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ABSTRACT. We define reduced colored gl link homologies and use deformation spectral sequences
to characterize their dependence on color and rank. We then define reduced colored HOMFLY-PT
homologies and prove that they arise as large N limits of gl homologies. Together, these results
allow proofs of many aspects of the physically conjectured structure of the family of type A link

homologies. In particular, we verify a conjecture
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2 EXPONENTIAL GROWTH OF COLORED HOMFLY-PT HOMOLOGY

1. INTRODUCTION

It is well-known that the famous Jones polynomial is an instance of the large class of Reshetikhin—
Turaev (RT) invariants of knots and links [45]. These are rational functions in one variable ¢ and depend
on a datum consisting of an oriented, framed link £ in S3, a complex semisimple Lie algebra g and a
labelling (coloring) of the connected components of £ by representations of g. The Jones polynomial
arises in the case where g = sl and all link components are labelled by the vector representation.

Given such a large family of invariants, it is natural to inquire into their dependence on the datum of
link, Lie algebra and labelling. The best-studied subfamily is the one where g € {gly} nen and many
important aspects of the relationship between these invariants have been uncovered. For example, for
a fixed link and labelling, it is well-known that the gl invariants stabilize for large N to a colored
HOMFLY-PT invariant in two variables a and ¢, which contains generalizations of the Alexander
polynomial and from which the gl, invariants can be recovered as one-variable specializations a = ¢'¥.
The dependence of HOMFLY-PT invariants on the labelling is governed by recurrence relations [13],
which are notoriously difficult to compute and are conjectured to have deep relationships to the A-
polynomial, character varieties and knot contact homology, see Garoufalidis [12], Gukov—Saberi [17] and
references therein. However, as regards questions like the one about dependence of the invariant under
variations of the input link, the RT invariants seem to carry too little structure to allow meaningful
answers.

This deficit has been remedied by the development of link homology theories categorifying the RT
invariants, starting with Khovanov’s categorification of the Jones polynomial [2I]. They associate to
a datum of link, Lie algebra and labelling a bi-graded vector space (usually as the homology of a
graded chain complex), whose graded Euler characteristic recovers the corresponding RT invariant.
Additionally, for every smooth cobordism between two links in IR3, one can construct a linear map
between the corresponding invariants, and it is expected (and proven for fundamental representations in
type A, see Ehrig-Tubbenhauer—Wedrich [10] and references therein) that this construction is functorial
and only depends on the isotopy type of the cobordism. This provides a much more satisfactory
framework for thinking about the dependence of the invariant on the underlying link than would have
been possible for the original RT invariants. Furthermore, some of these purely combinatorial link
homologies can be related to gauge-theoretic link invariants, with important consequences, for example
a proof that Khovanov homology detects the unknot [27], a question which is still open for the Jones
polynomial. However, the increase in sophistication in categorified invariants is bought at the price
of increased algebraic, combinatorial or geometric complexity in the definition. In fact, only for the
simplest cases it is possible to compute link homologies directly from the definition. In parallel, the
questions about the dependence of the invariant on the other parts of the datum become correspondingly
harder and also more interesting.

The purpose of this paper is to study the rank and labelling (color) dependence of gly link ho-
mologies with respect to fundamental (exterior power) representations. Such link homologies have
been constructed by Wu [57] and Yonezawa [58] and many otherd], building on the pioneering work
of Khovanov—Rozansky [24], but up until now, little has been known about the relationships between
members of this family.

1.1. The large N limit, categorified. For knots and in the uncolored case of the labelling by the
vector representation of gly, Rasmussen [44] has categorified the relationship between the HOMFLY-
PT polynomial and the gl RT polynomials by constructing specialization spectral sequences from
Khovanov—Rozansky’s reduced triply-graded HOMFLY-PT homology [25] to their reduced gl ho-
mologies [24]. These spectral sequences degenerate for large N and exhibit the triply-graded homology

IWe refer the reader to the introduction of [33] for a brief survey of the different approaches to colored gl link
homologies and an argument for why they are equivalent, which is based on work of Cautis [5].
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as a stable limit of the gly homologies. In this sense, all uncolored reduced gl homologies can be
packaged into a single link homology theory together with a family of specialization spectral sequences.

In this paper, we define bi-graded reduced colored gl homologies and triply-graded reduced colored
HOMFLY-PT homologies and show that they satisfy analogous relationships, generalizing the results
of Rasmussen.

Theorem 1. Let L(i) be a labelled link with a marked component i of minimal label. There is a spectral
sequence

KhR™(L(i)) ~ KIR°™(L())
from colored HOMFLY-PT homology to colored gl homology, both reduced at the component i. See
Theorem [5.44]

Theorem 2. . Let IC be a labelled knot. For sufficiently large N, there are isomorphisms

@ KR, (k) = KnR}S (K)

i+2Nj=1

h—j=J
between a grading-collapsed version of reduced colored HOMFLY-PT homology and reduced colored gl
homology. See Theorem [317}

Theorem [2] relies on the fact that the reduced colored HOMFLY-PT homology is finite-dimensional
for knots, see Proposition On the contrary, the original unreduced colored HOMFLY-PT ho-
mology of Mackaay—Stosi¢—Vaz [32] and Webster—Williamson [51] is always infinite-dimensional. Nev-
ertheless, we find an analogue of Theorem [I which relates it to unreduced colored gly homologies
and—more generally—their 3-deformed versions, which have been defined by Wu in [56] and further
studied by Rose and the author in [47].

Theorem 3. Let L be a labelled link. There is a spectral sequence
KhR>®(£) ~ KhR®(L)

from unreduced colored HOMFLY-PT homology to unreduced, ¥-deformed colored gly homology. See
Theorem [3.23.

1.2. The physical structure. The existence of reduced colored gly and HOMFLY-PT homologies
and the theorems describing their relationships, although new, will not come as a surprise to the
expert. In fact, they are at the very centre of current interest in the study of link homologies from the
perspective of theoretical physics. Since Gukov—Schwarz—Vafa’s physical interpretation of Khovanov—
Rozansky homology as a space of BPS states [18], there has been significant cross-fertilization between
the mathematical and physical sides of this field. A particularly interesting outcome is a package of
conjectures about the structure of the family of colored gl and HOMFLY-PT homologies, which has
been developed over a decade in a series of papers by Dunfield-Gukov—Rasmussen [9], Gukov—Walcher
[20], Gukov—Stosi¢ [19], Gorsky—Gukov—Stosi¢ [I4] and Gukov—Nawata—Saberi-Stosié-Sutkowski [16].

Thanks to recent advances in understanding the higher representation theory underlying link ho-
mologies (in particular categorical skew Howe duality), which led to the convergence of several different
approaches to link homologies [5] [39, 47| [33], we are now in a position to prove a significant part of the
physically conjectured structure. In the following theorems, KF denotes a knot labelled with the k"
exterior power of the vector representation.

Theorem 4. There is a spectral sequence
TS0 ok ———00 @k
RIR(ch)  ~  (KIR™(K))
See Corollary [348
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This implies that the colored HOMFLY-PT homologies of a knot grow at least exponentially in
color, as predicted in [14]. A related result has been obtained previously by the author for categorical
invariants of rational tangles, [52]. The next theorem provides rank-reducing spectral sequences, as
suggested in [9, 20]. In special cases (M = k = 1), these have been defined and used before by
Lewark—Lobb in [29] for the construction of new slice genus bounds.

Theorem 5. For N > M > k there is a spectral sequence
ROR™™(KF)  ~ KOR®™(K")
See Corollary [2.33.

We are optimistic that the these and other spectral sequences (Theorem 2.3T]) will help to understand
relations among the many slice genus bounds and concordance homomorphisms obtained from gl link
homologies (see Lobb [30], Wu [55] and Lewark-Lobb [29]) as analogs of Rasmussen’s s-invariant [43)].
Finally, there are color-reducing spectral sequences, analogous to the colored differentials in [19] [14].

Theorem 6. For k > h there is a spectral sequence
KhR™(K*) ~ KhR™(K")
See Corollary [3-49

1.3. Open problems. While this paper solves a significant part of the physically conjectured structure
from [9] 20] [19] 14] [16], several adventurous questions remain open and deserve further mathematical
attention. We finish this introduction with a list of some of these open problems (roughly in increasing
order of perceived difficulty) and comment on their relation to the results in the present work.

The module structure of colored HOMFLY-PT homology. In our definition of reduced colored HOMFLY-
PT homology we assume that the reduction happens on a link component of minimal label. Re-
lated to this technical restriction are questions about the relationship between reduced and unreduced
HOMFLY-PT homology, see Remark B.43] and about extensions of colored gl and HOMFLY-PT
homologies to invariants of pointed links along the lines of Baldwin—Levine-Sarkar [I]. Further, if this
assumption can be avoided or circumvented, then proofs for some of the conjectures about color-shifting
properties on links made in [I6] should be within reach.

Are the spectral sequences actually differentials? Theorem 2 implies that the spectral sequences in
Theorem 5 are degenerate for sufficiently large M. In general, it is unknown how fast the spectral
sequences from Theorems 1 and 3-6 convergﬁ and whether the differentials in the spectral sequences
between (colored) HOMFLY-PT homologies in Theorems 4-6 preserve the a-grading. The latter is
because these Theorems rely on the stabilization behaviour from Theorem 5, which requires collapsing
the a-grading, and on deformation spectral sequences between finite-rank homologies, whose grading
behaviour sensitively depends on the chosen deformation parameters [29]. For conjectures about these
properties see [9] 19, [14] [16].

Reduced homologies for non-fundamental colors. Unreduced colored gly homologies have also been
defined for labellings by non-fundamental representations via cabling operations by infinite-twist torus
links, see Rozansky [48] and Cautis [5]. Provided compatible definitions of reduced colored gl and
HOMFLY-PT homologies for these labellings, many of the results in the present paper can be expected
to extend to this setting to produce specialization, rank-reducing and color-reducing spectral sequences.

2Note7 however, that since the first arXiv version of this paper appeared, Naisse—Vaz have proposed a strategy for
proving that the Rasmussen spectral sequences—the spectral sequences from Theorems 1 and 3 in the uncolored case—
converge on the second page [37].
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The q-symmetry and another grading. A long-standing conjecture about reduced HOMFLY-PT homolo-
gies posits that there is an involution on reduced uncolored HOMFLY-PT homology, which inverts the
g-grading. On reduced colored HOMFLY-PT homologies, it is expected to swap labellings with their
transposes, e.g. exterior power with symmetric power representations. This ¢g-symmetry, also called
mirror symmetry in [9, 19, T4} [I6], is further conjectured to intertwine with specialization spectral
sequences and to be related to an alternative homological grading—t, in their notation—effectively
making colored HOMFLY-PT homology quadruply-graded.

Lie superalgebra link homologies. Gorsky—Gukov—Stosié [14] have suggested that the g-symmetry and
its related structure might be more naturally interpreted in a hypothetical framework of colored gly |y,
link homologies, whose M = 0 cases are related to the known gl homologies. Recent work of the
author in collaboration with Tubbenhauer and Vaz [49] supports this conjecture on the decategorified
level by exhibiting the g-symmetry of colored HOMFLY-PT polynomials as a consequence of relations
between the representation categories of quantum gly,,, for various parameters N, M. Some progress
towards a definition of gly,, link homologies via categorical skew Howe duality has been made by
Grant [I5]. A string theory setup for such link homologies has been proposed by Mikhaylov—Witten
[35].

