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1 Introduction

Much work on conformal field theories, and quantum field theories in general, has focused on

the Euclidean theory rather than the Lorentzian theory. In the former setting, correlation

functions are simpler and obey satisfying properties, for example they are symmetric under

permutations of operators or they are analytic when points are non-coincident. Further-

more, one can always ‘return’ to the Lorentzian theory provided that certain requirements

are satisfied via the Osterwalder-Schrader reconstruction theorem [1]. However, it has re-

cently been shown that a lot of mileage can be gained by instead thinking of the theory

in the Lorentzian setting. While Wightman functions do not share the simplicity of their

Euclidean cousins, their richer structure encodes important information about the theory.

One such powerful property is causality, which has been recently used to, for example,

prove the average null energy condition (ANEC) [2] or in the analytic bootstrap program,

see for example refs. [3–7], which among other things has lead to the Lorentzian inversion

formula for CFTs [8].
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Despite the recent interest in Lorentzian CFTs (see for example refs. [9, 10] among

many others), an expression of the correlation functions in momentum space beyond 2

points has hitherto been lacking. Even the Euclidean correlators in momentum space have

only been fully worked out relatively recently [11–17], despite the need for them mainly

from applications to cosmology in the context of which they were partially studied [18, 19]

(see [20] for more recent cosmological applications).

It is well known that conformal symmetry places restrictions on the form of correlators

in a conformal field theory, fixing the 2-point functions, up to a normalisation, and 3-point

functions, up to constants that are part of the CFT data. Solving the constraints on corre-

lators from conformal symmetry in Euclidean signature has been done in position [21–23]

and momentum space [12, 16]. The complication in momentum space is that the special

conformal Ward identity is a second order differential equation of generalised hypergeo-

metric type [12], whereas in position space the solutions can be shown to be derivatives of

powers of separation distances between the points at which operators are inserted. Directly

Fourier transforming the position space correlators, while manageable for the scalar 3-point

function [12], is unwieldy for tensorial correlators.

Given the recent attention to Lorentzian CFTs and the fact that it is often convenient

to work in momentum space, in this paper we study 3-point functions of Lorentzian CFTs

in momentum space. While these correlators can in principle be found by Fourier trans-

forming the Lorentzian correlators in position space, which is already more difficult than

the analogous Fourier transform in Euclidean space, we instead show that these correlators

can be derived from the Euclidean expressions by a careful Wick rotation. The advantage

of working in Lorentzian space is that the iǫ prescription precludes coincident singularities,

which seems to imply that renormalisation is not required. While our results for the scalar

3-point function are consistent with this claim (see section 3.2.1), we leave a thorough

analysis of this issue for future work.

As an application of our results, we revisit the expectation values of the ANEC operator

on the Hofman-Maldacena states [24] produced by scalar operators, which were calculated

using correlators in position space. While this result is not new, it is illustrative of the fact

that such calculations are much more natural in momentum space where interesting features

are not obscured. For example, it becomes clearer that the Hofman-Maldacena quantities

are an expectation value. We believe that this perspective will also be indispensable in

attempts to understand the implications of ANEC away from criticality.

We begin, in section 2, by outlining the general procedure for Wick rotating from

Euclidean to Lorentzian correlators. We use the scalar 2-point function as an example to

elucidate the approach, which has applicability beyond the subject of interest in this paper.

In section 3.1, it is shown that the scalar 3-point function can be bootstrapped from the

2-point function results and given in terms of an integral over an auxiliary momentum; as a

check, in appendix B we arrive at the same result in four dimensions by Fourier transforming

the 3-point function in position space. We also present the scalar 3-point function as an

integral over three Bessel functions, section 3.2, by Wick rotating the analogous Euclidean

3-point function given in terms of an integral of three K-Bessel functions. In the Lorentzian

case, the integral includes both Bessel and modified Bessel functions. We discuss the
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finiteness of the scalar 3-point function in section 3.2.1 and show that renormalisation is

not required. In section 3.3, we check the equivalence of the two obtained expressions for

the 3-point function for a particular example. In section 4, we give a general prescription

for determining tensorial correlators from scalar correlators and apply this to find the

correlation function of the energy-momentum tensor and two identical scalar operators. In

particular, this example is considered not only because it is simple enough that the general

prescription can be illustrated clearly, but also on account of its application in section 5. As

a demonstration of the utility of Lorentzian correlators in momentum space, we calculate

the expectation value of the ANEC operator in a state produced by a scalar operator. In

appendix A, we set out our notations and conventions.

2 2-point function

We consider the 2-point function of scalar operators. This provides a useful playground to

explore the relation between Euclidean and Lorentzian correlators in position and momen-

tum space. For time-ordered 2-point function or 2-point functions of higher-spin operators

see ref. [25].

The Euclidean 2-point function of scalar operators O1 and O2 with dimensions ∆1, ∆2

is given by

GE(x) ≡ 〈O1(x)O2(0)〉E =
δ∆1,∆2

x2∆
, (2.1)

where ∆ ≡ ∆1 = ∆2; we have set the normalisation constant to be one and we have used

translation invariance to set one of the positions to the origin. The 2-point function is

non-zero only if the two operators have the same conformal dimension– we assume this in

the expressions that follow and henceforth drop the Kronecker δ.1

The Lorentzian 2-point function follows from performing a Wick rotation to Lorentzian

time tE = it in the Euclidean correlator (2.1). Since the correlator has a branch cut in the

tE plane starting at i|~x| and running upwards and from −i∞ until −i|~x|, the Wick rotation

is ambiguous for |t| ≥ |~x|: t can be defined to be either on the right or on the left of the

cut (see figure 1). This ambiguity can be resolved by adding either a positive or a negative

infinitesimal real part to tE, tE = i(t ± iǫ). Each one of these two options defines then a

different Wightman function, and the so-called iǫ prescription dictates that the imaginary

part of the Lorentzian time of the operator to the left is more negative than that of the

operator to the right, viz.

G(x) ≡ 〈O(x)O(0)〉 = 1
(

−(t− i ǫ)2 + |~x|2
)∆

, (2.2)

where for the ordering given above ǫ > 0. For the Wightman function with the operator

O(0) to the left, we then require ǫ < 0.

1If the operators are characterised by other quantum numbers, they must also both have the same

number in order for the 2-point function to be non-trivial. We also assume this henceforth.
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i |~x|

−i |~x|

tE
tE = i t

Figure 1. The two different Wick rotations from Euclidean to Lorentzian time, corresponding to

passing either to the right or the left of the branch cut, define the two possible Wightman 2-point

functions. The contour on the right corresponds to 〈O(x)O(0)〉 and the contour on the left to

〈O(0)O(x)〉.

An intuitive way to understand the iǫ prescription is that given a particular ordering

of (any number of) operators, the iǫ’s are chosen in such a way that

. . . eiH(ti−iǫi)Oi(~xi) e
−iH

(

(ti−tj)−i(ǫi−ǫj)
)

Oj(~xj) e
−iH(tj−iǫj) . . . (2.3)

is well defined when the Hamiltonian is bounded from below. This means that in the

correlator, an operator Oi(ti − iǫi) to the left of Oj(tj − iǫj) requires ǫi > ǫj to have a

decaying exponential.2

The momentum space expression for the Euclidean 2-point function can be obtained

by simply Fourier transforming the expression (2.1). The Euclidean 2-point function in

momentum space is

G∆
E (p) ≡ 〈〈O(p)O(−p)〉〉E =

πd/2 Γ(d/2−∆)

22∆−d Γ(∆)
|p|2∆−d, (2.4)

where we have removed the momentum-conserving δ-function3

〈O(p)O(q)〉E = (2π)d δ(d)(p+ q)GE(p) , (2.5)

and d is the dimension of space. Despite the Fourier transform requiring 0 < Re∆ < d/2 for

convergence, the above expression is analytic in ∆ and d and can therefore be analytically-

continued to any conformal dimension ∆− d/2 /∈ N
0 above the unitarity bound ∆ > 0.

When ∆ − d/2 ∈ N
0, the Euclidean 2-point function has no Fourier transform and

must be regularised and renormalised. This renormalisation is what leads to anomalies. In

position space, the 2-point function can be regularised by differential regularisation [26].

The renormalised 2-point function depends on the renormalisation scale, and this depen-

dence is given by the trace anomaly coefficient of a background scalar current [23]. In

2For a review of the iǫ prescription for n-point functions and its interpretation in terms of the different

Wick rotations around the branch cuts see [5].
3We will often suppress the explicit dependence of G∆

E on the dimension of the operators, and write

GE(p).
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momentum space, the 2-point function can be regularised by dimensional regularisation,

as is clear from the fact that the problem occurs for negative integer arguments of the

Γ-function in (2.4), and the renormalised 2-point function gains a logarithmic dependence

in the momentum p.

The Lorentzian 2-point function in momentum space, in principle, follows from the

Fourier transform of (2.2). However, this is not a straightforward calculation. It becomes

much simpler though in d = 4 because the angle integrals simplify considerably, and we

obtain4

G∆(p) ≡ 〈〈O(p)O(−p)〉〉 = (2π)3

4∆−1 Γ(∆− 1) Γ(∆)
θ(p0 − |~p |) |p|2∆−4 , (2.6)

where unambiguously

|p| =
√

(p0)2 − |~p |2 (2.7)

thanks to the Heaviside step function,

θ(x) =

{

1 x > 0 ,

0 x ≤ 0
. (2.8)

In all expressions where the norm of a Lorentzian momentum will appear, the argument in-

side the square-root can unambiguously be written without the absolute-value sign because

of the presence of a step function.

The other Wightman function corresponding to the Fourier transform of 〈O(0)O(x)〉,
i.e. the Fourier transform of (2.2) but with negative ǫ, is

G∆(−p) ≡ 〈〈O(−p)O(p)〉〉 = (2π)3

4∆−1 Γ(∆− 1) Γ(∆)
θ(−p0 − |~p |) |p|2∆−4 . (2.9)

It becomes clear that the ordering of the operators is reflected in the sign of p0 in the

Heaviside step function. At a technical level, after the ~x integrals have been done, there

is a factor of ei(p
0−|~p |)t for G(p) or a factor of ei(p

0+|~p |)t for G(−p), and the integrand only

has a singularity in the upper or lower half t-plane respectively. Therefore, the integral

over t is zero unless p0 − |~p | ≥ 0 or p0 + |~p | ≤ 0 in each case, thus producing the respective

step functions.

It is straightforward to see that since the operators are the same, swapping the ordering

just amounts to swapping their respective momenta, p and −p.

