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1 Introduction

Recent investigations [1–3] of the relation between Newman-Penrose charges [4] and the

charges corresponding to the BMS symmetry group of asymptotically flat spacetimes [5]

have led to the discovery of two generalisations of BMS charges: a generalisation in terms of

a subleading 1/r expansion and a generalisation in terms of a complexification of the BMS

charges. In this context, the real and imaginary parts of the Newman-Penrose charges

corresponds to the subleading supertranslation and dual supertranslation charges at or-

der 1/r3.

The dual gravitational charges are given by twisted fields, defined using the Levi-Civita

on the 2-sphere, and as such do not appear in components of the Einstein equation; rather,

they are related to NUT charges [2, 6], and may be viewed as the gravitational analogues of

magnetic monopoles. As has been emphasised recently in ref. [6], and in older works [7, 8],

the existence of non-trivial dual charges (at least globally) is intrinsically related to the

non-trivial topological structure of spacetime, in the same way that a gauge connection in

electromagnetism can lead to a non-trivial magnetic monopole charge.

In this paper, we investigate further the relationship between these new dual gravita-

tional charges and the well-known NUT charge [9, 10] by using the Komar integrals for

energy and dual charge, which are defined for stationary solutions, as guides. Furthermore,

we investigate the consequence of the existence of such charges for the gravitational phase

space at null infinity, which has been discussed in refs. [6, 11], and for the Weinberg soft

theorems [12], whose relation to asymptotic symmetries has attracted much recent atten-

tion [11, 13–33]. We shall, mainly, focus on (dual) supertranslation charges in this paper.

The relation between dual charges and non-trivial topology leads us to propose a gen-

eralisation of the concept of asymptotic flatness to include tensors in a 1/r expansion of

the metric components that are not necessarily regular on the 2-sphere at infinity. This
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conclusion is reminiscent of the introduction of superrotations as viable BMS transforma-

tions [34, 35]. Indeed, it seems natural both in terms of the existence of dual BMS charges,

and also in allowing the action of a larger group of asymptotic symmetry generators, that

such a generalisation be considered. However, the introduction of fields that are not nec-

essarily regular on the 2-sphere means that one must be more careful in dealing with total

derivative terms. In particular, given that previous results on BMS charges [1–3, 5] have

assumed all tensors to be regular, we need to go back and re-evaluate the derivations of

the charges. This leads to new expressions for the supertranslation charges, with total

derivative terms that do not necessarily integrate to zero on the 2-sphere.

Following the observations in ref. [3], which found that the usual and dual super-

translation charges are associated with the real and imaginary parts of an appropriate

Newman-Penrose scalar, and the strategy employed in ref. [17], we construct a complexi-

fied supertranslation charge and investigate its action on the phase space. We find that the

complexified supertranslation charge acts on one mode as a time translation, while it acts

on the other mode as a supertranslation. This is in complete analogy with what happens

in electromagnetism, as described in ref. [17]. It is worth emphasising that we obtain these

expected Dirac brackets without the need to impose any boundary conditions at spacelike

infinity, in contrast to refs. [6, 11]. With hindsight the boundary condition required in

order to obtain reasonable Dirac brackets in ref. [11] is justified, because in that work the

dual charge has effectively been set to be zero and, for consistency, this condition must

be reflected in the phase space via the boundary conditions imposed thereon. However,

given that one imposes also a boundary condition at timelike infinity, it is unsatisfactory

from the point of view of an initial-value formulation to insist on a boundary condition

also at spacelike infinity. Therefore, we conclude that a satisfactory resolution of the phase

space problem identified in ref. [11] is to include dual supertranslation charges, thereby

eliminating the need for boundary conditions at spacelike infinity. Assuming a conserva-

tion of the complexified charge across spacelike infinity then leads to a Weinberg-like soft

NUT/graviton theorem, in the same vein as that proposed for electromagnetism in ref. [17].

In section 2, we compare the usual and dual supertranslation charges with Komar inte-

grals, which are defined for stationary spacetimes, and we use this comparison to motivate

a generalisation of the notion of asymptotic flatness to spacetimes with metric components

that are not necessarily regular on the 2-sphere. In section 3, we derive the supertranslation

charges associated with these generalised asymptotically flat spacetimes, we define a com-

plexified supertranslation charge, and we find that its action on phase space is analogous

to the situation in electromagnetism. We end in section 4 by deriving a soft NUT/graviton

theorem. We also include two appendices, where we give detailed constructions of the

Kerr and the Taub-NUT metrics in Bondi coordinates, up to the first few orders in a 1/r

expansion. These examples serve to illustrate the fact that in the case of the Kerr metric,

which has no non-vanishing global dual charges, the Bondi metric coefficients are com-

pletely non-singular on the 2-sphere. By contrast, when the Taub-NUT metric is written

in Bondi form, the metric coefficients in the 1/r are inevitably singular somewhere on the

2-sphere.

– 2 –



J
H
E
P
1
0
(
2
0
1
9
)
1
2
3

2 Asymptotically flat spacetimes and NUT charges

Choosing outgoing Bondi coordinates (u, r, xI = {θ, φ}), we define asymptotically flat

spacetimes to be those for which the metric takes the form [36, 37]

ds2 = −Fe2βdu2 − 2e2βdudr + r2hIJ (dxI − CIdu)(dxJ − CJdu), (2.1)

with the metric functions satisfying the following fall-off conditions at large r:1

F (u, r, xI) = 1 +
F0(u, xI)

r
+ o(r−1),

β(u, r, xI) =
β0(u, xI)

r2
+ o(r−2),

CI(u, r, xI) =
CI0 (u, xI)

r2
+ o(r−2),

hIJ(u, r, xI) = ωIJ +
CIJ(u, xI)

r
+ o(r−1), (2.2)

Furthermore, a gauge freedom allows us to choose

h = ω, (2.3)

where h ≡ det(hIJ) and ω ≡ det(ωIJ) = sin θ.

