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Rigidity and reconstruction for graphs
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Abstract. The edge reconstruction conjecture of Harary (1964) states that a finite graph G

can be reconstructed up to isomorphism from the multiset of its edge-deleted subgraphs
G � e (with e running over the edges of G). We put this conjecture in the framework of
measure-theoretic rigidity, revealing the importance of the lengths of labeled closed walks
for the problem.
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1. Introduction

Can a network be reconstructed from subnetworks? W. T. Tutte called such
reconstruction problems in graphs the mathematical equivalent of “an archeologist
trying to assemble broken fragments of pottery to find the shape and pattern of an
ancient vase” [17, p. 106]. Nowadays, we might add the problem of phylogenetic
network reconstruction [18].

To give a mathematically more precise description, let G D .V; E/ denote
a graph with vertex set V and edge set E. The edge deck De.G/ of G is the
multi-set of isomorphism classes of all edge-deleted subgraphs G � e (for e 2 E)
of G. Harary [9] conjectured in 1964 that graphs on at least four edges are edge-
reconstructible, i.e., determined up to isomorphism by their edge deck. This is the
edge reconstruction conjecture (ERC), the analogue for edges of the famous vertex
reconstruction conjecture (VRC) of Kelly and Ulam that every graph on at least
three vertices is determined by its vertex deck (compare [2]). Despite interesting
partial results—most prominently, Vladimír Müller [14] has shown that the ERC
holds for graphs in which jEj � jV j log2 jV j —the conjecture still appears to be
wide open.
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frei zugänglich. /  This publication is with permission of the rights owner freely accessible due to an Alliance
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Our modest contribution in this paper is to put the conjecture in the framework
of fractal geometry. More precisely, following Coornaert [3], we will use measure-
theoretic rigidity to describe a graph uniquely up to isomorphism by a class of
measures on the boundary of a regular tree. Let b denote the first Betti number of
a connected graph G, i.e., b D jEj � jV j C 1 is the minimal number of edges that
need to be removed from G so the remaining graph is a tree. Assume b � 2, and
consider the action of the fundamental group of G (isomorphic to a free group Fb

of rank b) on the boundary @T (i.e., the space of ends) of the universal covering tree
T of G. Rigidity then says that the graph is uniquely determined by this space with

a Patterson–Sullivan measure, up to absolute continuity. We make this precise and
reformulate it slightly (in terms of push forwards of the measure to the boundary
of the Cayley graph of Fb) in Theorem 2.8 below. We then describe the measure
precisely in terms of spectral invariants related to the edge adjacency operator
(Theorem 3.4). In this way, we arrive at our two main new results. First of all,
combining the two previous theorems (that are essentially rephrasings of known
results) with our own results in [6], we reformulate the ERC as “growth rate”
property of lengths of corresponding loops in the two graphs (Theorem 4.2). In a
subsequent Theorem 5.4 we relate the ERC to the reconstruction of the lengths of
overlaps of certain basic walks in the graph, this time without reference to measure
theory.

Remark. A side effect of relating the ERC to measures is that it might open
the road to formulate analogues of the reconstruction question in other parts of
geometry where measure theoretic rigidity is available. We leave this as a future
research problem, but we would like to mention two contexts where at least a
rigidity theorem is known.

(1) Predating the rigidity theorem for graphs is the following version for compact
Riemann surfaces X and Y of genus g � 2: they are isomorphic if and only if
there exists an absolutely continuous self-homeomorphism of the boundary
S1 D @� of the Poincaré disk � (their universal covering) that is equivariant
with respect to the action of their respective fundamental groups (cf. e.g.
[12]).

(2) One may also extend rigidity from graphs to curves over non-archimedean
fields, but the boundary homomorphisms need to respect nonlinear relations
between harmonic measures [5].
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2. Dynamics on the boundary of the universal covering tree

In this section, we formulate a precise rigidity theorem for graphs, in terms of
measures induced by Patterson–Sullivan measure on a “universal” topological
dynamical system (“universal” in that it only depends on the first Betti number
of the graph).