These d = 4 Wightman functions already make it clear that the Wick rotation from

Euclidean to Lorentzian signature in momentum space is not as straightforward as the iǫ

prescription in position space. Indeed, even if one can ‘prescribe’ the correct step func-

tions (as following from the above singularity-based or support arguments), the ∆- and

d-dependent coefficients are hard to predict. These are bound to be even more compli-

cated for general d, where the Fourier transform is much harder to compute. Furthermore,

for higher-point functions even ‘prescribing’ the correct step functions becomes difficult.

4See footnote 3.
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i |~p |

−i |~p |

CrCl

Cc

pE

Figure 2. Closed contour of integration. The contribution from the arc at infinity vanishes.

Therefore, a pertinent question is how to obtain the Wightman 2-point functions, with-

out directly Fourier-transforming, from the Euclidean 2-point function (2.4). We address

this next.

Consider the Euclidean 2-point function as a Fourier transform,

GE(x) =

∫

ddp

(2π)d
eip·xGE(p) , (2.10)

where it is understood that the volume element and the inner product in the exponential are

Euclidean. As reviewed above, the Lorentzian function in position space is easily obtained

by a Wick rotation together with the iǫ prescription, hence we can write:

G(x) = GE(i(t− iǫ), ~x) =

∫

dd−1~p

(2π)d−1
ei~p·~x

∞
∫

−∞

dpE

2π
e−pE(t−iǫ)GE(pE, ~p ) , (2.11)

where for the last equality we have used (2.10).

The integral above is no longer a Fourier transform, but it can be recast into a Fourier

transform by Wick-rotating pE to the imaginary axis. However, this must be done carefully,

taking into consideration the analytical properties of GE(pE, ~p ) on the complex pE plane.

Indeed from (2.4) it is clear that for general ∆, GE(pE, ~p ) has branch points at pE = ±i|~p |
and ∞. We consider then extending the contour of integration along the real axis, into the

upper half of the complex plane and around the branch cut from i|~p | to i∞, forming the

closed contour depicted in figure 2. Because of the iǫ term in the exponential with ǫ > 0,

the integral over the arc at infinity vanishes. If the operators were ordered oppositely so

that ǫ were negative, we would instead close the contour on the lower half complex plane

to get a vanishing contribution from the arc at infinity.

Since the function is analytic inside the closed contour, the integral in (2.11) is equal

to that along the contours on each side of the branch cut (Cr and Cl in figure 2) and the
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cup Cc around the branch point, hence

G(x) = −
∫

dd−1~p

(2π)d−1
ei~p·~x

∫

C

dpE

2π
e−pE(t−iǫ)GE(pE, ~p ) , C = Cr ∪ Cl ∪ Cc. (2.12)

Changing now the integration variable to p0 = −ipE implements the Wick rotation for the

time component of the momentum. Taking into account the phase difference on both sides

of the cut, the pE integral becomes

−2 sin (π(∆− d/2))
πd/2 Γ(d/2−∆)

22∆−d Γ(∆)

∞
∫

|~p |

dp0 e−ip0(t−iǫ)
(

(p0)2 − |~p |2
)∆−d/2

. (2.13)

For ∆ > d/2− 1, the contribution from the cup Cc vanishes and the pE integral in (2.12) is

equivalent to expression (2.13). However, for ∆ ≤ d/2− 1, the above integral is divergent

and rendered finite by contributions from the integral along contour Cc. Our notation

in (2.13) is such that it includes contributions that render the integral finite.

Plugging expression (2.13) back into (2.12) gives G(x) as a Fourier transform

G(x) =

∫

ddp

(2π)d
eip·x

πd/2+1 θ(p0 − |~p |)
22∆−d−1 Γ(∆− d/2 + 1) Γ(∆)

|p|2∆−d . (2.14)

From the integrand we can read off the Wightman 2-point function in momentum space

G∆(p) ≡ 〈〈O(p)O(−p)〉〉 = πd/2+1

22∆−d−1 Γ(∆− d/2 + 1) Γ(∆)
θ(p0 − |~p |) |p|2∆−d . (2.15)

The above reproduces expression (2.6) in d = 4 dimensions obtained by Fourier trans-

forming.

The other Wightman function can be found by the complex conjugation of (2.14) and

letting p → −p in the integral, since it corresponds to letting iǫ → −iǫ on the right-hand

side of (2.2), and reads

G∆(−p) ≡ 〈〈O(−p)O(p)〉〉 = πd/2+1

22∆−d−1 Γ(∆− d/2 + 1) Γ(∆)
θ(−p0 − |~p |) |p|2∆−d . (2.16)

Both Wightman functions vanish when the momentum is spacelike or null, so they only

have support in the future momentum-space light-cone in the case of G(p), or the past

momentum-space light-cone in the case of G(−p).

As opposed to the Euclidean 2-point function (2.4), which has a Γ-function in the

numerator, a factor of Γ(∆ − d/2 + 1) appears now in the denominator of the Lorentzian

2-point function, (2.15). Therefore it does not diverge for particular values of ∆, and hence

does not require renormalisation.

With this second method of computing the momentum-space 2-point function by means

of a formal Wick rotation, the Heaviside step function appears as a result of deforming the

contour around the branch point in the complex plane where the momentum becomes null.

This is analogous to the fact that in position space the ordering of operators in Lorentzian
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correlators is given by how one analytically continues around branch points corresponding

to points where operators become null-separated, and hence no longer commute with each

other by microcausality [1, 5].

This second method has the advantage that it does not require us to perform compli-

cated integrals, as opposed to the Fourier transform method.

In deriving (2.15), we have assumed that ∆ > 0 and ∆ − d/2 is non-integer. The

positivity condition is required because the Euclidean Fourier transform (2.4) from which

we start our analysis, is derived using Schwinger parametrisation (A.3). However, we

observe that both the Euclidean, (2.4), and the Lorentzian, (2.15), 2-point functions can

be analytically continued to negative ∆ as long as it is not an integer. The condition that

∆ > 0 is a natural consequence of unitarity, but as we will see in the next section, in

order to derive 3-point functions in momentum space for particular values of the conformal

dimensions, we require the expression for G for ∆ < 0. Therefore, we need to consider the

case when −∆ ∈ N
0.

The second condition, ∆ − d/2 a non-integer, is required because in performing the

Wick rotation, we have assumed the existence of branch points, while an integer exponent

∆ − d/2 leads to poles instead. When ∆ − d/2 ∈ N
0, we have already remarked that the

Euclidean expression requires regularisation and renormalisation, hence in this case, the

formal Wick rotation method cannot be implemented as above. However, the Lorentzian

expression (2.15) as computed by Fourier transform is nevertheless valid for these cases,

essentially because the iǫ prescription precludes the existence of contact singularities in the

correlator. Therefore, we only consider separately the case d/2−∆ ∈ N.

We consider these two cases below.

Case I: −∆ ∈ N
0. Renaming −∆ = n ∈ N

0, the Euclidean 2-point function can simply

be found in this case by using
∫

ddxx2n e−ip·x = (2π)d
(

−∂2
p

)n
δ(d)(p) , n ∈ N

0. (2.17)

In Lorentzian signature we have the same expression with x2 being the Lorentzian norm,

and hence with

∂2
p = ηµν∂pµ∂pν . (2.18)

Case II: d/2 − ∆ ∈ N. In this case, there are two possibilities. If d is an even integer,

for large enough N such that ∆ < 0, this case becomes the same as case I. For small enough

N such that ∆ > 0, or more generically when d is not an even integer, this case is different

from the previous, and we address it in the following.

Since the Euclidean 2-point function (2.4) is well-defined when d/2 −∆ = n ∈ N, we

can proceed as in the general case and perform a Wick rotation so as to rewrite (2.11) as

a Lorentzian Fourier transform.

The pE integral in (cf. (2.11))

G(x) =
22n πd/2 Γ(n)

Γ(d/2− n)

∫

dd−1~p

(2π)d−1
ei~p·~x

∞
∫

−∞

dpE

2π

e−pE(t−iǫ)

|p|2n , (2.19)
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can now no longer be rotated in the same way, since its integrand has poles rather than

branch cuts. However, this integral is now easier as it can be evaluated by the residue

theorem. The resulting expression can then be rewritten in terms of an integral over p0

with a Dirac δ-function, and gives

∞
∫

−∞

dpE

2π

e−pE (t−iǫ)

(p2E + |~p |2)n =
2π

Γ(n)

∞
∫

−∞

dp0

2π

e−ip0 (t−iǫ)

(p0 + |~p |)n ∂n−1
p0

δ(p0 − |~p |) . (2.20)

In the above step, the derivatives acting on the Dirac δ-function come from integrating by

parts the derivatives coming from the residue of the integral. Therefore, for d/2−∆ = n ∈ N

G(p) =
22n+1 πd/2+1

Γ(d/2− n)

∂n−1
p0

δ(p0 − |~p |)
(p0 + |~p |)n . (2.21)

In summary, from equations (2.15), (2.17) and (2.21), the Lorentzian 2-point function

of scalars with dimensions ∆ is

G∆(p) =

∫

ddx
e−ip·x

(

−(t−i ǫ)2+|~x|2
)∆

=







































(2π)d
(

−∂2
p

)−∆
δ(d)(p) −∆ ∈ N

0

πd/2+1

22∆−d−1 Γ(∆)

∂
d/2−∆−1
p0

δ(p0 − |~p |)
(p0 + |~p |)d/2−∆

d/2−∆∈N

πd/2+1 θ(p0 − |~p |)
22∆−d−1 Γ(∆− d/2+1) Γ(∆)

|p|2∆−d otherwise.

(2.22)

3 3-point function of scalars

In this section we compute the Lorentzian 3-point function of scalar operators in momentum

space. We obtain two different expressions for it, each of which we present in the next two

subsections: the momentum-integrated expression, which is an integrated product of three

2-point functions, and the triple-Bessel expression, which follows from the Wick rotation

of the analogous triple-K Euclidean correlator. In appendix B we compute the 3-point

correlator from a direct Fourier transform, albeit for the case of d = 4.

3.1 Momentum-integrated expression

The 3-point function of scalar operators in position space is given by [23],

〈O1(x1)O2(x2)O3(x3)〉 =
c123

(x223)
β1 (x213)

β2 (x212)
β3

, (3.1)

where

βj =
∆t

2
−∆j , ∆t = ∆1 +∆2 +∆3 , ∆t = 2βt . (3.2)

The conformal dimension of operator Oj is ∆j and the norm |xij |2 is the Euclidean,

Lorentzian norm of the separation xi − xj in Euclidean, Lorentzian signature respectively.
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In Lorentzian signature we also specify an iǫ prescription, tj−iǫj , that dictates the ordering

of operators as discussed in the previous section. In the above correlator it is ǫ1 > ǫ2 > ǫ3.