A spectral sequence to knot Floer homology. The classical Alexander polynomial can be recovered
as the a = 1 specialization of the (uncolored) HOMFLY-PT polynomial. Dunfield-Gukov—Rasmussen
[9] have conjectured the existence of a corresponding specialization spectral sequence from (uncolored)
HOMFLY-PT homology to the knot Floer homology developed by Ozsvdth—Szabé and Rasmussen|38|
41]. Recent developments related to this conjecture and the present paper include work by Dowlin [§]
and Baldwin-Levine—Sarkar [1I], who match up structural properties of both types of link homologies,
and Ellis—Petkova—Vértesi [I1], whose results can be interpreted as saying that knot Floer homology
(and its extension to tangles) is already a gly; homology.

Outline of the paper: Theorems 1, 2 and 3 are proved in Section [3] using Z-graded matrix fac-
torizations and arguments analogous to those in Rasmussen’s work on the uncolored case [44]. The
keystone Lemma is proved using a technique inspired by the annular web evaluation algorithm
of Queffelec—Rose [40]. Theorems 4, 5 and 6 follow via large N stabilization from analogous results
for reduced gl link homologies. These are proved using the deformation theory for reduced gl link
homologies, which is developed in Section 2] building on earlier work of the author in collaboration
with Rose on the unreduced case [47] and work of Lewark-Lobb on the uncolored case [29]. For this
we use the gly foam 2-categories introduced by Queffelec-Rose in [39], building on earlier work of
Mackaay—Stosié—Vaz [31]. These foam 2-categories were given a satisfying new combinatorial descrip-
tion by Robert—Wagner [46] after the preprint version of this article appear on the mathematics arXiv.
For the reader’s convenience we will recall matrix factorizations and foam 2-categories and explain
their use in the construction of link homology theories. However, in the interest of compactness we will
blackbox some technical aspects, especially regarding the relationships between the link homologies
defined using foams and matrix factorization, for which we refer the reader to the cited literature.

Acknowledgements: It is my pleasure to thank Anna Beliakova, Christian Blanchet, Sergei Gukov,
Mikhail Khovanov, Lukas Lewark, Andrew Lobb, Satoshi Nawata, Louis-Hadrien Robert, David Rose,
Marko Stosi¢, Daniel Tubbenhauer, Emmanuel Wagner, and Edward Witten for valuable discussions
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related to this work. Special thanks go to Jake Rasmussen for his advice and comments on the man-
uscript, and to an anonymous referee, whose comments have significantly improved the exposition.
Further, I would like to thank the California Institute of Technology, Columbia University, the Simons
Center for Geometry and Physics, the Université catholique de Louvain and the Universitéat Ziirich for
their kind hospitality and support while this work was in progress.

Conventions: All links and tangles are assumed to be oriented and framed, link and tangle diagrams
are assumed to be oriented and they represent oriented, framed links and tangles via the blackboard
framing.

2. DEFORMED COLORED gl HOMOLOGY

Sections 2T and recall the essential features of the foam 2-categories of Queffelec—Rose [39] and
their use in the construction of (deformed) colored gl Khovanov—Rozansky homologies. In Section 23]
we consider these link homologies as modules over the corresponding unknot invariants. Section [2.4]
extends the deformation theory of gly link homologies from [47] to 2-ended tangles. This allows the
definition of corresponding reduced homologies in Section and deformation spectral sequences in
Section 2.6] which leads to a proof of Theorem 5.

2.1. Foams. The monoidal 2-category NFoam is a categorification of the category of fundamental
representations of Uy (gly) in its diagrammatic incarnation N'Web. The category N Web of gl webs
is a Z[g*']-linear monoidal category whose objects are sequences a = (ay,...,am,) € {1,...,N}™
for m > 0, which correspond to tensor products /\ZI(D(JZV ®-® /\Z’”(Dév of fundamental Ug(gly)-
representations. The morphisms in N'Web are linear combinations of gl webs —leftward oriented,
trivalent graphs, with edges labelled by elements of {1,..., N}, which are generated under planar

composition by
a a
}(_ okt ’ et _{ ’ “ _(_a
b b

which we view as mapping from the sequence determined by the labelled points on the right boundary
(read top to bottom) to the one determined by the left. Merge and split vertices correspond to the
natural intertwiners A;CY ® /\Z(szv — /\ZH’(D(JZV and /\ZH’(D(JZV = N\ CY ® /\g@év respectively. The
morphisms in NWeb are subject to the Z[g™']-linear relations that hold among the corresponding
Uq(gly)-intertwiners. We illustrate some of these relations in Section Ml More details about N'Web
and its relationship with the representation theory of U,(gly) appear in [6] [49)].

The monoidal 2-category NFoam has the same objects as N'Web and its 1-morphisms are formal
direct sums of gly webs (now not considered up to any relations). The 2-morphisms are matrices of
C-linear combinations of gly foams — singular cobordisms between such webs assembled from local
pieces

'I %« ;@g\

modulo certain local relations and isotopies, for which we refer the reader to [39] Section 3.1]. The local
foam relations ensure that the defining linear relations between webs in N'Web—which are identities
of elements of a Z[¢*!]-module——can be lifted to isomorphisms between 1-morphisms in NFoam.
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The facets of these foams carry labellings by elements in {1,..., N}, and a k-labelled facet may also
be decorated by elements from a ring of symmetric polynomials in k variables. For later use we list a
family of foam relations, see [39, Relation (3.9)], which govern decoration migration between the three
facets adjacent to a seam singularity:

b ¢ by ¢

a a

(1) A 7T»y = ch7ﬂ Tra/\
a,p

,
_,

Here 7, denotes the Schur polynomial corresponding to the Young diagram « and the Cl, 5 are the
corresponding Littlewood—Richardson coefficients. Imposing this family of relations has the effect of
identifying the union of the alphabets of variables on the left side facets with the alphabet on the right
side facet. Analogous relations hold across all seams.

The 2-morphisms in NFoam admit a grading, which is first defined on undecorated foams as a
certain weighted Euler characteristic, see [39, Definition 3.3], to which is added twice the sum of the
degrees of the decorating symmetric polynomials in the general case. This grading is additive under
disjoint union U, under composition in the 1-morphism direction ® and under composition in the 2-
morphism direction o. All relations in NFoam are homogeneous, so this grading descends to NFoam.

We now introduce versions of foam 2-categories used in the definition of link homologies:

e NgrFoam is the 2-category with the same objects as NFoam, with 1-morphisms being formal
direct sums of webs as in NFoam, but equipped with an additional formal Z-grading. I.e.
corresponding to a web W from NFoam we have webs ¢?IW in NgrFoam, where d € Z
indicates the formal degree, and the automorphism shifting the grading by 1 is given by formal
multiplication by g. 2-morphisms are matrices of C-linear combinations of foams F': ¢t W —
g W, of grading dy — d; Ep

e NFoam”® is the 2-category which is obtained from NFoam by imposing the following additional
relation on 2-morphisms:

This relation is to be understood as saying that whenever a foam contains a 1-labelled facet
decorated by the N*" power of the facet variable (indicated by the dot), it is equal to zero.
Note that this relation is homogeneous and the morphisms in NFoam® can be equipped with
a grading. Thus it also makes sense to define:

e NgrFoam®, the 2-category which is obtained from NgrFoam by imposing relation (2) on
2-morphisms.

e Let ¥ be a multiset of N complex numbers. NFoam? is the 2-category obtained from NFoam
by imposing the following additional relation on 2-morphisms:

N—
(3) = (DN len (%)
0

=

—

Here ey (¥) the k' symmetric polynomial in N variables, evaluated at ¥. Note that, in general,
this relation is not homogeneous with respect to the grading on foams. The only exception

3In [39] NgrFoam is denoted by NFoam.
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is NFoam!%% = NFoam®. If we denote by P € C[X] the monic polynomial with root
multiset X, then (B]) can be abbreviated to P(e) = 0.

2.2. Link homology. In this section, we recall how foam 2-categories can be used to define gl link
homologies. For the details, the reader is referred to Queffelec—Rose [39, Section 4].

Let 7 be a tangle diagram inside an axis-parallel rectangle in IR?, possibly with boundary on the
left and right boundary of the rectangle, and with strands labelled by natural numbers. The following
construction associates to the labelled tangle diagram 7 a so-called cube of resolutions complex [T ]
in the category Kom(NFoam) of chain complexes in NFoam. In [39] Theorem 4.8] it is shown that
the complex [T], considered as an element of the homotopy category Komy,(NFoam), is an invariant
of the labelled tangle represented by 7.

Every labelled tangle admits a diagram given as the horizontal composition ® of tangles which are
the disjoint union LI of generating tangles: caps, cups, crossings and horizontally directed identity
tangles. In fact, it suffices to define [-] on such generating tangles because the operations ® and U
on NFoam naturally extend to bounded complexes Komb(N Foam): On chain spaces they act as U
and ® respectively and the structure of differentials is defined similarly as in a tensor product complex.
Further, it is a standard result that these operations respect homotopies and, hence, are well defined
on the homotopy category KomZ(N Foam) of bounded complexes in NFoam.

On 1-strand identity tangles, [-] is defined as

[[—(—a]]:—(—a R [[ > a]]: < N—a .

Note that we replace a rightward strand of label a by the leftward strand of complementary label
N — a. This is motivated by the isomorphism of U, (sly) representations (Ay(Cy'))* = /\év_a((ljév),
and it allows us to exclusively work with leftward oriented webs. The trade-off is that we have the
following slightly unnaturally-looking definitions for cap and cup tangles:

N

—
NN
B
Il Il
Z Z
2 =2 =2 @
(O
—
U U
—_— ]
Il Il

=4
@glgn

=4

The N-labelled edges that appear here are drawn as doubled lines—erasing them recovers the tangle.

Finally, for labelled, left-directed crossings one uses foam-analogues of Chuang—Rouquier’s [7] Rickard
complexes, see [39, Section 4.2]. For example, the complex assigned to a negative crossing of strands
labelled by a > b is

BOZanl BN U AU 21 S5 ) SREDS DY
(4) _(_/_b_ab b—>q;_1 b—> —>qa b

where the underlined term is in homological degree zero, every component of the differential is given by
a foam containing a single 1-facet bridging the middle square and we include g-degree shift that make
the differentials grading preserving, allowing the complex to be defined over NgrFoam. The following
illustrates a typical component of the differential:

N _,

( )
A

N

k [~
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These assignments, together with the extension of ® and U to Kom®(NFoam), define [-] on all
tangle diagramsE The resulting complex can alternatively be regarded as lying in Komb(N Foam) or
in the graded version Komb(N grFoam). We use the following notation for the images of this complex
under the natural quotient 2-functors:

o [T] (0.0} ¢ Kom(NFoam?®) for the singly-graded undeformed version,
e [T]” € Kom(NFoam?®) for the singly-graded S-deformed version and
e [T]*"* € Kom(NgrFoam?®) for the bi-graded undeformed version.

