
ar
X

iv
:1

90
8.

04
73

3v
1 

 [
he

p-
th

] 
 1

3 
A

ug
 2

01
9

Lorentzian CFT 3-point functions in momentum space

Teresa Bautista 1 and Hadi Godazgar 2

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),

Mühlenberg 1, D-14476 Potsdam, Germany.

August 13, 2019

ABSTRACT

In a conformal field theory, two and three-point functions of scalar operators and conserved

currents are completely determined, up to constants, by conformal invariance. The expressions

for these correlators in Euclidean signature are long known in position space, and were fully

worked out in recent years in momentum space. In Lorentzian signature, the position-space

correlators simply follow from the Euclidean ones by means of the iǫ prescription. In this paper,

we compute the Lorentzian correlators in momentum space and in arbitrary dimensions for three

scalar operators by means of a formal Wick rotation. We explain how tensorial three-point

correlators can be obtained and, in particular, compute the correlator with two identical scalars

and one energy-momentum tensor. As an application, we show that expectation values of the

ANEC operator simplify in this approach.
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1 Introduction

Much work on conformal field theories, and quantum field theories in general, has focused on the

Euclidean theory rather than the Lorentzian theory. In the former setting, correlation functions

are simpler and obey satisfying properties, for example they are symmetric under permutations

of operators or they are analytic when points are non-coincident. Furthermore, one can al-

ways ‘return’ to the Lorentzian theory provided that certain requirements are satisfied via the

Osterwalder-Schrader reconstruction theorem [1]. However, it has recently been shown that a

lot of mileage can be gained by instead thinking of the theory in the Lorentzian setting. While

Wightman functions do not share the simplicity of their Euclidean cousins, their richer structure

encodes important information about the theory. One such powerful property is causality, which

has been recently used to, for example, prove the average null energy condition (ANEC) [2] or in

the analytic bootstrap program, see for example Refs. [3–7], which among other things has lead

to the Lorentzian inversion formula for CFTs [8].
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Despite the recent interest in Lorentzian CFTs (see for example Refs. [9, 10] among many

others), an expression of the correlation functions in momentum space beyond 2 points has

hitherto been lacking. Even the Euclidean correlators in momentum space have only been fully

worked out relatively recently [11–17], despite the need for them mainly from applications to

cosmology in the context of which they were partially studied [18,19].

It is well known that conformal symmetry places restrictions on the form of correlators in a

conformal field theory, fixing the 2-point functions, up to a normalisation, and 3-point functions,

up to constants that are part of the CFT data. Solving the constraints on correlators from

conformal symmetry in Euclidean signature has been done in position [20–22] and momentum

space [12, 16]. The complication in momentum space is that the special conformal Ward iden-

tity is a second order differential equation of generalised hypergeometric type [12], whereas in

position space the solutions can be shown to be derivatives of powers of separation distances

between the points at which operators are inserted. Directly Fourier transforming the position

space correlators, while manageable for the scalar 3-point function [12], is unwieldy for tensorial

correlators.

Given the recent attention to Lorentzian CFTs and the fact that it is often convenient to work

in momentum space, in this paper we study 3-point functions of Lorentzian CFTs in momentum

space. While these correlators can in principle be found by Fourier transforming the Lorentzian

correlators in position space, which is already more difficult than the analogous Fourier transform

in Euclidean space, we instead show that these correlators can be derived from the Euclidean

expressions by a careful Wick rotation. The advantage of working in Lorentzian space is that the

iǫ prescription precludes coincident singularities, which means that the functions do not require

regularisation or renormalisation.

As an application of our results, we revisit the expectation values of the ANEC operator on

the Hofman-Maldacena states [23] produced by scalar operators, which were calculated using

correlators in position space. While this result is not new, it is illustrative of the fact that

such calculations are much more natural in momentum space where interesting features are

not obscured. For example, it becomes clearer that the Hofman-Maldacena quantities are an

expectation value. We believe that this perspective will also be indispensable in attempts to

understand the implications of ANEC away from criticality.

We begin, in section 2, by outlining the general procedure for Wick rotating from Euclidean

to Lorentzian correlators. We use the scalar 2-point function as an example to elucidate the

approach, which has applicability beyond the subject of interest in this paper. In section 3, it is
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shown that the scalar 3-point function can be bootstraped from the 2-point function results and

given in terms of an integral over an auxiliary momentum; as a check, in appendix B we arrive at

the same result in 4-dimensions by Fourier transforming the 3-point function in position space.

We also present the scalar 3-point function as an integral over triple Bessel functions, section 3.1,

by Wick rotating the analogous Euclidean 3-point function given in terms of an integral of three

K-Bessel functions. In the Lorentzian case, the integral includes both Bessel and modified Bessel

functions. In section 4, we give a general prescription for determining tensorial correlators from

scalar correlators and apply this to find the correlation function of the energy-momentum tensor

and two identical scalar operators. This example is particularly considered, not only because

it is simple enough that the general prescription can be illustrated clearly, but also on account

of its application in section 5. As a demonstration of the utility of Lorentzian correlators in

momentum space, we calculate the expectation value of the ANEC operator in a state produced

by a scalar operator. In appendix A, we set out our notations and conventions.

2 2-point function

We consider the 2-point function of scalar operators. This provides a useful playing ground

to explore the relation between Euclidean and Lorentzian correlators in position and momen-

tum space. For time-ordered 2-point function or 2-point functions of higher-spin operators see

Ref. [24].

The Euclidean 2-point function of scalar operators O1 and O2 with dimensions ∆1, ∆2 is

given by

GE(x) ≡ 〈O1(x)O2(0)〉E =
δ∆1,∆2

x2∆
, (2.1)

where ∆ ≡ ∆1 = ∆2; we have set the normalisation constant to be one and we have used

translation invariance to set one of the positions to the origin. The 2-point function is non-zero

only if the two operators have the same conformal dimension– we assume this in the expressions

that follow and henceforth drop the Kronecker delta. 1

The Lorentzian 2-point function follows from performing a Wick rotation to Lorentzian time

tE = it in the Euclidean correlator (2.1). Since the correlator has a branch cut in the tE plane

starting at i|~x| and running upwards and from −i∞ until −i|~x|, the Wick rotation is ambiguous

for |t| ≥ |~x|: t can be defined to be either on the right or on the left of the cut (see figure 1).

1If the operators are characterised by other quantum numbers, they must also both have the same number in
order for the 2-point function to be non-trivial. We also assume this henceforth.

4



i |~x|

−i |~x|

tE
tE = i t

Figure 1: The two different Wick rotations from Euclidean to Lorentzian time, corresponding
to passing either to the right or the left of the branch cut, define the two possible Wightman
2-point functions. The contour on the right corresponds to 〈O(x)O(0)〉 and the contour on the
left to 〈O(0)O(x)〉.

This ambiguity can be resolved by adding either a positive or a negative infinitesimal real part

to tE, tE = i(t± iǫ). Each one of these two options defines then a different Wightman function,

and the so-called iǫ prescription dictates that the imaginary part of the Lorentzian time of the

operator to the left is more negative than that of the operator to the right, viz.

G(x) ≡ 〈O(x)O(0)〉 =
1

(

−(t− i ǫ)2 + |~x|2
)∆

, (2.2)

where for the ordering given above ǫ > 0. For the Wightman function with the operator O(0) to

the left, we then require ǫ < 0.

An intuitive way to understand the iǫ prescription is that given a particular ordering of (any

number of) operators, the iǫ’s are chosen in such a way that

. . . eiH(ti−iǫi)Oi(~xi) e
−iH
(

(ti−tj)−i(ǫi−ǫj)
)

Oj(~xj) e
−iH(tj−iǫj) . . . (2.3)

is well defined when the Hamiltonian is bounded from below. This means that in the correlator,

an operator Oi(ti−iǫi) to the left of Oj(tj−iǫj) requires ǫi > ǫj to have a decaying exponential. 2

The momentum space expression for both the Euclidean and Lorentzian 2-point functions

can be obtained by simply Fourier transforming the expressions (2.1) and (2.2) respectively. The

Euclidean 2-point function in momentum space is

G∆
E (p) ≡ 〈〈O(p)O(−p)〉〉

E
=

πd/2 Γ(d/2 −∆)

22∆−d Γ(∆)
|p|2∆−d, (2.4)

2For a review of the iǫ prescription for n-point functions and its interpretation in terms of the different Wick
rotations around the branch cuts see [5].
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where we have removed the momentum-conserving δ-function 3

〈O(p)O(q)〉E = (2π)d δ(d)(p + q)GE(p) , (2.5)

and d is the dimension of space. Despite the Fourier transform requiring 0 < Re∆ < d/2

for convergence, the above expression is analytic in ∆ and d and can therefore be analytically-

continued to any conformal dimension ∆− d/2 /∈ N
0 above the unitarity bound ∆ > 0.

