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HOCHSCHILD-PIRASHVILI HOMOLOGY ON SUSPENSIONS AND
REPRESENTATIONS OF Out(Fn)

VICTOR TURCHIN AND THOMAS WILLWACHER

Abstract. We show that the Hochschild-Pirashvili homology on any suspension admits the so called Hodge splitting.
For a map between suspensionsf : ΣY → ΣZ, the induced map in the Hochschild-Pirashvili homology preserves this
splitting if f is a suspension. Iff is not a suspension, we show that the splitting is preserved only as a filtration. As a
special case, we obtain that the Hochschild-Pirashvili homology on wedges of circles produces new representations of
Out(Fn) that do not factor in general through GL(n,Z ). The obtained representations are naturally filtered in such a way
that the action on the graded quotients does factor through GL(n,Z ).

0. Introduction

The higher Hochschild homology is a bifunctor introduced byT. Pirashvili in [28] that to a topological space
(simplicial set) and a (co)commutative (co)algebra assigns a graded vector space. Informally speaking this functor
is a way to “integrate” a (co)algebra over a given space. Specialized to a circle the result is the usual Hochschild
homology. The precursor to the higher Hochschild homology was the discovery of the Hodge splitting in the usual
Hochschild homology of a commutative algebra [13, 21]. Indeed, the most surprising and perhaps the motivating
result for T. Pirashvili to write his seminal work [28] was the striking fact that the higher Hochschild homology
on a sphere of any positive dimension also admits the Hodge splitting and moreover the terms of the splitting up
to a regrading depend only on the parity of the dimension of the sphere. With this excuse to be born, the higher
Hochschild homology is nowadays a widely used tool that has various applications including the string topology
and more generally the study of mapping and embedding spaces[28, 1, 2, 15, 25, 26, 30, 31]. It also has very
interesting and deep generalizations such as the topological higher Hochschild homology [8, 29] and factorization
homology [3, 14, 16, 23].

In our work we study the very nature of the Hodge splitting. Inparticular we show that it always takes place
for suspensions. Moreover, it will be clear from the construction that only suspensions and spaces rationally
homology equivalent to them have this property. For any suspensionΣY, the terms of the splitting depend in
some polynomial way oñH∗ΣY, which in particular explains Pirashvili’s result for spheres. We also show that if
a map f : ΣY → ΣZ is a suspension, than the induced map in the Hochschild-Pirashvili homology preserves the
splitting and is determined by the mapf∗ : H̃∗ΣY → H̃∗ΣZ. In casef is not a suspension, the Hodge splitting is
preserved only as a filtration. We explain how the induced mapbetween different layers is computed from the
rational homotopy type off .

We treat more carefully the case of wedges of circles and discover certain representations of the group Out(Fn)
of outer automorphisms of a free group1 that have the smallest known dimension among those that don’t factor
through GL(n,Z).

Notation. We work over rational numbersQ unless otherwise stated. All vector spaces are assumed to bevector
spaces overQ. Graded vector spaces are vector spaces with aZ-grading, and we abbreviate the phrase “differential
graded” by dg as usual. We generally use homological conventions, i.e., the differentials will have degree−1. We
denote bygVectanddgVectthe category of graded vector spaces and the category of chain complexes respectively.
For a chain complex or a graded vector spaceC we denote byC[k] its k-th desuspension.

We use freely the language of operads. A good introduction into the subject can be found in the textbook [22],
whose conventions we mostly follow. We use the notationP{k} for thek-fold operadic suspension. The operads
governing commutative, associative and Lie algebras are denoted byCom, Assoc, andLie respectively. ByCom+
we denote the commutative non-unital operad and bycoLie the cooperad dual toLie.

For a categoryC, we denote by mod−C the category of cofunctorsCop → dgVectto chain complexes. The
objects of mod−C will be calledright C-modules. In the following section,C is either the categoryΓ of finite

2010Mathematics Subject Classification.55N99;19D55;13D03.
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Foundation (grant 200021150012) and the SwissMap NCCR, funded by the Swiss National Science Foundation.
1These representations appear as application to the hairy graph-homology computations in the study of the spaces of longembeddings,

higher dimensional string links, and the deformation theory of the little discs operads [2, 31, 32, 33, 34].
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pointed sets or the category Fin of finite sets. Abusing notation we denote the set{1, . . . , k} by k and the set
{∗, 1, . . . , k} based at∗ by k∗. We will consider the following examples of rightΓ and Fin-modules:

• ForX some topological space we can consider the Fin-module sending a finite setS to the singular chains
on the mapping spaceC∗(XS). We denote this Fin-module byC∗(X•).

• Similarly, to a basepointed spaceX∗ we assign aΓ-moduleC∗(X•∗ ) sending a pointed setS∗ to C∗(X
S∗
∗ ),

where nowXS∗
∗ is supposed to be the space of pointed maps.

• To a cocommutative coalgebraC we assign the Fin-module sending the finite setS to the tensor product
C⊗S

�

⊗

s∈S C. We denote this Fin-module byC⊗•. If not otherwise stated we assume thatC is non-
negatively graded and simply connected.

• If in addition M is aC-comodule (e.g.,M = C) one can construct aΓ-moduleM ⊗ C⊗• such thatS∗ 7→
M ⊗

⊗

s∈S∗\{∗}
C.

• Dually, if M is a module over a commutative algebraA, thenM⊗A⊗• is aleftΓ-module, and its objectwise
dual

(

M ⊗ A⊗•
)∨ is a rightΓ-module.

A topological space is said of finite type if all its homology groups are finitely generated in every degree.
Two spaces are said rationaly homology equivalent if there is a zigzag of maps between them, such that its

every map induces an isomorphism in rational homology.
The completed tensor product is denoted by⊗̂.

Main results. In the paper for simplicity of exposition we stick to the contravariant Hochschild-Pirashvili homol-
ogy that is to the one assigned to right Fin andΓmodules. One should mention however that all the results canbe
easily adjusted to the covariant case as well.

There are two ways to define the higher Hochschild homology. In the first combinatorial way, for a space
X (respectively pointed spaceX∗) obtained as a realization of a (pointed) finite simplicial set X• : ∆op → Fin
(respectivelyX• : ∆op→ Γ), the higher Hochschild homologyHHX(L) (respectivelyHHX∗(L∗)) can be computed
as the homology of the totalization of the cosimplicial chain complexL ◦ X : ∆ → dgVect(respectivelyL∗ ◦
X∗ : ∆→ dgVect). 2

In another definition, for a right Fin-moduleL (respectively rightΓ-moduleL∗) and a topological spaceX
(respectively pointed spaceX∗), thehigher Hochschild homologythat we also callHochschild-Pirashvili homology
HHX(L) (respectivelyHHX∗(L∗)) is the homology of the complex of homotopy natural transformationsC∗(X•)→
L (respectivelyC∗(X•∗ )→ L∗) [28, 16].

The fact that the two definitions are equivalent is implicitly shown in the proof of [28, Theorem 2.4] by Pi-
rashvili, see also [16, Proof of Proposition 4] and [30, Proposition 3.4].

In caseL = C⊗• (respectivelyL = M ⊗C⊗•), we denote the higher Hochschild homology asHHX(C) (respec-
tively HHX∗(C,M)).3

In our paper the combinatorial definition will be used only for wedges of circles as we want to treat this case
more explicitly. Later in the paper we show that for wedges ofcircles the first and the second definitions produce
identical complexes.

Any map f : X→ Y (respectively basepoint preserving mapX∗ → Y∗) induces a mapf ∗ : HHY(L)→ HHX(L)
(respectivelyHHY∗ (L∗)→ HHX∗(L∗)). Two homotopic maps (respectively basepoint homotopic maps) induce the
same map in higher Hochschild homology. It is also clear fromthe (first) definition that in casef is a rational
homology equivalence, then the induced mapf ∗ is an isomorphism. One has a functoru: Γ → Fin that forgets
the basepoint. IfX = X∗ andL∗ = L ◦ u, then

(1) HHX(L) = HHX∗ (L∗).

In case we takeX andX∗ to be a wedge ofn circles∨nS1, the automorphism group Aut(Fn) acts on∨nS1 up to
homotopy by basepoint preserving maps and hence we obtain a representation of Aut(Fn) on HH∨nS1

(L∗). Simi-
larly, the outer automorphism group Out(Fn) acts on∨nS1 up to homotopy and hence we obtain a representation
of Out(Fn) on HH∨nS1

(L). While this result should at least morally be known to experts, the representations of
Out(Fn) arising in this manner seem to have received little attention in the literature. We will study a few special
cases. The representations that we obtain inherit an additional filtration (the Hodge or Poincaré-Birkhoff-Witt
filtration) such that the associated graded representationfactors through GL(n,Z). We show that in general the
representations of Out(Fn) thus obtained do not factor through GL(n,Z), but are nontrivial iterated extensions of
GL(n,Z) representations.

2This definition can also be adjusted to realizations of any simplicial sets non-necessarily finite by using the right Kan extention of L
(respectivelyL∗) to the category of all (pointed) sets [28].

3This particular case of higher Hochschild homology is also called topological factorisation (or chiral) cohomology, see for example [3, 16].
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In particular, it is an open problem to determine the lowest dimensional representations of Out(Fn) that do not
factor through GL(n,Z).4 A lower bound has been obtained by D. Kielak [19], who showed that the dimension
must be at least (

n+ 1
2

)

.

Forn = 3 the lower bound was refined to 7 (instead of 6) [20]. We obtainan upper bound as follows.

Theorem 1. For n ≥ 3, the representations ofOut(Fn) on HH∨nS1
(C(g)), whereC(g) is the Chevalley complex

of a free Lie algebrag = FreeLie(x) in one generator x of odd degree, contain a direct summand representation
which does not factor throughGL(n,Z) and has dimension

n(n2 + 5)
6

.

In particular, for n= 3 this representation saturates the lower bound7 obtained in[20].

The previously known representations with such property have the smallest dimension 21 forn = 3 and

(2n − 1)

(

n− 1
2

)

for n ≥ 4, see [19, Section 4], and also [5, 17].
The higher Hochschild homology on spheres was introduced and studied in the original work of Pirashvili [28]

and on wedges of spheres it was studied in [30, 31] in connection with the homology and homotopy of spaces of
higher dimensional string links. An interesting feature ofthis homology is that it admits a decomposition into a
direct product, and the factors of thisHodge splittingdepend only on the parity of the dimensions of the spheres.
In particular, if we knowHH∨nS1

(L∗) with the Hodge decomposition, we can reconstructHH∨nSd
(L∗) for any other

oddd. On the other hand, the homotopy type of a map∨nSd → ∨nSd, d ≥ 2, is completely determined by the
map in homology. Therefore,HH∨nSd

(L∗), d ≥ 2, is acted upon by the monoid End(Zn) of endomorphisms ofZn.
For d = 1, we get an action of the monoid End(Fn) of endomorphisms of a free groupFn. In Section 3 we define
a certain explicit complexCH∨nS1

(L∗) computingHH∨nS1
(L∗).

Theorem 2. For any Γ-module L∗, the action ofEnd(Fn) on HH∨nS1
(L∗) is naturally lifted on the level of the

complex CH∨nS1
(L∗). Moreover this action respects the Hodge splitting as an increasing filtration, and the action

on the associated graded complex gr CH∨nS1
(L∗) factors throughEnd(Zn).

We will see in Section 4 that as an End(Zn) module,gr HH∨nS1
(L∗) is (up to regrading) naturally isomorphic to

HH∨nSd
(L∗) for any oddd ≥ 3.

The fact that the End(Fn) action above respects the Hodge filtration is actually a manifestation of a more general
phenomenon. We show in Section 4 that the Hodge filtration inHHX∗ (L∗), that can also be called Poincaré-
Birkhoff-Witt filtration, is defined functorially inX∗ andL∗. This filtration is an interesting phenomenon in itself
that does not seem to appear earlier in any kind of functor calculus. In particular, the Hodge filtration should not
be confused with the cardinality or rank (co)filtration considered, for example, in [3, 18], and inspired from the
manifold functor calculus [35], see Subsection 4.3. In thatsubsection we also explain in which sense the Hodge
filtration in the Hochschild-Pirashvili homology on suspensions is exhaustive: it is dense in the topology induced
by the cardinality cofiltration.