Given the above fall-off conditions for the metric and assuming that all the tensors

defined on the 2-sphere above are regular, there exists a new set of dual BMS charges [2, 3]

δ/Q̃0 =
1

16πG

∫
S
dΩ

[
δ

(
− fDIDJ C̃

IJ +
1

4
Y KC̃IJDKCIJ −

1

2
Ỹ IDIC

2

)
+

1

2
f∂uCIJδC̃

IJ

]
,

(2.4)

where DI is the standard covariant derivative associated with the unit round-sphere metric

ωIJ , the integration is over the 2-sphere at r = ∞ for some fixed u, which is denoted by

S, and where

f = s+
u

2
DIY

I , (2.5)

with s(xI) parameterising a supertranslation and Y I(xJ) corresponding to a conformal

Killing vector on the 2-sphere. In (2.4) C2 is equal to CIJC
IJ , and the twisted quantities,

denotated with tildes, are defined as

C̃IJ = CK
(IεJ)K , Ỹ I = εIJYJ , εIJ =

(
0 1

−1 0

)
sin θ. (2.6)

The 0 subscript on Q̃0 denotes that this charge is the leading-order term in a possible

sequence of charges in a 1/r expansion near infinity [3].

1In the previous papers [1–3], we used slightly stronger fall-off conditions. Generally, our strategy is to

assume as weak a set of fall-off conditions as possible consistent with our results.
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These charges complement the Barnich-Troessaert BMS charges [5]2

δ/Q0 =
1

16πG

∫
S
dΩ

[
δ

(
− 2fF0 + Y K

[
− 3C1K +

1

16
DKC

2
])

+
1

2
f∂uCIJδC

IJ

]
. (2.7)

One way of understanding the new dual charges is in terms of a complexification of the

BMS algebra. This is made most explicit by writing these expressions in a Newman-Penrose

form with the standard BMS charges and the dual charges corresponding respectively to

the real and imaginary parts of appropriate Newman-Penrose scalars [3].

Inspecting equation (2.4), it is clear that in order for the dual charges to be non-

trivial, at least globally (i.e. for f = 1, Y I = 0), we must relax the condition that the

metric coefficients be regular tensors on the 2-sphere, in which case they correspond to

Taub-NUT charges [2, 6]. In particular, this means that we must go back through the

derivation of both the Barnich-Troessaert and the dual charges and assess whether there

are total derivative terms that were previously ignored that will now become relevant due

to the relaxing of the regularity conditions.

However, before we do this in the next section, we make the link with Taub-NUT

charges more precise by considering Komar integrals. For the remainder of the paper, we

shall restrict attention to the Abelian part of the BMS algebra given by supertranslations,

parameterised by functions s(xI) on the 2-sphere.

2.1 Komar integrals

Asymptotically flat spacetimes model isolated gravitational systems in general relativ-

ity. The simplest such example is of a point charge of mass/energy m, which we obtain

by choosing

F = 1− 2mG

r
, β = 0, CI = 0, hIJ = ωIJ . (2.8)

This is, of course, the Schwarzschild solution, written in outgoing Eddington-Finkelstein

coordinates. Given that the solution is stationary, the Komar energy3

MK = − 1

8πG

∫
S
?dk[ (2.9)

is well-defined, where k[ is the one-form corresponding to the timelike Killing vector k =

∂/∂u. It is a standard exercise to show that

MK = m. (2.10)

Remaining in the stationary setting for now, it is reasonable to ask whether there exist

solutions which have a non-trivial dual Komar energy defined by

M̃K =
1

8πG

∫
S
dk[ (2.11)

2See equations (3.2) and (3.3) of ref. [5] with the following translations in notation: mG = −1/2F0 and

NI = −3/2CI
1 , where CI

1 is an order 1/r3 term in the expansion of CI , see equation (2.2).
3We use the expression “Komar energy” rather than the more popular “Komar mass,” because this

makes more sense in the context of this paper. Of course, for stationary configurations the energy and mass

coincide.
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with the one-form k[ again coming from the timelike Killing vector k, as defined above.

The Taub-NUT solution is such an example. Its metric in standard coordinates is [38]

ds2 = −f(r)(dt+ 2` cos θdφ)2 + f(r)−1dr2 + (r2 + `2)(dθ2 + sin2 θdφ2),

f(r) =
r2 − 2mr − `2

r2 + `2
, (2.12)

where m is the Schwarzschild mass parameter as before and ` is called the NUT parameter.

Taking k[ to be the one-form coming from the Killing vector k = ∂/∂t, it is simple to

show that

M̃K = `/G. (2.13)

Thus, the NUT parameter corresponds to a dual gravitational charge.

An inspection of the metric (2.12) reveals that the Taub-NUT solution is not asymp-

totically flat, in the sense defined at the start of this section, where the metric expansion

coefficients were implicitly assumed to be regular on the 2-sphere.4 A simple non-rigorous

way of seeing this is that taking the limit as r → ∞ in metric (2.12) does not lead to the

Minkowski metric, precisely because of the existence of the NUT parameter. A clearer

way of seeing this is to write the metric in Bondi coordinates (u, r, xI), as has been done

in ref. [6], and also in appendix B,5 in which case one finds that in particular CIJ is not

regular on the 2-sphere.