When ∆ − d/2 ∈ N
0, the Euclidean 2-point function has no Fourier transform and must be

regularised and renormalised. This renormalisation is what leads to anomalies. In position space,

the 2-point function can be regularised by differential regularisation [25]. The renormalised 2-

point function depends on the renormalisation scale, and this dependence is given by the trace

anomaly coefficient of a background scalar current [22]. In momentum space, the 2-point function

can be regularised by dimensional regularisation, as is clear from the fact that the problem occurs

for negative integer arguments of the Γ-function in (2.4), and the renormalised 2-point function

gains a logarithmic dependence in the momentum p.

The Lorentzian 2-point function in momentum space follows from the Fourier transform of

(2.2), 4

G∆(p) ≡ 〈〈O(p)O(−p)〉〉 =
πd/2+1

22∆−d−1 Γ(∆− d/2 + 1)Γ(∆)
θ(p0 − |~p |) |p|2∆−d , (2.6)

where unambiguously

|p| =
√

(p0)2 − |~p |2 (2.7)

thanks to the Heaviside step function,

θ(x) =











1 x > 0 ,

0 x ≤ 0 .
(2.8)

In all expressions where the norm of a Lorentzian momentum appears, the argument inside

the square-root can unambiguously be written without the absolute-value sign because of the

presence of a step function.

The other Wightman function corresponding to the Fourier transform of 〈O(0)O(x)〉, i.e. the

3We will often suppress the explicit dependence of G∆
E on the dimension of the operators, and write GE(p).

4See footnote 3.
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Fourier transform of (2.2) but with negative ǫ, is

G∆(−p) ≡ 〈〈O(−p)O(p)〉〉 =
πd/2+1

22∆−d−1 Γ(∆ − d/2 + 1)Γ(∆)
θ(−p0 − |~p |) |p|2∆−d . (2.9)

It becomes clear that the ordering of the operators is reflected in the sign of p0 in the Heaviside

step function. At a technical level, after the ~x integrals have been done, there is a factor of

ei(p
0−|~p |)t for G(p) or a factor of ei(p

0+|~p |)t for G(−p), and the integrand only has a singularity

in the upper or lower half t-plane respectively. Therefore, the integral over t is zero unless

p0 − |~p | ≥ 0 or p0 + |~p | ≤ 0 in each case, thus producing the respective step functions.

It is straightforward to see that since the operators are the same, swapping the ordering just

amounts to swapping their respective momenta, p and −p.

Both Wightman functions vanish when the momentum is spacelike or null, so they only have

support in the future momentum-space light-cone in the case of G(p), or the past momentum-

space light-cone in the case of G(−p).

As opposed to the Euclidean 2-point function (2.4), which has a Γ-function in the numerator,

a factor Γ(∆ − d/2 + 1) appears now in the denominator of the Lorentzian 2-point function,

(2.6). Therefore the Wightman functions do not diverge for particular values of ∆, and so do

not require renormalisation.

It is already clear at the level of the 2-point function that the Wick rotation from Euclidean

to Lorentzian signature in momentum space is not as straightforward as the iǫ prescription in

position space. Indeed, even if one can ‘prescribe’ the correct step functions (as following from

the above singularity-based or support arguments), the ∆- and d-dependent coefficients are hard

to predict. Furthermore, for higher-point functions even ‘prescribing’ the correct step functions

becomes difficult. Therefore, a pertinant question is how to obtain the Wightman function

expressions (2.6) and (2.9) from the Euclidean 2-point function (2.4), instead of from a direct

Fourier transform. We address this next.

Consider the Euclidean 2-point function as a Fourier transform,

GE(x) =

∫

ddp

(2π)d
eip·xGE(p) , (2.10)

where it is understood that the volume element and the inner product in the exponential are

Euclidean. As reviewed above, the Lorentzian function in position space is easily obtained by a
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i |~p |

−i |~p |

CrCl

C∪

pE

Figure 2: Closed contour of integration. The contribution from the arc at infinity vanishes, as
well as that from the cup around the branch point C∪.

Wick rotation together with the iǫ prescription, hence we can write:

G(x) = GE(i(t− iǫ), ~x) =

∫

dd−1~p

(2π)d−1
ei~p·~x

∞
∫

−∞

dpE

2π
e−pE(t−iǫ)GE(pE, ~p ) , (2.11)

where for the last equality we have used (2.10).

The integral above is no longer a Fourier transform, but it can be recast into a Fourier

tranform by Wick-rotating pE to the imaginary axis. However, this must be done carefully,

taking into consideration the analytical properties of GE(pE, ~p ) on the complex pE plane. Indeed

from (2.4) it is clear that for general ∆, GE(pE, ~p ) has branch points at pE = ±i|~p | and |pE| → ∞.

We consider then extending the contour of integration along the real axis, into the upper half

of the complex plane and around the branch cut from i|~p | to i∞, forming the closed contour

depicted in figure 2. Because of the iǫ term in the exponential with ǫ > 0, the integral over the

arc at infinity vanishes. If the operators were ordered oppositely so that ǫ were negative, we

would instead close the contour on the lower half complex plane to get a vanishing contribution

from the arc at infinity.

Since the function is analytic inside the closed contour, the integral in (2.11) is equal to that

along the contours on each side of the branch cut (Cr and Cl in figure 2), hence

G(x) = −

∫

dd−1~p

(2π)d−1
ei~p·~x

∫

Cr ∪Cl

dpE

2π
e−pE(t−iǫ)GE(pE, ~p ) . (2.12)
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Changing now the integration variable to p0 = −ipE implements the Wick rotation for the time

component of the momentum. Taking into account the phase difference on both sides of the cut,

the pE integral becomes

−2 sin (π(∆ − d/2))
πd/2 Γ(d/2−∆)

22∆−d Γ(∆)

∞
∫

|~p |

dp0 e−ip0(t−iǫ)
(

(p0)2 − |~p |2
)∆−d/2

,

which when plugged back into (2.12) gives G(x) as a Fourier transform

G(x) =

∫

ddp

(2π)d
eip·x

πd/2+1 θ(p0 − |~p |)

22∆−d−1 Γ(∆− d/2 + 1)Γ(∆)
|p|2∆−d , (2.13)

whose integrand corresponds to the Wightman 2-point function in momentum space G(p). And

indeed, the above reproduces expression (2.6) obtained by Fourier transforming. Namely, using

the Euclidean Fourier transform, we have derived the Lorentzian Fourier transform.

The other Wightman function (2.9) can be found by complex conjugation of (2.13) and letting

p → −p in the integral, since it corresponds to letting iǫ → −iǫ on the right-hand side of (2.2).

With this second method of computing the momentum-space 2-point function by means

of a formal Wick rotation, the Heaviside step function appears as a result of deforming the

contour around the branch point in the complex plane where the momentum becomes null.

This is analogous to the fact that in position space the ordering of operators in Lorentzian

correlators is given by how one analytically continues around branch points corresponding to

points where operators become null-separated, and hence no longer commute with each other by

microcausalty [1, 5].

This second method has the advantage that it does not require us to perform complicated

integrals, as opposed to the Fourier transform method.

In deriving (2.13), we have assumed that ∆ > 0 and ∆ − d/2 is non-integer. The positivity

condition is required because the Euclidean Fourier transform (2.4), from which we start our

analysis, is derived using Schwinger parametrisation (A.3). However, we observe that as long as

∆ is not an integer, the result (2.4) can be analytically continued to negative ∆. The condition

that ∆ > 0 is a natural consequence of unitarity, but as we will see in the next section, in order

to derive 3-point functions in momentum space in some cases, we require the expressions for GE

and G (as given by the Fourier transform of the position space expressions) for ∆ < 0. Therefore,

we need to consider the case when −∆ ∈ N
0.

The second condition, ∆ − d/2 a non-integer, is required because in performing the Wick
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rotation, we have assumed the existence of branch points, while an integer exponent ∆−d/2 leads

to poles instead. When ∆− d/2 ∈ N
0, we have already remarked that the Euclidean expression

requires regularisation and renormalisation, hence in this case, the formal Wick rotation method

cannot be implemented as above. However, the Lorentzian expression (2.6) as computed by

Fourier transform is nevertheless valid for these cases, essentially because the iǫ prescription

precludes the existence of contact singularities in the correlator. Therefore, we only consider

separately the case d/2−∆ ∈ N.