Theorem 2 can be “categorified” to all suspensions and maps between them. More specifically, let Top∗ denote
the category of pointed topological spaces with morphisms homotopy classes of pointed maps. Let Top∗|Σ denote
its full subcategory whose objects are suspensions. ByΣ(Top∗) we denote the image category of the suspension
functorΣ : Top∗ → Top∗. Notice that any suspension is rationally equivalent to a wedge of spheres [9, Theo-
rem 24.5]. Thus, for the sake of concreteness and slightly simplifying the matters, the reader can think about the
category Top∗|Σ as about the full subcategory in Top∗ of wedges of spheres of possibly different dimensions≥ 1.
The following theorems generalize Theorem 2 on this category Top∗|Σ.

Theorem 3. For any rightΓ-module L∗, the cofunctor HH(−)(L∗) : Top∗
op→ gVect admits an increasing filtration

generalizing the Hodge filtration on HH∨nS1
(L∗), such that the completed associated graded functor gr HH(−)(L∗)

restricted onTop∗|Σ factors through the reduced homology functorH̃∗ : Top∗ → gVect. OverΣ(Top∗), this filtra-
tion splits in the sense that one has a natural isomorphism HH(−)(L∗)|Σ(Top∗) → gr HH(−)(L∗)|Σ(Top∗).

In Section 5 we construct a cofunctor CH(−)(L∗) : (Top∗|Σ)
op→ dgVect.

Theorem 4. The cofunctorCH(−)(L∗) : (Top∗|Σ)
op→ dgVect has the following properties

4One assumesn ≥ 3 as Out(F2) = GL(2,Z ).
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• H∗ ◦ CH(−)(L∗) = HH(−)(L∗).
• The complexCH∨nS1

(L∗) is identical to CH∨nS1
(L∗).

• This functor admits an increasing (Hodge) filtration compatible with the Hodge filtration in homology.
• The completed associated graded functor grCH(−)(L∗) factors through the reduced homology finctor

H̃∗ : Top∗|Σ → gVect.
• OverΣ(Top∗), the Hodge filtration inCH(−)(L∗) splits in the sense that one has a natural isomorphism

CH(−)(L∗)|Σ(Top∗) → gr CH(−)(L∗)|Σ(Top∗).

More concretely when we say that the functorsgr HH(−)(L∗) : Top∗|Σ → gVectandgr CH(−)(L∗) : Top∗|Σ →
dgVectfactor throughH̃∗ : Top∗|Σ → gVectwe mean that for any pointed spaceY∗, both gr HHΣY∗ (L∗) and
gr CHΣY∗ (L∗) can be described as a power series expression inH̃∗ΣY∗:

gr HHΣY∗(L∗) =
∏

n

HomS n

(

(H̃∗ΣY∗)⊗n,HL∗ (n)
)

,(2)

gr CHΣY∗ (L∗) =
∏

n

HomS n

(

(H̃∗ΣY∗)⊗n,CL∗ (n)
)

,(3)

whereCL∗ is some symmetric sequence in chain complexes depending onL∗, andHL∗ is its homology symmetric
sequence. The fact that the Hodge filtration splits overΣ(Top∗) means that we have isomorphisms

CHΣY∗ (L∗)
≃
−→ gr CHΣY∗ (L∗),(4)

HHΣY∗ (L∗)
≃
−→ gr HHΣY∗(L∗)(5)

natural inΣY∗ ∈ Σ(Top∗). Then-th term of the Hodge splitting is exactly then-th factor in (2) and (3). (This split-
ting also means that the higher Hochschild complexes for suspensions split as a product of complexes.) In case a
pointed mapf : ΣY∗ → ΣZ∗ is not a suspension, the Hodge splitting in the higher Hochschild complexes/homology
(via isomorphisms (4)-(5)) behaves like a filtration: higher terms of the splitting can be send non-trivially to lower
ones. In Section 6 we compute how from the given rational homotopy type of a map of suspensions one gets the
induced map between the terms of the splitting. We also demonstrate this on some examples, such as the Hopf
mapS3→ S2 and a non-trivial pointed mapS2→ S2 ∨ S1.

Some of the techniques that we develop for suspensions work equally well for general spaces. In Section 7
we briefly consider this general case of non-suspensions. Theorems 5-6 and Proposition 7.4 describe these more
general higher Hochschild complexes in the caseL∗ = M ⊗ C⊗• as some kind of homotopy base change type of
Chevalley complexes. In this section we also show that for a connected pointed spaceX∗ (of finite type) the Hodge
filtration splits for any coefficientΓmoduleL∗ if and only if X∗ is rationally homology equivalent to a suspension.

Acknowledgements.We thank G. Arone, B. Fresse, G. Ginot, and D. Kielak for helpful discussions. V.T. thanks
the MPIM and the IHES, where he spent his sabbatical and wherehe started to work on this project. T.W. has been
partially supported by the Swiss National Science foundation, grant 200021150012, and the SwissMAP NCCR
funded by the Swiss National Science foundation.

1. Special case of End(Fn) action

In this section we look at the special caseL∗ = M ⊗ C⊗•, whereC is a cocommutative coalgebra andM a
C-comodule as before. If not otherwise stated we will always assume thatC is simply connected. We will define
a complexCH∨nS1

(M ⊗ C⊗•) and an End(Fn) action on it. In Section 3 we explain why this complex computes
HH∨nS1

(M ⊗ C⊗•) = HH∨nS1
(C,M) and why the End(Fn) action that we define corresponds to the topological

action. DefineCH∨nS1
(M ⊗C⊗•) asM ⊗ (ΩC)⊗n, whereΩC is the cobar construction ofC — as a space it is a free

associative algebra generated byC[1]. The differential

(6) d = dM + dC + δ,

wheredM anddC are induced by the differentials onM andΩC respectively and

δ(m⊗ b1 ⊗ . . . ⊗ bn) =
∑∑

j

±m′ ⊗ . . . ⊗ [m′′, b j] ⊗ . . . ⊗ bn,

where we used Sweedler’s notation;± is the Koszul sign due to permutation ofm′′ with bi ’s.
We can assume without loss of generality thatC = C(g) is the Chevalley complex of a dg Lie algebrag

concentrated in strictly positive degrees. (If not, take for g the Harrison complex ofC.) As a cocommutative
coalgebra it is freely cogenerated byg[−1]. In the latter case the aforementioned complex is quasi-isomorphic to
M ⊗ (Ug)⊗n , whereUg is the universal envelopping algebra ofg, with differential

(7) d = dM + dg + δ,
4



defined similarly:dM anddg are induced from the differentials onM andg and

δ(m⊗ b1, . . . , bn) =
∑∑

j

±m′ ⊗ b1 ⊗ . . . ⊗ [π(m′′), b j] ⊗ · · · ⊗ bn,

whereπ : C(g)→ g is the projection to the cogenerators.
The action of End(Fn) on M ⊗ (Ug)⊗n andM ⊗ (ΩC)⊗n is described by the same formulas. BothUg andΩC

are cocommutative Hopf algebras. In Sweedler’s notation the iterated coproduct is written as

∆kb =
∑

b(1) ⊗ b(2) ⊗ . . . ⊗ b(k).

Since the coproduct is cocommutative, we will be writing instead

∆kb =
∑

b(•) ⊗ b(•) ⊗ . . . ⊗ b(•).

LetΨ ∈ End(Fn) send

(8) xi 7→ xεi1αi1
· xεi2αi2

· . . . · x
εiki
αiki
, i = 1 . . .n,

whereεi j = ±1,αi j ∈ {1 . . .n}. We letβi j =
1−εi j

2 ∈ {0, 1} and define

(9) Ψ∗(m⊗ b1 ⊗ . . . ⊗ bn) := m⊗
∑

±

n⊗

i=1

ki∏

j=1

sβi j (b(•)
αi j

),

where the sign± is the Koszul sign arising from the factors permutations,s is the antipod.

Example 1.1. (a)n = 1; x1 7→ (x1)2.

Ψ∗(m⊗ b) = m⊗
∑

b′ · b′′.

(b) n = 1; x1 7→ x−1
1 .

Ψ∗(m⊗ b) = m⊗ s(b).

(c) n = 2; x1 7→ x1 · x2, x2 7→ x2.

Ψ∗(m⊗ b1 ⊗ b2) = m⊗
∑

b1 · b
′
2 ⊗ b′′2 .

Proposition 1.2. The formula(9)defines the right action ofEnd(Fn) on the complexes M⊗(Ug)⊗n and M⊗(ΩC)⊗n.

Proof. To see thatΨ∗ is a morphism of complexes we notice that it commutes with each term of the differentials (6)
and (7): it commutes withdM by obvious reasons; it commutes withdg since both product and coproduct ofUg
are morphisms of complexes; it commutes withδ since both product and coproduct respect theg action.

For the composition, it is quite easy to see that (Ψ1 ◦ Ψ2)∗ = Ψ∗2 ◦ Ψ
∗
1, where the compositionΨ1 ◦ Ψ2 is

understood as substitution without simplification. We onlyneed to check that in case (Ψ1 ◦ Ψ2)(xi) has two
consecutive factorsx j andx−1

j for somei, then (Ψ1 ◦ Ψ2)∗ is the same as if these factors are cancelled out. But

in such case, (Ψ1 ◦ Ψ2)∗(m⊗ b1 ⊗ . . . ⊗ bn) also has two consecutive factorsb(•)
j and s(b(•)

j ), which can also be
eliminated:

∑

b(•)
j · s(b

(•)
j ) ⊗ (b(•)

j )⊗k = 1⊗
∑

(b(•)
j )⊗k = 1⊗ ∆kb j =

∑

s(b(•)
j ) · b(•)

j ⊗ (b(•)
j )⊗k.

�

1.1. Hodge decomposition/filtration. The Poincaré-Birkhoff-Witt isomorphismSg → Ug respects both the
coalgebra andg action structures. As a corollary, the induced map

M ⊗ (Sg)⊗n→ M ⊗ (Ug)⊗n

is an isomorphism of complexes. The image of the subcomplexM ⊗ Sm1g ⊗ . . . ⊗ Smng in M ⊗ (Ug)⊗n is called
(m1, . . . ,mn) Hodge multidegree component, whosetotal Hodge degreeis m= m1 + . . . +mn. One has

⊕

m1+...+mn=m

M ⊗ Sm1g ⊗ . . . ⊗ Smng = M ⊗ Sm(H1 ⊗ g),

whereH1 := H1(∨nS1,Z) = Zn viewed as a space concentrated in degree zero. BelowH1 := H1(∨nS1,Z).

Proposition 1.3. The action ofEnd(Fn) on M ⊗ (Ug)⊗n preserves the total Hodge degree as a filtration. The
induced action on the associated graded complex gr M⊗ (Ug)⊗n factors throughEnd(H1) = End(Zn) as one has

gr M ⊗ (Ug)⊗n = M ⊗ S(H1 ⊗ g).

This proposition is a particular case of Theorem 2.
5



Proof. The Hodge filtration is preserved because both the product and coproduct ofUg preserve the Poincaré-
Birkhoff-Witt filtration. Notice also that if we apply (9) to define an End(Fn) action onM ⊗ (Sg)⊗n, we get exactly
M ⊗ (Sg)⊗n ≃ M ⊗ S(H1 ⊗ g) as a right End(Fn) module. �

Remark 1.4. It will be shown in Subsection 4.1 (see Remark 4.6) that for any pointed spaceY∗ of finite type, the
Hochschild-Pirashvili homologyHHΣY∗ (C(g),M) is computed by the complex

M ⊗ S(H̃∗Y∗ ⊗ g),

whereH̃∗(Y) is the reduced cohomology ofY viewed as a negatively graded vector space. The differential has the
same form (7).5

2. Out(Fn) representations. Proof of Theorem 1

Recall isomorphism (1), which in particular implies that incaseM = C the action of Aut(Fn) onHH∨nS1
(C,M) =

HH∨nS1
(C) descends to an Out(Fn) action. Recall also that according to Proposition 1.3 the higher Hochschild

homologyHH∨nS1
(C,M) carries a Hodge filtration such that the action of Aut(Fn) on the associated graded factors

through GL(n,Z). In other words, all Aut(Fn) and Out(Fn) modules obtained in this manner can be obtained by
iterated extension of GL(n,Z)-modules by GL(n,Z)-modules.