Given that the Taub-NUT solution is the simplest spacetime with a non-trivial NUT

charge, this has led to the lore that a NUT parameter is also a measure of asymptotic

non-flatness, and that, therefore, any spacetime with a non-trivial NUT/dual charge is not

asymptotically flat (see, however, ref. [41]). Thus, in order to allow for NUT charges in

asymptotically flat backgrounds, we need to loosen the definition of asymptotic flatness.

We see this more explicitly by computing the dual Komar energy for a general solution of

Bondi form.

Assuming that the general metric (2.1) is stationary with timelike Killing vector ∂/∂u,

computing the dual Komar integral gives

M̃K = − 1

8πG

∫
S
∂IC0 J dx

I ∧ dxJ = − 1

8πG

∫
S
dC0, (2.14)

where C 0I ≡ ωIJ C
J
0 . We observe that if C0 I is not regular on the sphere, the above

integral can be non-zero. Therefore, we have a non-trivial dual/NUT charge, provided

that we are prepared to generalise the definition of asymptotic flatness so as to allow the

guI components of the metric to be non-regular on the sphere.

In the general setting, at leading order, the dual supertranslation charge is given

by [2, 3]6

Q̃
(int)
0 = − 1

16πG

∫
S
dΩ sDIDJ C̃

IJ , (2.15)

4There is a recent formulation of the asymptotic conditions at spacelike infinity that allows Taub-NUT-

like solutions [39, 40]. However, the extension of these results to null infinity is less clear.
5The coordinate transformations performed in ref. [6] put the metric in Bondi coordinates to the neces-

sary order required there. See appendix B for further details.
6See, for example, equation (5.11) of ref. [2] and equations (3.5) and (5.5) of ref. [3].
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where s is the supertranslation parameter. In deriving the above charge integral, it was

assumed that the energy-momentum components of the matter content in the null frame

adapted to the Bondi coordinates fall-off as [2, 3]

T00 = o(r−4), T0m = o(r−3). (2.16)

We shall continue to assume these fall-off conditions for the energy-momentum tensor

throughout the paper. The Einstein equation then implies that the null-frame components

of the Einstein tensor have the fall-offs

G00 = o(r−4) =⇒ β0 = − 1

32
C2, (2.17)

G0m = o(r−3) =⇒ CI0 = −1

2
DJC

IJ . (2.18)

Using the definition of C̃IJ given in equation (2.6) and equation (2.18), the dual

charge (2.15) can be written as

Q̃
(int)
0 =

1

8πG

∫
S
s dC0. (2.19)

Choosing s = 1, the general expression above reduces to the definition of the dual Komar

energy (2.14), up to an unimportant minus sign.7 This is analogous to the case of the

standard supertranslation charge Q0 reducing to the Bondi mass upon choosing s = 1 [5].

An archetypal example of a solution with non-vanishing dual supertranslation charge is

the Taub-NUT solution discussed above, and more thoroughly in ref. [6]. Reading off from

the Bondi form of the Taub-NUT metric given in appendix B, one has C0 ≡ C0 I dx
I =

−4` sin2 θ
2 dφ, and so the integral (2.19) gives, taking s = 1,

Q̃0 = − `

G
. (2.20)

Alternatively, and equivalently, one can obtain the same result by reading off the expression

for CIJ given in appendix B, and evaluating the integral in equation (2.15).

It fact, in deriving equation (2.15) in refs. [2, 3], total derivative terms were dropped,

because all metric functions were assumed to be regular on the 2-sphere. However, in the

Taub-NUT example considered above, the resulting expression is non-zero precisely because

the metric function is non-regular on the 2-sphere. Therefore, the original expression for

the charge is no longer valid in this case and we need to revisit the derivation in refs. [2, 3].8

This is what we turn to next.

3 Revisiting BMS charges and the phase space of gravitational modes

By now it should be clear that the concept of dual BMS charges lends itself better to

solutions in which the metric components and more specifically at the leading order in a

7In hindsight, it might have been more natural in refs. [2, 3] for us to have defined the dual charges with

a relative minus sign. However, for consistency with refs. [2, 3], we retain the expressions defined therein.
8The revised dual charge for the Taub-NUT solution is in fact given in equation (3.5).
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1/r expansion [1, 3], C0I , and possibly also CIJ , are not regular on the 2-sphere. Therefore,

in the remainder, we shall focus on such spacetimes given by the metric (2.1) with the fall-

offs (2.2) and the gauge condition (2.3), except that now, we generalise to tensors that are

not necessarily regular on the 2-sphere.

The Barnich-Troessaert and dual charges have, however, been derived assuming regu-

larity of the metric components on the 2-sphere. In practical terms, this means that total

derivatives on the 2-sphere can be ignored. Therefore, in order to proceed, we need to re-

visit those derivations and define charges appropriate to the solutions in which we are now

interested. Fortunately, this is relatively straightforward. For the usual supertranslation

charges, the result can essentially be read off from equation (A.9) of ref. [5]:

Q
(int)
0 = − 1

8πG

∫
S
dΩ

(
sF0 +

1

4
DI(sDJC

IJ)

)
, (3.1)

while the dual supertranslation charges are given by

Q̃
(int)
0 = − 1

8πG

∫
S
dΩ

(
1

2
sDIDJ C̃

IJ − 1

4
DI(sDJ C̃

IJ)

)
, (3.2)

where we have used equation (4.1) of ref. [3] and equation (2.18). Note that the expressions

for the global charges (with s = 1) change as a result of this rederivation:

Q
(int)
0 (s = 1) = − 1

8πG

∫
S
dΩ

(
F0 +

1

4
DIDJC

IJ

)
, (3.3)

instead of − 1
8πG

∫
S dΩF0, and

Q̃
(int)
0 (s = 1) = − 1

32πG

∫
S
dΩ
(
DIDJ C̃

IJ
)
, (3.4)

instead of (2.15).