Notation 2.1. Let G denote a connected graph with vertex set V and edge set E.
Assume that the first Betti number b satisfies b > 1 and that G does not have
ends, i.e., vertices of degree 1. Let T denote the universal covering tree of G,
so that G is the quotient of T by its fundamental group � Š Fb, a free group
of rank b. By assumption, T has no end-vertices and is locally compact. Let @T

denote the (topological) space of ends of T, on which � acts. The space @T consists
of equivalence classes of half lines in T, where two half lines are equivalent if they
differ in only finitely many edges. Fixing a base point x0 2 T, the space @T consists
of all half lines pW N ! V.T/ with p.0/ D x0, and for all n � 1, p.n/ ¤ p.n � 1/

and p.n � 1/ ¤ p.n C 1/. The Borel sigma-algebra of @T is spanned by a basis of
clopen sets, the cylinder sets Cylx0

.f /, where f runs through the edges f 2 E.T/.
Here, a cylinder set Cylx0

.f / consists of classes of half-lines that originate from
x0 and pass through f .

Remark 2.2. The above description of @T is that of the so-called visual boundary

of T. It is also possible to define @T as the hyperbolic boundary @T D xT�T, where
xT is a metric completion of T in a suitable hyperbolic metric on T. The two notions
coincide in our case, so we will use them interchangeably; cf. [4, Chapter 2].

Notation 2.3. Let Cay.Fb/ denote the Cayley graph of Fb, for any chosen sym-
metrization of a set of generators g1; : : : ; gb. This is a 2b-regular tree. Let
C WD @Cay.Fb/ denote its boundary. The Borel sigma-algebra of C D @Cay.Fb/

is spanned by the cylinder sets Cyl.g/ WD Cyl1.g/ for g 2 Fb �¹1º, given as the
set of limits of reduced words that begin with g.

The next lemma describes the “universality” of the action of Fb on C .

Lemma 2.4. The tree T is quasi-isometric to Cay.Fb/, and there is a topological

conjugacy .ˆG ; ˛G/W .@T; �/ ! .C;Fb/ of dynamical systems, i.e.,

(1) ˆG W @T ! C is a homeomorphism;

(2) ˛G W � ! Fb is a group isomorphism;

(3) The equivariance ˆG.x/ D ˛G./ˆG.x/ holds for all x 2 @T and  2 �.
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Proof (see, e.g., [4, Chapter 4, Theorem 4.1]). Choose a base point x0 2 T and
an isomorphism ˛WFb ! �. Now

'W Cay.Fb/ �! T; g 7�! ˛.g/.x0/

is a quasi-isometry and extends to a boundary homeomorphism

ˆW C �! @T; lim g 7�! lim ˛.g/.x0/

(loc. cit., 2.2). The resulting limit map is obviously equivariant with respect to
the group isomorphism ˛, since for h 2 Fb and lim g 2 C , we have

ˆ.h lim g/ D ˆ.lim hg/

D lim ˛.h/˛.g/.x/

D ˛.h/ lim ˛.g/.x0/

D ˛.h/ˆ.lim g/:

Hence we can set ˛G D ˛�1 and ˆG D ˆ�1. �

Definition 2.5. Let d.�; �/ denote the distance between the vertices of T (i.e., such
that d.v; w/ D 1 if v and w are adjacent). For � 2 @T and x; y 2 T the Busemann

function is defined by

B�.x; y/ D lim
z2T
z!�

.d.x; z/ � d.y; z//:

A family of positive finite Borel measures ¹�xºx2T on @T is called �-conformal

of dimension ı if it satisfies the following properties:

(1) the family .�x/x is �-equivariant, i.e., �x D .�1/��x, for all x 2 T;  2 �;

(2) for all x; y 2 T the Radon–Nikodym derivative of �x with respect to �y

exists and equals d�x=d�y.�/ D e�ıB�.x;y/:

Observe that if � 2 Cylx.f /, then

B�.x; o.f // D d.x; �/ � d.o.f /; �/ D d.x; o.f // (1)

is constant in �. We consider such measures only up to scaling by a global constant.