We consider these two cases below:

Case I: −∆ ∈ N
0

Renaming −∆ = n ∈ N
0, the Euclidean 2-point function can simply be found in this case by

using
∫

ddxx2n e−ip·x = (2π)d
(

−∂2
p

)n
δ(d)(p) , n ∈ N

0. (2.14)

In Lorentzian signature we have the same expression with x2 being the Lorentzian norm, and

hence with

∂2
p = ηµν∂pµ∂pν . (2.15)

Case II: d/2−∆ ∈ N

In this case, there are two possibilities. If d is an even integer, for large enough N such that

∆ < 0, this case becomes the same as case I. For small enough N such that ∆ > 0, or more

generically when d is not an even integer, this case is different from the previous, and we address

it in the following.

Since the Euclidean 2-point function (2.4) is well-defined when d/2 − ∆ = n ∈ N, we can

proceed as in the general case and perform a Wick rotation so as to rewrite (2.11) as a Lorentzian

Fourier transform.

The pE integral in (c.f. (2.11))

G(x) =
22n πd/2 Γ(n)

Γ(d/2 − n)

∫

dd−1~p

(2π)d−1
ei~p·~x

∞
∫

−∞

dpE

2π

e−pE(t−iǫ)

|p|2n
, (2.16)

can now no longer be rotated in the same way, since its integrand has poles rather than branch

cuts. However, this integral is now easier as it can be evaluated by the residue theorem. The

resulting expression can then be rewritten in terms of an integral over p0 with a Dirac δ-function,
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and gives
∞
∫

−∞

dpE

2π

e−pE (t−iǫ)

(p2E + |~p |2)n
=

2π

Γ(n)

∞
∫

−∞

dp0

2π

e−ip0 (t−iǫ)

(p0 + |~p |)n
∂n−1
p0

δ(p0 − |~p |) . (2.17)

In the above step, the derivatives acting on the Dirac δ-function come from integrating by parts

the derivatives coming from the residue of the integral. Therefore, for d/2 −∆ = n ∈ N

∫

ddx
e−ip·x

(

−(t− i ǫ)2 + |~x|2
)∆

=
22n+1 πd/2+1

Γ(d/2− n)

∂n−1
p0

δ(p0 − |~p |)

(p0 + |~p |)n
. (2.18)

In summary, from equations (2.6), (2.14) and (2.18), the Lorentzian 2-point function of scalars

with dimensions ∆ is

G∆(p) =

∫

ddx
e−ip·x

(

−(t− i ǫ)2 + |~x|2
)∆

=



























(2π)d
(

−∂2
p

)−∆
δ(d)(p) −∆ ∈ N

0

πd/2+1

22∆−d−1 Γ(∆)

∂
d/2−∆−1

p0
δ(p0−|~p |)

(p0+|~p |)d/2−∆ d/2−∆ ∈ N

πd/2+1 θ(p0−|~p |)
22∆−d−1 Γ(∆−d/2+1) Γ(∆)

|p|2∆−d otherwise.

(2.19)

3 3-point function of scalars

In this section we compute the Lorentzian 3-point function of scalar operators in momentum

space. We do this by means of a formal Wick rotation of the Euclidean correlator, and obtain

(in the general case) two different expressions for it, as originating from two analogous Euclidean

expressions: the momentum-integrated and the triple-Bessel expressions. In appendix B we

compute the 3-point correlator from a direct Fourier transform, albeit for the case of d = 4

dimensions.

The 3-point function of scalar operators in position space is given by [22],

〈O1(x1)O2(x2)O3(x3)〉 =
c123

(x223)
β1 (x213)

β2 (x212)
β3

, (3.1)

where

βj =
∆t

2
−∆j , ∆t = ∆1 +∆2 +∆3 , ∆t = 2βt . (3.2)

The conformal dimension of operator Oj is ∆j and the norm |xij|
2 is the Euclidean, Lorentzian

norm of the separation xi − xj in Euclidean, Lorentzian signature respectively. In Lorentzian
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signature we also specify an iǫ prescription, tj − iǫj , that dictates the ordering of operators as

discussed in the previous section. In the above correlator it is ǫ1 > ǫ2 > ǫ3. The factor c123 is

the structure constant and depends on the conformal dimensions ∆j of the operators.

The Fourier transform, and hence the correlator in momentum space is then given by

〈O1(p1)O2(p2)O3(p3)〉 =

∫ 3
∏

j=1

(

ddxj e
−ipj ·xj

) c123
(x223)

β1 (x213)
β2 (x212)

β3

= (2π)d δ(d)(p1 + p2 + p3)C(p1, p2; {βj}) , (3.3)

where

C(p1, p2; {βj}) = c123

∫

ddx1d
dx2

e−ip1·x1e−ip2·x2

(x22)
β1 (x21)

β2 (x212)
β3

. (3.4)

In the above, we have used the translation invariance of the position space correlator to extract

a momentum preserving δ-function. The δ-function stripped correlator is also denoted using

double angle brackets in the literature,

C(p1, p2; {βj}) ≡ 〈〈O1(p1)O2(p2)O3(p3)〉〉 . (3.5)

We will suppress the momentum dependence of C(p1, p2; {βj}), viz. write C({βj}), when the

momentum dependence is clear.

To compute the δ-function stripped correlator (3.4), it is convenient to reexpress it as a

product of three 2-point functions, so that we can use the expression for the latter presented in

section 2. This can be achieved at the expense of an extra momentum integral,

C({βj}) = c123

∫

ddk

(2π)d
Gβ1(p2 + k)Gβ2(p1 − k)Gβ3(k) . (3.6)

The same holds in the Euclidean case for CE({βj}), but with the 2-point functions above given

by GE. In this case, when the βjs are general, we insert the 2-point function result (2.4), and

the resulting δ-function stripped correlator is

CE({βj}) = c123 π
3d/2 23d−2βt

3
∏

j=1

Γ(d/2 − βj)

Γ(βj)

∫

ddk

(2π)d
1

|p2 + k|d−2β1 |p1 − k|d−2β2 |k|d−2β3
.

(3.7)

This expression for the Euclidean 3-point function is not well defined for two special sets of values

of the βjs. These are in correspondence with the special values of βj for which the Euclidean
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2-point function itself is not well-defined, since the coefficient in (3.7) is inherited from the 2-

point functions product. First, because of the Γ-functions in the coefficient’s numerator, (3.7) is

divergent when

βj −
d

2
∈ N

0 , (3.8)

whereupon the correlation function needs to be regularised. This has been done in [13].

The second special case is when one of the βjs is a non-positive integer,

− βj ∈ N
0 , (3.9)

for which (3.7) would seem to vanish because of the corresponding Γ-function in the denominator.

(This is inherited from the ‘case I’ of the 2-point function, see (2.14).) Notice that this can only

be the case for one of the βjs. For two or all of the βjs to be simultaneously non-positive, at

least one of the conformal dimensions ∆j would have to be negative, and this would violate the

unitarity bound.

As explained in section 2, in computing the Fourier transform GE (2.4), the Schwinger

parametrisation (A.3) is used for the distance factor |x|2β in the denominator of the position-space

expression—this is where the Γ(βj) in the denominator of GE come from. This parametrisation

can no longer be used if βj is a non-positive integer. However, this Fourier transform can be

computed differently for this particular case, and as shown in section 2 is given by derivatives of

a momentum Dirac delta, equation (2.14). Therefore, for example,

CE(−n, β2, β3) = c123
πd Γ(d/2− β2) Γ(d/2 − β3)

4β2+β3−d Γ(β2) Γ(β3)

(

−∂2
p2

)n 1

|p1 + p2|d−2β2 |p2|d−2 β3
. (3.10)

We now turn to the Lorentzian case. Since the 3-point function (3.6) is given in terms of

the 2-point functions Gβj , we consider the case where βjs are general separately from the special

‘cases I and II’ discussed in section 2, for which the 2-point function is given in terms of a Dirac

δ-function.

We first consider the general case, i.e. when βjs are such that

βj 6∈ {
d

2
− N,−N

0} . (3.11)
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Using equations (3.6) and (2.19),

C(p1, p2; {βj}) = c({βj})

∫

ddk

(2π)d
θ(p0

2 + k0 − |~p2 + ~k|) θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)

|p2 + k|d−2β1 |p1 − k|d−2β2 |k|d−2β3
(3.12)

with

c({βj}) = c123
23(d+1)−2βt π3(d/2+1)

3
∏

j=1
Γ(βj − d/2 + 1)Γ(βj)

. (3.13)

This is the generic Lorentzian 3-point function. From this expression follows that p0

1 > 0 and

p0

3 < 0, owing to the step functions. In other words, as for the 2-point function, the correlator

vanishes unless the left-most operator has a positive energy and the right-most operator has a

negative energy. In particular, the 3-point correlator vanishes when p1 = 0, and when p3 = 0

since then p1 = −p2. However, it does not when p2 = 0. This can be understood from the formal

expression of the Fourier transform (3.3). When p1 = 0, the transform involves the integral

〈O1(0)O2(p2)O3(p3)〉 ∼

∫

ddx1
1

(x213)
β2 (x212)

β3
.