2.1. Example 1: Polynomial coalgebras.If C = Q[x1, . . . , xn] is a cofree cocommutative coalgebra (in poten-
tially odd generators), we haveg = ξ1Q ⊕ · · · ⊕ ξnQ as abelian Lie algebra, where the generatorsξ j are degree
shifted by one unit with respect to the generatorsx j . In this case the Hodge grading is preserved by the Aut(Fn)
action (becauseUg is commutative) and hence all representations obtained factor through GL(n,Z). Since the
differential onC ⊗ (Ug)⊗n vanishes the higher Hochschild homology is just

HH∨nS1
(C) � C ⊗ S(H1 ⊗ g)

with the Out(Fn) action factoring throughGL(n,Z) = GL(H1), which acts by the standard action onZn = H1.

2.2. Example 2: Dual numbers. Consider the coalgebra of dual numbersQ ⊕ xQ, wherex is a primitive co-
generator of even degree. The (Koszul) dual Lie algebra is the free Lie algebra in one odd generatorξ, i.e.,
g = ξQ ⊕ [ξ, ξ]Q. Then the associated graded ofCH∨nS1

(C ⊗C⊗•) may be identified with

gr CH∨nS1
(C ⊗C⊗•) � C ⊗ S(H1 ⊗ g) � C ⊗ Q[ξ1, . . . , ξn, η1, . . . , ηn].

Hereξ j corresponds toξ on the j-th circle andη j corresponds toη = [ξ, ξ] = 2ξ2 on the j-th circle. Notice that
adξ(ξ) = η andadξ(η) = 0. The complex has length 2:

0← 1⊗ Q[ξ1, . . . , ξn, η1, . . . , ηn]
d
←−x⊗ Q[ξ1, . . . , ξn, η1, . . . , ηn] ← 0.

The differential is defined such that

d(x⊗ P(ξ1, . . . , ξn, η1, . . . , ηn)) =
n∑

j=1

1⊗ adξ j P(ξ1, . . . , ξn, η1, . . . , ηn) =

=

n∑

j=1

1⊗ η j
∂

∂ξ j
P(ξ1, . . . , ξn, η1, . . . , ηn)

The differential can be identified with the de Rham differential on ann-dimensional odd vector space, identifying
η j with ddRξ j . One can identify the corresponding representations of GL(n,Z). Namely, if we fix in the associated
graded the Hodge degree to bem, then the corresponding representations of GL(n,Z) one obtains correspond to
partitions of the formm= ℓ + 1+ · · · + 1. To be precise the homology is the sumU I ⊕ U II , whereU I = cokerd,
U II = kerd. The part of degreek in ξ andℓ in η is sent byd to the part of degreek− 1 in ξ andℓ + 1 in η:

0← Λk−1H1 ⊗ Sℓ+1H1 d
←−ΛkH1 ⊗ SℓH1← 0.

The GL(n) moduleΛkH1⊗SℓH1 is a direct sum of 2 representations encoded by partitions (ℓ+ k) = ℓ+1+ . . .+1
and (ℓ + k) = (ℓ + 1)+ 1+ . . . + 1. We conclude that the kernel ofd in this bigrading isV(ℓ,1k) and the cokernel of
d is V(ℓ+2,1k−2). The bigrading byξ andη is preserved inC ⊗ (Ug)⊗n only as a filtration. Instead one can consider

5Unless certain convergency properties are satisfied,S(−) should be undersood as a completed symmetric algebra, i.e.a direct product
∏

m≥0 Sm(−) rather than a direct sum. Similarly the tensor product should be understood as the completed tensor product with respect to the
homological degree ofg.
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the totalξ grading by assigning 1 to eachξ and 2 to eachη = [ξ, ξ]. The componentU I
N ⊕ U II

N in the homology of
totalξ degreeN is a filtered space, whose associated graded is

grU I
N =

⊕

2ℓ+k=N+1

V(ℓ,1k), grU II
N =

⊕

2ℓ+k=N

V(ℓ,1k).

For bothU I andU II the Hodge degree ofV(ℓ,1k) is ℓ + k.

2.3. The lowest non-trivial example worked out. Let us consider the first Out(Fn) representation obtained by
the above methods that does not factor through GL(n,Z). It is obtained as the cokernel of the differential in the dual
numbers example above forn = 3 and the totalξ degree 3. It was denoted byU I

3 in the previous subsection.The
representation is 7 dimensional. As in Subsection 2.2 one sees that the associated graded representation splits into
two GL(3,Z) representations

grU I
3 = V(2) ⊕ V(1,1,1).

In other words,U I
3 is an extension

0→ V(2) → U I
3→ V(1,1,1)→ 0.

A representative of the cohomology class inHC∨3S1
(C) spanning theV(1,1,1) part is

e := 1⊗ ξ ⊗ ξ ⊗ ξ.

Representatives forming a basis ofV(2) are

f1 := 1⊗ [ξ, ξ] ⊗ ξ ⊗ 1 � −1⊗ ξ ⊗ [ξ, ξ] ⊗ 1 f2 := 1⊗ [ξ, ξ] ⊗ 1⊗ ξ

f3 := 1⊗ 1⊗ [ξ, ξ] ⊗ ξ f4 := 1⊗ [ξ, ξ]ξ ⊗ 1⊗ 1

f5 := 1⊗ 1⊗ [ξ, ξ]ξ ⊗ 1 f6 := 1⊗ 1⊗ 1⊗ [ξ, ξ]ξ.

2.4. The proof of Theorem 1. More generally let us consider representationU I
3 of Out(Fn) for arbitraryn ≥ 3.

We claim that this representation satisfies the requirements of Theorem 1, i.e., it does not factor through GL(n,Z)
and it has dimensionn(n2+5)

6 .
Indeed, as in Subsection 2.3 we can identify the associated graded representation under the Hodge filtration

with

grU I
3 = V(2) ⊕ V(1,1,1)

whereV(2) andV(1,1,1) are the irreducible representations of the linear group GL(n) corresponding to the partitions
(2) and (1+ 1+ 1). Hence we find that indeed

dim UI
3 = dim V(2) + dim V(1,1,1) =

n(n+ 1)
2

+

(

n
3

)

=
n(n2 + 5)

6
.

Next, we check that the representation does not factor through GL(n). ConsiderE12,E1̄2̄ ∈ Out(Fn) that send

E12(xi) =






x1x2, i = 1;

xi , otherwise;
E1̄2̄(xi) =






x2x1, i = 1;

xi , otherwise.

We will show that the action ofE12 is different from that ofE1̄2̄ in the representationU I
3 for n ≥ 3. Indeed,

choosing basis vectors as in Subsection 2.3 we find that

E12 · (1, ξ, ξ, ξ, 1, . . . , 1) = (1, ξ, ξ, ξ, 1, . . . , 1)+
1
2

(1, [ξ, ξ], 1, ξ, 1, . . . , 1)

while

E1̄2̄ · (1, ξ, ξ, ξ, 1, . . . , 1) = (1, ξ, ξ, ξ, 1, . . . , 1)−
1
2

(1, [ξ, ξ], 1, ξ, 1, . . . , 1).

To recallU I
3 is the cokernel ofd. Thus we need to verify that (1, [ξ, ξ], 1, ξ, 1, . . . , 1) ∈ Q ⊗ (Sg)⊗n is not in the

image ofd. As we have seen in Subsection 2.2,d is the de Rham differential which is acyclic on non-constant
polynomials inξi andη j , thus we only have to check that the corresponding polynomial is not de Rham closed:

n∑

j=1

η j
∂

∂ξ j
(η1ξ3) = η1η3 , 0.

�
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2.5. Bead representations.Generalizing the example of dual numbers we may consider thecoalgebra

CN = Q ⊕ x1Q ⊕ x2Q ⊕ . . . ⊕ xNQ,

where the cogeneratorsxi are of even degrees and primitive. The Koszul dual Lie algebra is again free

g = FreeLie(ξ1, . . . , ξN).

There is aZN grading onCN and a representation ofSN, and hence a similar grading and action on the higher
Hochschild homologyHH∨nS1

(CN). We may introduce a representation of Out(Fn) for every irreducible represen-
tationVλ of SN labelled by a partitionλ of N:

Uλ = HH∨nS1
(CN)1,...,1 ⊗S N Vλ

Here the superscript (·)1,...,1 shall mean that we pick out the piece ofZN-degree (1, . . . , 1). We will callUλ thebead
representation6 of Out(Fn) associated to the partitionλ. Notice that the obtained complex is again of length 2.
Thus we have againUλ = U I

λ
⊕U II

λ
whereU I

λ
is the cokernel of the differential andU II

λ
is the kernel. We will call

U I
λ

the bead representation of first type andU II
λ

the bead representation of second type.7

Open problem: DescribeUλ. In particular, what are the dimensionsdim(U I ,II
λ

)? If we decompose the associ-
ated gradedgrUλ into irreducible representations of GL(n,Z) (actually GL(n,R))

grUλ � ⊕µVµ

which partitionsµ occur in the direct sum, with what multiplicity?

3. Complexes CH∨nS1
(L∗). Proof of Theorem 2

Recall that in case the spaceX (respectively pointed spaceX∗) is obtained as a realization of a (pointed)
finite simplicial setX• : ∆op → Fin (respectivelyX• : ∆op → Γ), the higher Hochschild homologyHHX(L)
(respectivelyHHX∗(L∗)) can be computed as the homology of the totalization of the cosimplicial chain complex
L ◦ X : ∆ → dgVect(respectivelyL∗ ◦ X∗ : ∆ → dgVect). The same construction works for realizations of
bisimplicial (and more generally multisimplicial) sets. Indeed, ifX•• is a bisimplicial set, then its realization|X••|
is homeomorphic to the realization|diag (X••)| of its diagonal simplicial set. On the other hand, one also has the
Eilenberg-Zilber quasi-isomorphism

(10) Tot(diagL ◦ X••)
EZ
−→Tot(L ◦ X••).

As the first complex computes the Hochschild-Pirashvili homology of |diag (X••)| = |X••|, so does the second.
Now notice that the complexesM ⊗ (ΩC)⊗n can be obtained as totalization of ann-multicosimplicial chain

complex (rather than just cosimplicial). (In fact its diagonal totalization isM ⊗ Ω
(

C⊗n).) The corresponding
multicosimplicial complex is obtained as the composition of M ⊗ C⊗• with ann-multisimplicial model of∨nS1.
Let S1

• denote the standard simplicial model forS1: its set ofk-simplices consists of a basepoint∗ and also all
monotonic non-constant sequences of 0’s and 1’s of lengthk+ 1. This set can be identified withk∗ (wherei ∈ k∗
corresponds to a sequence withi 1’s). Then-multisimplicial model for∨nS1, we denote it by (∨nS1)• . . . •

︸︷︷︸

n

, is

obtained as a degreewise wedge ofn n-multisimplical sets. Thei-th summand of the wedge is the product ofS1
•

and (n − 1) constant one-point simplicial sets, withS1
• appearing on thei-th place in the product. Notice that

the (k1, k2, . . . , kn) component of (∨nS1)• . . . •
︸︷︷︸

n

is the set
∨n

i=1(ki)∗ ≃ (k1 + . . . + kn)∗. Thus the totalization of our

multicosimplial complex is

(11) CH∨nS1
(L∗) := Tot(L∗ ◦ (∨nS1)• . . . •

︸︷︷︸

n

) =





∏

(k1,...,kn)

NL∗
(

Σn
i=1ki

)

[Σn
i=1ki ], d = d1 + . . . + dn




,

where

(12) NL∗(k) =
k⋂

i=1

kers∗i ,

ands∗i : L(k∗)→ L(k∗ \ {i}) is the map induced by the inclusion

si : k∗ \ {i} ⊂ k∗.

6The name stems from the fact that elements ofΩCN can be understood as linear combinations of configurations of beads ofN colors
arranged on a string.