Remark 2.6. Families of �-conformal measures exist: let �x D �G;x denote the
family of Patterson–Sullivan measures for the action of � on T, based at some
point x 2 T, defined as the weak limit of measures

�x D lim
s!log.�/

P

2�

e�sd.x;x/ıx

P

2�

e�sd.x;x/
;
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for suitable (unique) � (actually, � D �PF is the Perron–Frobenius eigenvalue of
the edge-adjacency operator T defined in the next section), and ıx is the Dirac
delta measure at x; the dimension of the measures �x is log �.

Notation 2.7. Recall that two measures �1 and �2 on a space Y are called
mutually absolutely continuous if �1.A/ D 0 () �2.A/ D 0 for all measurable
A � Y . A measurable map 'W .X; �X/ ! .Y; �Y / between measure spaces is
absolutely continuous if ˆ��X and �Y are mutually absolutely continuous on Y .
Here, the push-forward measure '��X is defined by '��X .A/ WD �X .'�1.A// for
measurable A � Y .

We have the following measure-theoretic rigidity theorem.

Theorem 2.8. Let G denote a graph of minimal degree � 3 and first Betti number

b > 1, with universal covering tree T and fundamental group �, and let � denote

a �-conformal measure on T. Let .T0; � 0; �0/ denote the same data associated to

another graph G0 of minimal degree � 3 with the same first Betti number b > 1.

Then G and G0 are isomorphic if and only if the push-forward measures ˆG��

and ˆG0��0 on C have the same dimension (in the sense of Definition 2.5) and

are mutually absolutely continuous.

Proof. If G and G0 are isomorphic, there is nothing to prove. For the converse
direction, from [5, Theorem 2.7] we recall measure-theoretic rigidity for graphs
(this is a slight variation on the case of graphs with the same covering trees,
proven by Coornaert in [3]): the graphs G (corresponding to .@T; �; �/) and G0

(corresponding to .@T0; � 0; �0/) are isomorphic if and only if there exists

(1) a group isomorphism ˛W � ! � 0 and

(2) a homeomorphism 'W @T ! @T0

such that

(a) ' is ˛-equivariant, i.e., we have '.x/ D ˛./'.x/, for all x 2 @T;  2 �;

(b) the measures � and �0 have the same dimension;

(c) ' is absolutely continuous with respect to � and �0.

The theorem is a reformulation of this result by passing to the fixed space
.C;Fb/. Set ' WD ˆ�1

G0 ı ˆG and ˛ WD ˛�1
G0 ı ˛G : If ˆG�� and ˆG0��0 are

absolutely continuous and have the same dimension, then .'; ˛/ satisfy the five
listed conditions (1)-(2) and (a)-(c), so G and G0 are isomorphic. �
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Remark 2.9. In [7], rigidity for graphs is formulated in terms of a quantum
statistical mechanical system on the boundary operator algebra for the action of
Fb on its Cayley graph.

3. The measure and the T -operator

In this section, we show that the push-forward of the Patterson–Sullivan measure
can be described in terms of the Perron–Frobenius eigenspace of a certain “edge
adjacency operator”.

Definition 3.1. If e D ¹v1; v2º 2 E, we denote by Ee D .v1; v2/ the edge e with a
chosen orientation, and by Ee D .v2; v1/ the same edge with the inverse orientation
to that of Ee. Let o.Ee/ D v1 denote the origin of Ee and t .Ee/ D v2 its end point.
The edge adjacency matrix T D TG (compare [16]) is defined as follows. Let E

denote the set of oriented edges of G for any possible choice of orientation, so
j E j D 2jEj. Then T is defined to be the 2jEj � 2jEj matrix, in which the rows
and columns are indexed by E, and

TEe1;Ee2
D

´

1 if t .Ee1/ D o.Ee2/ but Ee2 ¤ Ee1;

0 otherwise.

