µ2(ab)=1
56p(ab)6P (ab)6 1

ε

∏
p|ab

(
1

p− 4

)
=

∑
n

µ2(n)=1
56p(n)6P (n)6 1

ε

2ω(n)
∏
p|n

(
1

p− 4

)

=
∏

56p6 1
ε

(
1 +

2

p− 4

)

=
∏

56p6 1
ε

(
p− 2

p− 4

)
,

which precisely offsets the first product in (5.1).
To proceed, we need to generalize the functions F and G that appeared in the

proof of Theorem 1. Let ε > 0 and define

Fε(p) =
∑

r|(p+1)
r> 1

ε

log

(
1 +

1

r − 1

)
and Gε(p) =

∑
r|(p−1)
r> 1

ε

log

(
1 +

1

r − 1

)
.

Particular instances of these functions have appeared in the proof of Theorem 1
with ε = 1/5 for Fε (called F ) and ε = 1/13 for Gε (called G), respectively.

Lemma 3. For ε > 0, the number of twin primes p 6 x such that Fε(p) > ε is
O((log( 1

ε ))−1π2(x)). The same conclusion holds with Fε replaced by Gε.
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Proof. The argument is essentially already in the proof of Theorem 1. We do it
only for Fε(p) since the argument for Gε(p) is similar. We sum Fε(p) for p 6 x
with p, p+ 2 prime and use the fact that log(1 + t) 6 t to obtain∑

p6x
p, p+2 prime

Fε(p) 6
∑
p6x

p, p+2 prime

∑
q|(p−1)
q> 1

ε

1

q − 1

=
∑
q> 1

ε

1

q − 1

∑
p, p+2 prime
p≡1 (mod q)

1

=
∑
q> 1

ε

π2(x, q, 1)

q − 1
,

in which π2(x; q, 1) denotes the number of primes p 6 x with p, p + 2 prime and
p ≡ 1 (mod q). By the usual argument, the number of twin primes p, p + 2 with
p 6 x and p ≡ 1 (mod q) equals the number of t 6 x/q such that qt+ 1 and qt+ 3
are prime. The number of them is, by the Brun sieve,

π2(x; q, 1)� x

(q − 1)(log x)2
.

The Prime Number Theorem and Abel summation reveal that∑
p6x

p, p+ 2 prime

Fε(p)�
x

(log x)2

∑
q> 1

ε

1

(q − 1)2
� επ2(x)

log( 1
ε )
.

If we let

Aε = {p : p, p+2 prime and Fε(p) > ε},
then

#Aε(x)ε 6
∑
p6x

p, p+2 prime

Fε(p)� ε

(
log
(1

ε

))−1
π2(x),

which gives #Aε(x) = O((log( 1
ε ))−1π2(x)). �

To justify our conjecture, we look at the 1
ε -part of p2 − 1. We first let ε 6 0.5.

We note that 2|(p − 1), 2|(p + 1) and 3|(p + 1) for all twin primes p > 5. For two
coprime square-free numbers a, b with 5 6 p(ab) 6 P (ab) 6 1

ε , we say that the twin

prime p is of 1
ε -type (a, b) if

p− 1 = 2α
∏
q|a

qαq

∏
q> 1

ε

qγq and p+ 1 = 2β3γ
∏
q|b

qβq

∏
q> 1

ε

qδq

for some positive α, β, γ, αq and βq for q | ab and nonnegative γq, δq for q > 1
ε . That

is, the prime factors of p− 1 that are 6 1
ε are exactly the ones dividing 2a and the

prime factors of p+ 1 that are 6 1
ε are exactly the ones dividing 6b.

Given ε and (a, b), let

ca,b =
∏

56q6 1
ε

q-ab

q.
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Note that

ϕ(p− 1)

p− 1
=

1

2

ϕ(a)

a

∏
q|(p−1)
q> 1

ε

(
1− 1

q

)
and

ϕ(p+ 1)

p+ 1
=

1

3

ϕ(b)

b

∏
q|(p+1)
q> 1

ε

(
1− 1

q

)
.

Since

e−2y < 1− y < e−y for y < 1
2 ,

it follows that

1− 4ε < e−2ε < e−Fε(p) =
∏

q|(p−1)
q> 1

ε

(
1− 1

q

)

hold for all twin primes p 6 x except the ones in Aε(x), a set of cardinality
O((log( 1

ε )−1π2(x)). Consequently,

(1− 4ε)
ϕ(a)

2a
6
ϕ(p− 1)

p− 1

holds for all but O((log( 1
ε ))−1π2(x)) twin primes p 6 x. Thus, the inequality

ϕ(p− 1)

p− 1
6
ϕ(p+ 1)

p+ 1

implies that
ϕ(a)

2a
6 (1− 4ε)−1

ϕ(b)

3b
.

Let us consider twin primes for which

ϕ(b)

3b
<
ϕ(a)

2a
< (1− 4ε)−1

ϕ(b)

3b
(5.2)

occurs. Since

ϕ(a)

2a
=
ϕ(p− 1)

p− 1
(1 +O(ε)) and

ϕ(b)

3b
=
ϕ(p+ 1)

p+ 1
(1 +O(ε))

for all p 6 x with O((log( 1
ε ))−1π2(x)) exceptions, it follows that twin primes p 6 x

for which (5.2) holds have the additional property that∣∣∣∣ϕ(p− 1)

p− 1
− ϕ(p+ 1)

p+ 1

∣∣∣∣ = O(ε). (5.3)

Let Bε be the set of twin primes for which (5.3) holds. We make the following
additional assumption.