The factor c123 is the structure constant and depends on the conformal dimensions ∆j of

the operators.

The Fourier transform, and hence the correlator in momentum space is then given by

〈O1(p1)O2(p2)O3(p3)〉 =
∫ 3

∏

j=1

(

ddxj e
−ipj ·xj

) c123
(x223)

β1 (x213)
β2 (x212)

β3

= (2π)d δ(d)(p1 + p2 + p3)C(p1, p2; {βj}) , (3.3)

where

C(p1, p2; {βj}) = c123

∫

ddx1d
dx2

e−ip1·x1e−ip2·x2

(x22)
β1 (x21)

β2 (x212)
β3

. (3.4)

In the above, we have used the translation invariance of the position space correlator

to extract a momentum preserving δ-function. The δ-function stripped correlator is also

denoted using double angle brackets in the literature,

C(p1, p2; {βj}) ≡ 〈〈O1(p1)O2(p2)O3(p3)〉〉 . (3.5)

We will suppress the momentum dependence of C(p1, p2; {βj}), viz. write C({βj}), when
the momentum dependence is clear.

At the expense of introducing an extra momentum integral, we can reexpress the δ-

function stripped correlator (3.4) as a product of three 2-point functions

C({βj}) = c123

∫

ddk

(2π)d
Gβ1(p2 + k)Gβ2(p1 − k)Gβ3(k) . (3.6)

This is very convenient because we can now determine the 3-point correlator from the

expressions of the 2-point function presented in section 2.

The same holds in the Euclidean case for CE({βj}), but with the 2-point functions

above given by G
βj

E . In this case, when the βj are general, we insert the 2-point function

result (2.4), and the resulting δ-function stripped correlator is

CE({βj}) = c123 π
3d/2 23d−2βt

3
∏

j=1

Γ(d/2−βj)

Γ(βj)

∫

ddk

(2π)d
1

|p2 + k|d−2β1 |p1 − k|d−2β2 |k|d−2β3
.

(3.7)

This expression for the Euclidean 3-point function exhibits divergences in certain cases,

either in the Γ-functions in the (numerator or denominator of the) coefficient, and/or in

the momentum integral, and hence requires regularisation. Some of the singularities cancel

with each other, rendering the above expression finite, others simply remain and require

renormalisation in order to obtain a finite 3-point function. The analysis of the cases (sets

of βj) which require renormalisation has been carried out in [13], and it becomes easier

to do in terms of the triple-K expression for CE({βj}). We therefore postpone further

comments to the next subsection.
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We go back to the Lorentzian case. Since the 3-point function (3.6) is given in terms

of the 2-point functions Gβj , we get different expressions depending on the value of βj . We

first consider the case where the βj are general, separately from those when they satisfy

any of the special cases I and II discussed in section 2, for which the 2-point function is

given in terms of a Dirac δ-function.

General case: −βj 6∈ {N − d
2
, N0}. Using equations (3.6) and (2.15),

C(p1, p2; {βj}) = c({βj})
∫

ddk

(2π)d
θ(p0

2 + k0 − |~p2 + ~k|) θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)
|p2 + k|d−2β1 |p1 − k|d−2β2 |k|d−2β3

(3.8)

with

c({βj}) = c123
23(d+1)−2βt π3(d/2+1)

3
∏

j=1
Γ(βj − d/2 + 1) Γ(βj)

. (3.9)

This is the generic Lorentzian 3-point function. Notice that the step functions in the

integrand imply an overall

θ(p0

1 − |~p1|)θ(−p0

3 − |~p3|) . (3.10)

In other words, as for the 2-point function, the correlator vanishes unless the left-most

operator has a positive energy and the right-most operator has a negative energy. In

particular, the 3-point correlator vanishes when p1 = 0 or p3 = 0. For β2 + β3 > 1/2,

this can be understood from the formal expression of the Fourier transform (3.3). When

p1 = 0, the transform involves the integral

〈O1(0)O2(p2)O3(p3)〉 ∼
∫

ddx1
1

(x213)
β2 (x212)

β3
.

Since ǫ1 > ǫ2 > ǫ3, the t1 integrand has four branch points in the upper half plane and is

analytic in the lower half. The integral contour can then be closed on the lower half plane,

which shows that the above integral vanishes. Similarly, if p3 = 0, the branch points all lie

in the lower half plane, and enclosing the contour on the upper half plane gives a vanishing

integral. In the case p2 = 0, two branch points lie on the upper half plane, and two in the

lower, therefore it does not immediately follow that the integral vanishes.

When −βj ∈ N
0 or d/2−βj ∈ N, the 2-point functions are no longer given by (2.15) but

rather by the first two cases in (2.22) — the special cases I and II of the 2-point function

studied in section 2. We consider these cases next.

Case I: −βj ∈ N
0. Notice that this can only be the case for one of the βj . For two or

all of the βj to be simultaneously non-positive, at least one of the conformal dimensions

∆j would have to be negative, and this would violate the unitarity bound. Without loss of

generality we let β1 = −n, with n ∈ N
0. In this case, using (3.6) and the first line of (2.22),

we find

C(−n, β2, β3) = c(−n, β2, β3)
(

−∂2
p2

)n θ(p0

1 + p0

2 − |~p1 + ~p2|) θ(−p0

2 − |~p2|)
|p1 + p2|d−2β2 |p2|d−2β3

, (3.11)
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where

c(−n, β2, β3) = c123
22(d−β2−β3+1) πd+2

3
∏

j=2
Γ(βj − d/2 + 1) Γ(βj)

. (3.12)

Case II: d/2−βj ∈ N. If d is an even integer, for large enough N such that βj < 0, this

case becomes the same as the previous one. For small enough N such that βj > 0, or more

generically when d is not an even integer, this case is different from the previous, and the

expression for the 2-point function to be used is given by (2.21).

Without loss of generality we let β1 = d/2 − n, with n ∈ N. Using equation (3.6)

and (2.21),

C(d/2− n, β2, β3) = c(d/2− n, β2, β3)

∫

ddk

(2π)d
θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)
|p1 − k|d−2β2 |k|d−2β3

×
∂n−1
p02

δ(p0

2 + k0 − |~p2 + ~k|)

(p0

2 + k0 + |~p2 + ~k|)n
, (3.13)

with

c(d/2− n, β2, β3) = c123
4d+n−β2−β3+3/2 π3(d/2+1)

Γ(d/2− n)
3
∏

j=2
Γ(βj − d/2 + 1) Γ(βj)

. (3.14)

Since βj = d/2 − n with n a positive integer can be positive for small enough n, it

is possible for two or all of the {βj} to fall into case II. It is also possible to have one of

the {βj} satisfy case I. The expression in these cases follows likewise from the appropriate

replacements of the 2-point function (2.22) in expression (3.6).

If we insisted on using the general expression (3.8) for the special βj cases, we would

find that the coefficient c({βj}) in (3.9) vanishes due to Γ-functions with negative integer

arguments in the denominator, and that the momentum integral diverges. An appropriate

regularisation would then be required to obtain a finite expression for the 3-point function.

Considering instead the appropriate form of the 2-point functions that go into (3.6) ensures

that the obtained expression for the 3-point function has a non-vanishing coefficient. In

principle, the momentum integral of the final expression could still diverge, but it is in fact

always finite (possibly obtained by analytical continuation) because, as we will show in the

next subsection, the 3-point function is finite without requiring renormalisation.

3.2 Triple-Bessel expression

Equation (3.6) shows that the 3-point function, both in Euclidean and Lorentzian signa-

tures, can be written as the integral over an auxiliary momentum of a triple product of

2-point functions. In Euclidean space, the 3-point function can also be written as a single

integral over a triple product of modified Bessel functions of the second kind Kν [12, 27],

CE(p1, p2; {βj}) = cE({βj})
∞
∫

0

dt td/2−1
3
∏

j=1

|pj |νj Kνj (|pj | t) , (3.15)
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where

cE({βj}) = c123
24+3d/2−∆t πd

Γ
(

∆t−d
2

)

3
∏

j=1
Γ(βj)

, νj = ∆j −
d

2
=

∆t − d

2
− βj (3.16)

and p3 = −(p1 + p2).

This expression for the Euclidean 3-point function is divergent for certain sets of the

parameters βj , and requires regularisation and in some cases further renormalisation. An

advantage of this expression over the momentum-integrated one (3.7) is that all Γ-functions

in the coefficient appear now in the denominator. This means that the divergences can

only come from the t-integral, which simplifies the analysis. The t-integral diverges when

d/2 <
3

∑

j=1

|νj |. (3.17)

This is due to the behaviour of the integrand at small t, but in general the integral can be

defined by analytical continuation. However, when

d

2
± ν1 ± ν2 ± ν3 = −2n, n ∈ N

0 (3.18)

is satisfied for any independent choice of the ± signs in the three terms, the analytical

continuation fails [12].

For the cases which satisfy condition (3.18) with the sign choices (−−−) and (+−−)

(and permutations), the divergence of the integral implies that the above expression for

CE({βj}) also diverges and hence requires renormalisation; a thorough analysis has been

performed in [13]. However, in the cases which satisfy the other two sign choices, the

divergence turns out to cancel with the divergence in the denominator of the coefficient.

Indeed, the (+ + +) choice implies ∆t = d − 2n, in which case the first Γ-function in the

denominator diverges. The (− + +) choice (or permutations) implies β1 = −n, in which

case Γ(β1) in the denominator also diverges. So for the {βj} cases which satisfy (3.18) with

at least two + signs, CE({βj}) is finite despite the divergence of the t-integral, and is given

by regularisation.

We now turn to the Lorentzian case. The method used in the Euclidean case to

arrive at the triple-K formula (3.15) from the momentum integrated one (3.7) fails in the

Lorentzian case essentially because p2j is no longer positive definite. Nevertheless, we can

again compute the analogous expression for the Lorentzian 3-point function by means of a

formal Wick rotation of the Euclidean triple-K expression. As we emphasised in section 2,

in order to do this we must take into account the analytic properties of (3.15).

The starting point is

〈O1(x1)O2(x2)O3(x3)〉 = 〈O1(t
E

1 , ~x1)O2(t
E

2 , ~x2)O3(t
E

3 , ~x3)〉E
∣

∣

∣

∣

tEj =i (tj−i ǫj)

=

∫

ddp1
(2π)d

ddp2
(2π)d

CE(p1, p2; {βj}) ei p1·x13 ei p2·x23

∣

∣

∣

∣

tEj =i (tj−i ǫj)

.