Since b � 2, T is an irreducible non-negative matrix, hence, by Perron–Frobenius
theory, it has a unique Perron–Frobenius eigenvalue �PF that is real of maximal
modulus, and a corresponding Perron–Frobenius eigenvector p, unique up to
scaling, with all entries non-zero.

Definition 3.2. Fix a base point x0 2 T and let v0 denote the corresponding vertex
in the graph G. Choose a spanning tree B for G, and let ¹e1; : : : ; ebº denote the
set of edges outside B; choose an orientation on ei . Let ¹1; : : : ; bº denote a
set of generators for the fundamental group of G, seen as closed walks based at
v0 through an isomorphism � ! �1.G; v0/, such that i is a closed walk that
passes through B and i , but not through j for j ¤ i . Choose an isomorphism
˛WFb ! � and set gi WD ˛�1.i / as generators for Fb . For  2 �, let `./ denote
the length of the closed walk  . If g 2 Fb, we define the final edge �.g/ 2 E of g

as follows:

�.g/ D

´

Eei if gi is the final letter of g,

Eei if g�1
i is the final letter of g,
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where g is written as a reduced word in the alphabet ¹giº. We also define the lifted

final edge O�.g/ 2 T of g to be the last occurrence of a lift of �.g/ from G to T on
the directed path from x0 to ˛.g/.x0/ in T.

Lemma 3.3. For any g 2 Fb �¹1º, we have ˆ�1
G .Cyl.g// D Cylx0

. O�.g//:

Proof. Let g 2 Fb �¹1º and let gi denote the final letter of g. Since Cyl.g/

consists of half infinite words starting ggj : : : with gj ¤ g�1
i , under ˆ�1

G , this
is mapped to half infinite sequences of edges in T, in which there can some
backtracking (if there is cancellation of edges between gi and gj ), but never
beyond O�.g/. Since @T is the universal cover of G, backtracking occurs precisely
up to O�.g/, and ˆ�1

G .Cyl.g// is the cylinder set of O�.g/. �

We now give an intrinsic formula for the push-forward of Patterson–Sullivan
measure to the boundary C of the Cayley graph, purely in terms of data related to
the original graph:

Theorem 3.4. The push-forward measure � D ˆG��x0
on C is characterised

(up to scaling by a global constant) by

�.Cyl.g// D �
�`.˛.g//CdG��.g/.v0;o.�.g///

PF � p�.g/; (2)

where �PF is the Perron–Frobenius eigenvalue, and p a Perron–Frobenius eigen-

vector for T (unique up to scaling).

Proof. We argue as in [10, 3.13 & 4.2 & 4.3]. The conformal dimension of the
Patterson–Sullivan measures is log �PF. Suppose that Ee runs through E, and Ee0

runs through a set of lifts of Ee to T, where xe D o.Ee0/ is the origin of the lift Ee0.
Define a vector w 2 R2jE j by wEe WD �xe .Cylxe

.Ee0//: Then w satisfies the equation
T w D �PF � w; by the conformality of the measure and using (1) to move from
adjacent edges back to the original edge. Since w is non-negative, it is unique (up
to global scaling; by Perron–Frobenius theory), so, up to scaling, equal to p. By
the previous lemma, we have �.Cyl.g// D �x0

.Cylx0
. O�.g//: The conformality

property (2) from Definition 2.5 implies that

�x0
.Cylx0

. O�.g// D �
�d.x0;o.O�.g///

PF � �o.O�.g//.Cyl. O�.g///:

Now we have just seen that �o.O�.g//.Cyl. O�.g/// D p�.g/, and again, conformality
and (1) imply that

d.x0; o. O�.g/// D `.˛.g// � dG��.g/.v0; o.�.g///: �
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4. Measure-theoretic rigidity and the ERC

In this section, we explore the relation between measures on C , lengths of loops,
and the ERC.