The t1 integrand has now four branch cuts which can all be put to lie on the upper half plane

thanks to ǫ1 > ǫ2 > ǫ3. The integral contour can then be closed on the lower half plane, which

then makes the above integral vanish. Similarly, if p3 = 0, the branch cuts all lie in the lower half

plane, and enclosing the contour on the upper half plane gives a vanishing integral. In the case

p2 = 0, two branch cuts lie on the upper half plane, and two in the lower, therefore the integral

does not vanish.

The above expression for the Lorentzian 3-point function (3.12) is well defined for βj − d/2 ∈

N
0. Again, this is the case when the coefficient of the Euclidean 3-point function (3.7) diverges

and hence requires renormalisation. The Lorentzian expression manages to nevertheless be finite

because the diverging coefficient multiplies an integral of the form (2.11), which is now an integral

over an analytic function that decays exponentially at infinity of the upper half plane, and hence

vanishes. 5 Therefore, even if the Euclidean 3-point function is not well-defined in these cases,

the Lorentzian 3-point function is, and hence does not require regularisation or renormalisation.

The above expression is though now undefined when −βj ∈ N
0 or d/2 − βj ∈ N, due to the

Γ-factors in the denominator of (3.13). These are eventually inherited from the special cases I

and II of the 2-point function in the triple product of (3.6). We consider these cases next.

5The iǫ is crucial and allows the exponential along the arcs at infinity to vanish.
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Case I: −βj ∈ N
0

As we have remarked earlier, consistency with unitarity allows at most one of βj to be

negative. Without loss of generality we let β1 = −n, with n ∈ N
0. In this case, using (3.6) and

(2.19), we find

C(−n, β2, β3) = c(−n, β2, β3)
(

−∂2
p2

)n θ(p0

1 + p0

2 − |~p1 + ~p2|) θ(−p0

2 − |~p2|)

|p1 + p2|d−2β2 |p2|d−2 β3
, (3.14)

where

c(−n, β2, β3) = c123
22(d−β2−β3+1) πd+2

3
∏

j=2
Γ(βj − d/2 + 1)Γ(βj)

. (3.15)

Case II: d/2− βj ∈ N

Just as for the 2-point function, in this case there are two possibilities. If d is an even integer,

for large enough N such that βj < 0, this case becomes the same as the previous one. For small

enough N such that βj > 0, or more generically when d is not an even integer, this case is different

from the previous, and the expression for the 2-point function to be used is given by (2.18).

Without loss of generality we let β1 = d/2− n, with n ∈ N. Using equation (3.6) and (2.19),

C(d/2− n, β2, β3) = c(d/2 − n, β2, β3)

∫

ddk

(2π)d
θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)

|p1 − k|d−2β2 |k|d−2β3

×
∂n−1
p02

δ(p0

2 + k0 − |~p2 + ~k|)

(p0

2 + k0 + |~p2 + ~k|)n
, (3.16)

with

c(d/2 − n, β2, β3) = c123
4d+n−β2−β3+3/2 π3(d/2+1)

Γ(d/2 − n)
3
∏

j=2
Γ(βj − d/2 + 1)Γ(βj)

. (3.17)

Since βj = d/2−n with n a positive integer, can be positive for small enough n, it is possible

for two or the three βjs to satisfy this condition d/2 − βj ∈ N. The expression in these cases

follows likewise from the appropriate replacements of the 2-point function (2.18) in expression

(3.6).

All of the different βj cases, for both the Euclidean and Lorentzian signatures, are summarised

in table 1.
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Euclidean : cE ∼
∏

j

Γ(d/2−βj)
Γ(βj)

Lorentzian : c ∼
∏

j

1
Γ(βj−d/2+1) Γ(βj)

general {βj}
general expression (3.7)
(Fourier transform)

general expression (3.12)
(Wick rotation with branch cuts)

βj − d/2 ∈ N
0 renormalisation needed general expression (3.12)

one of the −βj ∈ N
0 special case (3.10)

(Fourier transform)
special case (3.14)
(Fourier transform)

(one of the) d/2− βj ∈ N general expression (3.7)
special case (3.16)

(Wick rotation with poles)

Table 1: List of the different cases of {βj} and the corresponding Euclidean and Lorentzian
3-point functions. The different cases can be seen as appearing because of the Γ-functions in
the coefficients cE and c for Euclidean and Lorentzian general expressions respectively. Due to
unitarity, only one of the βjs can be non-positive. Therefore, the second special case can only be
satisfied by one of the βjs, and similarly for the third case when d/2−N < 0. Finally, when d is
an even integer, this last third case is the same as the second for a large enough integer.

3.1 Triple-Bessel expression

Equation (3.6) shows that the 3-point function, both in Euclidean and Lorentzian signatures, can

be written as the integral over an auxiliary momentum of a triple product of 2-point functions.

In Euclidean space, the 3-point function can also be written as a single integral over a triple

product of modified Bessel functions of the second kind Kν [12],

CE(p1, p2; {βj}) = cE({βj})

∞
∫

0

dt td/2−1
3
∏

j=1

|pj |
νj Kνj(|pj | t) , (3.18)

where

cE({βj}) =
c123 π

d 24+3d/2−∆t

Γ(∆t−d
2 )

3
∏

j=1
Γ(βj)

, νj = ∆j −
d

2
=

∆t − d

2
− βj (3.19)

and p3 = −(p1 + p2).

The method used in the Euclidean case to arrive at the triple-K formula (3.18), fails in the

Lorentzian case essentially because pj is no longer positive definite. Nevertheless, we can again

compute the analogous expression for the Lorentzian 3-point function by means of a formal Wick

rotation. As we emphasised in section 2, in order to do this we must take into account the

analytic properties of Euclidean function.
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The starting point is

〈O1(x1)O2(x2)O3(x3)〉 = 〈O1(t
E
1 , ~x1)O2(t

E
2 , ~x2)O3(t

E
3 , ~x3)〉E

∣

∣

∣

∣

tEj =i (tj−i ǫj)

=

∫

ddp1
(2π)d

ddp2
(2π)d

CE(p1, p2; {βj}) e
i p1·x13 ei p2·x23

∣

∣

∣

∣

tEj =i (tj−i ǫj)

. (3.20)

In the first line, the Lorentzian correlator is written in terms of the Euclidean one but with

Wick-rotated time coordinates and with the appropriate iǫ prescription, ǫ1 > ǫ2 > ǫ3. In the

second line, the Euclidean 3-point function has been rewritten in terms of its Fourier transform,

therefore the momenta are pj = (pE
j , ~pj), and the inner product is p · x = pE τ + ~p · ~x.

Inserting the Wick-rotated time coordinates, 6

〈O1(x1)O2(x2)O3(x3)〉 =

∫

ddp1
(2π)d

ddp2
(2π)d

CE(p1, p2) e
− pE1 (t13−i ǫ13) e− pE2 (t23−i ǫ23) ei ~p1·~x13 ei ~p2·~x23 .

(3.21)

The Lorentzian correlator in momentum space is now simply found by rewriting the above inte-

grals as a (Lorentzian) Fourier transform, i.e. we need to Wick rotate pE = i p0.

We assume that the CFT is interacting and hence the operator dimensions are non-integer,

so that the νj are generic. We consider the integral over pE
1 first. From (3.18), CE(p1, p2) has

branch points on the pE
1 complex plane at

pE
1 = ± i |~p1|, pE

1 = −pE
2 ± i |~p1 + ~p2| , (3.22)

and at |pE
1 | → ∞.