(3.19)
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i |~p1 |

−i |~p1 |

−pE
2 + i |~p3|

−pE
2 − i |~p3|

pE
1

Figure 3. Closed contour of integration for the pE

1
integral. The contribution from the arc at

infinity vanishes, so the integral along the real axis is equal to that on each side of the two branch

cuts on the upper-half plane.

In the first line, the Lorentzian correlator is written in terms of the Euclidean one but with

Wick-rotated time coordinates and with the appropriate iǫ prescription, ǫ1 > ǫ2 > ǫ3. In

the second line, the Euclidean 3-point function has been rewritten in terms of its Fourier

transform, therefore the momenta are pj = (pE

j , ~pj), and the inner product is p · x =

pE τ + ~p · ~x.
Inserting the Wick-rotated time coordinates,5

〈O1(x1)O2(x2)O3(x3)〉

=

∫

ddp1
(2π)d

ddp2
(2π)d

CE(p1, p2) e
− pE1 (t13−i ǫ13) e− pE2 (t23−i ǫ23) ei ~p1·~x13 ei ~p2·~x23 . (3.20)

The Lorentzian correlator in momentum space is now found by rewriting the above integrals

as a (Lorentzian) Fourier transform, i.e. we need to Wick rotate pE = i p0.

We assume that the CFT is interacting and hence the operator dimensions are non-

integer and the νj are generic. We consider the integral over pE
1 first. From (3.15),

CE(p1, p2) has branch points on the pE
1 complex plane at

pE

1 = ± i |~p1|, pE

1 = −pE

2 ± i |~p1 + ~p2| , (3.21)

and at ∞.

Since ǫ13 > 0, we consider a contour in the upper half going around the branch cuts,

which extend from i |~p1| to +i∞, and from −pE
2 + i |~p1 + ~p2| to −pE

2 + i∞ (see figure 3).

The contributions from the arcs at infinity vanish because ǫ13 > 0. Since the integrand is

analytic in the region inside the contour, the integral over the real axis equals that along

5We denote the 3-point function (3.15) as CE(p1, p2), notationally dropping the explicit dependence on

the conformal dimensions of the operators.
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each side of the branch cuts

∞
∫

−∞

dpE
1

2π
e− pE1 (t13−i ǫ13) |p1|ν1 |p1 + p2|ν3 Kν1(|p1| t)Kν3(|p1 + p2| t)

= π

∞
∫

|~p1|

dp0

1

2π
e−i p01(t13−i ǫ13)

[

( p0

1)
2 − |~p1|2

]ν1 [

(i p0

1 + pE

2 )
2 + |~p1 + ~p2|2

]ν3/2

× Jν1

(

√

( p0

1)
2 − |~p1|2 t

)

Kν3

(

√

(i p0

1 + pE
2 )

2 + |~p1 + ~p2|2 t
)

+ π

∞
∫

|~p1+~p2|

dp0

1

2π
e−(i p01−pE2 )(t13−i ǫ13)

[

(i p0

1 − pE

2 )
2 + |~p1|2

]ν1/2 [

(p0

1)
2 − |~p1 + ~p2|2

]ν3/2

×Kν1

(

√

(i p0

1 − pE
2 )

2 + |~p1|2 t
)

Jν3

(

√

(p0

1)
2 − |~p1 + ~p2|2 t

)

, (3.22)

where in the first line |p| is the Euclidean norm and we have used the identity6

− π i Jν(z) = eνπi/2Kν(z e
iπ/2)− e−νπi/2Kν(z e

−iπ/2) (3.23)

to rewrite the K-Bessel function in terms of the Bessel function of the first kind.

Note that, as in section 2, there are also contributions from the cups around the branch

points (denoted Cc in figure 2) but in this case these contributions vanish because

lim
ǫ→0

ǫν+1Kν(ǫ) = 0. (3.24)

FromWick rotating pE
1 we get two integrals, hence we need to consider two pE

2 integrals:

∞
∫

−∞

dpE
2

2π
e− pE2 (t23−i ǫ23) |p2|ν2

[

(i p0

1 + pE

2 )
2 + |~p1 + ~p2|2

]ν3/2

×Kν2 (|p2| t) Kν3

(

√

(i p0

1 + pE
2 )

2 + |~p1 + ~p2|2 t
)

(3.25)

with p0

1 ≥ |~p1|, coming from the first integral on the r.h.s. of (3.22), and

∞
∫

−∞

dpE
2

2π
ep

E
2 (t12−i ǫ12)

[

(i p0

1 − pE

2 )
2 + |~p1|2

]ν3/2 |p2|ν2

×Kν1

(

√

(i p0

1 − pE
2 )

2 + |~p1|2 t
)

Kν2 (|p2| t) (3.26)

with p0

1 ≥ |~p1 + ~p2|, coming from the second integral on the r.h.s. of (3.22). Note that the

exponential in the second integral is slightly modified because of the ep
E
2 (t13−i ǫ13) factor

coming from the second integral in the Wick rotation of the pE
1 integral, (3.22).

6Note that we have chosen the branch cut for the K-Bessel function to run along the imaginary axis

rather than the negative real line hence there’s a subtlety in translating standard identities to our case.

However, in most cases, such as here, the identities are unaffected by this issue.
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For the first integral, (3.25), we again consider a closed contour in the upper half

complex pE
2 -plane going around the branch cuts. The integrand has branch points at

pE

2 = ±i |~p2|, pE

2 = −i p0

1 ± i |~p1 + ~p2| (3.27)

and at ∞. We are only interested in branch points in the upper half plane, i.e. i |~p2|, and
also possibly −i p0

1+ i |~p1+ ~p2| depending on whether |~p1+ ~p2| > p0

1. In any case, using the

triangle inequality and p0

1 ≥ |~p1|,

− p0

1 + |~p1 + ~p2| ≤ |~p2| . (3.28)

Considering separately the two cases where there are one or two branch points on the upper

half plane, the pE
2 integral can be written in terms of an integral over p0

2, as was done for

pE
1 in equation (3.22).

The second integral (3.26) can be treated in the same way. In this case though, because

of the modification in the exponent and the fact that ǫ12 > 0, we need to consider a contour

in the lower half of the pE
2 -plane. The branch points of the integrand in (3.26) are at

pE

2 = ±i |~p2| , pE

2 = i p0

1 ± i |~p1| (3.29)

and ∞. Since in this case p0

1 ≥ |~p1 + ~p2|, using the triangle inequality

p0

1 − |~p1| > −|~p2| .

Hence we again have two cases to consider depending on whether p0

1 − |~p1| is positive or

negative.

Putting all these results together we rewrite the integral (3.20) as a Fourier transform,

from which we identify the Lorentzian 3-point function in momentum space to be

C(p1, p2; {βj}) =
π2

2
θ(p0

1 − |~p1|) θ(−p0

3 − |~p3|) cE({βj})
∞
∫

0

dt td/2−1
3
∏

j=1

p
νj
j (3.30)

×
{

2 θ(p0

2 + |~p2|) θ(|~p2| − p0

2) Jν1(p1 t)Kν2(p2 t) Jν3(p3 t)

− π θ(p0

2 − |~p2|) Jν1(p1 t) [Jν2(p2 t)Yν3(p3 t) + Yν2(p2 t) Jν3(p3 t)]

− π θ(−p0

2 − |~p2|) [Jν1(p1 t)Yν2(p2 t) + Yν1(p1 t) Jν2(p2 t)] Jν3(p3 t)
}

,

where on the r.h.s. pj denotes the Lorentzian norm
√

|(p0

j)
2 − |~pj |2|; p3 = −(p1 + p2) as

a d-vector; the coefficient cE is defined in (3.16); and Yν(z) is the Bessel function of the

second kind. In deriving the above expression we have used

e−νπi/2Kν(e
−iπ/2z) =

i π

2
(Jν(z) + i Yν(z)) , z ∈ R , (3.31)

and its complex conjugate.

In comparison to the Euclidean 3-point function (3.15), it is clear that the Lorentzian

one is more complicated because it has to incorporate complicated causal relations which

are partly achieved through the Heaviside step functions.

– 16 –



J
H
E
P
0
1
(
2
0
2
0
)
1
4
2

A consistency check can be found by complex conjugating the definition of

C(p1, p2; {βj}),

〈O1(x1)O2(x2)O3(x3)〉∗ =
∫

ddp1
(2π)d

ddp2
(2π)d

e−i p1·x13 e−i p2·x23 C(p1, p2; {βj})∗ . (3.32)

First let us consider the Euclidean case. The Euclidean correlator in position space is real,

hence reparametrising the momenta integrals by letting pj → −pj , we find that

CE(p1, p2; {βj})∗ = CE(−p1,−p2; {βj}) . (3.33)

We can verify that the expression given in equation (3.15) indeed satisfies the consistency

condition above, for CE is real and only depends of the norm of the momenta.

In the Lorentzian case, the consistency condition is complicated by the fact that the

correlators in position space are not strictly real because of the i ǫ prescription that specifies

the order of operators in the correlation function. In fact

〈O1(x1)O2(x2)O3(x3)〉∗ = 〈O3(x3)O2(x2)O1(x1)〉 . (3.34)

Hence equation (3.32) becomes

〈O3(x3)O2(x2)O1(x1)〉 =
∫

ddp1
(2π)d

ddp2
(2π)d

ei (p1+p2)·x31 e−i p2·x21 C(p1, p2; {βj})∗ , (3.35)

where on the r.h.s. we have rearranged the terms so that the xj-dependence of the expo-

nentials are such that they define an appropriate Fourier transform of the correlator on

the l.h.s. Therefore, from the above equation the consistency condition on the Lorentzian

3-point function in momentum space is

C(p1, p2;β1, β2, β3)
∗ = C(p1 + p2,−p2;β3, β2, β1) . (3.36)

The Lorentzian 3-point function (3.30) is real and it is straightforward to verify that it

satisfies the above relation.