Notation 4.1. The average degree of a graph G D .V; E/ is

Nd WD
X

v2V

deg.v/

jV j
D 2jEj=jV j:

Recall that the result of Müller [14] on ERC is valid for graphs with Nd �

2 log2 jV j. The next theorem gives a conditional result with a constant lower bound
on the average degree.

Theorem 4.2. Suppose G and G0 are graphs with average degree Nd > 4, no

degree 1 vertices, and with identical edge decks De.G/ D De.G0/. Then G and

G0 are isomorphic if and only if there is a length-preserving group isomorphism

ˇW �1.G/ ! �1.G0/

( for chosen base points); i.e., such that `./ D `.ˇ.// for all  2 �1.G/.

Proof. One direction is clear, so let us assume such a length-preserving map
ˇW �1.G/ ! �1.G0/ exists. The assumed equality of edge decks allows us to
identify some invariants of the graphs.

� Since the edge-decks are equal, G and G0 have the same first Betti number

b D jEj�jV jC1 (alternatively, b D rk �ab
1 .G/ D rk �ab

1 .G0/). Furthermore,
since jEj > 2jV j, we have b > jV j C 1 � 2.

� The graphs G and G0 have the same Perron–Frobenius eigenvalue �PF

([6, Theorem 1] assuming Nd > 4). Furthermore, �PF > 1. Indeed, under
the given conditions (no degree one vertices and Nd > 4), the matrix of T is
irreducible positive [6, Notation 7], so the Perron–Frobenius theorem (e.g.,
[13, p. 673]) applies, and since T has 1 as eigenvalue with multiplicity b > 1

[6, Proposition 18], �PF, which is the simple and maximal real eigenvalue of
T , satisfies �PF > 1.

Let us now give a description of sets of measure zero. Since the measure � on
C corresponding to G is a Borel measure on a metric space, it is (outer) regular.
Hence �.A/ D 0 is equivalent to the existence of a countable family of open sets
Ui with A � Ui and �.Ui/ ! 0. Since an open set is a union of basic open
sets, we can write Ui as a union of cylinder sets, and because cylinder sets are
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either contained in each other or disjoint, we can write Ui D
F

j Cyl.wij / for
some sequence of words w WD .wij / in chosen symmetrized generators gi 2 Fb;
hence �.Ui/ D

P

j �.Cyl.wij //. Conversely, every such construction based on
a sequence of words w produces a set of measure zero. We now express the
measure of the cylinder set using Formula (2). Recall that all entries of the Perron–
Frobenius eigenvector p are strictly positive [13, p. 673]. Notice that the second
term in the exponent of �PF of Formula (2) is bounded by the diameter of the
graph. This means that �.Ui/ ! 0 is equivalent to the condition C˛.w/ on w

given by

C˛.w/W
X

j

�
�`.˛.wij //

PF �! 0 as i ! C1; (3)

where, as before, we have chosen a base point v0 and isomorphism

˛WFb ! �1.G; v0/:

Now let �0 denote the corresponding measure on G0. Set

˛0 D ˇ ı ˛WFb �! �1.G0/:

To apply Theorem 2.8, notice that the dimensions of � and �0 are the same (equal
to log �PF). Hence the only condition needed to guarantee that the graphs are
isomorphic is that �.A/ D 0 () �0.A/ D 0 for all measurable A in C . By the
above discussion, this is equivalent to C˛.w/ () C˛0.w/ for all w D .wij / with
wij 2 Fb. But since ˇ is length-preserving, we have `.˛.wij // D `.ˇ ı ˛.wij // D

`.˛0.wij // and the result follows. �

Remark 4.3. The length of a loop equals the distance in the universal covering
tree T between a lift of the chosen base point and the end point of a lift of the
loop. Since, by the Švarc–Milnor’s Lemma [4, Chapter 4, Proposition 4.4] all T
are quasi-isometric for fixed b (to Cay.Fb/), we deduce that there exist non-zero
constants �1; �2 such that ��1

1 `./��2 � `.ˇ.// � �1`./C�2 for all  2 �1.G/.
In particular, for fixed b, a sequence `.i / is divergent if and only if `.ˇ.i // is so.