Theorem 2.1. [39, c.f. Theorem 4.8]. Given a labelled tangle diagram T, the complex [T] in
Kom(NFoam) depends, up to homotopy, only on the labelled tangle represented by T. The same

holds for the versions [T] {0""’0}, [[7']}E and [[7']]ng.

In the case that the tangle is actually a link, represented by a diagram L, all of the boundary points
in the complex [L] are N-labelled and all webs in it are endomorphisms of a highest weight object of
the form 0P := (N,..., N). Hence, one can apply the representable functor

P

grtaut: Kom(End ygrFoame (0°°?)) — Kom(grVect)

given by grtaut(-) := € ez Hom(q? 1gtor, ) to [£]°' to obtain a complex of graded vector spaces.
Then one defines the bi-graded vector space

(5) KhRE'™ (L) := H,(C?~ (L))  where C9'~ (L) := grtaut([£]%"™).
Theorem 2.2. [39, Theorem 4.12] Up to shifts in homological and quantum grading, KhR®'~ (L) is iso-

morphic as a bi-graded C-vector space to Wu’s and Yonezawa’s colored Khovanov—Rozansky homology
of the mirror link c*f

In the ¥-deformed case, we can use the representable functor

taut: Kom(End  poom® (0"?)) — Kom(Vectg)

given by taut(-) := Hom(1eter, ) to [[E]}Z to obtain a complex of finite-dimensional vector spaces and
we define the graded C-vector space

(6) KhR*(L) := H,(C¥ (L)) where C¥(L) := taut([L]).

Theorem 2.3. [47, Theorem 2] Up to shifts in homological degree, KhR* (L) is isomorphic as a singly-
graded C-vector space to Wu’s deformed Khovanov-Rozansky homology with respect to deformation
parameters Y.

Remark 2.4. KhR®'™ (£) is isomorphic to KhR{%%}(£) as a singly-graded C-vector space.

2.3. Module structure. In this section, we show that (deformed) colored gl link homologies can be
regarded as modules over corresponding unknot homologies. For this, let 7 be a labelled 2-ended tangle
diagram with boundary label k, i.e. a labelled tangle diagram with one right and one left endpoint,
which represents a labelled link £ with a k-labelled component cut open.

. o e

4 Tor technical reasons, one usually assumes that all N-labelled boundary points occur at the top. This can be

Vi Vi
achieved by horizontally composing with webs of the following type: JZ X ; , ; Y, IZ .
N N

5In the following, we suppress this difference in conventions and always consider Wu’s and Yonezawa’s construction
applied to the mirror link and with adjusted gradings.
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We write 0! := (N, ..., N, k) for the boundary labels of objects in the complex [T] and HY :=
H*(Gr(k,N),C) for the (graded) cohomology ring (with coefficients in C) of the Grassmannian of
complex k-planes in CV. This ring has the following presentation as the quotient of a ring of symmetric
polynomials in a k-element alphabet X with coefficients in C

Sym(X)
(hv—k+i(X) [ i >0)

where h;(X) denotes the ' complete symmetric polynomial in X, see [28]. We write H(X) =
Ym0 hi(X)t" = [],cx (1 — xt)~" for the generating function of the complete symmetric polynomi-

I

(8) H;Y

als. We will also need the (ungraded) Y-deformed Grassmannian cohomology ring H}’, given by the
presentation

Sym(X)
(hn—ti(X = X) [ i > 0)
where the complete symmetric polynomials h;(X — X) in the difference of the alphabets X and ¥ are
given by the generating function:

(9) H =

_ — -1 _ ) _ i HAeE(l B )‘t)
HX-%):=HX)H®) = ghz(x o)t o=

Remark 2.5. HY and H? have (homogeneous) C-bases with elements represented by the Schur polyno-
mials 7y € Sym(X) indexed by Young diagrams A that fit into a k x (N — k) box, see e.g. [56, Theorem
2.10].

Lemma 2.6. There are C-algebra isomorphisms

End loeut) = Hp' and End Loter) = C

~NFoam” ( ~NFoam” (

and graded C-algebra isomorphisms
Endy grroams (loeut) = HY  and  Endy grroams (1otor) = C.
Proof. In [47, Lemma 23] it was proven that

End (L)) = Hy

~NFoam”

where H kE can be interpreted as algebra of decorations on a k-labelled foam facet. In particular
End, poam= (1) = C = End poo 0= (1v)). Since End oo s (Loeur) clearly contains the subalge-
bra HkE of decorated identity foams, it suffices to prove that these span EndNFoamE (1geut). This can
be verified as in [39, Proposition 4.3]. The undeformed, graded case is analogous. O

We define the representable functors
grtaut,,, : Kom(End ygrFoams (0°*")) — Kom(H{ —mod)

cut *
taute,: : Kom(End (0°")) — Kom(H; —mod)

~NFoam™

given by grtaut,,,(-) := @ ez Hom(q? loeur,-) and tautey:(-) := Hom(1geur, -).

Definition 2.7. For 2-ended tangle diagrams 7 with boundary label k, the colored Khovanov—
Rozansky homology and its deformed version are defined as

KhR®'™ (T) := H,(C®~(T))  where C%' (T) := grtaut,,, ([7]*),
KhR*(T) := H,(C¥(T)) where CZ(T) := tautew ([T]7).
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Note that C%'~(T)) is a chain complex of graded H}Y-modules and C*(T)) is a chain complex
of Hy-modules. KhR9'™ (7)) and KhR*(T) thus inherit actions of HY and H; respectively. Before
considering the naturality of these actions, we record the following corollary of Theorem 211

Corollary 2.8. KhR9'~(-) and KhR*(.), as (bi-)graded vector spaces, are invariant under Reidemeis-
ter moves and their tangle analogues and, thus, define invariants of 2-ended tangles.

In the following, we will show that the Khovanov—Rozansky homologies of 2-ended tangles and their
closures are isomorphic. For this, we need a technical lemma.

Lemma 2.9. Every web in Endy grpoams (0°“Y) is isomorphic to a direct sum of grading shifted copies
of the identity web 1geut.

Proof. We first claim that every web W in End ygrFoam® (OC“t)—when considered as a 1-term complex

in Komy,(End ygrFoame (07°?))—is homotopy equivalent to a chain complex C' (W), whose chain groups
are direct sums of grading shifted copies of the identity web 1,cut. On the decategorified level, in
NWeb, it is well-known that for any such web W, there exists a sequence of web relations which
can be used to write this web as a linear combination of identity webs 1geut. This can be deduced
from the main theorem of Cautis—Kamnitzer—Morrison [6, Theorem 3.3.1], but we also give an explicit
algorithm in Proposition Each web relation used in this sequence can be written in a form that
lifts to an isomorphism in NgrFoam, which we would like to use to iteratively simplify W. If V is a
web appearing at an intermediate stage in the simplification and the next lifted relation is of the form
V @j qu‘Vj, then we can use this isomorphism to simplify V in NgrFoam. However, sometimes

the lifted relations are of the form V & @, ¢%V/ = @ i q%V;. In this case, we use the isomorphism
V = Cone (@Z gV — D, q% VJ) in the homotopy category instead.

By Lemma[Z6] we see that all components of the differential in C'(W) are decorated identity foams
on lyewt. We may assume that all components have positive degree, since a component of degree zero
would be an identity foam that can be cancelled by Gaussian elimination. Then there are no non-trivial
homotopies between chain endomorphisms of C(W), as they would have components of negative degree,
which is impossible by Lemma This implies that the homotopy equivalence W — C(W) is in fact
an isomorphism of chain complexes, and so C(W) is concentrated in degree zero, and W is isomorphic
to its only non-trivial chain group, which proves the lemma. O

Lemma 2.10. If T is a 2-ended tangle diagram with boundary label k and L its closure, then there
are isomorphisms C%'~ (T) = C®'~ (L) and C*(T) = C*(L) of complexes of (graded) vector spaces.
Consequently, KhR®'~ (T) = KhR®'V (£) and KhR*(T) = KhR*(L) as (bi-)graded vector spaces.

Proof. Lemma implies that [[7'ﬂg[N is isomorphic to a complex C’(T), whose objects are direct
sums of grading shifts of 15c«¢+ and whose differentials are matrices of decorated identity foams on this
web. After closure as in (), this induces an isomorphism between [£]®'~ and a complex C’(£) whose
objects are direct sums of grading shifts of bigon webs By n—_x

N—k

k —— & N =<>: N
closure PA

; —_ N

Locut = o N N = Bi Nk

N——N N——N

and whose differential is given by matrices of identity foams decorated on the k-labelled facet. Since
By, N—k = 1otor @ H}Y we have a natural isomorphism grtaut(By, n—x) = grtaut,,, (1ocut ), which extends
to an isomorphism grtaut(C’(L)) = grtaut,,,(C’(T)). The deformed case is analogous. O

In fact, in the proof of Lemma [2.10] we have seen the following.
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Corollary 2.11. KhR®'~ (L) is the homology of a complex of free HY -modules and KhR*(L) is the
homology of a complex of free H}Z-modules.

Theorem 2.12. IfK is a k-labelled knot. Then C®'~ (K) € Komy,(HY —mod), KhR®*'~ (K) € HY —mod,
C¥(K) € Komy,(Hy—mod) and KhR¥(K) € Hy—mod are well-defined knot invariants, in the sense
that different representations of K as closure of a 2-ended tangle diagram give isomorphic invariants.

Proof. 1t is a classical fact that one-component 2-ended tangles are isotopic if and only if they close to
isotopic knots, see e.g. [22, Section 3]. Then it follows from Corollary 2.§] that the module structure is
also an invariant. ]

Theorem 2.12] also holds for links, although we do not use this fact here. It can be proved via the
interpretation of the module structure in Section Bland [47, Proposition 60].
Ezample 2.13. The unknot homologies are given by KhR®'™ (OF) = g}, KhR*(O*) = H and, in
particular, KhR{O""’O}(Qk) o H,EO""’O}.
2.4. Decomposing deformations. Let K be a knot given as the closure of a 2-ended tangle diagram

T and let ¥ = {A",...AM} be an N-element multiset consisting of distinct complex numbers \;
occurring with multiplicities N;.

Lemma 2.14. [47, Theorem 13] There is an isomorphism of C-algebras

l
e @ @y

E aj =k ]:1
and the direct summands are local algebras that are indexed by k-element multisubsets A = {\{*, ... A\['}

of X.

Definition 2.15. Let A be a k-element multisubset of ¥ and denote by 14 the corresponding idempo-
tent in H;>. Let T be a 2-ended tangle diagram with boundary label k, then we define the A-localized
complex

CE(T) = Latautew ([T]%)

which is a direct summand of C¥(T) and clearly itself a knot invariant in Komy,(H;*—mod). Then
the A-localized ¥-deformed Khovanov—Rozansky homology of K is defined to be

KhR% (K) := H.(C3(T)).
Note that KhR™(K) & @ 4y, 41— KhR3 (K0).

Theorem 2.16. Let K be a knot and write K* for its k-labelled version if k € N. Let A = {\{*,... A"}
be a k-element multisubset of . There is an isomorphism of singly-graded vector spaces:

!
(10) KhR’; (KF) 2 (R) KhR®™ (k%)
j=1
Proof. The proof is very similar to the proof of [47, Theorem 1]. We sketch it here because we need a
variation in the next section, but readers interested in the details are referred to [47].