The global dual supertranslation charge for the Taub-NUT metric has now acquired a

factor of 1
2 as a result of our inclusion of the total derivatives that were previously omitted.

Thus, for the Taub-NUT solution we now find

Q̃
(int)
0 (s = 1) = − `

2G
, (3.5)

rather than the previous expression (2.20).

The fact that the dual charge evaluates to one half of the expected value for the Taub-

NUT solution may initially seem strange. This issue is reminiscent of the well-known factor

of 1
2 puzzle with the usual Komar energy integral (2.9), which was resolved in ref. [42] by

noting that the conserved Iyer-Wald charge QIW has two contributions:

QIW =
1

2
MK −

∫
S
k ·B, (3.6)

where MK is given by (2.9), k is the timelike Killing vector and B is defined by

δ

∫
S
ξ ·B =

∫
S
ξ ·Θ. (3.7)

– 7 –
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Here ξ is a BMS generator and Θ is the symplectic potential form of Iyer and Wald [42].

The (−k ·B) integral on the right hand side of equation (3.6) is non-vanishing and together

with MK/2 yields the expected value for QIW , effectively giving MK . (In fact the integral

of (−k · B) exactly cancels the MK/2 term and replaces it with the standard expression

for the ADM mass [42].) In our case, for comparison, we have that

Q̃
(int)
0 (s = 1) = −1

2
M̃K . (3.8)

The absence of an analogue of the k · B integral term in this dual case means that the

factor of 1/2 does not get amended.

We define a total complexified supertranslation charge, denoted by a script Q [3]:

Q0 = Q
(int)
0 − iQ̃(int)

0 (3.9)

and note that in complex coordinates (z, z̄) on the sphere given by

z = cot
θ

2
eiφ, (3.10)

so that

ds2 = 2γzz̄dzdz̄, γzz̄ =
2

(1 + |z|2)2
, (3.11)

Q0 = − 1

16πG

∫
S
dΩ
(

2sF0 + sD2
zC

zz +Dz̄ sDz̄C
z̄z̄
)
. (3.12)

In deriving the above equation we have used equation (2.6) and the fact that εzz̄ = iγzz̄,

where γzz̄ = 1/γzz̄ is the zz̄ component of the inverse metric. Note that dΩ = sin θ dθ dφ =

γzz̄ d
2z.

We define the charge evaluated at I +
− , i.e. on I + at u = −∞, as

Q+ = − 1

16πG

∫
I +

−

dΩ
(

2sF0 + sD2
zC

zz +Dz̄ sDz̄C
z̄z̄
)
, (3.13)

and we assume that

Q0|I +
+

= Q0

∣∣∣
u=+∞

= 0. (3.14)

Note from equations (2.4) and (2.7) that the flux for the total charge is controlled by

∂uCIJ .
9 Thus, Q+ may be written as

Q+ =
1

16πG

∫
I +

dudΩ
(

2s ∂uF0 + sD2
zN

zz +Dz̄ sDz̄N
z̄z̄
)
, (3.15)

where Nzz = ∂uCzz. Assuming for simplicity that

T11 = o(r−2), (3.16)

9The non-integrable pieces for both charges remain the same when dropping the requirement that the

metric components be regular on the 2-sphere.
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the Einstein equation gives that

∂uF0 = −1

2
DIDJN

IJ +
1

4
N IJNIJ = −1

2
(D2

zN
zz +D2

z̄N
z̄z̄) +

1

2
N zzNzz, (3.17)

which implies that

Q+ =
1

16πG

∫
I +

du d2z γzz̄
(
sNzzNz̄z̄ − sD2

z̄Nzz +Dz̄sDz̄Nzz

)
. (3.18)

We have put the charge into a form in which we can investigate how it acts on gravitational

modes given by Czz and Cz̄z̄. The Dirac bracket for the radiative modes at null infinity

is [43, 44]

{Nzz(u, z, z̄), Nw̄w̄(u′, w, w̄)} = −16πG∂uδ(u− u′) δ2(z − w) γzz̄, (3.19)

which implies that

{Nzz(u, z, z̄), Cw̄w̄(u′, w, w̄)} = 16πGδ(u− u′) δ2(z − w) γzz̄. (3.20)

Now, computing the bracket of Q+ with Czz and with Cz̄z̄ gives

{Q+, Czz(u, z, z̄)} = s ∂uCzz, (3.21)

{Q+, Cz̄z̄(u, z, z̄)} = s ∂uCz̄z̄ − 2D2
z̄s, (3.22)

where we have freely integrated by parts in terms involving δ2(z − w). Thus, Q+ gen-

erates time translation on Czz, while it generates a supertranslation on Cz̄z̄. This is in

complete analogy with electromagnetism, where A
(0)
z transforms as a gauge parameter un-

der a complexified U(1) charge, while A
(0)
z̄ is invariant under its action [17].10 Thus, we

find that the phase space problem that was identified in ref. [11], namely, that the action

of the supertranslation charge on Czz was incorrect, is resolved here by considering the

full complexified supertranslation charge, i.e. the usual supertranslation charge, as well as

the dual one. In ref. [11], this problem was resolved by imposing a restriction on phase

space that effectively proscribed dual charges. From the perspective taken here, this makes

sense in that if the dual charge is to be assigned a zero value, then this must be reflected

and enforced on the phase space. In ref. [6], a resolution of this problem is achieved by

imposing a dyonic boundary condition on the phase space. However, there is a priori no

reason to expect that boundary conditions should be needed in general.11 Moreover, from

the perspective of the initial value problem, prescribing boundary conditions at both ends

of future null infinity is not entirely satisfactory.