3.2.1 Finiteness of the Lorentzian 3-point function

We now analyse possible divergences of this triple-Bessel expression, and start with those

coming from the upper limit of the t-integral. Given that the modified Bessel function

Kν(z) behaves as a decaying exponential at large z (see (A.5)), the first integral Jν1Kν2Jν3
does not have a divergence coming form the large t region. Instead, the JY J integrals

do because both Jν(z) and Yν(z) only decay as a power law. It follows in fact that the

JY J integrals only exhibit large-t convergence if d < 5, since the large t contribution is of

the form
∞
∫

dt t
d
2
− 5

2 eit. (3.37)

However, the expression above is given by 1F2(− 1

4
) generalised hypergeometric functions

which are entire. Hence the integral can be analytically continued to all d.
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Just as in the case of the Euclidean triple-K expression, the t-integral in (3.30) can

diverge for certain values of the βj due to the behaviour of the integrand at small t. Indeed,

taking into account the expansions of the different Bessel functions, (A.4), involved, the

triple-Bessel expression only converges if

d

2
> sup{|ν1| − ν2 − ν3, |ν2| − ν1 − ν3, |ν3| − ν1 − ν2}. (3.38)

Note that this is weaker than the analogous condition in the Euclidean case (3.17). If

the above is not satisfied, the integral in principle diverges, but it can be defined by

analytical continuation, as explained in [12]. However, from the expansion of the Bessel

functions (A.4) follows that the analytic continuation of the Jν1Kν2Jν3 integral fails if

d/2 + ν1 ± ν2 + ν3 = −2n, n ∈ N
0. (3.39)

A similar reasoning follows for the JY J (and permutations of Y ) integrals in (3.30). So

the t-integral is divergent if either of the following conditions hold

d

2
+ νt = −2n or

d

2
+ νt − 2νj = −2n, n ∈ N

0. (3.40)

If we compare these conditions with those for the triple-K expression (3.18),

d/2± ν1 ± ν2 ± ν3 = −2n, (3.41)

we can see that the former are a subset of the latter, where only the sign choices with

(+++) and (++−) and permutations are included. The reason is that in the Lorentzian

case, each term of the triple-Bessel expression contains at least two Jν functions. Since

Jν(z) ∼ zν for small z, this ensures that the divergence condition contains at least two

+ signs.

This difference is important, because (3.40) is equivalent to

∆t − d = −2n or βj = −2n; (3.42)

in either case the coefficient cE({βj}) vanishes due to the Γ-functions in the denominator.

This implies that in all cases when the t-integral diverges, the coefficient vanishes, and

therefore a regularisation can be used to render the triple-Bessel expression finite, hence

requiring no renormalisation (see next section for an example of this). This is an important

distinction with the Euclidean case, where as argued below (3.17), in the cases with the

(−−−) and (+−−) sign options, the integral diverges and the coefficient is finite, hence

the 3-point function requires renormalisation [13].

3.3 Check

In the Euclidean case, it can be shown that the momentum-integrated expression of the

Euclidean 3-point function (3.7) is equivalent to the triple-K form (3.15) [12]. We have

Wick rotated each expression to obtain the Lorentzian 3-point function as a momentum

integral, section 3.1, and as a triple-Bessel expression, expression (3.30). As a check,
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however, we consider the 3-point function for scalars of dimension ∆j = 1, which implies

βj = −νj = 1/2, in d = 3.

The Euclidean 3-point function in this case, from either equation (3.7) or (3.15), is [12]

CE({1/2}) =
1

p1p2p3
, (3.43)

where we have chosen c123 = (2π)−3. Directly Wick rotating this expression to Lorentzian

space using the method outlined in this paper, the Lorentzian correlator is

C({1/2}) = 4

|p1| |p2| |p3|
θ(p0

1 − |~p1|) θ(−p0

3 − |~p3|) θ(p0

2 + |~p2|) θ(|~p2| − p0

2). (3.44)

We now consider the momentum-integrated expression. The case we are considering of

βj = 1/2 corresponds to a special case where the three 2-point functions being integrated

are of the case II type. Using equations (3.6) and (2.21), the momentum-integrated 3-point

function is given by

C({1/2}) =
∫

d3k
δ(p0

2 + k0 − |~p2 + ~k|) δ(p0

1 − k0 − |~p1 − ~k|) δ(k0 − |~k|)
|~p2 + ~k| |~p1 − ~k| |~k|

. (3.45)

A straightforward, yet tedious, calculation confirms that the above integral agrees

with (3.44). For details on this computation see appendix C.

Finally, we consider the triple-Bessel expression (3.30) for νj = −1/2, which is not

well-defined since it satisfies the divergent condition (3.40) and requires regularisation.

This can be done by letting

d → d+ 2ǫ, ∆j → ∆j + ǫ. (3.46)

This regularisation is convenient because it regularises the power of t in the integrand but

leaves the indices νj of the Bessel functions intact.

Using

J−1/2(x) =

√

2

πx
cosx, Y−1/2(x) =

√

2

πx
sinx, K−1/2(x) =

√

π

2x
e−x, (3.47)

and the regularisation above we find that the Jν1Kν2Jν3 integral of (3.30) acquires a 1/ǫ

pole, while the other JJY integrals are actually finite. When multiplied with the cE({βj})
coefficient (3.16), which is proportional to ǫ, only the former contributes, and (3.30) reduces

to (3.44).

4 Tensorial correlators

There are at least two ways to calculate tensorial correlators in momentum space. The

first is to write down a tensorial decomposition in terms of the momenta that satisfy the

properties of the tensors in the correlator — for example conservation or tracelessness. The

form factors are then found by solving conformal Ward identities. This is the method that

is used in ref. [12] in order to find Euclidean 3-point correlators. The form factors in the
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Euclidean case are given by triple K-integrals of the form (3.15) with general exponents

for the variables in the integral that are determined in each case. The advantage of this

approach is that the properties of the tensors in the correlator are explicit and all correlators

are given by the same basic building blocks, namely the triple K-integral.

An alternative approach to find tensorial correlators is to directly use the 3-point

function of scalars. As we explain below, since tensorial correlators in position space are

given by tensorial structures involving positions, tensorial correlators in momentum space

are then just momentum derivatives of scalar correlators. The advantage of this approach

is that once the scalar correlator is known, it is straightforward, in principle, to find all the

tensorial correlators. The disadvantage is that the properties of tensors in the correlation

functions, such as tracelessness, are obscured and are not explicit. For example, in the

Euclidean case this approach leads to correlators that are not immediately the same as

the tensorial correlators in ref. [12]. They are related to each other up to boundary terms,

which is subtle when the triple-K integral is divergent.

Of course, we can also Wick rotate the tensorial correlators in ref. [12]. However,

already for the scalar case, the Lorentzian triple Bessel function form (3.30) is significantly

more involved than the Euclidean triple-K integral. Hence we will take the second approach

outlined above to find tensorial 3-point correlators using the scalar correlator.

By translation invariance the tensorial part of correlators with tensors is given by the

differences of the position vectors xµ1 , x
µ
2 , x

µ
3 . Namely a general correlator will be a sum of

terms of the form
xµ1

ij xµ2

kl . . .

(x223)
β1 (x213)

β2 (x212)
β3

, (4.1)

where i 6= j, k 6= l ∈ {1, 2, 3}, as can be verified by referring to the expressions in ref. [23].

Consider again the Fourier transform of the Lorentzian 3-point function of scalar opera-

tors, (3.3),7

∫ 3
∏

j=1

(

ddxj e
−ipj ·xj

) 1

(x223)
β1 (x213)

β2 (x212)
β3

= (2π)d δ(d)(p1+p2+p3)C(p1, p2; {βj}) . (4.2)

When we write the Fourier transform of a tensorial correlator, the xµ1

ij from expression (4.1)

becomes a difference of partial derivatives with respect to the momenta pi and pj , which

then act on the scalar Fourier transform above. On the rhs, the momentum preserving

δ-function commutes with the difference of partial derivatives, hence we need just consider

derivatives of the δ-function stripped correlator C(p1, p2; {βj}).
For example consider the following integral

∫

∏

i

ddxi e
−ipi·xi

x12 µx12 ν

(x223)
β1 (x213)

β2 (x212)
β3

= −(2π)dδ(p1 + p2 + p3)

(

∂

∂pµ1
− ∂

∂pµ2

)(

∂

∂pν1
− ∂

∂pν2

)

C(p1, p2; {βj}) (4.3)

with β3 > d/2 + 1.

7In all of this section, the C(p1, p2; {βj}) function and the coefficients c({βj}) do not include the 3-point

function coefficient c123.
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Consider first
(

∂

∂pν1
− ∂

∂pν2

)

C(p1, p2; {βj}). (4.4)

Using expression (3.8) for C(p1, p2; {βj}), and reparametrising the k-integral as k → k−p2,

only one derivative needs to be computed, and this becomes equal to

(2β3−d)c({βj})
∫

ddk

(2π)d
θ(k0−|~k|) θ(p0

1+p0

2−k0−|~p1+~p2−~k|) θ(k0−p0

2 − |~k − ~p2|)
|k|d−2β1 |p1 + p2 − k|d−2β2 |k − p2|d−2β3+2

(p2−k)ν ,

(4.5)

where notice that

|k − p2|2 = − (k − p2)
2 (4.6)

and the derivative of the Heaviside step function

∂pµ2 θ(k
0 − p0

2 − |~k − ~p2|) = (k − p2)µ
δ(k0 − p0

2 − |~k − ~p2|)
|~k − ~p2|

, (4.7)

gives a vanishing contribution because of the factor of (k − p2)
2 with a positive power. If

we had not chosen β3 large enough, this derivative would also contribute.

Acting next with −(∂pµ1 − ∂pµ2 ) on (4.5), and reparametrising k → k + p2 gives

−(2β3 − d) c({βj})
∫

ddk

(2π)d
θ(p0

2 + k0 − |~p2 + ~k|) θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)
|p2 + k|d−2β1 |p1 − k|d−2β2 |k|d−2β3

× (2β3 − 2− d)kµkν − |k|2 ηµν
|k|4 . (4.8)

Hence this is the δ-function stripped Fourier transform on the l.h.s. of equation (4.3).

As a consistency check, we take the trace of the above expression (4.8), and obtain

c(β1, β2, β3 − 1)

∫

ddk

(2π)d
θ(p0

2 + k0 − |~p2 + ~k|) θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)
|p2 + k|d−2β1 |p1 − k|d−2β2 |k|d−2(β3−1)

, (4.9)

confirming that

ηµν
∫

∏

i

ddxi e
−ipi·xi

x12 µx12 ν

(x223)
β1 (x213)

β2 (x212)
β3

=

∫

∏

i

ddxi e
−ipi·xi

1

(x223)
β1 (x213)

β2 (x212)
β3−1

.