The proof uses a slightly enlarged 2-category NFoam?®, in which idempotent-decorated identity
foams are split idempotents—in other words, webs are allowed to be colored by idempotents as well.
Then we have that C%(T) = Latautey: ([T]7 = tautew ([Ta]”), where [Ta]” is the complex in
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NFoam?® which is associated to the 2-ended tangle diagram 7, with the boundary k-labelled web
edges colored by the idempotent corresponding to the multisubset Al
In [47, Definition 46 and Theorem 65] we (that is Rose and the author) define web splitting functors ¢,

which can be used to split an idempotent-colored complex in NFoam?* into its root-colored components:
l
» P
(ITal®) = Q) [Tayeal
j=1

b .
Here we use the shorthand [Ty, A]]E = HTXJ’ ]] for the complex in NFoam?> assigned to the a;-

labelled tangle 7, with the boundary web edges labelled by A; := {/\?j }. Furthermore, there exist
representable functors tauts,;;; and tauty; such that

!
(11) tatt ey ([TA]7) 2 tautapu (6([7a]7)) = @ tauty, ([Tr,ea] ).
j=1

Finally, the complexes [[’T,\ e A]] > in the tensor factors on the right-hand side of ([Il) live in 2-subcategories
NFoam» €% of N FoAamE, which consist of webs and foams that are colored by multisubsets that only
contain A;. In [47, Proposition 68] it is shown that N Foam*/ €% is isomorphic to the undeformed
foam 2-category IN;Foam®. Moreover, under this isomorphism, the complex [[7}].6 A]]E corresponds

]]{0,...,0}

to the undeformed complex [T and, hence, tauty, applied to [['T)\ € A]] > produces a complex

of (ungraded) vector spaces isomorphic to the complex computing KhR* ; (K% ) with the g-grading
forgotten. 0

A version of Theorem [2.16] for links with a marked component can be proved analogously, but we
will not need it here.

2.5. Reduced colored gly, homology. The purpose of this section is to define reduced colored gl
homologies and to study their X-deformed versions, which depend on the choice of a k-element multiset
A € . For the sake of brevity, we only consider knots K, whose k-labelled versions we denote by C¥.
However, all definitions and results in this section have straightforward generalizations for links with
a marked component.

Definition 2.17. Consider the presentation (§) of H}Y and the highest degree element 7i¥ := e, (X)N~*
in HY. Then (r}’) is a 1-dimensional ideall in H N and the reduced colored gly Khovanov—Rozansky
homology of a k-labelled knot KF (given as the closure of a k-labelled 2-ended tangle 7) is defined as

KhR®'~ (KF) := H. (UB[N (T)) where oo (T) == (mi¥ \grtaut,,, ([T]°™).
This produces bi-graded knot invariants, which take the value C on the unknot.

Definition 2.18. Let A be a k-element multisubset of 3. We define the symmetric polynomial

TA = H H()\—:zr)

AexX\AzeX
and denote by the same symbol the corresponding element in H;".

Lemma 2.19. (m4) is a 1-dimensional ideal in H}’ and all such are of the form (mwa) for some k-
element multisubset A of . Moreover, the top degree homogeneous component of ma as a symmetric
polynomial in X is £ml.

6From now on we will abbreviate this and say “colored by A” instead.
"This is proven more generally in Lemma [2.T9]
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Proof. First of all, note that 74 has the expansion

A= H ANl (X4 -4 (= 1) e 1 (X)+ (= 1) Fer(X)) = e (X)V~* +lower order terms.
AET\A

The leading term e, (X)V =% of 74 is (up to a sign) the Schur polynomial corresponding to the maximal
k x (N — k)-box Young diagram. In particular, 4 is not zero in H;", see Remark

Checking 1-dimensionality of (m4) is equivalent to showing that w4 is a simultaneous eigenvector
for the e;(X): For a multiset of complex numbers S and the variable set X, we consider the ideal
Is == (hs|—|x|+:(X = S)[i > 0) C Sym(X). Via a straightforward computation with generating
functions for complete symmetric polynomials in differences of alphabets, we can see that J], .x (A —
x)Is C Igyqay for any A € €. We first note that [], .x (A — ) = hix|(A — X). We need to check that
hix|(A = X)hyg)—x|+i(X = S) € Iguqay for every i > 0. Writing 5" = S U {A}, we note that

HS) '=HN'HN-X)HX-S)=HN-X)HX - 5"

is a polynomial of degree |S|. Using hx(X — 8") = hpy(X = S) — Mhp—1 (X = 5) for k£ > 0, we get the
following identity in degree |S| + i.

IX|—1
(12) 0 =Ry |(A = X)ys x4 (X = S) + Y hy(A=X)hyg (X = )
3=0
|S|+1i
(13) —MyxA = X)ys (X =9+ D b= X)hygi (X =)
J=IX]+1
The second line (I3)) can be further rewritten as:
S| +i |S|4i—1
Do A =X)hgi (X =) =X D hiA=X)hygppi 1 (X - 9))
J=I1X[+1 J=IX]
|S|+i
= Y (A =X) =M1 (A= X))hygi (X = §) =0
=X +1
since h;(A — X) = A1 (A = X) for j > |X]|. Then ([I2)) implies that hjx|(A — X)hg)—x+:(X = 5) €

Tsuiry-

'lihien, by induction, we also have mqI4 C Iy and since I4 contains all polynomials of the form
ei(X) — e;(A), it follows that 74 is an eigenvector with eigenvalue e;(A) for multiplication by e;(X) in
H,CE Also, it shows that w4 € 1,4H,€E because 74 is annihilated by every e;(X) — e;(A), at least one of
which would need to act as a unit in any other summand 15H by Lemma

Finally, for every 1-dimensional ideal I = Cm, the homomorphism wy: H;® — C given by z7 =
wr(x)T has as kernel a maximal ideal in H;°, of which there are exactly as many as local direct
summands of H}’, which have been identified as 14 H. Thus, we have I = (m4) for some k-element
multisubset A of 3. O

Lemma 2.20. [47, Corollary 18] With respect to the presentation [@) of HY, a symmetric polynomial
p € Sym(X) projects to a unit in the summand 14H? if and only if p(A) # 0.

Remark 2.21. For a multisubset A C ¥, define A := {\ € ¥ | )\ appears at least once in A} and
7a = [Laemaloex (A — ). Then (m4) = (Tala) in H. This is easily seen, since the additional
factors in the definition of w4 are units in 1 4 H ,CE by Lemma [2.20
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Definition 2.22. Let A be a k-element multisubset of ¥. We define the A-reduced X-deformed
Khovanov-Rozansky homology

KR, (K) := H.(CH(T)) where C1(T) = (ma)tautea[T]".
By Theorem [2.12] this is a singly-graded knot invariant. It takes value C on the unknot.

In the uncolored case, where A = {\}, these reduced deformed homologies have been previously
defined by Lewark-Lobb [29], who also show that they lead to new obstructions to sliceness.

Theorem 2.23. Let ¥ = {\V' ... /\INZ} be an N -element multiset of distinct complex numbers A;,
occurring with multiplicities Nj. Let A = {\{",... \"} be a k-element multisubset of ¥.. Then there is
an isomorphism of singly-graded vector spaces:

l
(14) KIR , (k") 2 QKIR"™ (K)

j=1

Proof. The reduced deformed homology is computed by the chain complex (4 )taute,: [T ], which is a
chain complex whose chain groups are spanned by foams F': 145cut — W, which are decorated by w4 on
the k-facet adjacent to the domain web 14cut, and W is a web appearing in the cube of resolutions chain
complex [7]”. The differentials in (74 )taute,[7]> act by post-composing with foams G: W — W’
from [T]".

Now we apply a splitting functor ¢ to all webs in the complex to separate out individual roots. This
works exactly as in the proof of Theorem [Z.16] except that the decoration by 74 on the k-facet needs
to be distributed onto the [ parallel a;-facets colored by A; := {)\?j }. We claim that if an A-colored
facet is split into facets colored by multisubsets A = BWC which are disjoint BNC = 0, then w4 splits
into the product of decorations upmp and ucme on the B- and C-colored facets respectively, where
up and uc are units.

To see this, denote the alphabet on the A-, B- and C-colored facets with X, X3 and X5 respectively.
Then the decoration migration relations () impose X = X; W Xy and we get:

wme= I [[0-o I1 [0-o- I To-oI To-o 11 I] -2

AeX\B reX, AeX\C zeXs rex\AzeX AeCzeXy AeB zeXsy

— =1 . —1
=TA =upg =Ug

Using the criterion from Lemma it is clear that the elements which we have suggestively denoted
by u]_gl and ual are indeed units. The following equation illustrates the action of the foam splitting
functor ¢ in a simple case. The green sheet on the left is decorated by w4 and colored with the
idempotent 14 with A = {A\{*, A{?} containing only two distinct roots. The functor ¢ acts by splitting
the sheet along the boundary into two parallel sheets colored with the idempotents 1p (blue) and 14
(red), where B = {A{*} and C' = {A\5?}, c.f. [47, Example 4.27]. The decoration 74 is split into factors
upmp and ucmwe as computed above.

v v

A Al
< gr UBT B
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If A contains more than two distinct roots, then an inductive argument allows to split A-facets
into parallels of Aj-facets and to distribute 74 into decorations by m4; (up to units). This argument
provides the necessary modification of (I]):

l

(16) <7TA>taUtcut([[7:4]]E) = ®<7TAj )tauty, ( [[7-)‘J GA]] Z)'

j=1
Next, note that (m4,) = (T,) is the unique maximal ideal in HaEJ’ , where ¥; = {/\;VJ} Under the
isomorphism of NFoam™ €* with the undeformed foam 2-categories N;Foam?®, this ideal corresponds
to the maximal ideal (wé\;j ) in H,fjj , which is used in the definition of reduced, undeformed a;-colored
g[Nj homology. Thus, the tensor factors on the right-hand side of (I6) compute knot homologies
isomorphic to the singly-graded versions of KhR®™ (K99). O

2.6. Deformation spectral sequences. In this section we study Wu’s quantum filtration on de-
formed colored Khovanov—Rozansky homology and its induced deformation spectral sequence [54} 56],
and introduce versions for reduced colored Khovanov-Rozansky homology. We again restrict to the
case of knots and leave the straightforward generalization to the case of links to the reader.

Definition 2.24. A C-vector space V is called filtered if it is equipped with a sequence of vector
subspaces { FPV },cz—the filtration—satisfying
CcPVeFRtvertve... . FPVv=0 , JFVv=V
PEZ PEZL
A C-algebra A is filtered if its underlying C-vector space is filtered and the multiplication satisfies
FPA-FIA C FPT1A for any p,q € 7Z.

A module M over a graded, commutative C-algebra A is filtered if its underlying C-vector space is
filtered and the A-action satisfies

x- FPM C FPT4e82 N[ for any = € A,p € Z.
From a filtered C-algebra or an A-module X we can construct the associated graded object
Gr(X) =P rrx/r'x
PEZL
which inherits the structure of a graded C-algebra or a graded A-module respectively. We use powers
of ¢ to indicate shifts in filtration:
FP(¢* M) = FrHip.
An A-module homomorphism f: M — N between filtered A-modules is filtered if
f(FPM) C FPN.