7The representationsU I ,I I
N considered in Subsection 2.2 correspond toU I ,I I

(N) in the new notation.
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The action of End(Fn) on CH∨nS1
(L∗) is defined analogously as that onCH∨nS1

(M ⊗ C⊗•) = M ⊗ (ΩC)⊗n,
see (9).8 Notice that the coproduct onΩC is the sum of coshuffles, and the product is just concatenation.
Let γ lie in the (k1, . . . , kn) component of (11), andΨ ∈ End(Fn) is such thatx j appears in totalr j times in
Ψ(x1), Ψ(x2), . . . , Ψ(xn). One has thatΨ∗(γ) is the sum ofrk1

1 · r
k2
2 · . . . · r

kn
n elements each of which is obtained from

γ by some permutation of its inputs. More concretely,Ψ defines a map∨nS1 → ∨nS1 such that any point on the
i-th circle has exactlyr i preimages. We putk1 points on the first circle in the target wedge,k2 on the second,. . .,
kn on the last one. These points correspond to the inputs ofγ. For every point in the target we choose a preimage
point (thus for thei-th circle there arerki

i choices making the total of
∏n

i=1 rki
i choices). For every such choice we

get a collection of points on the source wedge, which contributes a summand inΨ∗(γ), that has to be taken with
the sign of permutation of inputs ofγ.

Consider examples similar to those given in Example 1.1:
(a)n = 1;Ψ(x1) = x2

1. In this case,

Ψ∗(γ(x11, . . . , x1k1)) =
k1∑

i=0

∑

σ∈Sh(i,k1−i)

(−1)σγ(σ(x11, . . . , x1k1)).

Here and belowSh(i, j) denotes the set of shuffles of ani-elements set with aj-elements set.
(b) n = 1,Ψ(x1) = x−1

1 . In this case

Ψ∗(γ(x11, . . . , x1k1)) = (−1)
k1(k1−1)

2 γ(x1k1, . . . , x11).

(c) n = 2;Ψ(x1) = x1x2, Ψ(x2) = x2:

Ψ∗(γ(x11, . . . , x1k1, x21, . . . , x2k2)) =
k2∑

i=0

∑

σ∈Sh(i,k2−i)

(−1)σγ(x11, . . . , x1k1, σ(x1k1+1, . . . , x1k1+i , x21, . . . , x2k2−i)).

Proposition 3.1. The action ofEnd(Fn) on CH∨nS1
(L∗) defined above coincides in the homology with the topo-

logical action.

Idea of the proof.One can check that for all elementsΨ ∈ End(Fn) their actionΨ∗ onCH∨nS1
(L∗) can be decom-

posed into a composition of maps induced by multisimplicialmaps, Eilenberg-Zilber maps (10), and some natural
chain homotopy inverses to those maps. �

This proposition is a partial case of Theorem 4. That’s why wechoose not to give a detailed proof of it, but
only mention that there is a proof which goes through a careful study of multi-simplical maps. (This argument is
similar to the explicit identification of the surface product studied in [15].) Indeed, Theorem 4 among other things
states that the complexesCH∨nS1

(L∗) are identical to CH∨nS1
(L∗), where the latter ones are constructed using

the definition of the Hochschild-Pirashvili homology in terms of derived maps of rightΓ modules. Moreover,
Remark 5.4 asserts that the induced action of End(Fn) on CH∨nS1

(L∗) is identical to the one onCH∨nS1
(L∗) defined

in this section. We will also see in Subsection 5.1 that the reason that the End(Fn) action onHH∨nS1
(L∗) can be

lifted on the level of chains is the coformality of the induced End(Fn) action on theΩ-moduleC∗((∨nS1)∧•).9

Proof of Theorem 2.At this point we only need to explain what is the Hodge splitting in CH∨nS1
(L∗), why it is

preserved by the End(Fn) action as a filtration, and why on the associated graded complex gr CH∨nS1
(L∗) this

action factors through End(Zn).
In casen = 1, i.e. for the usual Hochschild complexCHS1

(L∗), the Hodge splitting is obtained by noticing
that the action of End(F1) = (Z, ∗) splits this complex into a direct product of spaces numbered by non-negative
integers, such that on them-th componentr ∈ (Z, ∗) acts as multiplication byrm [13, 21]. The projection on the
m-th component is calledm-th Euler idempotentem. Notice that each componentNL∗(ℓ)[ℓ] of the complex

CHS1
(L∗) = Tot(L∗ ◦ S1

•) =





∏

ℓ≥0

NL∗(ℓ)[ℓ], d





is acted on bySℓ and thus by the group algebraQ[Sℓ]. The Euler idempotentem(ℓ) is obtained via this action and
is in fact an element ofQ[Sℓ]. To give a bit more insight, one has an isomorphism of symmetric sequences:

Com ◦ Lie
≃
−→ Assoc,

8Recall that we assume thatC is simply connected. If we only assume thatC is connected, than the complexCH∨nS1
(M ⊗ C⊗•) is

M⊗̂(ΩC)⊗n, where instead of the cobar complex we take the completed cobar and instead of tensor product the completed tensor product.
9By this we mean that every induced map of the action is coformal, see Definition 5.1 and Proposition 5.2.
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induced by the Poincaré-Birkhoff-Witt map. The image ofem(ℓ) is exactly

[Com(m) ◦ Lie] (ℓ) ⊂ Assoc(ℓ) = Q[Sℓ].

Whenn ≥ 2, to obtain a similar splitting in Hochschild-Pirashvili homology one can use the action of the monoid
(Z, ∗)×n ⊂ End(Fn) consisting of the homotopy classes of maps∨nS1 → ∨nS1 sending each circle into itself.
The complexCH∨nS1

(L∗) splits into a direct product of spaces numbered byn-tuples (m1, . . . ,mn) of non-negative
integers. Element (r1, . . . , rn) ∈ (Z, ∗)×n acts on the (m1, . . . ,mn) component of the Hodge splitting as multipli-
cation byrm1

1 · . . . · r
mn
n . Each (ℓ1, . . . , ℓn) componentNL∗(ℓ1 + . . . + ℓn) of Tot(L∗ ◦ (∨nS1)• . . . •

︸︷︷︸

n

) is acted on by

Sℓ1× . . .×Sℓn. The projection onto the (m1, . . . ,mn) Hodge component is given byem1(ℓ1)⊗ . . .⊗emn(ℓn). We define
thetotal Hodge degreeasm= m1 + . . . +mn. One can see that the action of End(Fn) preserves it as a filtration.

To see that the End(Fn) action ongr CH∨nS1
(L∗) factors through GL(n,Z), see equations (22), (23), and Re-

mark 4.7, which describegr CH∨nS1
(L∗) in terms ofH1(∨nS1). �

4. Hochschild-Pirashvili homology on suspensions. Proof of Theorem 3

4.1. Complexesgr CHΣY∗ (L∗). In this subsection we describe complexes computing higher Hochschild homology
on suspensionsHHΣY∗(L∗). These complexes depend only onH̃∗(Y∗) and as we will later see in Subsection 5.1
they can be naturally identified with the associated graded of CHΣY∗ (L∗).

One of the two reasons for the Hodge splitting in the higher Hochschild homology (on a suspension) is the
formality of theΓ-moduleC∗(X•∗ ) in caseX∗ = ΣY∗. Recall that aΓ-module is saidformal if it is quasi-isomorphic
via a zigzag of quasi-isomorphisms to its homologyΓ-module. Similarly, a map betweenΓ-modules is formal if
this map is quasi-isomorphic via a zigzag of quasi-isomorphisms ofΓ-modules maps to the induced map in their
homology.

Lemma 4.1. If a pointed space X∗ is of finite type and is rationally formal, then the rightΓmodule C∗(X•∗ ) is also
rationally formal. If a pointed map X∗ → Y∗ between spaces of finite type is rationally formal, then the induced
map ofΓ modules C∗(X•∗ )→ C∗(Y•∗ ) is also formal.

Proof. By formality of a space we understand formality of its Sullivan algebraAX∗ as augmented algebra and sim-
ilarly for a map between spaces. We show explicitly the first statement. The second one follows from functoriality
of the construction. One has a quasi-isomorphism ofΓ-modules:

C∗(X•∗ ) ≃
(

AX•∗

)∨
≃

(

Q ⊗ A⊗•X∗

)∨
≃

(

Q ⊗ H∗(X∗)⊗•
)∨
≃ H∗(X•∗ ).

�

Lemma 4.2. Any suspension of a space of finite type is rationally formal and, moreover, any suspension of a map
between spaces of finite type is rationally formal.

Recall that a map of pointed spaces is formal if the induced map of Sullivan augmented algebras is formal,
i.e., quasi-isomorphic to the map of rational cohomology algebras (in the category of augmented algebras). In
particular it implies that each space is formal.

Proof. Let Y∗ be a space of finite type and let us show thatΣY∗ is formal. The argument for a map between
suspensions is similar. In caseY∗ is connected, its suspensionΣY∗ is simply connected. It is also a co-H-space,
therefore it is coformal and its Quillen model is a free Lie algebra generated bỹH∗(Y∗) with zero differential. The
Koszul dual commutative algebra is generated byH̃∗(ΣY∗) with all products of generators being zero.

In caseY∗ =
∐k

i=1 Yi is a disjoint union ofk components, thenΣY∗ =
(∨

k−1 S1
)

∨
(∨k

i=1 ΣYi

)

. And the wedge
of formal spaces is formal. �

Notice that from these two lemmas it follows that ifX∗ is a suspension of finite type, thenC∗(X•∗ ) is a formal
Γ-module and that the same is true for a suspension of a map between spaces of finite type. Proposition 4.4 below
implies that the finiteness condition can be released.

LetΩ be the category of finite sets with morphisms all surjective maps. In [27] Pirashvili defines an equivalence
of categories

cr : mod−Γ→ mod−Ω.

On objects

(13) cr L∗(k) = L∗(k∗)
/

+k
i=1 Im r∗i ,
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wherer∗i : L∗(k∗ \ {i})→ L∗(k∗) is induced by the mapr i : k∗ → k∗ \ {i}:

r i( j) =






j, j , i;

∗, j = i.

On morphismscr L∗ is obtained as restriction with respect to the inclusioni : Ω→ Γ that adds the basepoint to
any set:i(k) = k∗. Recall (12). The spacecr L∗(k) is isomorphic toNL∗(k) via the obvious composition

(14) q: NL∗(k) →֒ L∗(k∗)→ cr L∗(k).

One can show thatq is an isomorphism using the map
∏k

i=1(1− r∗i s∗i ) that projectsL∗(k∗) ontoNL∗(k). (Notice
thatr∗i s∗i , i = 1 . . .k, are pairwise commuting projectors as well as (1− r∗i s∗i ), i = 1 . . .k.) For the complexes that
we consider below it is sometimes convenient to useNL∗(•) instead ofcr L∗(•).

Let us describe the inducedΩ-module structure onNL∗(•). The symmetric group action as part ofΩ structure
on NL∗(•) is the usual one. Denote bymi : (k+ 1)→ k the surjection

mi( j) =






j, 1 ≤ j ≤ i;

j − 1, i + 1 ≤ j ≤ k.

Abusing notation we denote bymi : (k+ 1)∗ → k∗ the same map extended asmi : ∗ 7→ ∗. Forγ ∈ cr L∗(k), one has

(15) q−1(m∗i (γ)) = (1− r∗i s∗i − r∗i+1s∗i+1)m∗i (q
−1(γ)).

One can write this formula slightly differently. Recall that the structure of a rightΩ-module is equivalent to
the structure of a right module over the commutative non-unital operadCom+, while the structure of a rightΓ-
module is equivalent to the structure of an infinitesimal bimodule over the commutative unital operadCom, see [2,
Proposition 4.9] or [32, Lemma 4.3]. In this terms, equation(15) is written as

(16) q−1(γ(x1, . . . , xi · xi+1, . . . , xk+1)
)

= q−1(γ)(x1, . . . , xi · xi+1, . . . , xk+1)

− xi · q
−1(γ)(x1 . . . x̂i . . . xk+1) − xi+1 · q

−1(γ)(x1 . . . x̂i+1 . . . xk+1).

The two last summands in (15) and (16) are correction terms necessary to make the right-hand side normalized.
The higher Hochschild homology over a pointed spaceX∗ is computed as the space of homotopy maps of

Γ-modules
HHX∗(L∗) = H∗

(

hRmodΓ
(

C∗(X•∗ ), L∗
))

.