10Note that the action of Q+ on Czz and Cz̄z̄ would have been reversed had we defined Q̃(int)
0 with a

relative minus sign (see footnote 7); or equivalently, had we considered the complex conjugate of Q.
11We expect that the requirement that the total charge vanishes at I +

+ , see equation (3.14), is a technical

one and may be removed by a better understanding of the phase space. In any case, from the perspective

of an initial value problem, we are always free to choose such a boundary condition.
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4 Soft NUT/graviton theorem

Electromagnetism and general relativity are gauge theories, in the sense that there are

redundant U(1) and diffeomorphism transformations, respectively, which leave the physics

unchanged. In the context of asymptotically flat spacetimes, which form a class of solutions

in general relativity defined by specific boundary conditions, there exists an asymptotic

symmetry group, the BMS group, (or more precisely an algebra) that acts in such a way

as to preserve the boundary conditions. Specifically, the action of a BMS generator on an

asymptotically flat metric gives back another asymptotically flat metric. However, given

that the BMS group acts at null infinity, it induces large gauge transformations, which

cannot be viewed as redundancies. Thus, BMS transformations are physically relevant

transformations.

From a classical scattering point of view, conservation of charge Q translates to the

fact that

Q+ = Q−, (4.1)

where Q+ = Q|I +
−

and Q− = Q|I −
+

are the limiting values of the relevant charge Q(u, xI).

In the quantum theory this becomes an operator identity

Q+ S − SQ− = 0. (4.2)

Such an identity has so far been conjectural [13, 14], but should ultimately come from the

theory.12 In any case, the remarkable observation [11, 15] (see ref. [46] for a review) is

that such a conservation equation is equivalent to the Weinberg soft photon and graviton

theorems in the context of electromagnetism and general relativity. Moreover, considering

magnetic monopole charges leads to a Weinberg type soft magnetic monopole theorem [17].

In this section, we derive a soft NUT/graviton theorem using the complexified super-

translation charges found in section 3, see equation (3.9), for asymptotically flat spacetimes

generalised to include non-regular tensors on the 2-sphere. We introduce Bondi coordinates

(v, r, xI) adapted to ingoing null geodesics so that the metric takes the form

ds2 = −F̂ e2β̂dv2 + 2e2β̂dvdr + r2ĥIJ (dxI − ĈIdv)(dxJ − ĈJdv) (4.3)

with the metric components satisfying the same fall-off conditions as with outgoing Bondi

coordinates given by (2.2), where we denote all respective objects on the right hand side

with a hat, and the determinant condition (2.3).

We begin with the conservation of charge equation

Q+ = Q−, (4.4)

where Q+ is given by equation (3.18) and Q− corresponds to the charge at I −+ associated

with a supertranslation parameter ŝ,

Q− = − 1

16πG

∫
I −

+

dΩ
(

2ŝF̂0 + ŝ D2
zĈ

zz +Dz̄ ŝ Dz̄Ĉ
z̄z̄
)

(4.5)

=
1

16πG

∫
Î −

dv d2z γzz̄
(
ŝN̂zzN̂z̄z̄ + ŝD2

z̄N̂zz −Dz̄ ŝ Dz̄N̂zz

)
, (4.6)

12See refs. [39, 40, 45] for investigations in this direction.
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where in the second line we have used the fact that the charge vanishes at I −− and that

∂vF̂0 = −1

2
(D2

zN̂
zz +D2

z̄N̂
z̄z̄) +

1

2
N̂ zzN̂zz. (4.7)

Now, we would like to split the charges into so-called hard and soft parts; namely, a

part related to flux at future/past null infinity that reduces/increases the charge and a part

that is related to the large diffeomorphisms. We determine the hard part of the charge by

considering the flux formula for the global charge. Taking the u-derivative of the global

charge defined on future null infinity given in equation (3.12) with s = 1

∂uQ0(s = 1) = − 1

16πG

∫
S
dΩ
(

2∂uF0 + D2
zN

zz
)

(4.8)

= − 1

16πG

∫
S
dΩ
(
N zzNzz − D2

z̄N
z̄z̄
)
, (4.9)

where in the second line we have used equation (3.17), we define the hard charge to be

Q+
H =

1

16πG

∫
I +

du d2z γzz̄ s
(
NzzNz̄z̄ − D2

z̄Nzz

)
(4.10)

so that, from equation (3.18)

Q+ = Q+
H +Q+

S (4.11)

with

Q+
S =

1

16πG

∫
I +

du d2z γzz̄Dz̄sDz̄Nzz. (4.12)

Similarly,

Q− = Q−H +Q−S , (4.13)

where

Q−H =
1

16πG

∫
I −

dv d2z γzz̄ ŝ
(
N̂zzN̂z̄z̄ +D2

z̄N̂zz

)
(4.14)

and

Q−S = − 1

16πG

∫
I −

dv d2z γzz̄Dz̄ ŝ Dz̄N̂zz. (4.15)