Since ǫ13 > 0, we consider a contour in the upper half going around the branch cuts, which

extend from i |~p1| to +i∞, and from−pE
2+ i |~p1+~p2| to−pE

2+ i∞ (see figure 3). The contributions

from the arcs at infinity vanish because ǫ13 > 0. Since the integrand is analytic in the region

6We denote the 3-point function (3.18) as CE(p1, p2), notationally dropping the explicit dependence on the
conformal dimensions of the operators.
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i |~p1 |

−i |~p1 |

−pE
2 + i |~p3|

−pE
2 − i |~p3|

pE
1

Figure 3: Closed contour of integration for the pE
1 integral. The contribution from the arc at

infinity vanishes, so the integral along the real axis is equal to that on each side of the two branch
cuts on the upper-half plane.

inside the contour, the integral over the real axis equals that along each side of the branch cuts

∞
∫

−∞

dpE
1

2π
e− pE1 (t13−i ǫ13) |p1|

ν1 |p1 + p2|
ν3 Kν1(|p1| t)Kν3(|p1 + p2| t)

= π

∞
∫

|~p1|

dp0

1

2π
e−i p01(t13−i ǫ13)

[

( p0

1)
2 − |~p1|

2
]ν1 [

(i p0

1 + pE
2 )

2 + |~p1 + ~p2|
2
]ν3/2

× Jν1

(

√

( p0

1)
2 − |~p1|2 t

)

Kν3

(

√

(i p0

1 + pE
2 )

2 + |~p1 + ~p2|2 t

)

+ π

∞
∫

|~p1+~p2|

dp0

1

2π
e−(i p01−pE2 )(t13−i ǫ13)

[

(i p0

1 − pE
2 )

2 + |~p1|
2
]ν1/2 [(p0

1)
2 − |~p1 + ~p2|

2
]ν3/2

×Kν1

(

√

(i p0

1 − pE
2 )

2 + |~p1|2 t

)

Jν3

(

√

(p0

1)
2 − |~p1 + ~p2|2 t

)

, (3.23)

where in the first line |p| is the Euclidean norm and we have used the identity 7

− π i Jν(z) = eνπi/2Kν(z e
iπ/2)− e−νπi/2Kν(z e

−iπ/2) (3.24)

7Note that we have chosen the branch cut for the K-Bessel function to run along the imaginary axis rather
than the negative real line hence there’s a subtlety in translating standard identities to our case. However, in most
cases, such as here, the identities are unaffected by this issue.
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to rewrite the K-Bessel function in terms of the Bessel function of the first kind.

From Wick rotating pE
1 we get two integrals, hence we need to consider two pE

2 integrals:

∞
∫

−∞

dpE
2

2π
e− pE2 (t23−i ǫ23) |p2|

ν2
[

(i p0

1 + pE
2 )

2 + |~p1 + ~p2|
2
]ν3/2

×Kν2 (|p2| t) Kν3

(

√

(i p0

1 + pE
2 )

2 + |~p1 + ~p2|2 t

)

(3.25)

with p0

1 ≥ |~p1|, coming from the first integral on the rhs of (3.23), and

∞
∫

−∞

dpE
2

2π
ep

E
2 (t12−i ǫ12)

[

(i p0

1 − pE
2 )

2 + |~p1|
2
]ν3/2 |p2|

ν2

×Kν1

(

√

(i p0

1 − pE
2 )

2 + |~p1|2 t

)

Kν2 (|p2| t) (3.26)

with p0

1 ≥ |~p1+~p2|, coming from the second integral on the rhs of (3.23). Note that the exponential

in the second integral is slightly modified because of the ep
E
2 (t13−i ǫ13) factor coming from the

second integral in the Wick rotation of the pE
1 integral, (3.23).

For the first integral, (3.25), we again consider a closed contour in the upper half complex

pE
2 -plane going around the branch cuts. The integrand has branch points at

pE
2 = ±i |~p2|, pE

2 = −i p0

1 ± i |~p1 + ~p2| (3.27)

and at |pE
2 | → ∞. We are only interested in branch points in the upper half plane, i.e. i |~p2|,

and also possibly −i p0

1 + i |~p1 + ~p2| depending on whether |~p1 + ~p2| > p0

1. In any case, using the

triangle inequality and p0

1 ≥ |~p1|,

− p0

1 + |~p1 + ~p2| ≤ |~p2| . (3.28)

Considering separately the two cases where there are one or two branch points on the upper

half plane, the pE
2 integral can be written in terms of an integral over p0

2, as was done for pE
1 in

equation (3.23).

The second integral (3.26) can be treated in the same way. For this one though, because of

the modification in the exponent and the fact that ǫ12 > 0, we need to consider a contour in the
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lower half of the pE
2 -plane. The branch points of the integrand in (3.26) are at

pE
2 = ±i |~p2| , pE

2 = i p0

1 ± i |~p1| (3.29)

and |pE
2 | → ∞. Since in this case p0

1 ≥ |~p1 + ~p2|, using the triangle inequality

p0

1 − |~p1| > −|~p2| .

Hence we again have two cases to consider depending on whether p0

1−|~p1| is positive or negative.

Putting all these results together we rewrite the integral (3.21) as a Fourier transform, from

which we identify the Lorentzian 3-point function in momentum space to be

C(p1, p2; {βj}) =
π2

2
cE({βj})

∞
∫

0

dt td/2−1
3
∏

j=1

p
νj
j

×

{

− π θ(p0

1 − |~p1|) θ(p
0

2 − |~p2|)Jν1(p1 t)Jν2(p2 t)Yν3(p3 t)

− π θ(−p0

3 − |~p3|) θ(−p0

2 − |~p2|)Yν1(p1 t)Jν2(p2 t)Jν3(p3 t)

− π θ(p0

1 − |~p1|) θ(−p0

1 + |~p3|) θ(p
0

2 − |~p2|)Jν1(p1 t)Yν2(p2 t)Jν3(p3 t)

− π θ(p0

3 + |~p1|) θ(−p0

3 − |~p3|) θ(−p0

2 − |~p2|)Jν1(p1 t)Yν2(p2 t)Jν3(p3 t)

+ 2 θ(p0

1 − |~p1|) θ(−p0

3 − |~p3|) θ(−p0

1 + |~p3|) θ(−p0

2 + |~p2|)Jν1(p1 t)Kν2(p2 t)Jν3(p3 t)

+ 2 θ(p0

1 − |~p1|) θ(−p0

3 − |~p3|) θ(p
0

3 + |~p1|) θ(p
0

2 + |~p2|)Jν1(p1 t)Kν2(p2 t)Jν3(p3 t)

− i π θ(p0

1 − |~p1|) θ(p
0

1 − |~p3|) θ(p
0

2 − |~p2|)Jν1(p1 t)Jν2(p2 t)Jν3(p3 t)

+ i π θ(−p0

3 − |~p3|) θ(−p0

3 − |~p1|) θ(−p0

2 − |~p2|)Jν1(p1 t)Jν2(p2 t)Jν3(p3 t)

}

, (3.30)

where on the rhs pj denotes the Lorentzian norm
√

|(p0

j)
2 − |~pj |2|; p3 = −(p1+ p2) as a d-vector;

the coefficient cE is defined in (3.19); and Yν(z) is the Bessel function of the second kind. In

deriving the above expression we have used

e−νπi/2Kν(e
−iπ/2z) =

i π

2
(Jν(z) + i Yν(z)) , z ∈ R , (3.31)

and its complex conjugate.
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In comparison to the Euclidean 3-point function (3.18), it is clear that the Lorentzian one

is much more complex because it has to incorporate complicated causal relations which are

partly achieved through the Heaviside step functions. In particular, unlike the Euclidean 3-point

function, expression (3.30) is not obviously real. Of course, given that expression (3.12) is real

and expression (3.30) is simply a different representation of the same function, it should be real.

This implies an extremely non-trivial identity for the integral over three Bessel functions with

their arguments restricted to the domain prescribed by the step functions in the last two lines of

expression (3.30), which has to vanish.

However, in order to see that all is in fact consistent, consider complex conjugating the

definition of C(p1, p2; {βj}),

〈O1(x1)O2(x2)O3(x3)〉
∗ =

∫

ddp1
(2π)d

ddp2
(2π)d

e−i p1·x13 e−i p2·x23 C(p1, p2; {βj})
∗ . (3.32)

First let us consider the Euclidean case. The Euclidean correlator in position space is real, hence

reparametrising the momenta integrals by letting pj → −pj, we find that

CE(p1, p2; {βj})
∗ = CE(−p1,−p2; {βj}) . (3.33)

We can verify that the expression given in equation (3.18) indeed satisfies the consistency condi-

tion above; for CE is real and only depends of the norm of the momenta.

In the Lorentzian case, the consistency condition is complicated by the fact that the correlators

in position space are not strictly real because of the i ǫ prescription that specifies the order of

operators in the correlation function. In fact

〈O1(x1)O2(x2)O3(x3)〉
∗ = 〈O3(x3)O2(x2)O1(x1)〉 . (3.34)

Hence equation (3.32) becomes

〈O3(x3)O2(x2)O1(x1)〉 =

∫

ddp1
(2π)d

ddp2
(2π)d

ei (p1+p2)·x31 e−i p2·x21 C(p1, p2; {βj})
∗ , (3.35)

where on the rhs we have rearranged the terms so that the x-dependence of the exponentials

are such that they define an appropriate Fourier transform of the correlator on the lhs. There-

fore, from the above equation the consistency condition on the Lorentzian 3-point function in
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momentum space is

C(p1, p2;β1, β2, β3)
∗ = C(p1 + p2,−p2;β3, β2, β1) . (3.36)

It is straightforward to verify that the Lorentzian 3-point function given in (3.30) satisfies the

above relation.