A chain complex of filtered A-modules is filtered if the differential is filtered. The homology of such a
chain complex is again a filtered A-module and its associated graded module can be computed via a
spectral sequence induced by the filtration on the chain complex, see e.g. [34] Theorem 2.6].

Ezample 2.25. HY is a filtered C-algebra and a filtered Sym(X)-module with respect to the filtration
FPHY := {x|z has a representative in Sym(X) of degree < p}

defined via the presentation ([@). In fact, H;> = End, poam® (Locut) is also a filtered module over the
larger algebra R := Sym(X|X;|---|Xj;) of polynomials separately symmetric in the k-element alphabet
X and in N-element alphabets X;, one for each occurrence of N in 0“!. The action can be interpreted
as placing additional decorations on (decorated) identity foams on 1gecut.
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Lemma 2.26. The associated graded algebra of H} with respect to the filtration introduced in Ezam-
ple[228 is Gr(H}) = HY.

Proof. Consider the algebra Sym(X) and let Iy := (hy_g4:(X)|7 > 0) and I := (Ay_p+:(X=2)]i > 0)
be the ideals used in the presentations () and (@) of H ,ﬁv and H ,CE respectively. Iy is a homogeneous
ideal, the quotient algebra H}Y is graded, and so it is canonically isomorphic to its own associated
graded HY = Gr(H}Y). We shall show Gr(H}) = Gr(H?).

Let I be any ideal of Sym(X), then an elementary computation identifies the degree p part of the
associated graded of Sym(X)/I as:

FPSym(X)

Fr=1Sym(X) + FPSym(X) N I
Now it is sufficient to note that in the case of the ideals Iy and Iy, the corresponding denominators are
equal. To see this, recall that Sym(X) has two triangularly equivalent bases {mx(X) = det(hx,—i+; (X))}
and m\ (X — X) = det(hy,—i+;(X — X)) of Schur polynomials, which are indexed by Young diagrams
A= (A1 > Ay >...) with at most k rows. Moreover, by [66, Theorem 2.10], we have that I and Iy
are spanned by those 7y (X) and 7, (X — X) respectively, whose Young diagrams A do not fit inside
the k x (N — k) box. Since the top degree part of m\(X — X) is precisely 7 (X), it follows that
FPISym(X) + FPSym(X) N Iy = FP~1Sym(X) + FPSym(X) N Is.

Then (7)) shows that the graded parts of Gr(H}') and Gr(H}) are canonically isomorphic and that
the algebra structures agree since they are both inherited from Sym(X). O

(17) Gr(Sym(X)/I), =

The existence of deformation spectral sequences for colored Khovanov—Rozansky homology has been
established via Theorems and 228 which are due to Wu. Their basis is the observation that the
chain complexes computing colored Khovanov—Rozansky homology have chain groups that are graded,
but the differentials are only filtered. The filtration thus induced by the grading is known as the
quantum filtration.

Theorem 2.27. [56, Theorem 9.3] Let K be a labelled knot diagram. Then the filtered homotopy type
of C*(K) with respect to the quantum filtration is a knot invariant.

Theorem 2.28. [56, Theorem 9.9] Let K be a labelled knot and ¥ an N-element multiset of complex
numbers. Then the deformation spectral sequence induced by the quantum filtration on C=(K) satisfies:
e the Ey page is isomorphic to the undeformed bi-graded Khovanov-Rozansky complex C®'~ (K)
o the E1 page is isomorphic to the undeformed bi-graded Khovanov—-Rozansky homology KhR'~ (K)
e the Eo page is isomorphic as a bi-graded C-vector space to the associated graded of the -
deformed Khovanov—Rozansky homology:

B ~Cr (KhRZ (IC))
and as a singly-graded C-vector space, it is isomorphic to KhR™ (K) itself.

Convention 2.29. Given a spectral sequence as in Theorem [2.28, we abuse notation and say there is
a spectral sequence: KhR9'W(K) ~ KhR¥(K).

We will now give an explicit description of the quantum filtration in the framework of foams and a
sketch proof of Theorem [2.2§

Sketch proof of Theorem[2.28. We work with a 2-ended tangle diagram 7 whose closure is K. This has
the advantage of allowing an analogous proof of Theorem 2311

The original cube of resolutions complex [7] can be regarded as living in NgrFoam, i.e. it is ¢-
graded with grading preserving differentials. Analogously as in the proof of Lemma[210] this complex
can be simplified to a (graded) homotopy equivalent complex, which consists only of identity webs
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1oeut, and decorated, grading preserving identity foams between thenﬁ—by abuse of notation we also
denote this by [T]. Next we consider the corresponding complex in NFoam, but we remember the
g-grading shifts of the objects in the complex. Proceeding to the quotient [[’T]}E in NFoam®™ has the
effect of equating decorations by high-degree symmetric polynomials on k-facets with decorations by
symmetric polynomials of lower degree and specializing decorations on N-facets to multiplication by
complex scalars. Thus, the formal degree of any foam F': ¢%11geur — % 14cut appearing in a differential
in the new complex [[7']}E is actually less than or equal to do — d;. When applying the functor taut,,;
to [[’T]}E every q%1geur in the complex will contribute a copy of ¢?H;” to the chain groups of C=(T)
according to Lemma Now, however, we consider this copy as being equipped with the filtration
from Example shifted by d. This defines filtrations on all chain groups of C*(7) and we will
check that the differential is filtered too. An element of FPtaute,:(¢% 1geut) is given by an identity
foam decorated by a polynomial of degree < p + d;. By the above discussion, applying the differential
taute,:(F) adds a further decoration by a symmetric polynomial of degree < do — d;. The resulting
total decoration on the identity foam is of degree < p + da, so it lies in FPtautey: (g9 1geut ).

Now we know that C*(T) is endowed with a filtration, and since it is clearly bounded, there

is an induced spectral sequence which converges to Gr (KhRE(IC)). Finally, we argue that Fy :=
Gr (C*(T)) is isomorphic to C9'~ (T). For the chain groups, this follows from the fact Gr(H') = H}Y,
which was observed in Lemma [2.260 Moreover, it is clear from the above discussion that taking the

grading preserving (top degree) part of the differential in C*¥(T') recovers the differential in C'%'~ (7).
The statement about the F; page follows immediately. O

Remark 2.30. Theorem [2.28 also holds for links £, although in this case an analogous proof using closed
diagrams (and endomorphism categories of 0°? instead of 0°*!) would appear to be more natural.

We will need deformation spectral sequences for reduced colored Khovanov-Rozansky homology.

Theorem 2.31. Let X be an N-element multiset of complex numbers and A a k-element multisubset
of ¥ . Then there is a reduced deformation spectral sequence satisfying the following conditions:

——~0lN

e the Ey page is isomorphic to the reduced bi-graded Khovanov-Rozansky complexr C(KF)

e the E1 page is isomorphic to the reduced bi-graded Khovanov—-Rozansky homology W{BIN (KCF)

e the Eo page is isomorphic to the associated graded of the A-reduced Y-deformed Khovanov—
Rozansky homology, which by Theorem [2.23 decomposes into a tensor product of undeformed
reduced homologies of smaller color and rank:

Theorem ! _
) =2 ar | QEER™™ (k)

j=1
if = {0 )\INZ} and A ={A*,...,\'}. As a singly-graded C-vector space, the Ex page
is isomorphic to KhRi(/Ck) = ®§:1 KhR"'™ (K93 itself.

E. =~ Gr (KhRi (KCF)

Proof. As before, we work with a 2-ended tangle T instead of K. It is clear that Ui (T) := (ma)taute, [T]”
inherits a quantum filtration from taut.,: [[’T]}E and the induced spectral sequence computes Gr (KhRi (IC’“)) .

Moreover, the differentials in the complexes Ui(T) and C*(T) are given by composition by the same
—=
foams. Thus, it only remains to show that the associated graded of a chain group of C,4(7T) is isomor-
——gl
phic to the corresponding chain group of C (IC’C)g V. Again, it suffices to check this for the elementary

8The main difference here is that N-labelled foam facets can carry decorations, which can be regarded as “equivariant”
parameters in the sense of [26] and [56].
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building blocks of the chain groups:
Gr ((ma)taut ey (Locur)) = Gr ((ma)Hy) =2 (mf YHEY = () )grtaut(Locu: )
The middle isomorphism follows from Example 225 Lemma and Lemma a

Corollary 2.32. There exist spectral sequences

- _ ®k
(18) KOR®“Y (KF)  ~ (KhRg[N (/cl)) and

(19) RhR®™V (k%)  ~  KOR®™(KF1) @ RKaR*™(KY).

Proof. By Theorem 23T there is a spectral sequence from KhR""™ (KF) to mi(l@) for any choice of
k-element multisubset A of an N-element multiset ¥ of complex deformation parameters. For the first
type of spectral sequence we choose Y2 and Asuch that Il =k, Ny =---=N,=Nanda; =---=aq; =1
and for the second type we choose ] =2, Ny =Ny =N anda; =k—1, az = 1. O

Corollary 2.33. (Rank-reducing spectral sequences) For N > M > k there is a spectral sequence
(20) KOR®™Y (KF)  ~  RHR™™(K").

Proof. Choose |l =2 and Ny = M, No = N — M and a; = k, as = 0 in Theorem [Z.31] and note that
KOR®™ ¥ (K°) 2 €. 0
Corollary 2.34. For k > h there is a spectral sequence

(21) KRR'™ " (kKF)  ~  KRR™™(K").

Proof. Choose l =2 and Ny = N, Ny =k —h and a; = h, as = k — h in Theorem 2.31] and note that
KOR™ " (Kk—h) = ¢, O

Remark 2.35. In general, it is unclear how fast the spectral sequences in the previous corollaries
converge. However, it follows from the stability property of Theorem 2 in the introduction (see also
Theorem [B47) that the spectral sequences from Corollary 2:33] are degenerate for large M.

For completeness we mention the following theorem, which follows from Corollary 2.I1] similarly as
in the uncolored case, see e.g. Rasmussen’s [42, Lemma 5.5].

Theorem 2.36. There is a spectral sequence
KhR®'™~ (OF) @ KRR™™ (KF)  ~  KhR'~ (KF)

which respects the homological and quantum grading.

3. CoLOoRED HOMFLY-PT HOMOLOGY

In Section Bl we give a review of colored HOMFLY-PT homology which utilizes the notation
and techniques already introduced in this paper. In Section we transition to matrix factorization
technology to study spectral sequences connecting colored HOMFLY-PT and gl homologies as claimed
in Theorem 3. Finally, we introduce reduced colored HOMFLY-PT homology in Section [3.3] and prove
Theorems 1, 2, 4 and 6.
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3.1. Construction. Let £ be a labelled link presented as the closure of a labelled braid diagram B:

To be compatible with our conventions for webs and foams, we draw braids horizontally and oriented
from right to left. In ([22)) we illustrate the closure of B, which produces a link diagram £ in R?, and
also the intermediate annular closure, which produces a link diagram B in a planar annulus.