For any pointed spaceX∗, the cross-effect of theΓ-moduleC∗(X•∗ ) is equivalent to

(17) cr C∗(X
•
∗ ) ≃ C̃∗(X

∧•
∗ ),

see [1], where theΩ-module structure oñC∗(X∧•∗ ) is induced by the diagonal maps. For any surjectionp: k։ ℓ,
one gets a mapX∧ℓ∗ → X∧k

∗ defined as

(18) (x1, . . . xℓ) 7→ (xp−1(1), . . . , xp−1(k)).

It follows that the Hochschild-Pirashvili homology can also be described as

HHX∗(L∗) = H∗
(

hRmodΩ
(

C̃∗(X
∧•
∗ ), cr L∗

))

.

Definition 4.3. We say that a rightΩ module M has a trivialΩ action if for any strict surjection p: k ։ ℓ the
induced map M(ℓ)→ M(k) is the zero map.

Proposition 4.4. For any pointed suspensionΣY∗, theΩ moduleC̃∗
(

(ΣY∗)∧•
)

is formal. For any pointed map
g: Y∗ → Z∗, the induced map ofΩ modules(Σg)∗ : C̃∗

(

(ΣY∗)∧•
)

→ C̃∗
(

(ΣZ∗)∧•
)

is also formal.

Proof. For the proof we will need that theΩmoduleC̃∗((S1)∧•) is formal and has the trivialΩ action in homology.
The first statement follows from the fact that theΓ moduleC∗((S1)•) is formal (by Lemmas 4.1 and 4.2) and thus
is so its cross-effect cr C∗((S1)•) ≃ C̃∗((S1)∧•). The second statement is straightforward as any diagonal map
Sℓ → Sk for k > ℓ induces the zero map in reduced homology.

The following sequence of quasi-isomorphisms ofΩ modules proves the formality of̃C∗
(

(ΣY∗)∧•
)

:10

(19) C̃∗
(

(ΣY∗)∧•
)

≃ C̃∗
(

(S1)∧•
)

⊗ C̃∗
(

Y∧•∗
)

≃ H̃∗
(

(S1)∧•
)

⊗ C̃∗
(

Y∧•∗
)

≃

≃ H̃∗
(

(S1)∧•
)

⊗ C̃∗(Y∗)⊗• ≃ H̃∗
(

(S1)∧•
)

⊗ H̃∗(Y∗)⊗•.

By the tensor product above we understand an objectwise tensor product of rightΩ modules. The second quasi-
isomorphism uses the formality of̃C∗((S1)∧•). Notice that all the terms in this zigzag starting from the third one
have the trivialΩ action. Notice also that all the quasi-isomorphisms are functorial inY∗ except the last one, which

10This simple argument was provided to us by G. Arone.
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uses a choice of a quasi-isomorphismH̃∗Y∗ → C̃∗Y∗. On the other hand, any morphism of complexes (in our case
C̃∗Y∗ → C̃∗Z∗) is formal (i.e., is quasi-isomorphic to the induced mapH̃∗Y→ H̃∗Z). This proves the formality of
the induced map ofΩ modules.

�

Remark 4.5. It follows from (19) that for any suspensionΣY∗, the rightΩ moduleC̃∗
(

(ΣY∗)∧•
)

has the trivialΩ
action in homology.

This property is in fact the second of the two reasons for the Hodge splitting. (The first one is the formality.)
Indeed, as a consequence, theΩ-moduleH̃∗

(

(ΣY∗)∧•
)

splits into a direct sum ofΩ-modules:

(20) cr C̃∗
(

(ΣY∗)∧•
)

≃ H̃∗
(

(ΣY∗)∧•
)

≃
⊕

m≥0

H̃∗(ΣY∗)⊗m,

whereH̃∗(ΣY∗)⊗m denotes theΩ-module which isH̃∗(ΣY∗)⊗m in arity mand 0 in all others. Thus we get

(21) HHΣY∗(L∗) ≃
∏

m≥0

H
(

hRmodΩ
(

H̃∗(ΣY∗)⊗m, cr L∗
))

.

As a corollary we see that the functorHH(−)(L∗) factors through the reduced homology functorH̃∗ : Top∗ →
gVectwhen restricted onΣ(Top∗). The splitting bym in (21) is exactly the Hodge splitting.

Now we want to make more explicit the right-hand side of (21).Recall that the rightΩ-module is the same as
the rightCom+-module. Applying the Koszul duality between theLie andCom+ operads, the cofibrant replace-
ment ofH̃∗(ΣY∗)⊗m as a rightCom+-module isH̃∗(ΣY∗)⊗m ◦ coLie{1} ◦Com+, where◦ is the composition product
of symmetric sequences;coLie is the Lie cooperad;{1} denotes operadic suspension [11, 2, 31]. The differential
in it is obtained by taking off one cobracket from thecoLie{1} factor and by making it act from the left on the
Com+ part as a productx1 · x2, see [2, Section 5]. For a general rightCom+-moduleM, there is another term of
the differential on its cofibrant replacementM ◦coLie{1} ◦Com+, which takes off one cobracket from thecoLie{1}
part and makes it act from the right onM also as a productx1 · x2. But in our case this action is trivial, so only the
first part of the differential is present. The product overm≥ 0 of the complexes below computesHHΣY∗(L∗):

(22) RmodCom+

(

H̃∗(ΣY∗)⊗m ◦ coLie{1} ◦ Com+, cr L∗
)

=
(

HomS

(

H̃∗(ΣY∗)⊗m ◦ coLie{1}, cr L∗
)

, d
)

=

HomS m




H̃∗(Y∗)⊗m,





∏

ℓ≥m

⊕

ℓ1+...+ℓm=ℓ

(

Lie(ℓ1) ⊗ . . . ⊗ Lie(ℓm) ⊗S ℓ1×...×S ℓm

(

sign⊗ cr L∗(ℓ)
))

[ℓ], d








,

which assuming the finiteness condition on the homology ofY∗ can also be written as

(23) H̃∗(Y∗)⊗m⊗̂S m





∏

ℓ≥m

⊕

ℓ1+...+ℓm=ℓ

(

Lie(ℓ1) ⊗ . . . ⊗ Lie(ℓm) ⊗S ℓ1×...×S ℓm

(

sign⊗ cr L∗(ℓ)
))

[ℓ], d




.

Heresigndenotes the sign representation ofSℓ; the reduced cohomology ofY∗ is viewed as a negatively graded
vector space. The differential in this complex is the sum of simultaneous insertions of [x1, x2] in one of the inputs
of Lie(ℓi) for somei, and right action byx1 · x2 on the corresponding input ofcr L∗(ℓ). Beware that if we replace
cr L∗(ℓ) by NL∗(ℓ) additional summands in the differential appear due to the last two terms in (15)-(16).

Remark 4.6. In caseY∗ is of finite type, andL∗ = M ⊗C⊗•, the obtained complex computingHHΣY∗(C,M) is

(24) M⊗̂S
(

H̃∗(Y∗)⊗̂L(C)
)

,

where the cohomologỹH∗(Y∗) is non-positively graded;L(C) is the Harrison complex ofC. The symmetric power
and tensor products are the completed ones. The differential

d = dM + dC + δ,

wheredM anddC are induced by the differential onM andL(C), andδ(m⊗ x) = m′ ⊗ [m′′, x]. The partδ in the
differential appears due to the last two summands in (15)-(16).11

Remark 4.7. For Y∗ = ∨nS0 and anyL∗, the obtained complex is identical togr CH∨nS1

∗ (L∗) considered in
Section 3. In caseL∗ = M ⊗ C⊗• it follows from Proposition 1.3 and Remark 4.6. For a generalL∗ one can
construct this isomorphism analogously. The idea is that elements ofLie(ℓi) in (23) should be viewed as linear
combinations of permutations inSℓi , which tells us in which order the elements should be put on the corresponding
circle.

11To recallC is simply connected. IfC is not simply connected, the Harrison complexL(C) should be replaced by the completed Harrison
complexL̂(C).
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4.2. Hodge filtration. Proof of Theorem 3. We define a functorial filtration on the space of homotopy mapsof
rightΩ-modules, which induces the desired filtration onHHX∗(L∗) functorial inX∗ andL∗. For a rightΩ-module
K define itsm-th truncationtrmK as

trm(K)(ℓ) =






K(ℓ), ℓ ≤ m;

0, ℓ > m.

This symmetric sequence has an obviousΩ-module structure, such that the projectionK → trmK is anΩ-modules
map. This morphism for anyΩ-moduleL induces a map of complexes

hRmodΩ(trmK, L)→ hRmodΩ(K, L).

Its image in homology is what we call them-th term of the Hodge filtration inH (hRmodΩ(K, L)).
For K = C̃∗

(

(ΣY∗)∧•
)

≃ H̃∗(ΣY∗)⊗•, the cofiltrationtr• splits. For any pointed map of suspensionsΣY∗ → ΣZ∗,
the induced map

gr HHΣZ∗(L∗)→ gr HHΣY∗(L∗)

can be recovered from the map of the layers oftr• (and thus from the map in homologỹH∗ΣY∗ → H̃∗ΣZ∗) by the
spectral sequence argument.

4.3. Hodge filtration versus cardinality cofiltration. Denote byCHX∗(L∗) the higher Hochschild complex

CH
X∗(L∗) := hRmodΩ

(

C̃∗
(

X∧•∗
)

, cr L∗
)

.

The Hodge filtration

F0CH
X∗ (L∗)→ F1CH

X∗ (L∗)→ F2CH
X∗(L∗)→ . . .

should not be confused with the more widely used cardinalityor rank cofiltration (depending on the context it can
also be called Goodwillie-Weiss tower) [3, 18, 35]:

T0CH
X∗(L∗)← T1CH

X∗ (L∗)← T2CH
X∗ (L∗)← . . . .

We have seen in the previous subsection that

FmCH
X∗ (L∗) ≃ hRmodΩ

(

trmC̃∗
(

X∧•∗
)

, cr L∗
)

.

Proposition 4.8. The n-th term of the cardinality cofiltration is

TmCH
X∗ (L∗) ≃ hRmodΩ

(

C̃∗
(

X∧•∗
)

, trmcr L∗
)

.

Proof. Denote byΓm andΩm the full subcategories ofΓ, respectivelyΩ, consisting of objects of cardinal≤ m+ 1,
respectively≤ m. One has obvious restriction functors

(−)|≤m: mod−Γ→ mod−Γm; (−)|≤m: mod−Ω→ mod−Ωm.

By definition

(25) TmCH
X∗ (L∗) ≃ hRmodΓm

(
C∗

(
X•∗

)
|≤m, L∗|≤m

)
.

The cross-effect functor

cr : mod−Γm→ mod−Ωm

defined by (13) is also an equivalence in the truncated case.
For a rightΩm moduleK, denote bytrivm(K) theΩmodule extended trivially on sets of cardinal> m:

trivm(K)(ℓ) =






K(ℓ), ℓ ≤ m;

0, ℓ > m.

One has a Quillen adjunction

(−)|≤m: mod−Ω⇄ mod−Ωm: trivm.

Notice thattrivm ◦ (−)≤m = trm. As a consequence we get

TmCH
X∗(L∗) ≃ hRmodΩm

(

C̃∗
(

X∧•∗
)

|≤m, cr L∗|≤m

)

≃ hRmodΩ
(

C̃∗
(

X∧•∗
)

, trmcr L∗
)

.

�
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Finally, let us compare theTm andFm terms in case of a suspension to make sure that they are different.

FmCHΣY∗ (L∗) =
m∏

i=0

hRmodΩ
(

H̃∗(ΣY∗)⊗i , cr L∗
)

=

m∏

i=0





+∞∏

j=i

HomS j

(

(H̃∗(ΣY∗)⊗i ◦ coLie{1})( j), cr L∗( j)
)

, d




;

TmCHΣY∗ (L∗) =
+∞∏

i=0

hRmodΩ
(

H̃∗(ΣY∗)⊗i , trmcr L∗
)

=

m∏

i=0





m∏

j=i

HomS j

(

(H̃∗(ΣY∗)⊗i ◦ coLie{1})( j), cr L∗( j)
)

, d




.