4 Tensorial correlators

There are at least two ways to calculate tensorial correlators in momentum space. The first is to

write down a tensorial decomposition in terms of the momenta that satisfy the properties of the

tensors in the correlator—for example conservation or tracelessness. The form factors are then

found by solving conformal Ward identities. This is the method that is used in Ref. [12] in order

to find Euclidean 3-point correlators. The form factors in the Euclidean case are given by triple

K-integrals of the form (3.18) with general exponents for the variables in the integral that are

determined in each case. The advantage of this approach is that the properties of the tensors in

the correlator are explicit and all correlators are given by the same basic building blocks, namely

the triple K-integral.

An alternative approach to find tensorial correlators is to directly use the 3-point function of

scalars. As we explain below, since tensorial correlators in position space are given by tensorial

structures involving positions, tensorial correlators in momentum space are then just momentum

derivatives of scalar correlators. The advantage of this approach is that once the scalar correlator

is known, it is straightforward, in principle, to find all the tensorial correlators. The disadvantage

is that the properties of tensors in the correlation functions, such as tracelessness, are obscured

and are not explicit. For example, in the Euclidean case this approach leads to correlators that

are not immediately the same as the tensorial correlators in Ref. [12]. They are related to each

other up to boundary terms, which is subtle when the triple-K integral is divergent.

Of course, we can also Wick rotate the tensorial correlators in Ref. [12]. However, already for

the scalar case, the Lorentzian triple Bessel function form (3.30) is significantly more involved

than the Euclidean triple-K integral. Hence we will take the second approach outlined above to

find tensorial 3-point correlators using the scalar correlator.

By translation invariance the tensorial part of correlators with tensors is given by the differ-

ences of the position vectors xµ1 , x
µ
2 , x

µ
3 . Namely a general correlator will be a sum of terms of the
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form
xµ1

ij xµ2

kl . . .

(x223)
β1 (x213)

β2 (x212)
β3

, (4.1)

where i 6= j, k 6= l ∈ {1, 2, 3}, as can be verified by referring to the expressions in Ref. [22].

Consider again the Fourier transform of the Lorentzian 3-point function of scalar operators,

(3.3), 8

∫ 3
∏

j=1

(

ddxj e
−ipj ·xj

) 1

(x223)
β1 (x213)

β2 (x212)
β3

= (2π)d δ(d)(p1 + p2 + p3)C(p1, p2; {βj}) . (4.2)

When we write the Fourier transform of a tensorial correlator, the xµ1

ij from expression (4.1)

becomes a difference of partial derivatives with respect to the momenta pi and pj, which then

act on the scalar Fourier transform above. On the rhs, the momentum preserving δ-function

commutes with the difference of partial derivatives, hence we need just consider derivatives of

the δ-function stripped correlator C(p1, p2; {βj}).

For example consider the following integral

∫

∏

i

ddxi e
−ipi·xi

x12 µx12 ν

(x223)
β1 (x213)

β2 (x212)
β3

= −(2π)dδ(p1 + p2 + p3)

(

∂

∂pµ1
−

∂

∂pµ2

)(

∂

∂pν1
−

∂

∂pν2

)

C(p1, p2; {βj}) (4.3)

with β3 > d/2 + 1.

Consider first
(

∂

∂pν1
−

∂

∂pν2

)

C(p1, p2; {βj}). (4.4)

Using the expression (3.12) for C(p1, p2; {βj}), and reparametrising the k-integral as k → k− p2,

only one derivative needs to be computed, and this becomes equal to

(2β3−d)c({βj})

∫

ddk

(2π)d
θ(k0 − |~k|) θ(p0

1 + p0

2 − k0 − |~p1 + ~p2 − ~k|) θ(k0 − p0

2 − |~k − ~p2|)

|k|d−2β1 |p1 + p2 − k|d−2β2 |k − p2|d−2β3+2
(p2−k)ν ,

(4.5)

where notice that

|k − p2|
2 = − (k − p2)

2 (4.6)

8In all of this section, the C(p1, p2; {βj}) function and the coefficients c({βj}) do not include the 3-point function
coefficient c123.
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and the derivative of the Heaviside step function

∂pµ
2
θ(k0 − p0

2 − |~k − ~p2|) = (k − p2)µ δ(k
0 − p0

2 − |~k − ~p2|) , (4.7)

gives a vanishing contribution because of the factor of (k− p2)
2 with a positive power. If we had

not chosen β3 large enough, this derivative would also contribute.

Acting next with −(∂pµ1 − ∂pµ2 ) on (4.5), and reparametrising k → k + p2 gives

−(2β3 − d) c({βj})

∫

ddk

(2π)d
θ(p0

2 + k0 − |~p2 + ~k|) θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)

|p2 + k|d−2β1 |p1 − k|d−2β2 |k|d−2β3

×
(2β3 − 2− d)kµkν − |k|2 ηµν

|k|4
. (4.8)

Hence this is the δ-function stripped Fourier transform on the lhs of equation (4.3).

As a consistency check, we take the trace of the above expression (4.8), and obtain

c(β1, β2, β3 − 1)

∫

ddk

(2π)d
θ(p0

2 + k0 − |~p2 + ~k|) θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)

|p2 + k|d−2β1 |p1 − k|d−2β2 |k|d−2(β3−1)
, (4.9)

confirming that

ηµν
∫

∏

i

ddxi e
−ipi·xi

x12 µx12 ν

(x223)
β1 (x213)

β2 (x212)
β3

=

∫

∏

i

ddxi e
−ipi·xi

1

(x223)
β1 (x213)

β2 (x212)
β3−1

.

(4.10)

4.1 〈OTµνO〉 correlator

Having explained the general method for calculating tensorial correlators in the previous sec-

tion, we apply the procedure to a correlator of two identical scalar operators O and a energy-

momentum tensor Tµν . This correlator is used in the next section to calculate the expectation

value of the ANEC operator in a state created by the operator O.

In position space [22],

〈O(x1)Tµν(x2)O(x3)〉 =
a

xd−2
23 x2∆−d+2

13 xd−2
12

((

x12 µ

x212
−

x32 µ

x232

)(

x12 ν

x212
−

x32 ν

x232

)

−
1

d

x213
x212 x

2
23

ηµν

)

(4.11)

where

xµij = (tij − iǫij, ~xij) (4.12)
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and ǫij > 0 for i < j, otherwise negative.

The δ-function stripped correlator in momentum space is then

〈〈O(p1)Tµν(p2)O(p3)〉〉 = a

(

∂

∂pµ2
−

∂

∂pµ1

)(

∂

∂pν1
−

∂

∂pν2

)

C(p1, p2;
d− 2

2
,∆+ 1−

d

2
,
d+ 2

2
)

+ 2 a

(

∂

∂p
(µ
2

−
∂

∂p
(µ
1

)

∂

∂p
ν)
2

C(p1, p2;
d

2
,∆+ 1−

d

2
,
d

2
)

− a
∂

∂pµ2

∂

∂pν2
C(p1, p2;

d+ 2

2
,∆+ 1−

d

2
,
d− 2

2
)

−
a

d
ηµν C(p1, p2;

d

2
,∆ −

d

2
,
d

2
), (4.13)

where using the results of section 3,

C(
d− 2

2
,∆+ 1−

d

2
,
d+ 2

2
) =

22(d−1−∆) π3(d/2+1) d(d− 2)

Γ(∆ + 1− d/2) Γ(∆ + 2− d)Γ(d/2 + 1)2

×

∫

ddk

(2π)d
θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)

|p1 − k|2(d−1−∆) |k|−2

δ(p0

2 + k0 − |~p2 + ~k|)

|~p2 + ~k|
,

(4.14)

C(
d+ 2

2
,∆+ 1−

d

2
,
d− 2

2
) =

22(d−1−∆) π3(d/2+1) d(d− 2)

Γ(∆ + 1− d/2) Γ(∆ + 2− d)Γ(d/2 + 1)2

×

∫

ddk

(2π)d
θ(p0

1 − k0 − |~p1 − ~k|) θ(p0

2 + k0 − |~p2 + ~k|)

|p1 − k|2(d−1−∆) |p2 + k|−2

δ(k0 − |~k|)

|~k|
,

(4.15)

C(
d

2
,∆+ 1−

d

2
,
d

2
) =

22d+1−2∆ π3(d/2+1)

Γ(∆ + 1− d/2) Γ(∆ + 2− d)Γ(d/2)2

×

∫

ddk

(2π)d
θ(p0

2 + k0 − |~p2 + ~k|) θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)

|p1 − k|2(d−1−∆)
,

(4.16)

and we have used the fact that the C have no dependence on p3.