We will consider the cube of resolutions chain complex [B], whose construction was sketched in
Section 2.2} as a chain complex over NFoam, where we choose N larger than the sum of the labels on
the strands of B. Denote the domain and co-domain object of webs in [B] by op = (01, ..., 0m). More
generally, a braid, tangle or web whose left and right boundaries carry matching sequences of labels is
called balanced.

Definition 3.1. For a web W: 0; — o0y in NFoam we consider the sub-algebra Dec(W) of the
endomorphism algebra End y poam (W) generated by the decorated identity foams on W. For identity
foams on an object o = (o1, ..., 0x) we abbreviate Dec(0) := Dec(1,) and note that Dec(W) is naturally
a Dec(01) ® Dec(oz2)-module by placing decorations on the right and left boundary facets.

With respect to a braid diagram B as above, we define Rg := Dec(op) = Sym(X;4]...|X,,) and
remind the reader that it is given by the graded algebra of polynomials separately symmetric in o;-
element alphabets X;. Under the assignment Dec, the webs in the complex [B] correspond to Rg-
bimodules, which are special cases of singular Soergel bimodules, see [53].

Ezample 3.2. The explicit description of the following decoration bimodules follows from the decoration
migration relations () on foams:

Sym(V]Y)
V-1
~ ( Sym(V|L|M) Sym(L|M[Y)
Dec(—(—(ﬁ)—(—) = (7@/ LU M>) ®Sym(L|M) (7“14 UM = Y>)

_ (Sym(V[WIL) Sym(LIX|Y)
pec( D<) = (e ) “ome (Fasow)
Sym(V|X) Sym(W|Y)

V=X ° (W=Y)

o )« () o (123

Here and in the following, we use the suggestive shorthand (X, UX, = X1 U - UXgqp) for
ideals of the form (e;(X; U - -UX,) —€;(Xgp1 U - UXgtp)|i > O> Wthh have the eﬁect of identifying
polynomials in the respective alphabets in the quotient ring.

Dec(—(—) =~

1%

Dec(=E)

Remark 3.3. In [47], Rose and the author have used the singular Soergel bimodules from Example
to relate the (deformed) link homologies constructed in foam 2-categories with the original construction
using matrix factorizations [24] 58| 57, 56]. More precisely, we show that, under favourable circum-
stancesﬁ, the matrix factorizations assigned to webs in this construction are essentially determined by

9In the absence of oriented cycles in the web.
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the bimodules Dec(-) via the process of stabilization. Similarly, homomorphisms of matrix factoriza-
tions are then determined by the corresponding bimodule maps. For details, see [47, Section 4.4] and
the references therein, in particular [2, [4 3] [50].

The main tool from [47, Section 4.4] that we need in the following is that Dec extends to a 2-
functor from the 2-category of foams to the 2-category of singular Soergel bimodules. We have already
described that on the level of 1-morphisms, the 2-functor Dec sends the web W to the decoration
bimodule Dec(W). On the level of 2-morphisms, Dec sends foams to the bimodule homomorphisms
specified as follows with respect to the notation in Example

a-+b
a+b —_ . a
Ei A (I=101) H(w}@TH{l iA=5 )

)

0 all other A € P(a,b),

R
" —»(1ol-101) |, u = 1Tel- Z (—1)l47Y @ 7%
bﬂ a€eP(a,b)

P‘bz —»(IeI-11) |, rw’ —» (IeT—10T)
s P

Here f denotes an element of a quotient ring (as shown in Example 3.2)) represented by a polynomial f,
7T§N denotes the Schur polynomial in the alphabet W corresponding to the Young diagram . P(a,b)
is the set of Young diagrams fitting into a box of size a x b and its maximal element is v*. For a
Young diagram A € P(a,b) with rows \; for 0 < i < a, the complementary diagram A° has rows
A =b— Agq1—; for 0 <i < a, and \ denotes the transpose of A°.

Proposition 3.4. The above assignments uniquely define bimodule maps between the corresponding
decoration bimodules. Dec extends naturally to a monoidal 2-functor from NFoam to the monoidal
2-category Bimod of singular Soergel bimodules. For a balanced labelled braid diagram B, the complex
Dec([B]) is isomorphic to the complex of singular Soergel bimodules constructed by Mackaay—Stosié—
Vaz [32] and Webster—Williamson [51].

Proof. Uniqueness is clear since the maps are defined on a generating set and the bimodule map
condition can be checked explicitly. All arising decoration bimodules are singular Soergel bimodules
which form a 2-category Bimod and [47], Section 4.4] contains a proof that the images of foam relations
under Dec hold in Bimod. Moreover, Dec respects the monoidal structure given by disjoint union on
foams and by tensor product over € on bimodules. A quick comparison with [32] shows that the
complex constructed there and Dec([B]) have the same bimodules as objects. Furthermore, in both
cases, the differentials are constructed locally for each crossing and it is well-known that the differentials
in a crossing complex of singular Soergel bimodules are uniquely determined (up to non-zero scalars),
see e.g. [51] Corollary 5.7.]. Thus, the complexes are isomorphic. O

Next, one needs a functor to translate Dec([B]) into a complex of triply-graded vector spaces.
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Definition 3.5. Let R be a commutative, graded C-algebra. The Hochschild homology of a graded
R-bimodule M (equivalently, a R ® R-module) is defined to be:

HH, (M) := Tor*®®(R, M)

In fact, HH,(-) is covariant functor from the category of graded R-bimodules to the category of
bi-graded C-vector spaces.

Definition 3.6. With R as in the previous definition, let x = {z1,...,z,} be a sequence of homoge-
neous elements of R, then the the Koszul complex of x is defined as

Ze= R (R EIN 73)
i=1
where we assume that the copies of R have been shifted in (internal) grading to make all differentials
homogeneous of degree 2. The homological grading in this complex is called the horizontal grading.
We use the convention that the the differential in this complex increases the horizontal grading by one
and that the underlined term is in horizontal and internal grading zero.

In the following let W: o — op be a web and Dec(W) its associated Rp-bimodule. Recall that
Rp = Sym(Xy]...|X,,) with |X;| = 0;. Let e;(X;) denote the j** elementary symmetric polynomial
in X;, which is of internal degree 2j. We also identify Rp @ Rp = Sym(X]|... X/ |X1|...|X;,). Next,
we recall how the Hochschild homology of bimodules over (symmetric) polynomial rings is computed
via Koszul resolutions. For more details see e.g. [23].

Lemma 3.7. Consider the sequence x = {e;(X;) — ¢;(X})} in Rg @ Rp where the indices range in
1<i<mandl <j<o;. Then the Koszul complex Zx is a resolution of Rp by free Ry @ R-modules
and we can compute the Hochschild homology of a Rp-bimodule M as

(23) HH, (M) = H,(M ® Zx).

In other words, the Hochschild homology HH.,.(Dec(W)) of Dec(W) can be computed as the homology
of a complex in the shape of the 1-skeleton of a ). 0;-dimensional hypercube, with copies of Dec(W)
on all vertices and differentials given by multiplication by +(e;(X;) — €;(X})) on the edges, see also

Example 310

Definition 3.8. Let B be a balanced labelled braid diagram as above. Then the triply-graded colored
HOMFLY-PT homology KhR™(B) = €, ; ,, KhR;; ,(B) is defined as:

(24) KhR(?; ,(B) := Hy,(HH;(Dec([B])))

The three gradings are the internal grading (index ), the horizontal grading (index j) and the homo-
logical, a.k.a. vertical grading inherited from the complex [B] (index h).

Modulo Proposition B4 and grading conventions, this definition is due to Mackaay—Stosi¢—Vaz [32)
and Webster—Williamson [51], building on work of Khovanov [23] in the uncolored setting, who also
proved the predecessor of the following theorem.

Theorem 3.9. [51] c.f. Theorem 1.1.]. Let L be a labelled link and B any diagram for a braid repre-
sentative of L. Then, as a triply-graded vector space, KhR™ (L) := KhR*>*(B) only depends on L and
not on B (up to an overall grading shift). Furthermore KhR™ (L) categorifies the unreduced colored
HOMFLY-PT polynomial PROMFLY=PT () of the link L:

> (=1)*(=a®) ¢’ dimg KhR;S (L) = PHOMFY=FT( )
i,J,h

up to overall multiplication by a monomial in a and q.
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Ezample 3.10. We compute the HOMFLY-PT homology of the 2-labelled unknot via its trivial 1-strand
braid diagram. It is concentrated in homological degree zero and given by the Hochschild homology
of Dec(—-2 ), which is a bimodule over Sym(X) = Cl[e1(X), e2(X)] where |X| = 2. As before we
distinguish the left- and right-actions by using different sets of variables X', X and write:
Dec(ts ) = IO | Cfes(X), e3(X), 1), e2()
(Xr'=X)  (e(X) —er(X), e2(X) — ea(X))

The following equation shows the complex computing the corresponding Hochschild homology, where
we have indicated grading shifts by powers of ¢ and the slightly unnaturally looking variable —a2. It
is clear from the above description that the differentials are all zero.

0 —a2q2DGC(+2 )%
HH, (Dec(—(—z )) =a 'H, quec(—(—z ) a4Dec(—(—2 )
o —a2Dec(—(—2 ) -

The Hochschild homology of Dec(—(—z ) thus consists of four grading shifted copies of Dec (—(—2 )
itself, whose underlying C-space is isomorphic to a polynomial algebra with generators of internal degree
2 and 4. Thus, the corresponding Hilbert—Poincaré series (with respect to the Hochschild grading) has
the expansion
(et —a’¢? —a’+¢?) (@’ —1)(e? — ¢?)
2 = 4 =

HP (L (Dol ) = i~ (=)
Up to overall multiplication by a monomial, this agrees with the HOMFLY-PT polynomial of the
2-labelled unknot.

3.2. HOMFLY-PT to gly spectral sequences. Following Webster [50], we explain how the Hochschild
homology functor can be replaced by an alternative functor in order to compute the X-deformed
Khovanov—Rozansky homology instead of HOMFLY-PT homology from Dec[B]. This functor takes
the form

(25) WHE(-) == Hiot(- @ 2y x).

see Theorem[3.2T] Here, the Koszul complex Zx has been replaced by a Koszul matrix factorization Zy x.
We now recall some background on matrix factorizations and their relevance for gl link homologies.

Definition 3.11. Let R be a commutative C-algebra. A Z-graded matrix factorization over R with
potential ¢ € R is a Z-graded R-module M together with a map dyot = d+ +d—: M — M composed
of differentials di of degree 41 such that d7,, acts by multiplication by ¢. A morphism of matrix
factorizations is a graded R-module map which intertwines the respective d’s and d_’s. Moreover,
matrix factorizations over R admit a tensor product which is additive on potentials. We call the Z-
grading the horizontal grading and denote it by gr,. Usually, the matrix factorizations we consider
will have an additional internal polynomial grading denoted gr,,.

We use the shorthand notation M+ = (M, dy) for M considered as a chain complex with differential
dy. A matrix factorization with potential zero is also a chain complex with respect to dior = d4 +d_,
which implies that d; and d_ anti-commute. In this case, we write Hyot(M) := H.(M,diot) for the
total homology, but we could also consider just the positive homology with its induced d* differential
(HT(M),d* ) :== (H (M™T),d*).