One can see that the termsFm andTm are not the same.

Remark 4.9. The cardinality cofiltration induces a decreasing filtration in CHΣY∗ (L∗): we defineFmCHΣY∗ (L∗)
as the kernel of the projectionpm: CHΣY∗ (L∗) → TmCHΣY∗ (L∗). Notice thatpm restricted onFmCHΣY∗ (L∗) is
still surjective. As a consequence, one has that the Hodge filtration in the Hochschild-Pirashvili homology on a
suspension is dense in the topology induced by this decreasing filtration.

Remark 4.10. The cardinality cofiltration in the higher Hochschild homology on suspensions, contrary to the
Hodge filtration, does not split in general.

5. Coformality ofC∗
(

(ΣY∗)∧•
)

. Proof of Theorem 4

We need to recall some theory of right modules overCom+ [11]. As we briefly explained in Subsection 4.1, a
functorial cofibrant replacement of a rightΩ-module or equivalently a rightCom+-moduleM is M ◦ coLie{1} ◦
Com+. The sequenceM ◦ coLie{1} is theKoszul dualof M. Notice that it is naturally a rightcoLie{1}-comodule.
Given any other rightcoLie{1}-comoduleN, one can get aCom+-moduleN ◦ Com+.12 It is easy to see that
N ◦Com+ is quasi-isomorphic toM (as aCom+-module) if and only ifN is quasi-isomorphic toM ◦ coLie{1} (as
a coLie{1}-comodule). If this happens we say thatN is a Koszul dual ofM andM is a Koszul dual ofN.

This is part of a general homotopy theory of right modules [11]. For any right moduleM over any doubly
reduced operadO in chain complexes (O(0) = 0,O(1) = Q), the bar constructionB(M,O, I ) is a right comodule
over the cooperadB(I ,O, I ). By I we mean the unit object in symmetric sequences

I (k) =






Q, k = 1;

0, k , 1.

In our case the operadO = Com+ is Koszul and the bar complexes can be replaced by equivalentKoszul com-
plexes [11].

It was shown by [1, Lemma 11.4], that for any pointed spaceX∗, the Koszul dual ofC̃∗(X∧•∗ ) is C̃∗(X∧•∗ /∆
•X∗),

where by∆nX∗ we understand the fat diagonal inX∧n
∗ . On homology thecoLie{1} coaction

◦i∼ j : H̃∗(X∧n
∗ /∆

nX∗)→ H̃∗−1(X∧n−1
∗ /∆n−1X∗) ⊗ coLie{1}(2)

is induced by the connecting homomorphisms∂ : H∗(X∧n
∗ ,∆

nX∗)→ H∗−1(∆nX∗,∆n
i j X∗) of the long exact sequence

for the triples
(X∧n
∗ ,∆

nX∗,∆
n
i j X∗),

where∆n
i j X∗ is the union of all diagonals except one:xi = x j . (One obviously has∆nX∗/∆n

i j X∗ � X∧n−1
∗ /∆n−1X∗.)

Definition 5.1. We say that a rightCom+-module is coformal if its Koszul dualcoLie{1}-comodule is formal. A
map of rightCom+-modules is said coformal if the induced morphism of their Koszul duals is formal.

Proposition 5.2. For any pointed suspensionΣY∗, the right Com+-moduleC̃∗
(

(ΣY∗)∧•
)

is coformal. For any
pointed map of suspensions f: ΣY∗ → ΣZ∗, the induced map ofCom+-modules f∗ : C̃∗

(

(ΣY∗)∧•
)

→ C̃∗
(

(ΣZ∗)∧•
)

is coformal.

Proof. According to Proposition 4.4 bothCom+-modulesC̃∗
(

(ΣY∗)∧•
)

andC̃∗
(

(ΣZ∗)∧•
)

are formal. Their Koszul
duals areH̃∗(ΣY∗)⊗• ◦ coLie{1} andH̃∗(ΣZ∗)⊗• ◦ coLie{1}, see Subsection 4.1, which are formal and cofree. On
the other hand it is easy to see that any map between rightcoLie{1}-comodules whose homology is cofree, is
formal. �

Corollary 1. One has a natural isomorphism of rightcoLie{1}-comodules

(26) H̃∗
(

(ΣY∗)∧•/∆•Y∗
) ≃
−→H̃∗(ΣY∗)⊗• ◦ coLie{1},

functorial over the categoryΣ(Top∗).

12The differential inN ◦ Com+ is the sum of two terms: the first one being induced by the differential onN, the second splits off one
cobracket fromN and makes it act from the left as a product onCom+.
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One simply needs to apply the Koszul duality functor to the zigzag (19) and then take the homology. At the
starting point we get the left-hand side of (26) and at the endwe get the right-hand side. Notice that this corollary
describes the rational homology of certain configuration spaces of points in suspensions.

Now notice that the sequencesH̃∗(ΣY∗)⊗• andH̃∗
(

(ΣY∗)∧•/∆•ΣY∗
)

are naturally left modules over the commu-
tative operadCom. Indeed, the first one is freely generated by its arity one componentH̃∗(ΣY∗)⊗1, while the left
Com-module structure on the second one is induced by the maps

(

(ΣY∗)∧m/∆mΣY∗
)

∧
(

(ΣY∗)∧n/∆nΣY∗
)

−→
(

(ΣY∗)∧m+n/∆m+nΣY∗
)

(More generally if a rightCom+-module has a compatible left action by another operadO, then its Koszul dual
also naturally is a leftO-module.)

Proposition 5.3. The isomorphism(26) respects the leftCom action.

Proof. It is enough to check that each map in the zigzag (19) respectsthe leftCom action. �

5.1. ComplexesCHΣY∗ (L∗). Proof of Theorem 4. We define complexes CHΣY∗ (L∗) as follows

(27) RmodCom+

(

H̃∗
(

(ΣY∗)∧•/∆•ΣY∗
)

◦ Com+, cr L∗
)

≃




∏

n≥0

HomS n

(

H̃∗
(

(ΣY∗)
∧n/∆nΣY∗

)

, cr L∗(n)
)

, dY∗ + dL∗




,

where dL∗ is the part of the differential induced by the differential in L∗, and dY∗ is induced by the
differential in H̃∗

(

(ΣY∗)∧•/∆•ΣY∗
)

◦ Com+, which is the Koszul dualCom+-module to the coLie{1}-
comoduleH̃∗

(

(ΣY∗)∧•/∆•ΣY∗
)

. Explicitly, if f ∈ HomS n

(

H̃∗
(

(ΣY∗)∧n/∆nΣY∗
)

, cr L∗(n)
)

, one hasdY∗ f ∈

HomS n+1

(

H̃∗
(

(ΣY∗)∧n+1/∆n+1ΣY∗
)

, cr L∗(n+ 1)
)

is defined as follows

(dY∗ f )
(

γ(x1 . . . xn+1)
)

=
∑

1≤i< j≤n

f (γi j (x1 . . . xi∼ j . . . xn)) ◦i∼ j (xi · x j),

whereγi j is computed from the formula◦i∼ j(γ) = γi j ⊗ [xi , x j ]∨ of thecoLie{1} coaction.
Now we check that CH(−)(L∗) satisfies the properties from Theorem 4. Firstly, CH(−)(L∗) : Top∗|Σ → dgVectis

a well defined functor: a pointed mapΣY∗ → ΣZ∗ induces a map ofcoLie{1}-comodules

H̃∗((ΣY∗)∧•/∆•ΣY∗)→ H̃∗((ΣZ∗)∧•/∆•ΣZ∗).

It computes the Hochschild-Pirashvili homology functor bythe coformality property, see Proposition 5.2. Using
isomorphism (26) we can define them-th truncation ofH̃∗

(

(ΣY∗)∧•/∆•ΣY∗
)

as the cofree part cogenerated by
H̃∗(ΣY∗)⊗i , i ≤ m. In the Hochschild homology this obviously corresponds to the Hodge filtration defined in
Subsection 4.2. The map of graded quotients is determined bythe morphism in homologyf∗ : H̃∗(ΣY) → H̃∗(ΣZ)
due to Corollary 1 and Proposition 5.3 (see also next section, where this is shown more explicitly). The splitting
of the Hodge filtration overΣ(Top∗) has been shown in the previous section.

Now let us check that the complexes CH∨nS1
(L∗) coincide withCH∨nS1

(L∗) defined in Section 3. To see this
one needs to identifycr L∗(•) with NL∗(•) by means of the isomorphism (14). For simplicity let us start with the
casen = 1. One has (S1)∧k/∆kS1 = ∨k!Sk. Thus,

∏

k≥0

HomS k

(

H̃∗
(

(S1)∧k/∆kS1
)

,NL∗(k)
)

=

+∞∏

k=0

NL∗(k)[k] = TotL∗ ◦ (S1)•.

One can check that the differentials agree. In case of arbitraryn, one has
(

∨nS1
)∧k
/∆k(∨nS1) = ∨k1+...+kn=k ∨k! Sk,

and one similarly gets

∏

k≥0

HomS k

(

H̃∗
(

(∨nS1)∧k/∆k(∨nS1)
)

,NL∗(k)
)

=

+∞∏

k=0

∏

k1+...+kn=k

NL∗(k)[k] = Tot( L∗ ◦ (∨nS1)• . . .•
︸︷︷︸

n

).

For the last identity, see equation (11).

Remark 5.4. The monoid End(Fn) describes the homotopy classes of poined self-maps∨nS1 → ∨nS1 and thus
acts on thecoLie{1}-comoduleH̃∗

(

(∨nS1)∧•/∆•(∨nS1)
)

. One can check that the induced action on CH∨nS1
(L∗)

coincides with the one onCH∨nS1
(L∗) described explicitly in Section 3.
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6. Determining the map of Hochschild-Pirashvili homology from the rational homotopy type of a map

It is clear from the definition that the rational homology type of a space determines the rational higher
Hochschild homology. In other words, ifX∗ → W∗ is a rational homology equivalence then the induced map
HHW∗ (L∗) → HHX∗(L∗) is an isomorphism. Similarly, the rational homology type of any mapX∗ → W∗ deter-
mines the map in rational Hochschild-Pirashvili homology.In particular, the rational homotopy type of a map
must determine the higher Hochschild homology map. (In factfor suspensions the rational homology and rational
homotopy equivalences are the same.) In this section we compute how exactly the map of suspensions induces
the map of Hochschild complexes. For simplicity we will be assuming that the homology groups of the spaces
that we consider are of finite type. Many of the results hold without this restriction, but require more technical
work involving careful colimit arguments. Since the goal isto make it applicable for concrete examples which in
practice always have this property, we concentrate on this case.