Setting s = ŝ, which amounts to breaking the BMS+×BMS− symmetry to its diagonal

subgroup [14], we obtain a complexified supertranslation Ward identity,

Q+S − SQ− = 0. (4.16)

We consider as scattering states particles of energy E and NUT charge Ẽ. For example,

such configurations could be Lorentzian signature multi-NUT solutions [47]. Identifying

the action of Q− on an n-particle state |zin
1 , . . . z

in
n 〉 to be

Q−|zin
1 , . . . , z

in
n 〉 =

n∑
k=1

(Ein
k − iẼin

k ) s(zin
k ) |zin

1 , . . . , z
in
n 〉 (4.17)

and similarly,

〈zout
1 , . . . , zout

m |Q+ =

m∑
k=1

(Eout
k − iẼout

k ) s(zout
k ) 〈zout

1 , . . . , zout
m |, (4.18)
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the Ward identity (4.16), sandwiched between the ingoing and outgoing states simplifies to

〈zout
1 , . . . , zout

m |Q+
SS − SQ

−
S |z

in
1 , . . . , z

in
n 〉 (4.19)

=

[
n∑
k=1

(Ein
k − iẼin

k )s(zin
k )−

m∑
k=1

(Eout
k − iẼout

k )s(zout
k )

]
〈zout

1 , . . . , zout
m |S|zin

1 , . . . , z
in
n 〉.

Choosing s(w) = 1
z−w [11], we obtain a Ward identity that corresponds to a new soft

NUT/graviton theorem.
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A Kerr metric in BMS coordinate gauge

In this appendix we shall give a construction of a Bondi coordinate system for the Kerr

metric, up to the first few orders in a 1/r expansion. Following this, in appendix B, we

give an analogous construction of the Taub-NUT metric in Bondi coordinates. One of

the reasons for doing this is to highlight a key difference between a metric such as Kerr,

for which all the global dual charges vanish, and a metric such as Taub-NUT, which has

non-vanishing global dual charges. This difference is reflected in the fact that whereas the

various scalar, vector and tensor fields in the expansion of the Bondi form of the Kerr

metric are all non-singular on the 2-sphere,13 many of the analogous fields in the expansion

of the Taub-NUT metric are singular on the sphere.

We take as the starting point the Kerr metric in Boyer-Lindquist coordinates:

ds2 = −

(
1− 2mr̄

ρ̄2

)
dt̄2 − 4amr̄ sin2 θ̄

ρ̄2
dt̄dφ̄+

ρ̄2

∆̄
dr̄2 + ρ̄2 dθ̄2

+

(
r2 + a2 +

2a2mr̄ sin2 θ̄

ρ̄2

)
sin2 θ̄ dφ̄2 , (A.1)

where

ρ̄2 = r̄2 + a2 cos2 θ̄ , ∆̄ = r̄2 + a2 − 2mr̄ . (A.2)

13A construction of a Bondi form for the Kerr metric was presented in [5], and many of the fields in the

expansion of the metric did have singularities at the poles of the sphere. This, however, was an artefact of

the coordinates that were used in [5]: using asymptotically spheroidal rather than asymptotically spherical

coordinates. A construction of the Kerr metric in Bondi coordinates had been described previously in [48],

but not in a gauge that is convenient for our purposes.
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Setting m = 0, this describes Minkowski spacetime in a spheroidal coordinate system, with

the metric

ds2
Mink = −dt2 +

(r̄2 + a2 cos2 θ̄2) dr̄2

(r̄2 + a2)
+ (r̄2 + a2 cos2 θ̄2)dθ̄2 + (r̄2 + a2) sin2 θ̄ dφ̄2 . (A.3)

In order to construct a smooth Bondi coordinate system for the Kerr metric, we should first

transform to genuine spherical polar coordinates, so that the spatial metric at large radius

will have the desired form, described as a foliation of round 2-spheres. This is effected by

replacing the coordinates (r̄, θ̄) in (A.1) by (r̃, θ̃), where

r̃2 sin2 θ̃ = (r̄2 + a2) sin2 θ̄ , r̃2 cos2 θ̃ = r̄2 cos2 θ̄ . (A.4)

If one sets m = 0, then under these redefinitions the metric (A.3) takes on the standard

Minkowski form

ds2
Mink = −dt̄2 + dr̃2 + r̃2 (dθ̃2 + sin2 θ̃ dφ̄2) . (A.5)

Since, for our purposes, we eventually want to construct a large-distance expansion for

the Kerr metric in Bondi coordinates, it will suffice at this stage to re-express (A.4) in the

form of a perturbative large-r̃ expansion:

r̄ = r̃ − a2 sin2 θ̃

2r̃
+
a4 (3+5 cos 2θ̃) sin2 θ̃

16r̃3

−a
6 (15+28 cos 2θ̃+21 cos 4θ̃) sin2 θ̃

128r̃5
+O(r̃−7) ,

θ̄ = θ̃ − a2 sin 2θ̃

4r̃2
+

3a4 sin 4θ̃

32r̃4
− 5a6 sin 6θ̃

96r̃6
+O(r̃−8) . (A.6)

After making these transformations, the first few terms in the Kerr metric (A.1) take

the form

ds2 = −dt̄2 + dr̃2 + r̃2 (dθ̃2 + sin2 θ̃ dφ̄2) +
2m

r̃

[
dr̃2 + (dt̄− a sin2 θ̃ dφ̄)2

]
+

4m

r̃2
(mdr̃ − a2 sin θ̃ cos θ̃ dθ̃)2 +O(r̃−3) . (A.7)

Here we display only a few terms; we actually worked to a sufficiently high order in the

expansion for our later purposes.