Definition 3.12. Let a = {a3,...,a,} and b = {by,...,b,} be sequences of elements of R, then the

Koszul matrix factorization of a and b is defined as:
n

Zap =) (R & 73)

) a;
i=1 °
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This is a matrix factorization with potential > ; a;b;. If R is graded and the b; homogeneous, we
always assume that degrees are shifted to make dy homogeneous of internal degree 2. Note that then
Zi b = Zb. It is common to encode the differentials of Z,p in a n X 2 matrix with columns a and b.

Then the rows of this matrix correspond to the tensor factors in the defining equation.

Lemma 3.13. [44] Section 3.3, row operations| Let a1, as,b1,bs,c € R. Then there is an isomorphism
of Z-graded matriz factorizations: Zg, b, & 24y = Zaytcas,br @ Zag,bo—chs -

More generally, we can obtain isomorphisms of larger Koszul matrix factorizations by applying a
sequence of such row operations on pairs of tensor factors in them. Recall that a sequence of elements
b = {b1,...,br} of R is regular if for 1 <i < k the element b; is not a zero-divisor in R/{(b1,...b;—1).
It is easy to see that HT(Zp) = R/(b), concentrated in horizontal degree zero. A generalization of
this fact is provided by the following result of Webster.

Proposition 3.14. [50 Section 1.2] Let Z, 1 be a Koszul matriz factorization over R with potential
¢. Suppose that b is a reqular sequence in R. Let M be a projective matriz factorization over R with
potential —¢. Then the chain map : Z;b — H(Zap) 2 R/(b) induces the following isomorphisms
of R-modules:

HYN(Zap @ M) =2 HY(R/(b) @ M)
Hiot(Zap @ M) =2 Hip (R/(b) @ M)

Corollary 3.15. Under the assumptions of Proposition there is an isomorphism of chain com-
plexes of R-modules:
(H*(Zap ® M),d") = (H"(R/(b) ® M), d")

Proof. The chain map 7: Z; b = H1(Zap) = R/(b) also intertwines the negative differential d_ on
Za,b with the trivial negative differential on R/(b), i.e. it is a morphism of matrix factorizations. Then
T®1: Zap®M — R/(b)®M also intertwines the negative differentials. The induced map on positive
homology is an isomorphism on modules which intertwines the induced differentials d* , i.e. it is an
isomorphism of chain complexes. O

Definition 3.16. Let Z, p be as in Proposition B.I4land M; a projective matrix factorization over R
(not necessarily with potential —¢), then we consider R/(b) ® M; as a matrix factorization over R/(b)
and call it a simplification of Z, p, ® M.

Proposition [3.14] and Corollary imply that Koszul matrix factorizations appearing as tensor
factors in a (projective) matrix factorization with potential zero can be replaced by their simplifications
without changing the HT homology with its induced negative differential or the H;,; homology or the
R-module structures on them.

We now recall how to assign Koszul matrix factorizations to webs, which can be used to compute
gl link homologies, see [57, 56]. For this, let W be a web and associate to every edge in W with label
[ an alphabet Y with |Y| = [. The alphabets adjacent to the left and right boundary we again denote
by X; and X/. We consider the ring Ry of polynomials separately symmetric in these alphabets. For
a polynomial T'(X) = Zf:o ;X' € C[X] we set T(X) = Zf:o cipi(X) where p;(X) denotes the it?
power sum symmetric polynomial in the alphabet X. Recall that we denote by P(X) € C[X] the
monic polynomial with root multiset 3 and let Q(X) € C[X] be such that Q'(X) = (N +1)P(X) and

Q(0) = 0.

Definition 3.17. To every web W we associate a Koszul matrix factorization MF> (W) over Ry with
potential Q(||X) — Q([|X;). We first describe it in special cases:

10Note however that we use Z-graded matrix factorizations instead of Zsa-graded ones.
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o If W is a single strand of label a without incident vertices, then MFE(W) has positive sequence
e;(X7) —e;(X;) for 1 < j < a and the negative sequence is choser[] to generate the potential
QX}) — QX).

e If W is a merge web of incoming strands of thickness a and b then MF* (W) has the positive
sequence consisting of the entries e;(X]) — e;(X; UXy) for 1 < j < a+ b and the negative
sequence is chosen to generate the potential Q(X}) — Q(X; U Xy).

e Analogously, the Koszul matrix factorization associated to the split web has the positive se-
quence with entries e;(X} U X)) — ¢;(X;) and an appropriate negative sequence.

For any other web W, the Koszul matrix factorization MF> (W) is defined over Ry and consists of
all the rows appearing in the Koszul factorizations associated to the merge and split vertices and
non-interacting strands in W.

Lemma 3.18. Let W be a web in [B]. Then MF>(W) simplifies to H(MF>(W)) = Dec(W) and
this simplification is concentrated in horizontal degree zero.

Proof. Tt is easy to check that the positive sequence of MF> (W) is regular, and so the positive homology
is concentrated in degree zero and isomorphic to the quotient of the ground ring by the ideal generated
by the elements in the sequence. Identifying the ring Ry with the possible placements of decorations
on the identity foam on W, the entries of the positive sequence generate the same ideal as relations ().
This identifies H+(MF*(W)) with Dec(W). O

Remark 3.19. Lemma shows that we can view Dec(W) as a matrix factorization over Rz ® Rp
with potential ¢ := Q(|]X;) — Q(LIX) and trivial differentials. To see this directly, note that since
H*(MF*(W)) is concentrated in horizontal degree zero, we have Dec(W) = MF (B)/Im dy. Then
¢idMF§(B) = dyd_ and so the element ¢ is in the image of d; and acts by zero.

In [47, Section 4.4] Rose and the author show that there exists a 2-functor from NFoam™ to a 2-
category of (Zo-graded) matrix factorizations with potential modelled on @. Under this 2-functor, the
web W is sent to the matrix factorization MF> (W) (with the horizontal grading taken modulo 2). More
generally, for a braid B, the complex [[l’j’]}E is sent to a cube of resolutions complex MF>(B) of matrix
factorizations and morphisms between them. This complex agrees up to isomorphism and grading
conventions with the complex used in Wu’s construction of (deformed) colored gl link homologies in
67, B6]. We will not describe the differentials in this complex more explicitly, as Lemma 318 implies
that it suffices to work with Dec([B]), see Theorem 3211

We fix the notation Zy x := MFE(lgfé) for the Koszul matrix factorization assigned to the oppositely
oriented identity web on og, i.e. with with alphabets X; at the left and alphabets X;- at the right
boundary. It is defined over Rz ® Rz, has potential Q([_|j X;) - Q([_|j X7) and the positive sequence
x consists of entries e;(X;) — el(X;) for1<j<mand1l<I[<o;.

Definition 3.20. The matrix factorization associated to the labelled link diagram £ given as closure
of a balanced labelled braid diagram B is a complex of Koszul matrix factorizations with potential zero
defined as

MF*(L) := MF*(B) @ Zy .
Further, we define the functor
WHZ(-) := Hyot (- ® Zy x)
from the category of matrix factorizations over R ® Rp with potential Q(]; X)) — Q(L; X;) to the
category of (bi-)graded Rp-modules.

Hpt is easy to see that this is possible [56l Section 3.2], the specific choice is eirrelevant for our discussion.
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The functor W HZ(-) is a matrix factorization analogue of the Hochschild homology functor H H.(-)
which depends on the multiset 3, see Lemma 3.7 It has been introduced by Webster in [50]. Clearly,
WHZ(-) extends to chain complexes of matrix factorizations, in which case we denote the induced
vertical differential by d} and the new homological, a.k.a. vertical grading by gr,,.

Theorem 3.21. Let B be a balanced labelled braid diagram and L its closure. Then we have:
(26) KhR™(L) 2 H.(Hyot(ME™ (L)), d;) 2 H. (W H (Dec([B])), dy)

Proof. First of all, we note that [47, Theorem 2| identifies KhR¥(£) with Wu’s ¥-deformed Khovanov
Rozansky gl homology, which can be computed as

KhR(L) 2 H, (Hiot(MF(L)), d)
where the inner homology is with respect to the total matrix factorization differential dior = d4 + d—
and the outer homology is with respect to the induced vertical differential d. This establishes the
first isomorphism. For the second isomorphism we use that the vertical complex MFE(B) simplifies to
H+(MFZ(B)) = Dec([B]).
Hiot(MF™ (L)) = Hyot(MF*(B) © Zy.x) 2 Huor(Dec([B]) © Zyx) = WH (Dec([B])

and the second claimed isomorphism follows after taking d}-homology. 0

Remark 3.22. We need to comment on the behaviour of gradings under the identifications in (26]). Up
to a global shift, the homological grading of KhRE(L) simply agrees with the homological grading
on H.(WHZ(Dec([B])),d:). In the undeformed case where ¥ = {0,...,0}, we also would like to
recover the quantum grading of KhR™(£) = KhR®'~ (£) on the right-hand side of (28). Note however,
that dior = d4+ + d— is not even homogeneous with respect to the internal polynomial grading gr, on
H.(WHZ (Dec([B])),d;). Instead one considers the new grading gry := gr, + (N — 1)gr),, which is
preserved by di; and thus descends to homology, where it can be shown to correspond (up to a global
shift) to the quantum grading on the left-hand side of (26]), see Rasmussen’s [44, Proposition 3.12].

Theorem 3.23. There is a spectral sequence
KhR®(L£) ~ KhR*(L)

whose k" differential lowers the horizontal and homological grading by k and k — 1 respectively. If
¥ =40,...,0}, it increases the internal degree by 2kN .

Sketch proof following Rasmussen [44]. The matrix factorization MF> (L) associated to £ is a equipped
with the three anti-commuting differentials d, d_ and d,. Its H-homology is a triply-graded chain
complex (internal grading, horizontal grading, homological grading), with induced differentials d*
and d, which lower horizontal and homological grading by one respectively, but preserve the other
grading. The horizontal filtration on this double complex induces a spectral sequence with Ey page
(H+(MF*(L)),d?), which is isomorphic to (HH,(Dec([B])),d*) by Proposition B4 Consequently,
the F4 page is isomorphic to H,(HH,(Dec([B])),d:) = KhR>(L). The spectral sequence converges
to the total homology H.,((H(MF>(L)),d* + d*) and it remains to identify this with KhR™(£) =

H.((Hyot(MF¥ (L)), d*). The proof of this is split into two steps. First, we need
H.((H"(MF¥(L£)), d* +dy) = H.(H.((H" (MF*(L)),d" ), dy),
which can be proved exactly as in [44] Proposition 5.10]. And second
H.(H.((H*(MF*(L)),d"),d}) = H,(Hio:(MFZ(L)), d}),

which follows as in [44, Lemma 5.11, Lemma 5.12, Proposition 5.13]. The proofs of these isomorphisms,
however, use a critical fact, which is a generalization of Rasmussen’s [44] Proposition 5.8 and Corollary
5.9] and which we prove in the separate Lemma [3.24]
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As regards gradings, the k' differential in the spectral sequence lowers horizontal degree gry, by
k and homological degree gr, by k — 1 (and it raises internal degree grq by 2kN in the undeformed
case). In particular, all differentials in the spectral sequence preserve the quantity gr_ = gr, —gry, (and
gry = grq + 2Ngry), inducing a grading on the Ey, page. Careful comparison of gradings as in [44]
Proposition 5.14] shows that this agrees with homological grading (and quantum grading) on KhR*(K)
(and KhR®' (K) respectively) as identified in Remark 322 O

Lemma 3.24. H,.(H(MF*(L)),d* ) is concentrated in a single horizontal grading.