6.1. Determining the map of Koszul duals from the rational homotopy type of a map. First we need to
understand how the map of Koszul duals

H̃∗((ΣY∗)∧•/∆•ΣY∗)→ H̃∗((ΣZ∗)∧•/∆•ΣZ∗).

is determined by the rational homotopy type of a mapf : ΣY∗ → ΣZ∗. Any such map produces a commutative
square of rightcoLie{1}-comodules:

(28) H̃∗
(

(ΣY∗)∧•/∆•Y∗
) ≃

//

��

H̃∗(ΣY∗)⊗• ◦ coLie{1}

��

H̃∗
(

(ΣZ∗)∧•/∆•Z∗
) ≃

// H̃∗(ΣZ∗)⊗• ◦ coLie{1}

The horizontal arrows are the isomorphisms from Corollary 1. We are interested in the right vertical map. (Notice
that sincef is arbitrary and not necessarily a suspension, this right vertical map is not determined by the induced
map in homologyf∗ : H̃∗(ΣY∗) → H̃∗(ΣZ∗).) According to Proposition 5.3, the horizontal maps respect the left
Com action. It is quite obvious that the left vertical map does soas well. As a consequence, the right vertical map
also respects this action. Its source is freely generated asa leftCom-module byH̃∗(ΣY∗)⊗1◦coLie{1}, and its target
is cofreely cogenerated as acoLie{1} right comodule byH̃∗(ΣZ∗)⊗•. As a consequence this map is determined by
a map of symmetric sequences

H̃∗(ΣY∗)⊗1 ◦ coLie{1} −→ H̃∗(ΣZ∗)⊗•,

or equivalently by a map

(29) H̃∗(Y∗)→ FreeLie
(

H̃∗Z∗
)

,

where FreeLie
(

H̃∗Z∗
)

denotes the free completed Lie algebra generated byH̃∗Z∗.
The rational homotopy of a simply connected suspension is a free Lie algebra generated by its reduced homol-

ogy. We claim that in the simply connected case the map obtained in (29) describes exactly the map (of generators)
of rational homotopy. More generally, when the suspensionsare not necessarily simply connected, one can still
assign a morphism (29) to the rational homotopy type of a mapf : ΣY∗ → ΣZ∗. By Lemma 4.2 any suspension is
rationally formal. Thus the induced map of their Sullivan’smodels

AΣZ∗ → AΣY∗

is quasi-isomorphic to a map of dg algebras

(30) A(Lc(H̃∗ΣZ∗))→ H∗ΣY∗,

where the left-hand side is the cofibrant replacement ofH∗ΣZ∗ obtained as the Chevalley-Eilenberg complex
A(−) of the Harrison complexLc(−) of the (non-unital) algebrãH∗ΣZ∗. Notice thatLc(H̃∗ΣZ∗) is the cofree Lie
coalgebra cogenerated bỹH∗Z∗ (with zero differential). Its dual vector space is exactly FreeLie(H̃∗Z∗). The map
of algebras (30) is determined by its restriction on the space of generators

(31) Lc(H̃∗ΣZ∗)→ H̃∗ΣY∗.

Proposition 6.1. For any map f: ΣY∗ → ΣZ∗ of pointed suspensions of finite type, the map(31) encoding the
rational homotopy type of f is dual to the map(29)encoding the homotopy type of the induced map of rightCom+
modules

(32) C̃∗
(

(ΣY∗)∧•
)

→ C̃∗
(

(ΣZ∗)∧•
)

.
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Proof. Arguing as in the proof of Lemma 4.1, the map of rightCom+ modules (32) is equivalent to the map

(33) (H̃∗ΣY∗)
⊗• →

(

Ã(Lc(H̃∗ΣZ∗))
⊗•

)∨
,

whereÃ(−) denotes the augmented part ofA(−); “∨” denotes taking the dual of a graded vector space. The
map (33) in each arity is the dual of a tensor power of (30). Theright-hand side of (33) can also be expressed

as
(

˜̂C(FreeLie(H̃∗Z∗))
)⊗̂•

, where ˜̂C(−) denotes the completed augmented Chevalley-Eilenberg complex (of a com-

pleted Lie algebra FreeLie(H̃∗Z∗)); “ ⊗̂” denotes the completed tensor product.
One has a zigzag of rightCom+-modules

(H̃∗ΣY∗)
⊗• →

(

˜̂C(FreeLie(H̃∗Z∗))
)⊗̂• ≃
←−(H̃∗ΣZ∗)

⊗•,

where the right arrow is an equivalence. We get a zigzag of their Koszul duals:

(34) (H̃∗ΣY∗)
⊗• ◦ coLie{1} →

(

˜̂C(FreeLie(H̃∗Z∗))
)⊗̂•

◦ coLie{1}
≃
←−(H̃∗ΣZ∗)

⊗• ◦ coLie{1},

We claim that the right arrow has a natural left inverse. In order to construct this left inverse
(

˜̂C(FreeLie(H̃∗Z∗))
)⊗̂•

◦ coLie{1}
≃
−→(H̃∗ΣZ∗)⊗• ◦ coLie{1}

it is enough to define a map of their (co)generators
(

˜̂C(FreeLie(H̃∗Z∗))
)⊗̂1
◦ coLie{1} −→ (H̃∗ΣZ∗)⊗•.

In arity n the latter map of symmetric sequences is defined as the following composition

˜̂C(FreeLie(H̃∗Z∗)) ⊗ coLie{1}(n)→ FreeLie(H̃∗Z∗)[−1] ⊗ coLie{1}(n)→

Lie(n) ⊗S n (H̃∗ΣZ∗)⊗n ⊗ coLie(n)→ (H̃∗ΣZ∗)⊗n.

The first map is induced by the projection on cogenerators˜̂C(FreeLie(H̃∗Z∗)) → FreeLie(H̃∗Z∗)[−1]. The second
map is obtained by projecting FreeLie(H̃∗Z∗) onto its subspace spanned by brackets of lengthn. The last map
takes into account the duality between the spacesLie(n) andcoLie(n):

L ⊗ h1 ⊗ . . . ⊗ hn ⊗ L′ 7→
∑

σ∈S n

(σL, L′)hσ1 ⊗ . . . ⊗ hσn.

To finish the proof we notice that the composite of the first arrow in (34) and the constructed inverse is the map

(H̃∗ΣY∗)⊗• ◦ coLie{1} → (H̃∗ΣZ∗)⊗• ◦ coLie{1}

(co)generated by the map dual do (31). �

6.2. Determining map of Hochschild-Pirashvili homology. In this subsection we describe how the map

(35) H̃∗Y∗ → FreeLie(H̃∗Z)

encoding the rational homotopy type off : ΣY∗ → ΣZ∗, determines the map of higher Hochschild complexes
CH(−)(−) (in fact we will work with gr CH(−)(−) instead). For simplicity we will be assuming thatY∗ andZ∗ are
of finite type and we will only look at the caseL∗ = M ⊗ C(g)⊗•, whereg is strictly positively graded. Thus we
need to describe the induced map

(36) M ⊗̂S
(

H̃∗Z∗⊗̂g
)

→ M ⊗̂S
(

H̃∗Y∗⊗̂g
)

.

Firstly, this map is the tensor product of the identity on thefirst factorM and a coalgebra homomorphism on the
second one. Ergo, it’s enough to describe its composition with the projection to the space of cogenerators

(37) S
(

H̃∗Z∗⊗̂g
)

→ H̃∗Y∗⊗̂g.

The map (35) is a product of maps

(38) H̃∗Y→ Lie(n) ⊗S n (H̃∗Z∗)
⊗n.

its n-th component (38) can be viewed as an elementρn ∈ H̃∗Y∗⊗̂Lie(n) ⊗S n (H̃∗Z)⊗n. This elementρn contributes
only to

(39) Sn
(

H̃∗Z∗ ⊗ g
)

→ H̃∗Y∗ ⊗ g.
17



in (37). The elementρn is a sum of elements of the form

h0 ⊗ L ⊗ h1 ⊗ . . . ⊗ hn ∈ H̃∗Y∗ ⊗ Lie(n) ⊗S n (H̃∗Z)⊗n.

Each such summand contributes to (39) as a map sending

(h1 ⊗ g1) · . . . · (hn ⊗ gn) ∈ Sn
(

H̃∗Z∗ ⊗ g
)

to
∑

σ∈S n

±





m∏

i=1

(hi, h
σi )



 h0 ⊗ L(gσ1, . . . , gσn) ∈ H̃∗Y∗⊗̂g,

where the sign is as usual the Koszul one induced by permutation of elements.
In the examples below we will be omiting the hat sign over the tensor product as the induced map (36) can

always be restricted on the non-completed partM ⊗S(H̃∗(−)⊗ g) (where the symmetric power is also taken in the
non-completed sense.)

Example 6.2. Consider the mapS1 → S1 ∨ S1 which sends the generatorx of π1S1 to the producty1y2 of
generators ofπ1(S1 ∨ S1). The map (35) becomes

xQ→ FreeLie(y1, y2),

that encodes the map of the primitive part of the Malcev completions [10] (all generatorsx, y1, y2 are of degree
zero). The image ofx is described by the Baker-Campbell-Hausdorff formula

x 7→ ln(ey1 · ey2).

The map (36) becomes

M ⊗ S(g) ⊗ S(g)→ M ⊗ S(g)

which sends

m⊗ A⊗ B 7→ m⊗ A⋆ B,

where⋆ is the associative (star) product onS(g) transported fromUg via the Poincaré-Birkhoff-Witt isomorphism.

Example 6.3. Consider the mapS2 → S1 ∨ S2 corresponding to the elementx · y ∈ π2(S1 ∨ S2), wherex is the
generator ofπ1S1 andy is the generator ofπ2S2. The map (35) in our case is

yQ→ FreeLie(x, y),

where|x| = 0, |y| = 1,

y 7→ eadx(y).

The induced map (36) is

M ⊗ S(g) ⊗ S(g[1]) → M ⊗ S(g[1]),

sending

m⊗ g1 · . . . · gk ⊗ s−1g′1 · . . . · s
−1g′k′ 7→ m⊗

1
k!

∑

σ∈S k

adgσ1
. . .adgσk

(s−1g′1 · . . . · s
−1g′k′).

Example 6.4. Consider the Hopf mapS3→ S2. On the level of rational homotopy we get a map

yQ→ FreeLie(x),

where|x| = 1, |y| = 2, and

y 7→
1
2

[x, x].

The induced map of higher Hochschild complexes

M ⊗ S(g[1]) → M ⊗ S(g[2])

sends

m⊗ s−1g1 · . . . · s
−1g2k−1 7→ 0,

m⊗ s−1g1 · . . . · s
−1g2k 7→ m⊗

1
2kk!

∑

σ∈S 2k

±s−2[gσ1, gσ2] · . . . · s
−2[gσ2k−1, gσ2k].
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7. Hochschild-Pirashvili homology for non-suspensions

Some of the techniques given in the present paper can also be applied to study the higher Hochschild homology
for non-suspensions and maps between them. This section is ashort note on how this works in the special case
whenL∗ = M⊗C(g)⊗•, whereg as usual is a strictly positively graded dg Lie algebra, and the spaces are connected
and of finite type.

Theorem 5. Assuming a pointed space X∗ is connected and of finite type, let A be an augmented non-positively
graded augmented commutative dg algebra of finite type quasi-isomorphic to the Sullivan algebra AX∗ , andÃ be
its augmentation ideal.13 Then the Hochschild-Pirashvili homology HHX∗(C(g),M) is computed by the complex
M⊗̂Ĉ(Ã⊗̂g), whereĈ(Ã⊗̂g) is the completed (with respect to the total homological degree of elements fromg)
Chevalley-Eilenberg complex of the completed Lie algebraÃ⊗̂g. The differential has the form

(40) d = dM + dg + dA + dCE + δ,

where dM, dg, δ are as those from(7), dA is induced by the differential in A, dCE is the Chevalley-Eilenberg
differential.

Proof. This complex is constructed in the same way as the higher Hochschild complexes for suspensions, see
Subsection 4.1. The extra termdCE in the differential appears due to the fact that theCom+ action on (̃A∨)⊗• is
now non-trivial. �

The result of this theorem is partially known to experts. It appeared explicitly for spheres and surfaces re-
spectively in [14, Theorem 3] and [15, Theorem 4.3.3], see also [3] for a similar implicit statement in caseX is
a manifold. Notice also that in caseM = C(g) (i.e., when considering unpointed version of higher Hochschild
homology) the obtained higher Hochschild complex is the completed Chevalley-Eilenberg complexĈ(A⊗̂g). As
application of this example, in case the dimension ofX is less than the connectivity ofY, the spaceYX of con-
tinuous mapsY→ X has homology with any coefficients described asH∗(YX) ≃ HHX(C∗(Y•)), see [26, 28]. On
the other hand, the rational homotopy type ofYX is described by the dg Lie algebraA⊗̂L, whereA is a suitable
Sullivan model forX andL is a suitabe Quillen model forY, see [4, 6, 7]. From this we also recover thatĈ(A⊗̂L),
i.e., our complex, computes the rational homology ofYX.

Remark 7.1. One can easily see that themth term of the Hodge filtration inM⊗̂Ĉ(Ã⊗̂g) =
∏+∞

i=0 M⊗̂Si(Ã[−1]⊗̂g)
is FmM⊗̂Ĉ(Ã⊗̂g) =

∏m
i=0 M⊗̂Si(Ã[−1]⊗̂g).