(4.10)

4.1 〈OTµνO〉 correlator

Having explained the general method for calculating tensorial correlators in the previous

section, we apply the procedure to a correlator of two identical scalar operators O and an

energy-momentum tensor Tµν . This correlator is used in the next section to calculate the

expectation value of the ANEC operator in a state created by the operator O.

In position space [23],

〈O(x1)Tµν(x2)O(x3)〉

=
a

xd−2
23 x2∆−d+2

13 xd−2
12

((

x12 µ

x212
− x32 µ

x232

)(

x12 ν

x212
− x32 ν

x232

)

− 1

d

x213
x212 x

2
23

ηµν

)

(4.11)
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where

xµij = (tij − iǫij , ~xij) (4.12)

and ǫij > 0 for i < j, otherwise negative.

The δ-function stripped correlator in momentum space is then

〈〈O(p1)Tµν(p2)O(p3)〉〉 = a

(

∂

∂pµ2
− ∂

∂pµ1

)(

∂

∂pν1
− ∂

∂pν2

)

C

(

p1, p2;
d− 2

2
,∆+1− d

2
,
d+ 2

2

)

+ 2 a

(

∂

∂p
(µ
2

− ∂

∂p
(µ
1

)

∂

∂p
ν)
2

C

(

p1, p2;
d

2
,∆+ 1− d

2
,
d

2

)

− a
∂

∂pµ2

∂

∂pν2
C

(

p1, p2;
d+ 2

2
,∆+ 1− d

2
,
d− 2

2

)

− a

d
ηµν C

(

p1, p2;
d

2
,∆− d

2
,
d

2

)

, (4.13)

where we have used the fact that the C have no dependence on p3. Using the results of

section 3.1,

C

(

d− 2

2
,∆+ 1− d

2
,
d+ 2

2

)

=
c

a

∫

ddk

(2π)d
θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)
|p1 − k|2(d−1−∆) |k|−2

δ(p0

2 + k0 − |~p2 + ~k|)
|~p2 + ~k|

, (4.14)

C

(

d+ 2

2
,∆+ 1− d

2
,
d− 2

2

)

=
c

a

∫

ddk

(2π)d
θ(p0

1 − k0 − |~p1 − ~k|) θ(p0

2 + k0 − |~p2 + ~k|)
|p1 − k|2(d−1−∆) |p2 + k|−2

δ(k0 − |~k|)
|~k|

, (4.15)

C

(

d

2
,∆+ 1− d

2
,
d

2

)

=
2 d c

(d− 2) a

∫

ddk

(2π)d
θ(p0

2 + k0 − |~p2 + ~k|) θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)
|p1 − k|2(d−1−∆)

, (4.16)

where

c =
4d−1−∆ π3(d/2+1) d(d− 2) a

Γ(∆ + 1− d/2) Γ(∆ + 2− d) Γ(d/2 + 1)2
. (4.17)

We note that C
(

d−2
2 ,∆+ 1− d

2 ,
d+2
2

)

has a δ(p0

2 + k0 − |~p2 + ~k|). Reparametrising

the k-integral by letting k → k − p2 as we did in the general tensorial example, turns the

argument of the δ-function into k0 − |~k|, hence becoming independent of p1 and p2. This

allows us to avoid derivatives of the Dirac δ-function when evaluating the r.h.s. of (4.13).
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Using identity (4.7), it is straightforward to show that

〈〈O(p1)Tµν(p2)O(p3)〉〉= −4 c

∫

ddk

(2π)d
θ(k0) θ(p0

2 + k0) θ(p0

1 − k0 − |~p1 − ~k|)
|p1 − k|2(d−1−∆)

(4.18)

×
([

8(d− 1)

d− 2

(

kµkν + k(µp2 ν)

)

+ 2 p2 µp2 ν

]

δ(k2) δ((p2 + k)2)

− θ(k0 − |~k|) δ((p2 + k)2) ηµν − θ(p0

2 + k0 − |~p2 + ~k|) δ(k2) ηµν

+
(2∆− d)(∆− d+ 1)

d− 2

θ(k0 − |~k|) θ(p0

2 + k0 − |~p2 + ~k|)
|p1 − k|2 ηµν

)

,

where we have used

θ(p0)δ(p2) =
δ(p0 − |~p |)

2 |~p | . (4.19)

Equation (4.18) is valid for any dimension except for d = 2 dimensions. This is because

in that case, the first and third C-functions required in (4.13) are not of the case II type,

but rather of the case I type of section 3.1, and hence are not given by (4.14), (4.15). The

d = 2 correlator can then be computed by using (3.11) instead.

Note that the expression we have given, (4.18), is not manifestly traceless or transverse.

In fact,

pν2 〈〈O(p1)Tµν(p2)O(p3)〉〉 =
p2µ
d

〈〈O(p1)T
µ
µ(p2)O(p3)〉〉. (4.20)

As we have already mentioned, when the tensorial properties are not manifest, integration

by parts is required to show them. When ∆ > d − 1, we can show that the trace is

proportional to a total derivative, viz.

∫

ddk

(2π)d
ηµν

∂

∂kµ

(

∂

∂kν
+ 2

∂

∂pν

)

θ(k0) θ(p0

2 + k0) θ(p0

1 − k0 − |~p1 − ~k|)
|p1 − k|2(d−1−∆)

. (4.21)

Hence the correlator is traceless and transverse. When ∆ ≤ d − 1 the analysis becomes

more involved because the derivative of the step function θ(p0

1−k0−|~p1−~k|) leads to terms

the form xaδ(x) for a < 0 which must be regularised.

In the example at the start of this section, we calculated the r.h.s. of expression (4.3)

by first reparametrising the integration variable k; had we not done this we would have

obtained a more complicated expression for which the trace consistency check would not

have been straightforward. In fact, to prove expression (4.10) in that case would have

required integration by parts. This illustrates the point made at the start of this section

that tensorial identities are not guaranteed to be manifest in this method and that one

may have to use integration by parts in order to prove them.

The OTO correlator computed satisfies the transverse and trace Ward identities with-

out contact terms, consistent with the iǫ prescription in position space. We leave the impli-

cations of this for the interpretation of anomalies in Lorentzian signature for future work.

We can use the same methods outlined in this section to calculate other tensorial

correlators. While the procedure in all cases is simple, technically the calculation does

become quite complicated if there are a lot of tensors. It is foreseeable that there is a
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structure underlying these expressions that lends itself to generalisation; such a structure

would, for example, make the tensorial properties of the correlators manifest. It may also

be possible that the triple Bessel form of the 3-point function can be used to write down

tensorial correlators systematically, as in [12]. We wish to report on this direction in a

separate manuscript.

5 ANEC expectation values on Hofman-Maldacena states

As an application of the expression obtained in the previous section for 〈O Tµν O〉 we use it
here to reproduce the positivity of the ANEC operator when evaluated on the simplest type

of the Hofman-Maldacena states, namely those generated by scalar operators [2, 24, 28],

but in momentum space. Also, we generalise this to general dimension d.

In the conformal-collider experiments [24], one places calorimeters on a 2-sphere at in-

finity. These calorimeters measure the energy produced by some CFT operator O localised

around the center of the sphere. The measurement of a calorimeter is then given by the

expectation value of the time-integrated energy-momentum tensor on a state created by

the operator O, hence by a conformal 3-point function of the type 〈O
∫

T O〉. In fact, since

the energy-momentum tensor is inserted at infinity, the integral over time of its energy

component becomes the ANEC operator,

E =

∫

dx− T−−. (5.1)

Given that conformal 3-point correlators are completely fixed up to constants, requir-

ing positivity of the integrated energy measurement places bounds on these constants.

Concretely, when the normalised expectation value is computed on a state created by a

scalar operator, the constant is simply a numerical coefficient, and is indeed positive. When

the normalised expectation value is computed on a state created by the energy-momentum

tensor itself, the constants depend on the conformal anomalies, and thus in four dimensions

the positivity condition puts bounds on the a and c central charges.

To compute the bounds, Hofman-Maldacena used a particular type of states, namely

wave packets with purely-timelike momentum

|O(q)〉 ≡
∫

ddx e−iqt e−
t2+~x2

σ2 O(x) |0〉 . (5.2)

They consider them in the regime q σ ≫ 1, which ensures that the operator has finite

norm and is localised near the origin, which can be understood as a requirement for IR

finiteness. In the calculation however, the Gaussian factor can be dropped. As pointed

out in ref. [2], this can lead to unphysical divergences, but these can be regularised with

dimensional regularisation, we disregard this issue in the following.

The Hofman-Maldacena states yield optimal bounds for the ratios of the two anomaly

coefficients [2], because of the fact that the ANEC operator is inserted at null infinity.

There, it commutes with the momentum operator [E , P ] = 0, hence momentum eigenstates

are also eigenstates of the ANEC operator.8 As a consequence, 〈E〉 becomes diagonal on

these wave packets, and its positivity gives the most stringent constraints.

8We thank Alexander Zhiboedov for pointing this out to us.
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For simplicity, the ANEC operator can be placed at x2 = (t, r,~0 ), which would cor-

respond to putting a calorimeter in the ‘x’ direction. We define light-cone coordinates for

this point x± = t± r. Positivity of the ANEC operator on these states then reads

〈E〉 = lim
r→∞

rd−2 〈O(q)†
∞
∫

−∞

dx− T−−(x
+, x−)O(q)〉 ≥ 0 . (5.3)

Once expression (5.2) for the states is introduced in the above and the position integrals

have been pulled out of the correlator, we can use translation invariance to put the scalar

operator to the right at x3 = 0. The corresponding ddx3 integral becomes an overall factor,

which will cancel with an identical factor when normalising 〈E〉 with the 2-point function

〈O(q)O(−q)〉, see (5.15) (we will henceforth omit this factor). With these manipulations,

and assuming that the scalar operator is real, Hofman-Maldacena [24] claim that

〈E〉 = lim
r→∞

rd−2

∫

ddx1 e
iqt1 〈O(x1)

∞
∫

−∞

dx− T−−(x
+, x−)O(0)〉 . (5.4)

evaluates the expectation value. As we shall see later, in momentum space it becomes

clear that this quantity is indeed an expectation value and the r → ∞ is in fact necessary.