Remark 4.4. Only knowledge of b and �PF is not enough to reconstruct a graph;
the smallest non-isomorphic connected graphs (in terms of number of vertices)
with minimal degree 2 and the same Ihara zeta function (hence, the same �PF and
b) have 8 vertices and 14 edges (and b D 7) and are displayed on p. 569 of [15].
We checked that these two graphs have totally disjoint edge decks.
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5. Reconstruction of closed walks lengths and the ERC

We give a direct and elementary proof of the result alluded to in the previous
section, that knowing the “structure of lengths on the space of closed walks”
determines the graph uniquely, formulated precisely in Theorem 5.4 below in
terms of overlap lengths of loops in special spanning trees of the graph.

Let G denote a connected graph with minimal degree ı � 2, without cut
vertices (i.e., vertices whose removal results in a disconnected graph) in which
every element of the edge deck is connected and has at most one vertex of degree
ı � 1. Fix an element H D G � e of the edge deck of G that contains at least
one vertex ˛ of degree ı � 1. The missing edge connects ˛ to another (to-be-
reconstructed) vertex ! 2 H .

Remark 5.1. The assumptions are not restrictive in view of the ERC. The edge
deck determines the vertex deck (Greenwell [8], compare [2, 6.13]), so if VRC is
known for some graph, then ERC also holds for such graphs. Since VRC (hence
ERC) is known for disconnected graphs (Kelly [11], compare [2, 4.6]), we can
assume that G is connected. Also, since VRC (hence ERC) is known for graphs
with a cut vertex without pendant vertices (Bondy, [1]) and we assume that G has
no pendant vertices (since ı � 2), we can assume that all cards in the edge deck
are connected: if such a card is disconnected, any of the end points of the missing
edge would be a cut vertex of G. Hence any card H D G �e has first Betti number
b1.H/ D b � 1. Finally, if H contains another vertex of degree ı � 1, then this
vertex is !, and the problem is solved. Hence we can assume that all vertices
except ˛ have degree at least ı in H .

Orient the missing edge Ee such that it has origin o.Ee/ D ˛. Now let 0 denote
an embedded closed walk from ˛ to ˛ through Ee of minimal length `0, that passes
through e exactly once. Such a closed walk exists: since H is connected, there
exists a shortest path P in H from ! to ˛, which we can close by adding the edge e.

Lemma 5.2. The length `0 is edge-reconstructible.

Proof. Indeed, `0 D min¹r W Sr.G/ � Sr.G � e/ > 0º; where Sr.G/ is the number
of subgraphs of a graph G isomorphic to the cycle graph Cr .

Now `0 < jEj. Indeed, the length of the path P is at most jE.H/j. In case
P has length jE.H/j, then H is itself a path, and G is a cycle graph. But a cycle
graph with at least four edges has two adjacent vertices of minimal degree, which
we assume is not the case. Now for r < jEj, Sr.G/ is edge-reconstructible by
Kelly’s Lemma [2, 6.6]. �
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In the minimal case where ı D 2, i.e., if degH ˛ D 1, we make some
replacements: we denote by H the graph H � ˛; we denote by ˛ the vertex of
the new H that corresponds to the (unique) vertex adjacent to the original ˛ in the
original H , and we replace `0 by `0 �1. After these replacements, we can assume
that H had minimal degree � 2.

We now prove a technical lemma about the existence of certain spanning trees,
that will afterwards allow us to construct specific generators of the fundamental
group of H .

Lemma 5.3. If a vertex v 2 V is not equal or adjacent to ˛ in H and has degree

degH v � 3, then there exist oriented edges Ee1 and Eev in H , such that t .Ee1/ D ˛,

t .Eev/ D v, and such that there exists a spanning tree T for H with e1 62 T and

ev 62 T. If Qv is a vertex adjacent to v, we can furthermore guarantee that o.Eev/ 6D Qv.