We note that C(d−2
2 ,∆ + 1 − d

2 ,
d+2
2 ) has a δ(p0

2 + k0 − |~p2 + ~k|). Reparametrising the k-

integral by letting k → k − p2 as we did in the general tensorial example, turns the argument of
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the δ-function into k0 − |~k|, hence becoming independent of p1 and p2. This allows us to avoid

derivatives of the Dirac δ-function when evaluating the rhs of (4.13).

Using identity (4.7), it is straightforward to show that

〈〈O(p1)Tµν(p2)O(p3)〉〉 = c

∫

ddk

(2π)d
θ(k0) θ(p0

2 + k0) θ(p0

1 − k0 − |~p1 − ~k|)

|p1 − k|2(d−1−∆)

×

(

[

8(d − 1)

d− 2

(

kµkν + k(µp2 ν)

)

+ 2 p2 µp2 ν

]

δ(k2) δ((p2 + k)2)

− θ(k0 − |~k|) δ((p2 + k)2) ηµν − θ(p0

2 + k0 − |~p2 + ~k|) δ(k2) ηµν

+
2(∆ − 2)(∆ − 3)

d− 2

θ(k0 − |~k|) θ(p0

2 + k0 − |~p2 + ~k|)

|p1 − k|2
ηµν

)

,

(4.17)

where

c = −
4d−∆ π3(d/2+1) d(d− 2) a

Γ(∆+ 1− d/2) Γ(∆ + 2− d) Γ(d/2 + 1)2
(4.18)

and we have used

θ(p0)δ(p2) =
δ(p0 − |~p |)

2 |~p |
. (4.19)

Equation (4.17) is valid for any dimension except for d = 2 dimensions. This is because in

that case, the first and third C-functions required in (4.13) are not of the ‘case II’ type, but

rather of the ‘case I’ type, and hence are not given by (4.14), (4.15). The d = 2 correlator can

then be computed by using (3.14) instead.

Note that the expression we have given, (4.17), is not manifestly traceless. As we have already

mentioned, when the tensorial properties are not manifest, integration by parts is required to

show them.

In the example at the start of this section, we calculated the rhs of expression (4.3) by

first reparametrising the integration variable k; had we not done this we would have obtained a

more complicated expression for which the trace consistency check would not have been straight-

forward. In fact, to prove expression (4.10) in that case requires integration by parts. This

illustrates the point made at the start of this section that tensorial identities are not guaranteed

to be manifest in this method and that one may have to use integration by parts in order to

prove them.
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We can use the same methods outlined in this section to calculate other tensorial correla-

tors. While the procedure in all cases is simple, technically the calculation does become quite

complicated if there are a lot of tensors. It is foreseeable that there is a structure underlying

these expressions that lends itself to generalisation; such a structure would, for example, make

the tensorial properties of the correlators manifest. We, however, wish to report on this direction

in a separate manuscript.

5 ANEC expectation values on Hofman-Maldacena states

As an application of the expression obtained in the previous section for 〈O Tµν O〉 we use it

here to reproduce the positivity of the ANEC operator when evaluated on the simplest type

of the Hofman-Maldacena states, namely those generated by scalar operators [2, 23, 26], but in

momentum space. Also, we generalise this to general dimension d.

In the conformal-collider experiments [23], one places calorimeters on a 2-sphere at infinity.

These calorimeters measure the energy produced by some CFT operator O localised around the

center of the sphere. The measurement of a calorimeter is then given by the expectation value of

the time-integrated energy-momentum tensor on a state created by the operator O, hence by a

conformal 3-point function of the type 〈O
∫

T O〉. In fact, since the energy-momentum tensor is

inserted at infinity, the integral over time of its energy component becomes the ANEC operator,

i.e. the integral over null infinity of the its null-null component.

Given that conformal 3-point correlators are completely fixed up to constants, requiring

positivity of the integrated energy measurement places bounds on these constants. Concretely,

when the normalised expectation value is computed on a state created by a scalar operator,

the constant is simply a numerical coefficient, and is indeed positive. When the normalised

expectation value is computed on a state created by the energy-momentum tensor itself, the

constants depend on the conformal anomalies, and thus in four dimensions the positivity condition

puts bounds on the a and c central charges.

To compute the bounds, Hofman-Maldacena used a particular type of states, namely wave

packets with purely-timelike momentum

|O(q)〉 ≡

∫

ddx e−iqt e−
t2+~x2

σ2 O(x) |0〉 . (5.1)

They consider them in the regime q σ >> 1, which ensures that the operator has finite norm and

is localised near the origin, which can be understood as a requirement for IR finiteness. In the
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calculation however, the Gaussian factor can be dropped. As pointed out in Ref. [2], this can

lead to unphysical divergences, but these can be regularised with dimensional regularisation, we

disregard this issue in the following.

The Hofman-Maldacena states yield optimal bounds for the ratios of the two anomaly co-

efficients [2], because of the fact that the ANEC operator is inserted at null infinity. There, it

commutes with the momentum operator [E , P ] = 0, hence momentum eigenstates are also eigen-

states of the ANEC operator. 9 As a consequence, 〈E〉 becomes diagonal on these wave packets,

and its positivity gives the most stringent constraints.

For simplicity, the ANEC operator can be placed at x2 = (t, r,~0 ), which would correspond

to putting a calorimeter in the ‘x’ direction. We define light-cone coordinates for this point

x± = t± r. Positivity of the ANEC operator on these states then reads

〈E〉 = lim
r→∞

rd−2 〈O(q)†
∞
∫

−∞

dx− T−−(x
+, x−)O(q)〉 ≥ 0 . (5.2)

Once expression (5.1) for the states is introduced in the above and the position integrals have

been pulled out of the correlator, we can use translation invariance to put the scalar operator to

the right at x3 = 0. The corresponding ddx3 integral becomes an overall factor, which will cancel

with an identical factor when normalising 〈E〉 with the 2-point function 〈O(q)O(−q)〉, see (5.14)

(we will henceforth omit this factor). With these manipulations, and assuming that the scalar

operator is real, the expectation value becomes

〈E〉 = lim
r→∞

rd−2

∫

ddx1 e
iqt1 〈O(x1)

∞
∫

−∞

dx− T−−(x
+, x−)O(0)〉 . (5.3)

To compute this expectation value in momentum space, we note that the scalar operator to the

left is effectively already in momentum space, with momentum (q,~0 ). We further rewrite the

other two operators in terms of their Fourier transforms. In particular, for the ANEC operator,

∫

dx−
∫

ddp

(2π)d
ei(−p0t+p1r) T−−(p) = 2

∫

ddp

(2π)d−1
δ(p0 + p1) e−i p

0
−p1

2
x+

T−−(p) , (5.4)

9We thank Alexander Zhiboedov for pointing this out to us.
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where the Dirac delta can be further integrated. Substituting the Fourier transforms in (5.3),

〈E〉 = 2 lim
r→∞

rd−2

∫

dd−1~p

(2π)d−1
e2ip

1r〈〈O(q,~0 )T−−(−p1, ~p )O(p1 − q,−~p )〉〉 . (5.5)

Using

k− = −
1

2
k+, where k+ = k0 + k1 , (5.6)

and expression (4.17) calculated in last section, the expectation value (5.5) becomes

〈E〉 =
(d− 1) c

d− 2
lim
r→∞

rd−2

∫

dd−1~p

(2π)d−1
e2ip

1r

∫

ddk

(2π)d
θ(q − k0 − |~k|)

((q − k0)2 − |~k|2)d−1−∆

× k+
δ(k0 − |~k|)

|~k|
δ (p1 + p1

s) , (5.7)

where c is defined in (4.18), and p1

s = 2 k̂·p̂+|p̂|2

2k+ . k̂ is the (d − 2)-dimensional transversal vector,

k = (k0, ~k ) = (k0, k1, k̂), and similarly for p. We have also used

δ(k2) =
δ(k0 − |~k|)

2 |~k|
(5.8)

(since k0 > 0), to simplify

θ(k0 − p1) δ((q − k0)2 −
∣

∣~k + ~p
∣

∣

2
) =

1

2 k+
δ (p1 + p1

s) . (5.9)

The p1 integral can now be evaluated with the Dirac δ-function, leaving a dd−2p̂ integral. We

next perform the change of variables

k̂ =
l̂

x+
−

p̂

2
(5.10)

with which the factor rd−2 in front of the integral is reabsorbed in the measure of the dd−2k̂,

making the integral finite. With this change of variables p1

s ∼ 1/x+, hence goes to zero except in

the exponential, which becomes

e−i p̂·l̂

k+ . (5.11)

The dd−2 l̂ integral of the above exponential gives now a Dirac delta δ(d−2)(p̂). Together with

the previous one in (5.7), which after the limit becomes δ(p1), these d− 1 Dirac deltas δ(d−1)(~p )

29



make explicit that 〈E〉 is an expectation value, since they turn (5.5) into

〈E〉 ∼ 〈〈O(q,~0 )T−−(0,~0 )O(−q,~0 )〉〉 . (5.12)

The need for the r → ∞ limit and the nature of this expectation value is therefore much more

clear in momentum space.