Theorem 5 applied to a suspensionΣY∗ of a finite type is exactly the statement of Remark 4.6. Indeed, since
ΣY∗ is formal one can takẽA = H̃∗ΣY∗ the cohomology algebra, whose product is trivial, and thus the Chevalley-
Eilenberg part of the differential is trivialdCE = 0. The rational homotopy type of a map of suspensions of finite
type f : ΣY∗ → : ΣZ∗ is encoded by a map (31), which is essentially the same as aCom∞ map of commutative
algebrasf ∗∞ : H̃∗ΣZ∗ → H̃∗ΣY∗. In Subsection 6.2 we show how this map determines a map of higher Hochschild
complexes

M⊗̂Ĉ(H̃∗ΣZ∗⊗̂g)→ M⊗̂Ĉ(H̃∗ΣY∗⊗̂g),

which is the identity on the first factorM and a completed coalgebras map on the second factor. The latter map
can be regarded as a completedL∞ morphism

H̃∗ΣZ∗⊗̂g→ H̃∗ΣY∗⊗̂g.

of (completed) abelian Lie algebras.
More generally, a tensor product with a dg Lie algebra is in fact a functor fromCom∞ algebras toL∞ algebras.

We will need a completed version of this construction. LetÃ be a negatively gradedCom∞ algebra of finite type
encoding the rational homotopy type of a connected pointed spaceX∗, and letg be a positively graded dg Lie
algebra. The completedL∞ algebra structure oñA⊗̂g is explicitly described by the structure mapsµn defined as
composition

(41) µn : Sn(Ã[−1]⊗̂g)→ FreeLiec(Ã[−1])⊗̂FreeLie(g)→ Ã⊗̂g,

where FreeLiec(Ã[−1]) is the free Lie coalgebra cogenerated byA[−1] (in other words, it is the Harrison complex
Lc(Ã)). The first map is induced by the diagonalCom(n) → coLie(n) ⊗ Lie(n). The second map is theCom∞
structure on the first factor and theLie structure on the second. If̃B → Ã is a Com∞ morphism encoding the
rational homotopy type of a pointed mapX∗ → Y∗, then the induced completedL∞ mapB̃⊗̂g→ Ã⊗̂g is described
by essentially the same formulas as (41). Itsn-th component is the composition

(42) Fn : Sn(B̃[−1]⊗̂g)→ FreeLiec(B̃[−1])⊗̂FreeLie(g)→ Ã[−1]⊗̂g,

13In our conventions all the complexes have differential of degree−1, for which reason the algebras we consider are non-positively graded.
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where the first map is the same as the fist one in (41). The secondmap is the tensor product of theCom∞ map
B̃→ Ã and the Lie algebra structure map ong. In Subsection 6.2 the correspondingL∞ map is explained in full
detail for the case of suspensionsÃ = H̃∗ΣY∗, B̃ = H̃∗ΣZ∗.

Remark 7.2. For aCom∞ algebraÃ (non-positively graded and of finite type) consider its dualCom∞ coalgebra
Ã∨. Then theL∞ algebraÃ⊗̂g considered above is theL∞ algebra of derivations of the zero map of Lie algebras
L(Ã∨)→ g.

Theorem 6. Let Ã be a non-positively gradedCom∞ algebra of finite type encoding the rational homotopy type
of a pointed space X∗, then the Hochschild-Pirashvili homology HHX∗(C(g),M) is computed by the complex
M⊗̂Ĉ(Ã ⊗ g), whereĈ(Ã ⊗ g) is the completed Chevalley-Eilenberg complex of the completed L∞ algebraÃ⊗̂g.
The differential has the form(40). If B̃ → Ã is a Com∞ morphism (of non-positively gradedCom∞ algebras
of finite type) encoding the rational homotopy type of a pointed map X∗ → Y∗, then the induced map in the
Hochschild-Pirashvili homology

HHY∗(C(g),M)→ HHX∗(C(g),M)

is computed by the chain map
M⊗̂Ĉ(B̃⊗ g)→ M⊗̂Ĉ(Ã⊗ g),

which is identity on the first factor M and a completed coalgebra map corresponding to the induced completed
L∞ algebras map̃B⊗̂g→ Ã⊗̂g.

Proof. First we check that the statement of the theorem holds whenB̃ → Ã is a dg commutative algebras map,
which is an easy refinement of Theorem 5. On the other hand handanyCom∞ algebra (and anyCom∞ morphism)
is quasi-isomorphic to a dg commutative algebra (map of dg commutative algebras). This together with the fact
that aCom∞ quasi-isomorphism̃A1 → Ã2 induces anL∞ quasi-isomorphism̃A1⊗̂g → Ã2⊗̂g proves the staement
of the theorem. �

The above theorem has the following corollary.

Proposition 7.3. For a pointed connected space X∗ of finite type, the Hodge filtration in the higher Hochschild
complexes splits for any coefficientΓmodule L∗ if and only if X∗ is rationally homology equivalent to a suspension.

Proof. In one direction the statement easily follows from the fact that a rational homology equivalence of spaces
induces a quasi-isomorphism of higher Hochschild complexes. Now letX∗ be not equivalent to a suspension. It
is well known that anyCom∞ algebra isCom∞ quasi-isomorphic to a one with zero differential [22, Theorem
10.4.5]. LetÃ be such one encoding the rational homotopy type ofX∗. Since we assumeX∗ is not rationally a
suspension,̃A must have non-trivial (higher) product(s). Letk be the arity of the first non-trivial product. We
chooseL∗ = M ⊗ C(g)⊗•, whereM = Q is the comodule with the trivial coaction, andg is a free Lie algebra
with k generators. By constructioñA⊗̂g is anL∞ algebra with zero differential and whose first non-trivial (higher)
bracket has arityk. Applying Remark 7.1 we get that the (k− 1)th differential in the spectral sequence associated
with the Hodge filtration inM⊗̂Ĉ(Ã⊗ g) is non-zero. Therefore the filtration does not split. �

7.1. Hochschild-Pirashvili homology as ”homotopy base change”. Let us conclude by remarking on a curious
algebraic interpretation of the Hochschild-Pirashvili homology in the form described in Theorem 5. First, recall
that to any dg commutative algebraA we may associate a functor

ΦA : (Lie algebras)→ (Lie algebras)

by sending a dg Lie algebrag to the tensor productΦA(g) := g ⊗ A, with the Lie algebra structureA-linearly
extended in the obvious manner. We may call this functorΦA ”base change”, even though this is a misnomer as
we do not change the underlying ground ring. Similarly, ifg is a dg Lie algebra andK is anA-module, we may
define a functor

ΨA,K : (g −modules)→ (ΦA(g) −modules)

by sending ag-modulek to theΦA(g)-moduleΨA,K(k) := k ⊗ K, with the module structure defined in the obvious
manner. We also call the functorΨA,K ”base change”, with the same caveat as above that this is a misnomer.
There is also a topological variant: If the Lie algebrag carries in addition a complete topology compatible with
the Lie algebra structure, then̂ΦA(g) := g⊗̂A is likewise equipped with a natural complete filtration. Similarly,
if k is equipped with a complete filtration and the action ofA is continuous, then̂ΨA,K(k) := k⊗̂K is a complete
(continuous)ΦA(g)-module.

Now it is well known [22, chapter 11.3] that there is an adjunction of categories

L : (conilpotent coaugmented dg cocommutative coalgebras)⇆ (dg Lie algebras) :C
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given by the bar and cobar functors (i.e., the Harrison and Chevalley complex functors), such that for any conilpo-
tent dg coalgebraC the unit of the adjunctionC → C(L(C)) is a quasi-isomorphism, and such that for any dg
Lie algebrag the counit of the adjunctionL(C(g)) → g is a quasi-isomorphism. Concretely, the functorL takes
the Harrison complex (a free Lie algebra) of the cokernel of the coaugmentation, while the functorC takes the
Chevalley complex. Similar functors exist on the the level of comodules. IfC is a conilpotent dg cocommutative
coalgebra then we have bar and cobar functors

Lmod : (conilpotentC-comodules)→ (L(C) −modules)

(conilpotentC(L(C))-comodules)← (L(C) −modules) :Cmod.

Concretely,Lmod(M) = Harr(C; M) is the Harrison complex with values in the moduleM, i.e., a freeL(C)-module
generated byM if we disregard the differential. Similarly,Cmod(N) = C(L(C); N) is the Chevalley complex with
values inN, i.e., a cofreeC(L(C))-comodule cogenerated byN with a natural differential.

There exist versions of the above constructions for complete topological algebras and modules, by replacing
tensor products appearing there by a completed version. We denote those completed versions byL̂, Ĉ etc.

The above adjunctions allow us to transport any endofunctorof the category of dg Lie algebras to an endo-
functor of the category of conilpotent dg cocommutative coalgebras (and vice versa). The point of this section is
to remark that the Hochschild-Pirashvili homology functoris nothing but the (homology of the) well known base
change functors above, transported to the category of conilpotent coalgebras via the bar and cobar adjunctions.
This gives an algebraically ”very simple” interpretation of the Hochschild-Pirashvili homology. Concretely, let us
assume that we are given the following data:

• A conilpotent complete cocommutative dg coalgebraC, for exampleC = C(g), for a dg Lie algebrag as
in Theorem 5, which we endow with the complete the decreasingfiltration by degree.

• A a conilpotent completeC-comoduleM.
• An augmented dg commutative algebraA. For example, we may take such anA from Theorem 5. We will

still denote byÃ its augmentation ideal.
• We letK = Q be the one-dimensionalA-module, with the action defined by the augmentation.

Then we define a complete cocommutative coalgebra

CA := Ĉ(Φ̂A(L(C))) = Ĉ(L(C)⊗̂A)

and the completeCA-comodule

MA := Ĉmod(Ψ̂A,K(Lmod(M))) = Ĉmod(Lmod(M)⊗̂K).

Clearly, these constructions are functorial inA, C andM. We will abusively call these constructions ”homotopy
base change”. The main statement of this section is then thatthe complex of Theorem 5 computing the Hochschild-
Pirashvili homology may be interpreted as ”homotopy base change”.

Proposition 7.4. For C = C(g) the Chevalley complex of a dg Lie algebra, and A,M as above, the complexes MA

and the complex(M⊗̂Ĉ(Ã⊗̂g), d) of Theorem 5 are quasi-isomorphic.

Proof. Explicitly, the complexMA has the form

Ĉ(L(C)⊗̂A; Harr(C; M) ⊗ K)

whereĈ(−;−) denotes the (completed) Chevalley complex with values in the second argument, and Harr(−;−)
denotes the Harrison complex. Using the augmentation we maynow splitA = Q ⊕ Ã, whereÃ is the kernel of the
augmentation. Using this splitting we find the identification of graded vector spaces (recall thatK = Q)

(43) Ĉ(L(C)⊗̂A; Harr(C; M) ⊗ K) � Ĉ(L(C)⊗̂Ã)⊗̂C(L(C); Harr(C; M)).

Note however, that this identification is not an identification of complexes (yet). The differential on the right-hand
side is composed of two terms: the differentiald1 of the left-hand tensor factor and the differentiald2 of the right-
hand tensor factor. The differential on the left-hand side of (43) on the other hand has anadditional termdmixed

from the Chevalley differential, which is obtained by taking the coaction ofC(L(C); Harr(C; M)) followed by a
Lie bracket. Note that this term resembles the termδ in Theorem 5. Note that we have a quasi-isomorphism of
C(L(C))-comodules

M → C(L(C); Harr(C; M)).

Hence we obtain a quasi-isomorphism of complexes

(44) (Ĉ(L(C)⊗̂Ã) ⊗ M, d1 + dM + dmixed)
∼
→ (Ĉ(L(C)⊗̂Ã)⊗̂C(L(C); Harr(C; M)), d1 + d2 + dmixed) � MA,

where the part of the differentialdmixedon the left-hand complex is defined as before by taking the coaction onM
followed by a Lie bracket with a factor of̂C(L(C)⊗̂Ã).
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Furthermore, sinceC = C(g) we have a quasi-isomorphism of dg Lie algebras

L(C)→ g.

Hence we obtain a quasi-isomorphism

(45) (Ĉ(L(C)⊗̂Ã)⊗̂M, d1 + dM + dmixed)
∼
→ (Ĉ(g⊗̂Ã)⊗̂M, d)

with the complex considered in Theorem 5. By (44) and (45) theProposition is shown. �
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