To compute this expectation value in momentum space, we note that the scalar operator

to the left is effectively already in momentum space, with momentum (q,~0 ). We further

rewrite the other two operators in terms of their Fourier transforms. In particular, for the

ANEC operator,
∫

dx−
∫

ddp

(2π)d
ei(−p0t+p1r) T−−(p) = 2

∫

ddp

(2π)d−1
δ(p0 + p1) e−i p

0
−p1

2
x+

T−−(p) , (5.5)

where the Dirac δ-function can be further integrated. Substituting the Fourier transforms

in (5.4),

〈E〉 = 2 lim
r→∞

rd−2

∫

dd−1~p

(2π)d−1
e2ip

1r〈〈O(q,~0 )T−−(−p1, ~p )O(p1 − q,−~p )〉〉 . (5.6)

Using

k− = −1

2
k+, where k+ = k0 + k1 , (5.7)

and expression (4.18) calculated in last section, the expectation value (5.6) becomes

〈E〉 = −4 (d− 1) c

d− 2
lim
r→∞

rd−2

∫

dd−1~p

(2π)d−1
e2ip

1r

∫

ddk

(2π)d
θ(q − k0 − |~k|)

((q − k0)2 − |~k|2)d−1−∆

× k+
δ(k0 − |~k|)

|~k|
δ (p1 + p1

s) , (5.8)

where c is defined in (4.17), and p1

s = 2 k̂·p̂+|p̂|2

2k+
. k̂ is the (d − 2)-dimensional transversal

vector, k = (k0,~k ) = (k0, k1, k̂), and similarly for p. We have also used

δ(k2) =
δ(k0 − |~k|)

2 |~k|
(5.9)
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(since k0 > 0), to simplify

θ(k0 − p1) δ((q − k0)2 −
∣

∣~k + ~p
∣

∣

2
) =

1

2 k+
δ (p1 + p1

s) . (5.10)

The p1 integral can now be evaluated with the Dirac δ-function, leaving a dd−2p̂ inte-

gral. We next perform the change of variables

k̂ =
l̂

x+
− p̂

2
(5.11)

with which the factor rd−2 in front of the integral is reabsorbed in the measure of the

dd−2k̂, making the integral finite. With this change of variables p1

s ∼ 1/x+, hence goes to

zero except in the exponential, which becomes

e−i p̂·l̂

k+ . (5.12)

The dd−2 l̂ integral of the above exponential gives now a Dirac δ-function δ(d−2)(p̂). Together

with the previous one in (5.8), which after the limit becomes δ(p1), these d − 1 Dirac δ-

functions δ(d−1)(~p ) make explicit that 〈E〉 is an expectation value, since they turn (5.6) into

〈E〉 ∼ 〈〈O(q,~0 )T−−(0,~0 )O(−q,~0 )〉〉 . (5.13)

The need for the r → ∞ limit and the nature of this expectation value is therefore much

more clear in momentum space.

After the above Dirac δ-functions have been performed, the only two remaining inte-

grals are those of dk0dk1. The first can be performed with the remaining δ(k0 − |~k|), and
the last integral can then simply be performed. All these steps make it clear that, unlike

the calculation of 〈E〉 in position space where one has to evaluate complicated integrals,

in momentum space the expectation value reduces to integrals of δ-functions and is hence

much simpler.

The final result is

〈E〉 = − 8 (d− 1) c

(d− 2) (2π)d+1
q∆+1−d

q/2
∫

0

dk0 (k0)d−2 (q − 2 k0)∆+1−d

= − 21−2∆ πd/2+2 Γ(d+ 1) a

Γ(∆ + 1)Γ(∆ + 1− d/2) Γ(d/2 + 1)2
q2∆+1−d , (5.14)

where we have used equation (4.17). We now normalise this expectation value with the

2-point function 〈O(q)O(−q)〉, with O given again by (5.2) (and as before, dropping the

Gaussian factors),

〈O(q)O(−q)〉 =
∫

ddx1d
dx3 e

iq(t1−t3)〈O(x1)O(x3)〉 . (5.15)

Using translation invariance to put x3 = 0 in the correlator, we are left again with an

overall ddx3 integral, which cancels the identical one in 〈E〉 in the numerator. Further

writing the correlator in terms of its Fourier transform,

〈O(q)O(−q)〉 =
∫

ddx1 e
iqt1

∫

ddp

(2π)d
eip·x1 N G∆(p) , (5.16)
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where N is now the normalization of the 2-point function (which is set to 1 in the rest of

the paper). Introducing the expression for G∆(p) given by (2.15), we obtain

〈O(q)O(−q)〉 = N
πd/2+1

22∆−d−1 Γ(∆)Γ(∆− d/2 + 1)
q2∆−d (5.17)

where we have omitted the Heaviside step function since we have assumed q > 0.

Using now the relation between the normalization of the 2-point function N and that

of the 3-point function a which follows from Ward identities [23],

a = −∆Γ(d/2 + 1)

(d− 1)πd/2
N, (5.18)

we find
〈E〉

〈O(q)O(−q)〉 =
q

Sd−2
(5.19)

where

Sd−2 =
2π(d−1)/2

Γ(d−1
2 )

(5.20)

is the surface area of a (d−2)-sphere. This confirms the positivity of the ANEC expectation

value.

6 Discussion

In this paper we study the 3-point function of Lorentzian CFTs in momentum space. We

present the scalar 3-point function and give a prescription for calculating tensorial ones.

The scalar 3-point function is presented both as an integral over an auxiliary momen-

tum (3.8) and also as a triple-Bessel integral (3.30). While the two expressions can be

related via the analogous Euclidean expressions and we have checked that they are equiv-

alent in a particular example, we have yet to understand the relation between them in

Lorentzian space. Such a study could yield much simpler expressions for tensorial corre-

lators and lead to a more comprehensive understanding akin to the Euclidean case [12].

Furthermore, while we show how any tensorial 3-point correlator can be determined from

the scalar 3-point function, the tensorial properties of the correlator may be obscured in

the result. We hope to address these points in the future.

The iǫ prescription in position space seems to indicate that renormalisation is not re-

quired in Lorentzian signature as opposed to Euclidean. Our analysis in section 3.2.1 shows

that our expression for the scalar 3-point function is consistent with this claim, since the

cases which exhibit divergences in Euclidean signature do not arise in Lorentzian signature

because of the different Bessel functions appearing. However, the issue of renormalisation

in Lorentzian signature requires further investigation that we leave for future work.

We use our results to calculate the expectation value of the ANEC operator in states

created by scalar operators. While this is the least interesting positivity result, simply stat-

ing that the state has positive energy, our calculation shows how natural such a computation

is in momentum space compared to the position space calculation [24]. In particular, in

– 27 –



J
H
E
P
0
1
(
2
0
2
0
)
1
4
2

momentum space the expectation value simply reduces to integrals over δ-functions with

the role of the r → ∞ limit becoming much clearer — in this limit it is manifest that

the transversal momenta of the ANEC operator vanish, (5.13). This is convincing evi-

dence that questions regarding ANEC may be more suitably framed in momentum space.

By providing Lorentzian CFT correlators in momentum space, we hope that this is now

possible.
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A Conventions and formulae

We use the (−+++) signature. Our convention for the Fourier transform is

f̃(p) =

∫

ddx e−ip·x f(x) , f(x) =

∫

ddp

(2π)d
eip·x f̃(p) . (A.1)

The Dirac δ-function is

δ(d)(p) =

∫

ddx

(2π)d
e−i p·x . (A.2)

The Schwinger parametrisation formula is

1

xn
=

1

Γ(n)

∞
∫

0

dt tn−1 e−t x , when ℜ(x) > 0 . (A.3)

The expansions of the Bessel functions are

Jν(z) =
(z

2

)ν
∞
∑

k=0

(−1)k
(z/2)2k

k! Γ(ν + k + 1)
, ν 6= −1,−2,−3, . . .

Iν(z) =
(z

2

)ν
∞
∑

k=0

(z/2)2k

k! Γ(ν + k + 1)
, ν 6= −1,−2,−3, . . .

Kν(z) =
π

2 sin(νπ)
(I−ν(z)− Iν(z)) , ν 6= Z

Yν(z) =
1

sin(νπ)
(cos(νπ) Jν(z)− J−ν(z)) , ν 6= Z. (A.4)

In the large z limit the Bessel functions can be approximated as

Jν(z) ∼
√

2

πz
cos

(

z − νπ

2
− π

4

)

, Kν(z) ∼
√

π

2z
e−z, Yν(z) ∼

√

2

πz
sin

(

z − νπ

2
− π

4

)

.

(A.5)
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B 3-point function of scalars from Fourier transform

We compute the scalar 3-point function in momentum space by doing a direct Fourier trans-

form of the position-space expression in four dimensions.9 Consider the Fourier transform of

the Lorentzian correlator 〈O1(x1)O2(x2)O3(x3)〉 for scalar operators with dimensions ∆i,

〈O1(p1)O2(p2)O3(p3)〉 =
∫

∏

i

d4xi e
−i pi·xi

c123
(x223)

β1 (x213)
β2 (x212)

β3
, (B.1)

where βj = ∆t

2 −∆j , ∆t = ∆1 +∆2 +∆3, xij = xi − xj , and the iǫ prescription dictates

tj → tj− i ǫj with ǫ1 > ǫ2 > ǫ3. Translation invariance allows us to strip off the momentum

preserving δ-function, which leads to

〈O1(p1)O2(p2)O3(p3)〉 = (2π)4 δ(4)(p1 + p2 + p3)C(p1, p2; {βj}) , (B.2)

with C(p1, p2; {βj}) given by (3.6), which we repeat here

C(p1, p2; {βj}) = c123

∫

d4k

(2π)4

∫

d4x1 d
4x2 d

4x3
e−i(p1−k)·x1 e−i(p2+k)·x2 e−ik·x3

(x22)
β1 (x21)

β2 (x23)
β3

. (B.3)

This last expression is obtained by introducing a third coordinate x3 via a Dirac δ-function

δ(4)(x3 − x12), which is then reexpressed in terms of an additional k integral.

We now assume all βj > 0. In this case, we can use Schwinger parametrisation (A.3) to

exponentiate the distance factors in the denominator of the above integrand. For example,

for the x1 factor (we omit the subindex 1 in the following expression to avoid cluttering),

1

(x2)β2
=

1

Γ(β2)2

∞
∫

0

ds1 ds2 (s1 s2)
β2−1 e−s1(ǫx+i (tx+|~x|)) e−s2(ǫx+i (tx−|~x|)) , (B.4)

and analogously for the x2 and x3 factors. We hence introduce a total of six Schwinger

parameters {si}. When performing the Fourier transform in Euclidean signature, one

can instead exponentiate the square of the distance factors x2j , thus requiring only three

Schwinger parameters. This is possible because these factors are positive in Euclidean

signature. In Lorentzian signature instead they need not be, and use of the Schwinger

parametrisation is only allowed because the iǫij confer a positive real part to the distance

factors.