If v 2 V is not equal but adjacent to ˛ and degH ˛ � 3, then there exist

oriented edges Ee1 and Eev in H , such that t .Ee1/ D ˛, t .Eev/ D v, o.Eev/ 6D ˛, and

such that there exists a spanning tree T for H with e1 62 T and ev 62 T.

Proof. It suffices to prove that there are edges e1 incident to ˛, ev incident to v,
e1 6D ev such that H � e1 � ev is connected, since then we can set T to be the
spanning tree of H � e1 � ev. Note that the number of connected components
of H � v is at most 2; the missing edge e connects at most two components and
the graph G has no cut-vertex by assumption. Since deg v � 3 there is at least
one connected component C of H � v such that there are two edges connecting v

and C .
First, assume that ˛ is not adjacent to v. If ˛ 62 C , but in the other component

C 0, then let ev be one of the edges connecting v and C , and let e1 be any edge
incident to ˛ such that H � e1 is connected. Note that this is possible since if
there is an edge Qe incident to ˛ contained in C 0 such that C 0 � Qe is not connected,
˛ would have been a cut-vertex in G. If ˛ 2 C and C � ˛ is connected, then
let ev be one of the edges connecting v and C and set e1 to be any edge incident
with ˛. If C � ˛ is not connected, then any of the connected components of
C � ˛ is connected to v, since otherwise ˛ would have been a cut-vertex. Pick
ev and e1 such that they connect v and ˛ with different connected components of
C � ˛ respectively. It is clear that in both cases the choice can be made such that
o.Eev/ 6D Qv for any vertex Qv 6D ˛ adjacent to v.

Next, assume that ˛ is adjacent to v and that degH ˛ � 3. If ˛ 62 C , then again
pick one of edges connecting v and C as ev and an edge incident to ˛ but not to
v as e1. It is clear that the choice can be made such that o.Eev/ 6D Qv for any vertex
Qv 6D ˛ adjacent to v. If ˛ 2 C , then pick for ev an edge connecting v with C but
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not incident with ˛ in H . Since degH ˛ � 3 there is an edge in incident with ˛

but not with o.Eev/ and not with v. Pick this edge as e1. �

Fix an arbitrary vertex v 2 V � ¹˛º and assume that either v is not adjacent
to ˛ and degH v � 3, or degH ˛ � 3 and v is adjacent to ˛. Let T denote a
corresponding tree constructed in the previous lemma (with respect to a choice
of auxiliary vertex Qv as indicated). Now EH � E T consists of b � 1 edges
e1; : : : ; eb�1, one of which is ev. Create a basis for the fundamental group of
H based at ˛ consisting of closed walks i for i D 1; : : : ; b � 1 that start in ˛,
reach Eei via E T, go through Eei and then back to ˛ through E T. Note that the
length of these closed walks can be read off from H . Let v be the closed walk
corresponding to ev .

If  and  0 are two closed walks based at ˛, we denote by sv.;  0/ D s.;  0/

the length of the path that two closed walks have in common at the start of the
walk.

Theorem 5.4. The reconstruction conjecture holds for a graph G with minimal

degree � 2 if we can reconstruct the values sv.0; i / for i D 1; : : : ; b � 1 and for

each vertex v of degree � 3.

Proof. We start with two lemmas.

Lemma 5.5. Assume we know the lengths sv.0; i / as in Theorem 5.4. If  ,

expressed as a reduced word in the generators ¹iº
b�1
iD0 , is an arbitrary closed

walk in G, based at ˛, then the length of  is edge-reconstructible.