Additional assumption: The number of twin primes p 6 x for which (5.3) holds
is O(h(ε)π2(x)) for some function h(y) with h(y)→ 0 as y → 0.

The assumption (5.3) has been shown to hold when p is only a prime [3]. That
is, the number of primes p 6 x such that (5.3) holds is at most O(h(ε)π(x)), where
h(ε) tends to zero when ε → 0. In fact, this was a crucial step in showing that
ϕ(p− 1)− ϕ(p+ 1) has no bias if only p is assumed to be prime.

Proving this for primes uses the Turan–Kubilius theorem about the number of
prime factors q 6 y of p ± 1 when p is prime as the parameter y tends to infinity
and also Sperner’s theorem from combinatorics. With some nontrivial effort, which
involves proving first a Turan–Kubilius estimate for the number of distinct primes
q 6 1/ε of p − 1 and p + 1 when p ranges over twin primes up to x, the same
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program can be applied to prove that the additional assumption holds under the
Bateman–Horn conjectures. We do not give further details here.

Assume that the additional assumption holds. Then the set of twin primes p 6 x
such that

ϕ(p− 1)

p− 1
<
ϕ(p+ 1)

p+ 1

is within a set of cardinality O(h(ε)π2(x)) from the set of primes for which

ϕ(a)

2a
<
ϕ(b)

3b
. (5.4)

With this assumption, we proceed as in [3, Sect. 2.11]. Fix 1
ε , a, b, and c = ca,b.

We also fix a residue class for p modulo c which is not {0,±1,−2}. In this case we
need to count natural numbers of the form

abct+ κ,

in which κ is fixed such that

• abct+ κ 6 x,

• abct+ κ and abct+ κ+ 2 are prime,

• abct+ κ− 1 are divisible by all primes in a and coprime to cb,

• abct+ κ+ 1 is divisible by all primes in b (and coprime to ca).

Observe that κ is uniquely determined modulo abc once it is determined modulo c.
By the Bateman–Horn conjecture, this number is

(1 + o(1))π2(x)
∏
p|abc

1

(p− 2)
.

We next sum this over all q − 4 progressions modulo q for which abct + κ is not
congruent modulo q to some member of {0,±1,−2} and for all q | c getting an
amount of

(1 + o(1))π2(x)
∏
p|ab

(
1

p− 2

)∏
p|c

(
q − 4

q − 2

)
= (1 + o(1))

∏
56q6 1

ε

(
q − 4

q − 2

)∏
q|ab

(
1

q − 4

)
.

We now sum up over all pairs a, b with

ϕ(a)

2a
<
ϕ(b)

3b
,

which yields a proportion of

(1 + o(1))
∏

56q6 1
ε

(
q − 4

q − 2

) ∑
a,b

56p(ab)6P (ab)6 1
ε

ϕ(a)
2a <

ϕ(b)
3b

µ2(ab)
∏
p|ab

(
1

p− 4

)

of π2(x) with a number of exceptions p 6 x of counting function O(h(ε)π2(x)).
This supports Conjecture 2.
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6. Comments

We did not need the full strength of the Bateman–Horn conjecture, just the case
r = 2 and D = 1 for certain specific pairs of linear polynomials f1(t) and f2(t).
Under this conjecture, we have seen that ϕ(p − 1) 6 ϕ(p + 1) for a substantial
majority of twin prime pairs p, p+ 2.

There are a few twin primes p, p+ 2 for which

ϕ(p− 1) = ϕ(p+ 1). (6.1)

For only such p 6 100,000,000 are

5, 11, 71, 2591, 208,391, 16,692,551, 48,502,931, 92,012,201,

249,206,231, 419,445,251, 496,978,301.

The following result highlights the rarity of these twin primes.

Theorem 4. The number of primes p 6 x with p+2 prime and ϕ(p−1) = ϕ(p+1)
is O(x/ exp((log x)1/3).

Proof. Suppose that j and j+k have the same prime factors, let g = (j, j+k), and
suppose that

j

g
r + 1 and

j + k

g
r + 1 (6.2)

are primes that do not divide j. Then

n = j

(
j + k

g
r + 1

)
(6.3)

satisfies ϕ(n) = ϕ(n + k) [4, Thm. 1]. For k fixed, the number of solutions n 6 x
to ϕ(n) = ϕ(n + k) which are not of the form (6.3) is less than x/ exp((log x)1/3)
for sufficiently large x [4, Thm. 2].

We are interested in the case k = 2 and n = p − 1, in which p, p + 2 are prime.
If j and j + 2 have the same prime factors, then they are both powers of 2. Thus,
j = 2 and j + k = 4, so g = 2. From (6.2) we see that r is such that

r + 1 and 2r + 1

are prime. Then n = 2(2r + 1) = p− 1, from which it follows that p = 4r + 3 and
p+ 2 = 4r + 5 are prime. Consequently,

r + 1, 2r + 1, 4r + 3, and 4r + 5,

are prime. However, this occurs only for r = 2 since otherwise one of the preceding
is a multiple of 3 that is larger than 3. �

In particular, the number of primes p 6 x for which p+2 is prime and ϕ(p−1) =
ϕ(p+1) is o(x/(log x)2). Assuming the first Hardy–Littlewood conjecture, it follows
that the set of such primes has density zero in the twin primes.

Acknowledgments. We thank Tomás Silva for independently computing the ratio
πe(x)/π2(x) for large x. We also thank the anonymous referee for suggesting the
approach of Section 5.
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