After the above Dirac δ-functions have been performed, the only two remaining integrals

are those of dk0dk1. The first can be performed with the remaining δ(k0 − |~k|), and the last

integral can then simply be performed. All these steps make clear that, unlike the calculation of

〈E〉 in position space where one has to evaluate complicated integrals, in momentum space the

expectation value reduces to integrals of δ-functions, hence is much simpler.

The final result is

〈E〉 =
2 (d − 1) c

(d− 2) (2π)d+1
q∆+1−d

q/2
∫

0

dk0 (k0)d−2 (q − 2 k0)∆+1−d

= −
21−2∆ πd/2+2 Γ(d+ 1) a

Γ(∆ + 1)Γ(∆ + 1− d/2) Γ(d/2 + 1)2
q2∆+1−d . (5.13)

We now normalise this expectation value with the 2-point function 〈O(q)O(−q)〉, with O given

again by (5.1) (and as before, dropping the Gaussian factors),

〈O(q)O(−q)〉 =

∫

ddx1d
dx3 e

iq(t1−t3)〈O(x1)O(x3)〉 . (5.14)

Using translation invariance to put x3 = 0 in the correlator, we are left again with an overall ddx3

integral, which cancels the identical one in 〈E〉 in the numerator. Further writing the correlator

in terms of its Fourier transform,

〈O(q)O(−q)〉 =

∫

ddx1 e
iqt1

∫

ddp

(2π)d
eip·x1 N G∆(p) , (5.15)

where N is now the normalization of the 2-point function (which is set to 1 in the rest of the

paper). Introducing the expression for G∆(p) given by (2.6), we obtain

〈O(q)O(−q)〉 = N
πd/2+1

22∆−d−1 Γ(∆)Γ(∆ − d/2 + 1)
q2∆−d (5.16)

where we have omitted the Heaviside step function since we have assumed q > 0.
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Using now the relation between the normalization of the 2-point function N and that of the

3-point function a which follows from Ward identities [22],

a = −
∆Γ(d/2 + 1)

(d− 1)πd/2
N, (5.17)

we find
〈E〉

〈O(q)O(−q)〉
=

q

Sd−2
(5.18)

where

Sd−2 =
2π(d−1)/2

Γ(d−1
2 )

(5.19)

is the surface area of a (d − 2)-sphere. This confirms the positivity of the ANEC expectation

value.

6 Discussion

In this paper we study the 3-point function of Lorentzian CFTs in momentum space. We present

the scalar 3-point function and give a prescription for calculating tensorial ones. The scalar

3-point function is presented both as an integral over an auxiliary momentum (3.12) and also

as a triple Bessel integral (3.30). While the two expressions can be related via the analogous

Euclidean expressions, we have yet to understand the relation between them in Lorentzian space.

Such a study could yield much simpler expressions for tensorial correlators and lead to a more

comprehensive understanding akin to the Euclidean case [12]. Furthermore, while we show how

any tensorial 3-point correlator can be determined from the scalar 3-point function, the tensorial

properties of the correlator may be obscured in the result. We hope to address these points in

the future.

We use our results to calculate the expectation value of the ANEC operator in states created

by scalar operators. While this is the least interesting positivity result, simply stating that the

state has positive energy, our calculation shows how natural such a computation is in momentum

space compared to the position space calculation [23]. In particular, in momentum space the

expectation value simply reduces to integrals over δ-functions with the role of the r → ∞ limit

becoming much clearer—in this limit it is manifest that the transversal momenta of the ANEC

operator vanish, (5.12). This is convincing evidence that questions regarding ANEC may be more

suitably framed in momentum space. By providing Lorentzian CFT correlators in momentum

space, we hope that this is now possible.
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A Conventions and formulae

We use the (−+++) signature. Our convention for the Fourier transform is

f̃(p) =

∫

ddx e−ip·x f(x) , f(x) =

∫

ddp

(2π)d
eip·x f̃(p) . (A.1)

The Dirac delta function is

δ(d)(p) =

∫

ddx

(2π)d
e−i p·x . (A.2)

The Schwinger parametrisation formula is

1

xn
=

1

Γ(n)

∞
∫

0

dt tn−1 e−t x , when ℜ(x) > 0 . (A.3)

B 3-point function of scalars from Fourier transform

We compute the scalar 3-point function in momentum space by doing a direct Fourier transform

of the position-space expression in four dimensions. 10 Consider the Fourier transform of the

Lorentzian correlator 〈O1(x1)O2(x2)O3(x3)〉 for scalar operators with dimensions ∆i,

〈O1(p1)O2(p2)O3(p3)〉 =

∫

∏

i

d4xi e
−i pi·xi

c123
(x223)

β1 (x213)
β2 (x212)

β3
, (B.1)

where βj = ∆t
2 − ∆j, ∆t = ∆1 + ∆2 + ∆3, xij = xi − xj , and the iǫ prescription dictates

tj → tj − i ǫj with ǫ1 > ǫ2 > ǫ3. Translation invariance us allows to strip off the momentum

preserving δ-function, which leads to

〈O1(p1)O2(p2)O3(p3)〉 = (2π)4 δ(4)(p1 + p2 + p3)C(p1, p2; {βj}) , (B.2)

10In general d dimensions, the Fourier transform involves much more complicated integrals over the angles.
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with C(p1, p2; {βj}) given by (3.6), which we repeat here

C(p1, p2; {βj}) = c123

∫

d4k

(2π)4

∫

d4x1 d
4x2 d

4x3
e−i(p1−k)·x1 e−i(p2+k)·x2 e−ik·x3

(x22)
β1 (x21)

β2 (x23)
β3

. (B.3)

This last expression is obtained by introducing a third coordinate x3 via a Dirac delta δ(4)(x3 −

x12), which is then reexpressed in terms of an additional k integral.

We now assume all βj > 0. In this case, we can use Schwinger parametrisation (A.3) to

exponentiate the distance factors in the denominator of the above integrand. For example, for

the x1 factor,

1

(x21)
β2

=
1

Γ(β2)2

∞
∫

0

ds1 ds2 (s1 s2)
β2−1 e−s1(ǫx+i (tx+|~x|)) e−s2(ǫx+i (tx−|~x|)) , (B.4)

and analogously for the x2 and x3 factors. We hence introduce a total of six Schwinger pa-

rameters {si}. When performing the Fourier transform in Euclidean signature, one can instead

exponentiate the square of the distance factors x2j , thus requiring only three Schwinger param-

eters. This is possible because these factors are positive in Euclidean signature. In Lorentzian

signature instead they need not be, and use of the Schwinger parametrisation is only allowed

because the iǫij added confer a positive real part to the distance factors.

To perform the x1 integral with the integrand above, we exchange it with the s1, s2 integrals.

The two angles can then be integrated, and the integral over the time component t1 produces the

Dirac delta δ(k0 − p0

1+ s1+ s2), which can be used to integrate one of the Schwinger parameters.

To compute the radial integral, we first symmetrise its range of integration by performing a

change of variables on the remaining Schwinger parameter s as u = s − ū with ū ≡ (p0

1 − k0)/2.

After doing the radial integral we obtain

(2π)3 θ(p0

1 − k0)

4Γ(β2)2 |~p1 − ~k|

ū
∫

−ū

du
(

ū2 − u2
)β2−1

∂u

(

δ(2u − |~p1 − ~k|)− δ(2u + |~p1 − ~k|)
)

. (B.5)

Assuming β2 6= 1, we do integration by parts and obtain

(2π)3 (β2 − 1)

4β2−1 Γ(β2)2
θ(p0

1 − k0 − |~p1 − ~k|) |p1 − k|2 β2−4 , (B.6)

where unambiguously |p1 − k| =

√

(p0

1 − k0)2 − |~p1 − ~k|2. Following analogous steps for the x2
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and x3 integrals, the 3-point correlator (when all βi 6= 1) becomes

C(p1, p2; {βj})) = c({βj})

∫

d4k

(2π)4
θ(p0

2 + k0 − |~p2 + ~k|) θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)

|p2 + k|4−2 β1 |p1 − k|4−2 β2 |k|4−2 β3
, (B.7)

where

c({βj}) = c123 (2π)
9
∏

i

(βi − 1)

4βi−1 Γ(βi)2
. (B.8)

This precisely matches the 3-point function (3.12) calculated by Wick rotation in the case when

d = 4.
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