Proof. We know the lengths of all the generating closed walks i ; for i > 0, this
length can be read off from H , and for i D 0, we know this length by construction.
We also know the lengths of the overlaps s.˙1

i ; ˙1
j /; for i > 0 and j > 0,

s.˙1
i ; ˙1

j / can be read off from H , and for i D 0 or j D 0, we know this length
by assumption. In a reduced word in i and their inverses, no entire closed walk
can cancel, since each closed walk contains an edge (ei for i > 1 or e for 0)
that does not occur in any other generator. Thus, knowing the overlap between
generators and their inverses, we know the length of any closed walk given as a
word in the generators and their inverses. Concretely:

`.˙1
i1

: : : ˙1
in

/ D
n

X

j D1

`.˙1
ij

/ � 2

n�1
X

j D1

s.�1
ij

; ˙1
ij C1

/;

where the ˙
ij

is the inverse of �
ij

. 4
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Lemma 5.6. Assume we know the lengths sv.0; i / as in Theorem 5.4. Let LŒEev�r

denote the number of closed walks of length r starting at ˛ that first pass through

Eev exactly once, and end in Ee, without passing through e before that. If deg v � 3,

then the numbers LŒEev�r are edge-reconstructible.

Proof. The number LŒEev�r is the number of words in ˙1
i of total length r in which

v (the generator through ev) occurs once, and ends (in order of composition) with
�1

0 , which also occurs exactly once. 4

Remark 5.7. In Figure 1 we depict a walk as in the lemma. To reconstruct LŒEev�r ,
one needs to check only the (finitely many) words of word length � r in the given
generators.

e

!

˛

ev

o.Eev/

v

Figure 1. A closed walk starting at ˛, going through ev and ending at Ee

We proceed with the proof of Theorem 5.4. Now let v run through the vertices
of G not equal to ˛. Observe that if ! is adjacent to ˛ in H then degH ˛ � 3.
Define DŒEev� WD min¹r W LŒEev�r ¤ 0º: There are four cases.

(1) If deg v � 3, then ! D v exactly if the minimal r for which LŒEev�r ¤ 0 equal
two more then the distance between o.Eev/ and ˛ in H � ev:

DŒEev� D 2 C dH�ev .o.Eev/; ˛/:

Since we have reconstructed LŒEev�r , we have found !.

(2) If deg v D 2 and both its neighbouring vertices have degree 2 as well, then
v D !, since we can assume that G has no two adjacent vertices of degree 2.

(3) If deg v D 2 and v has two neighbouring vertices v1 and v2 of degree � 3,
choose Eev1

and Eev2
such that o.Eev1

/ 62 ¹v; ˛º and o.Eev2
/ 62 ¹v; ˛º. Then ! D v

exactly if

DŒEevi
� D 3 C dH�evi

.o.Eevi
/; ˛/ for i D 1 and i D 2:
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(4) If deg v D 2, and v has exactly one neighbouring vertex v1 of degree two,
then v1 has a neighbouring vertex v2 of degree � 3 and v has a neighbouring
vertex v3 of degree � 3. Again, choose Eev2

and Eev3
such that o.Eev2

/ 62 ¹v; ˛º,
and o.Eev3

/ 62 ¹v; ˛º. Now ! D v exactly if

DŒEevi
� D

´

4 C dH�ev2
.o.Eev2

/; ˛/ if i D 2;

3 C dH�ev3
.o.Eev3

/; ˛/ if i D 3:

Hence in all cases, we have reconstructed the missing vertex !. Recall that if
ı D 2, we had changed the meaning of H; ˛ and `0, but after having followed the
above procedure to reconstruct !, in this case, the graph G is found by adding a
once-subdivided edge between ˛ and ! in H . �

Remark 5.8. Tom Kempton suggested to encode the “length overlaps” in a b � b

matrix OG defined by OG.i; j / WD `.i / � sv0
.i ; j / (for a chosen base point b0,

and for a metric graph G in which edges of the graph can be assigned real positive
lengths). Typical questions to ask are (a) what happens to the matrix when the base
point is changed? (b) which real positive matrices are the O-matrix of a genuine
metric graph? (c) when do two matrices correspond to the same graph? (d) Is there
interesting dynamics on the “moduli space” of matrices genuinely corresponding
to graphs (up to equivalence given by graph isomorphism)?
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