We then look for a further transformation to coordinates (u, r, θ, φ) in which the Kerr

metric takes the Bondi form. We do this by considering large-r perturbative expansions of

the form

t̄ = u+ c log r + h0(θ) r + h1(θ) +
h2(θ)

r
+
h3(θ)

r2
+
h4(θ)

r3
+ · · · ,

φ̄ = φ+ α0(θ) +
α1(θ)

r
+
α2(θ)

r2
+
α3(θ)

r3
+ · · · ,

r̃ = r + g0(θ) +
g1(θ)

r
+
g2(θ)

r2
+
g3(θ)

r3
+ · · · ,

θ̃ = θ +
γ0(θ)

r
+
γ1(θ)

r2
+
γ2(θ)

r3
+ · · · , (A.8)
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where c is an as-yet undetermined constant and hi, αi, gi and βi are as-yet undetermined

functions of θ. We then determine these quantities by imposing the requirements, order by

order in powers of 1/r, that

grr = 0 , grθ = 0 , grφ = 0 , det(gIJ) = r4 det(ωIJ) , (A.9)

where ωIJ is the standard metric on the unit 2-sphere (and so det(ωIJ) = sin2 θ).

There is some freedom in the choice of the functions in the coordinate transformations,

which reflects the fact that the BMS group maps one choice into another. Up to the first

few orders, a choice of BMS gauge that achieves the conditions (A.9) is to take14

t̄ = u+ r + 2m log r − 4m2

r
+

(a2 + 3a2 cos 2θ − 16m2)

4r2

+
m2 (7a2 + 9a2 cos 2θ − 32m2)

6r3
+ · · · ,

φ̄ = φ− ma

r2
− 4m2 a

3r3
+
ma (3a2 + 5a2 cos 2θ − 16m2)

8r4
+ · · · ,

r̃ = r − ma2 sin2 θ

2r2
+
ma4 (3 + 5 cos 2θ) sin2 θ

8r4
+ · · · ,

θ̃ = θ +
ma4 cos θ sin3 θ

4r5
− ma6 (5 cos θ + 3 cos 3θ) sin3 θ

16r7
+ · · · . (A.10)

Up to the order we have calculated, the components of the Kerr metric in these Bondi

coordinates are given by

guu = −1 +
2m

r
− ma2 (1+3 cos 2θ)

2r3
+
m2 a2 sin2 θ

r4

+
ma4 (9+20 cos 2θ+35 cos 4θ)

32r5
+O(r−6) ,

gur = −1 +O(r−6) ,

guθ =
3ma2 sin θ cos θ

r2
− 5ma4 (2 sin 2θ + 7 sin 4θ)

32r4
+

2m2 a4 cos θ sin3 θ

r5
+O(r−6) ,

guφ = −2ma sin2 θ

r
+
ma3 (3 + 5 cos 2θ) sin2 θ

2r3
− m2 a3 sin4 θ

r4

−3ma5 (15 + 28 cos 2θ + 21 cos 4θ) sin2 θ

32r5
+O(r−6) ,

grr = O(r−7) , grθ = O(r−7) , grφ = O(r−7) ,

gθθ = r2 − ma2 sin2 θ

r
+

3ma4 (5 + 7 cos 2θ) sin2 θ

8r3
+O(r−5) ,

gθφ = −5ma3 cos θ sin3 θ

2r2
+

7ma5 (5 cos θ + 3 cos 3θ) sin3 θ

8r4
+O(r−5) ,

gφφ = r2 sin2 θ +
ma2 sin4 θ

r
− 3ma4 (5 + 7 cos 2θ) sin4 θ

8r3
+O(r−5) . (A.11)

14The delayed onset of the r-dependent terms in the expansion for θ̃ in (A.8) and (A.10) is one manifes-

tation of the freedom in choosing a BMS gauge.

– 14 –



J
H
E
P
1
0
(
2
0
1
9
)
1
2
3

Comparing with the expansions of the Bondi metric coefficients, as defined in [1], we see

in particular that

CIJ = 0 ,

DIJ : Dθθ = −ma2 sin2 θ , Dθφ = 0 , Dφφ = ma2 sin4 θ ,

EIJ : Eθθ = 0 , Eθφ = −5ma3 cos θ sin3 θ , Eφφ = 0 ,

C0 I = 0 ,

C1 I : C1 θ = 0 , C1φ = 2ma sin2 θ . (A.12)

It should be noted that neither these, nor any of the other components of the metric, are

singular at the poles, or anywhere else, on the sphere.