To perform the x1 integral with the integrand above, we exchange it with the s1, s2
integrals. The two angles can then be integrated, and the integral over the time component

t1 gives

δ(k0 − p0

1 + s1 + s2),

which can be used to integrate one of the Schwinger parameters. To compute the radial

integral, we first symmetrise its range of integration by performing a change of variables

9In general d dimensions, the Fourier transform involves much more complicated integrals over the

angles.
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on the remaining Schwinger parameter s as u = s − ū with ū ≡ (p0

1 − k0)/2. After doing

the radial integral we obtain

(2π)3 θ(p0

1 − k0)

4 Γ(β2)2 |~p1 − ~k|

ū
∫

−ū

du
(

ū2 − u2
)β2−1

∂u

(

δ(2u− |~p1 − ~k|)− δ(2u+ |~p1 − ~k|)
)

. (B.5)

Assuming β2 6= 1, we do integration by parts and obtain

(2π)3 (β2 − 1)

4β2−1 Γ(β2)2
θ(p0

1 − k0 − |~p1 − ~k|) |p1 − k|2β2−4 , (B.6)

where unambiguously |p1−k| =
√

(p0

1 − k0)2 − |~p1 − ~k|2. Following analogous steps for the

x2 and x3 integrals, the 3-point correlator (when all βi 6= 1) becomes

C(p1, p2; {βj})) = c({βj})
∫

d4k

(2π)4
θ(p0

2 + k0 − |~p2 + ~k|) θ(p0

1 − k0 − |~p1 − ~k|) θ(k0 − |~k|)
|p2 + k|4−2β1 |p1 − k|4−2β2 |k|4−2β3

,

(B.7)

where

c({βj}) = c123 (2π)
9
∏

i

(βi − 1)

4βi−1 Γ(βi)2
. (B.8)

This precisely matches the 3-point function (3.8) calculated by Wick rotation in the case

when d = 4.

C 3-point function for {d = 3, βj = 1/2} from the momentum-integrated

expression

In this appendix we obtain the 3-point function of scalars with dimension ∆j = 1, hence

with βj = −νj = 1/2, in d = 3 from the momentum-integrated expression. This fol-

lows from substituting the corresponding 2-point function expression (2.21) in the 3-point

function form (3.6), and reads (using c123 = (2π)−3)

C({1/2}) =
∫

d3k
δ(p0

2 + k0 − |~p2 + ~k|) δ(p0

1 − k0 − |~p1 − ~k|) δ(k0 − |~k|)
|~p2 + ~k| |~p1 − ~k| |~k|

. (C.1)

The k0 integral can readily be performed with the last Dirac δ-function. Using

θ(p0)δ(p2) =
δ(p0 − |~p |)

2 |~p | (C.2)

for the remaining two Dirac δ-functions, the integral becomes

C({1/2}) = 4

∫

d2~k

|~k|
θ(p0

1 − |~k|) θ(p0

2 + |~k|) δ
(

(p2 + k)2
)

δ
(

(p1 − k)2
)

∣

∣

∣

∣

k0=|~k|

. (C.3)
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The two step functions in the integrand confer an upper and lower bound on the radius

|~k|, and further require θ(p0

1)θ(p
0

1 + p0

2), so the above becomes

4 θ(p0

1)θ(−p0

3)

2π
∫

0

dϕ






θ(p0

2)

p01
∫

0

d|~k| + θ(−p0

2)

p01
∫

−p02

d|~k|






δ
(

(p2 + k)2
)

δ
(

(p1 − k)2
)

∣

∣

∣

∣

k0=|~k|

.

(C.4)

To compute the above integrals, it is much simpler to consider the case when ~p1 · ~p2 =

|~p1| |~p2|, i.e. when the two vectors are aligned and point in the same direction. The general

case can then be obtained by an SO(2) rotation of the spatial vectors in the final answer.

We first consider the integrand of the above two integrals. Performing the change of

coordinates cosϕ = σ, it reads

dϕ δ
(

(p2 + k)2
)

δ
(

(p1 − k)2
)

∣

∣

∣

∣

k0=|~k|

=
−dσ√
1− σ2

δ
(

p22 + 2|~k|(|~p2|σ − p0

2)
)

δ
(

−p21 + 2|~k|(|~p1|σ − p0

1)
)

. (C.5)

(Henceforth we denote the radius as k ≡ |~k| to avoid cluttering.) We will use the second

Dirac δ-function to integrate the radius, so we rewrite it as

δ
(

−p21 + 2k(|~p1|σ − p0

1)
)

=
δ(k − k̄(σ))

2
∣

∣|~p1|σ − p0

1

∣

∣

, k̄(σ) =
p21

2 (|~p1|σ − p0

1)
. (C.6)

We will then use the first Dirac δ-function to integrate the angle, so we rewrite it as

δ
(

p22 + 2k̄(σ)(|~p2|σ − p0

2)
)

=

∣

∣|~p1|σ − p0

1

∣

∣

∣

∣p22|~p1|+ p21|~p2|
∣

∣

δ (σ − σ̄) , σ̄ =
p22p

0

1 + p21p
0

2

p22|~p1|+ p21|~p2|
. (C.7)

The remaining factor from the Jacobian becomes

1√
1− σ̄2

=

∣

∣p22|~p1|+ p21|~p2|
∣

∣

|p1| |p2| |p3|
(C.8)

where in the last step we have used the fact that σ ∈ (−1, 1), so the argument in the square

root of the denominator is positive.10

Using the above equations, the first integral in (C.4) becomes

C1 = 4
θ(p0

1)θ(p
0

2)

|p1| |p2| |p3|

1
∫

−1

dσ δ(σ − σ̄)

p01
∫

0

dk δ(k − k̄(σ)) (C.9)

10In doing the change of coordinates σ = cosϕ, we should in principle be careful with the integration

range: the integrand I(ϕ) does not satisfy I(ϕ) = I(ϕ+ π), therefore we should separate the integral over

ϕ ∈ (0, π) from the one over ϕ(π, 2π). Indeed, the two integrands become two different functions of σ, and

the intermediate step functions are different, but the resulting integrated results are the same, so we need

only multiply the result by a factor of 2.
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The momentum integral gives a factor of θ(p0

1 − k̄(σ))θ(k̄(σ)). Using the expression for k̄

above and doing some algebra, this becomes

θ(p0

1 − k̄(σ)) [θ(p0

1 − |~p1|) + θ(|~p1|σ − p0

1)] = θ(p0

1 − |~p1|). (C.10)

These step functions then do not constrain the range of integration of σ, whose integral

then gives

C1 = 4
θ(p0

1 − |~p1|)θ(p0

2)

|p1| |p2| |p3|
θ(1− σ̄)θ(1 + σ̄). (C.11)

With some algebra it can be shown that

θ(1− σ̄)θ(1 + σ̄) = θ(p21 p
2
2 p

2
3) = θ(p22)θ(−p23) + θ(−p22)θ(p

2
3), (C.12)

where in the last step we have used that the first step function in (C.11) implies p21 < 0.

Finally, taking into account the first two step functions in (C.11), one can check that the

second term in the above does not contribute, and the result becomes

C1 = 4
θ(p0

1 − |~p1|)θ(p0

2)θ(−p0

2 + |~p2|)θ(−p0

3 − |~p3|)
|p1| |p2| |p3|

. (C.13)

We now turn to the second integral in (C.4), which reads

C2 = 4
θ(−p0

2)θ(−p0

3)

|p1| |p2| |p3|

1
∫

−1

dσ δ(σ − σ̄)

p01
∫

−p02

dk δ(k − k̄(σ)). (C.14)

The momentum integral gives now a factor of θ(p0

1 − k̄(σ))θ(p0

2 + k̄(σ)). As opposed to

the first integral C1, these step functions constrain now the range of σ, since they are

equivalent to

θ(p0

1 − |~p1|) θ(σ − σL), σL =
2p0

1p
0

2 − p21
2p0

2|~p1|
. (C.15)

At this point the integral splits into two different integrals, depending on whether σL is

greater or smaller than the lower limit of integration σ = −1. The first integral brings

about several additional step functions, namely θ(1−σL)θ(σL+1)θ(1− σ̄)θ(σ̄−σL). It can

be shown that these step functions together with the ones in front of the integral vanish.

The remaining integral only requires the additional θ(−1 − σL) = θ(p0

2 − p0

3 − |~p1|), and
therefore becomes

C2 = 4
θ(p0

1 − |~p1|)θ(−p0

2)θ(−p0

3)

|p1| |p2| |p3|
θ(p0

2 − p0

3 − |~p1|) θ(1− σ̄)θ(1 + σ̄). (C.16)

We now use (C.12) above, from which only the first term contributes due to the four

remaining step functions above, and the integral becomes

C2 = 4
θ(p0

1 − |~p1|)θ(−p0

2)θ(p
0

2 + |~p2|)θ(−p0

3 − |~p3|)
|p1| |p2| |p3|

. (C.17)

Putting both C1 and C2 together, the 3-point function is finally

C({1/2}) = 4

|p1| |p2| |p3|
θ(p0

1 − |~p1|) θ(−p0

3 − |~p3|) θ(p0

2 + |~p2|) θ(|~p2| − p0

2). (C.18)

– 32 –



J
H
E
P
0
1
(
2
0
2
0
)
1
4
2

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] R. Haag, Local quantum physics: Fields, particles, algebras, Springer, Heidelberg Germany

(1992).

[2] T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from Causality,

JHEP 07 (2017) 066 [arXiv:1610.05308] [INSPIRE].

[3] Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin,

JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

[4] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and

AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

[5] T. Hartman, S. Jain and S. Kundu, Causality Constraints in Conformal Field Theory,

JHEP 05 (2016) 099 [arXiv:1509.00014] [INSPIRE].

[6] D. Li, D. Meltzer and D. Poland, Conformal Bootstrap in the Regge Limit,

JHEP 12 (2017) 013 [arXiv:1705.03453] [INSPIRE].

[7] M.S. Costa, T. Hansen and J. Penedones, Bounds for OPE coefficients on the Regge

trajectory, JHEP 10 (2017) 197 [arXiv:1707.07689] [INSPIRE].

[8] S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078

[arXiv:1703.00278] [INSPIRE].

[9] A. Belin, D.M. Hofman and G. Mathys, Einstein gravity from ANEC correlators,

JHEP 08 (2019) 032 [arXiv:1904.05892] [INSPIRE].

[10] M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Shocks, Superconvergence

and a Stringy Equivalence Principle, arXiv:1904.05905 [INSPIRE].
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