B Taub-NUT metric in Bondi coordinates

Here, we construct the first few orders in the expansion of the Taub-NUT metric in Bondi

coordinates. This is similar in spirit to our expansion for the Kerr metric in Bondi co-

ordinates, except that here the fact that Taub-NUT is not globally asymptotically flat

inevitably means that there will be singularities in some of the metric coefficients at one

or more locations on the sphere. We begin by sending t→ t̄− 2`φ in the metric (2.12), so

that the wire singularity occurs only at the south pole of the sphere:

ds2 = −f(r̄)

(
dt̄− 4` sin2

(
θ̄

2

)
dφ̄

)2

+ f(r̄)−1 dr̄2 + (r̄2`2) (dθ̄2 + sin2 θ̄ dφ̄2) . (B.1)

We have placed bars on the coordinates, because we now make an expansion of the

form (A.8), imposing the Bondi metric conditions (A.9) order by order in the expansion in

1/r. Proceeding to the first few order, we find

t̄ = u+ r + 2m log r +
`2 (4 + 3 cos θ) sec4 θ

2 − 8m2 − 11`2

2r

+
m[`2 sec4 θ

2 − 4(`2 +m2)]

r2
+ · · · ,

φ̄ = φ+
` sec2 θ

2

r
+
`3 (3 cos 2θ + 12 cos θ − 31) sec6 θ

2

48r3
+
m`3 sin2 θ

2 sec4 θ
2

r4
+ · · · ,

r̄ = r +
`2 (3 cos θ + 5) sin2 θ

2 sec4 θ
2

4r
−

2m`2 tan2 θ
2

r2
(B.2)

−
`4 (15 cos 3θ + 70 cos 2θ + 225 cos θ + 202) sin2 θ

2 sec8 θ
2

256r3
+

2m`4 sin2 θ
2 sec6 θ

2

r4
+ · · · ,

θ̄ = θ −
`2 sin θ

2 sec3 θ
2

r2
−
`4 (cos 2θ + 2 cos θ − 9) sin θ

2 sec7 θ
2

8r4
−

2m`4 sin3 θ
2 sec5 θ

2

r5
+ · · · .

We have actually worked to a higher order than the terms presented here, sufficient for our

later purposes. Using these expansions, we then obtain the Taub-NUT metric in Bondi
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form, finding

guu = −1 +
2m

r
+

2`2

r2
+
m`2 (cos 2θ − 4 cos θ − 13) sec4 θ

2

8r3

+
[(`2 −m2) cos 2θ +m2 − 5`2 ] sec4 θ

2

2r4
+O(r−5) ,

gur = −1 +
`2 tan4 θ

2

2r2
+

3`4 (7 cos 2θ+36 cos θ+21) sin4 θ
2 sec8 θ

2

64r4
−

8m`4 tan4 θ
2

r5
+O(r−6) ,

guθ = −
`2 (cos 2θ + 3 cos θ + 4) sin θ

2 sec5 θ
2

2r
+

2m`2 (2 cos θ + 1) sin θ
2 sec3 θ

2

r2

+
`4 (3 cos 4θ + 27 cos 3θ + 114 cos 2θ + 213 cos θ + 155) sin θ

2 sec9 θ
2

64r3

+
m`4 (3 cos 3θ − 4 cos 2θ − 51 cos θ − 28) sin θ

2 sec7 θ
2

8r4
+O(r−5) ,

guφ = 4` sin2 θ

2
−

8m` sin2 θ
2

r
−

4`2 (cos θ + 2) tan2 θ
2

r2

−
m`3 (cos 2θ − 12 cos θ − 21) sin2 θ

2 sec4 θ
2

2r3

−
`3 [(`2−m2) cos 3θ + (`2−2m2) cos 2θ − (17`2−m2) cos θ+2m2−25`2] sin2 θ

2

2r4 cos6 θ
2

+O(r−5) ,

grr = O(r−6) , grθ = O(r−5) , grφ = O(r−6) ,

gθθ = r2 + 2`2 tan4 θ

2
−

4m`2 tan2 θ
2

r
−
`4 (9 cos θ + 1) sin2 θ

2 sec4 θ
2

r2

+
m`4 (15 cos 2θ + 28 cos θ + 29) sin2 θ

2 sec6 θ
2

4r3
+O(r−4) ,

gθφ = 4`r sin3 θ

2
sec

θ

2
+
`3 (5 cos 2θ + 12 cos θ + 15) sin3 θ

2 sec5 θ
2

4r
−

20m`3 sin3 θ
2 sec θ

2

r2

−
`5 (17 cos 4θ + 376 cos 3θ + 1884 cos 2θ + 4168 cos θ+2771) sin3 θ

2 sec9 θ
2

256r3
+O(r−4) ,

gφφ = r2 sin2 θ + 8`2 sin6 θ

2
sec2 θ

2
+

16m`2 sin4 θ
2

r
+

4`4 (cos θ + 9) sin4 θ
2 sec2 θ

2

r2

+
m`4 (5 cos 2θ − 28 cos θ − 49) tan4 θ

2

r3
+O(r−4) . (B.3)

Comparing with the expansions for the Bondi metric as defined in [1], we have

CIJ : Cθθ =0 , Cφφ = 0 , Cθφ = 4` sin3 θ

2
sec

θ

2
,

DIJ : Dθθ =− 4m`2 tan2 θ

2
, Dφφ = 16m`2 sin4 θ

2
,

Dθφ =
`3

4
(5 cos 2θ + 12 cos θ + 15) sin3 θ

2
sec5 θ

2
,

C0 I : C0 θ =0 , C0φ = −4` sin2 θ

2
. (B.4)
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The expressions for CIJ and C0 I that we have obtained here agree with the ones that

follow from the procedure described in [6] for casting the Taub-NUT metric into a Bondi

form. However, as far as we can judge from the higher-order terms that are suppressed in

the presentation in [6], their coordinate transformation scheme will leave the metric with

non-vanishing grr components (starting at order 1/r2), although these should be absent in

a proper Bondi coordinate system.

Note that the tensor CIJ is singular at the south pole of the 2-sphere, as is the one-form

C0 Idx
I = −4` sin2 θ

2 dφ.
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