Proof. An analogue of Rasmussen’s [44, Corollary 5.9] shows that it suffices to prove the claim for
a matrix factorization MF>(L) in place of MF* (L), where L is the closure (as in ([22)) of a web W
appearing in [B]. The key ingredient in Rasmussen’s proof of this fact in the uncolored setting in [44]
Proposition 5.8] is a recursive algorithm for computing H, (H(MF*(L)),d* ), see [44, Sections 4.2 and
4.3].

A suitable replacement for this algorithm in the colored case is an analogue of the annular web
evaluation algorithm of Queffelec and Rose [40, Proposition 5.1 and Lemma 5.2], which we review in
detail in Section[dl In its simplest, decategorified version, the algorithm expands the annular closure of
a web in N'Web as a linear combination of the annular closures of identity webs—which can be thought
of as collections of nested labelled essential circles in the annulus. It does so by successively rewriting
annular webs as linear combinations of annular webs of lower complexity, using two types of relations:
relations that already hold for webs in N Web, namely rung combination, the Frobenius relations and
square switch relations from Lemma [L2]), as well as the trace relations which witness that the annular
closure W1 W5 of a composite web W71 W5 is isotopic to the annular closure WoW; of Wo W5 .

Using arguments as in the proof of Lemma [Z0] we can mimick the the annular web evaluation on
the categorified level to exhibit H,(HT(MF*(L)),d* ) as a direct summand of a direct sum of triply-
graded vector spaces of the form H,(H*(MF*(C)),d* ), where C is a collection of nested labelled
essential circles. Indeed, it follows directly from the definition of MF>(-) and Proposition .14 that
MF> (W, Ws) = MF> (W, W), i.e. the functor MF> (%) is trace-like, and so is H,(Ht(MF*(-)),d* ). To
see that H,(Ht(MF>(.)),d*) also satisfies categorified analogues of the other required relations, we
write

(HY(MF*(L)),d* ) = (HT(MF*(W) ® Zy x),d") COr' (H* (Dec(W) @ Zy x),d*)

Now it follows that rung combination, the Frobenius relations and square switch relations hold here
because they hold for singular Soergel bimodules Dec(+), as verified e.g. in [47, Section 4.4]. More
precisely, an isomorphism of Soergel bimodules (i.e. of R ® Rp-modules) induces an isomorphism of
matrix factorizations after tensoring with Zy x over Rp ® Rp. After taking positive homology, we get
an isomorphism of complexes with respect to the induced negative differentials.

We conclude that H,(H*(MF*(L)),d*) is (isomorphic to) a direct summand of a direct sum of
objects of the form H,(HT(MF>(C)),d* ), where C is a collection of nested labelled essential circles.
Such a summand is concentrated in the horizontal grading equal to the negative of the sum of the labels
on the circles in C, which is equal (to > o0;) for all C appearing in the annular evaluation algorithm.
Thus H,(Ht(MF*(L)),d*) and then also H,(H(MF>(L)),d*) are concentrated in this grading as
well. O

Remark 3.25. The categorified annular web evaluation algorithm of Queffelec-Rose [40], which is essen-
tially independent of N, suggests a possible alternative approach to colored HOMFLY-PT homology as
an invariant of annular links. This might lead to a new and more illuminating proof of Theorem [3.23]
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3.3. Reduced colored HOMFLY-PT homology. In this section, we introduce a reduced version
of colored HOMFLY-PT homology and relate it to reduced colored gl homology. As in the case of gl
homology, we have to choose a link component at which we want to reduce. To this end, we consider
a balanced labelled braid diagram B—which closes to an oriented, labelled link diagram L—together
with a marked right boundary point with associated alphabet X; of size k = |X;|. In the following,
we assume that all strands of B have labels > k and that B does not split into a disjoint union of two
braids.

Remark 3.26. Both of these assumptions are automatically satisfied for braid diagrams representing
knots. Unfortunately, however, they currently prevent the treatment of colored HOMFLY-PT homolo-
gies of links reduced at a component of non-minimal label, for which interesting color-shifting properties
have been conjectured in [I6].

Definition 3.27. We cut the labelled planar graph underlying the diagram B into labelled arcs between
crossings, and we assign alphabets X/,..., X/ and X;,...,X,, to boundary arcs on the left and the
right respectively and alphabets Y; of the appropriate size to the internal arcs. Note that every such
arc corresponds to an edge in any web appearing in [B]. Let

Sp = Sym(Xq| ... [ X | XY X, Y. .0)
be the graded ring of polynomials separately symmetric in these variables. Let
Vi = SB/<€J(W/1 |_|W/2) - ej(Wl |_|W2)|1 <j< k>

where (W, WY, W1, W2) ranges over all tuples of alphabets adjacent to a crossing site, with the dashed
alphabets associated to outgoing edges and the other ones to incoming edges. Finally, we define

Ts = Re @ Ru/(e;(| | X)) —e;(| | X1 <j<k)
=1 =1
where we identify R ® Rp = Sym(Xy| - - | X | X |- 1X0,).

Lemma 3.28. Vg is a Tg-module.

Proof. Vi is a Ry ® Rp-module and and it is easy to check (e.g. by induction on the number of
crossings in B) that the relations e;(| |, X]) = e;(L];", X;) hold in Vg for 1 < j < k. a

Lemma 3.29. 73 and Vi are isomorphic to polynomial rings over C and Vg is free over Tp.

Proof. The unital C-algebra 73 has a presentation with commuting generators e;(X;) and e;(X;) for
1<l<mand1<j<o =|X;| and one relation for each 1 < j < k, which we rewrite as follows:

[ s
I

Xp) = e;(X5) — | e5(
1 l

j—1
Xy) - Z Cx (X;)ej—w(u X))
=0 l#1
Thus, the generator e;(X}) can be expressed in terms of other generators. Under this substitution, we
obtain a presentation for 7z with one generator and one relation eliminated. By iteration, we arrive
at a presentation of 7z without any relations and with all generators e;(X]) for 1 < j < k eliminated.
In other words, the ring homomorphism, which is given by the composition

(27) Sym(X |-+ [ X[ X3 |- X5 [ Xy |- 1X5,) = R @R — T

of the canonical inclusion and the defining quotient map, is an isomorphism.

In Definition B27 Vg is given by a similar presentation with generators associated to arcs in the
braid diagram B and k relations for every crossing in B. For a crossing with adjacent alphabets
(W), WS, Wi, Ws), we can choose one of these alphabets, call it W, and eliminate the generators
e;(W) for 1 < j < k in pairs with the relations e;(W} LI W5) — e;(W; U Wy) for 1 < j < k. This is

0=¢;(| | X7) — e
=1 l

1
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possible since we assume that |W| > k. To eliminate the relations associated to all crossings, we need
to choose different alphabets W at every crossing. It is easy to see that this is possible. In fact, since B
is a non-split braid diagram, we can arrange to eliminate generators e;(X}) for 1 < j < k first and only
generators in internal alphabets Y; thereafter. The surviving generators in internal alphabets generate
a (possibly trivial) polynomial ring R and the canonical composition

(28) Sym(X |-+ [ X [ X3 |-+ XG4 [ X |-+ [X,) @0 R S = Vs
is an isomorphism. Finally, note that the isomorphisms in (27)) and (28) are defined as identity maps
on representatives. Thus Vg & Tg Q¢ R is free over Tp. O

For the following we write 2y x = Zy, x, ®¢ Zy,x Where 2y, «, is the Koszul matrix factorization over
Sym(X;|X}) with respect to the subsequences of x and y, which only consist of polynomials involving
X; and X]. X and ¥ are the complementary subsequences, forming the Koszul complex Zy % over the
subring of Rp ® R generated by all alphabets except X; and X/.

Lemma 3.30. H" (75 ® Zyx) = Ts/(X; = X[|j #1) = R @ Rs/(X; = X[|Vj).

Proof. From the proof of Lemma [3.29 we see that X is a regular sequence in 75 and it clearly generates
the ideal (X; = X|j # 4). Thus we get the first isomorphism. For the second isomorphism note that
after identifying X; = X} we can rewrite the defining relations in Tz as

D (ealX)) —ea(Xi)en(| X)) =0, 1<j<k

a+b=j 1#i
which impose e;(X}) = e;(X;) for 1 < j <k, or in shorthand X} = X;. O

In the following, we again consider complexes of matrix factorizations associated to braid and link
diagrams. Throughout we work in the undeformed setting ¥ = {0, ...,0} and omit ¥ from the notation.
Also note that from now on all matrix factorizations carry the internal polynomial grading gr, and all
differentials are homogeneous.

Lemma 3.31. MF(B) has a simplification UMF(B) over Vg.

Proof. If B has no crossings, i.e. is a single strand, we define UMF(B) := Sym(X;|X})/(X; = X!)
which is a simplification by Lemma BI8 Otherwise, let W be a (non-trivial) web appearing in [B].
We will apply row operations to replace the Koszul matrix factorization MF(W) by an isomorphic
matrix factorization whose positive sequence contains entries that impose the defining relations in Vg.
It suffices to consider one half of a crossing web appearing in ({@):

Y, X1
(29) zA
Yo Xo

The Koszul matrix factorization associated to this web has positive entries e,(Y; U A) — e,(Xy) for
1 <a<|Xy| and e(Ys) —ep(Xo U A) for 1 < b < |Yo| = |Xz| 4+ |A|, which includes the case A = ().
Now it is easy to see that a sequence of row operations as in Lemma can be used to iteratively
replace the first k positive entries e, (Y1 UA) —e,(X1) by €,(X1UXs) —eo(Y1UY3) for 1 < a < k. Here
we again use that all labels are > k. The new rows contain precisely the generators of the defining ideal
of Vi as positive entries. Since they form a regular sequence, we apply Proposition B.14] and denote
the result by UMF(B). O

As a Koszul matrix factorization, UMF(B) is free over Vg, so the proof of Lemma together
with Proposition B.14 imply that UMF(B) ® Zy x simplifies to UMF(B)/(X; = X/|j # 4), which is a
Sym(X;[X7})/(X; = X})-module by Lemma[3.30 So we write it more compactly as UMF(B)/(X; = X/).
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Further tensoring this with 2y, «, is equivalent to tensoring with Z,
Sym(X;|X%)/(X; = X/) is the obvious quotient map. We summarize:

Corollary 3.32. MF(L) has a simplification of the form:
(30) MF/(,C) = UMF(B)/<X; = Xj> ® Zﬁ(yi)70

Further, note that we have an isomorphism of Sym(X;)-modules:

X, =3y Csvmonixy Zyox | = KIRON(OF) = Hf

So, the entries of 7(y;) € Sym(X;) are generators for the defining ideal of HY in Sym(X;).

(y),0, Where 7: Sym(X;|X}) —

Hiot(Zr(y:),0) = Hiot (

Definition 3.33. For a marked, labelled link diagram £ given as the closure of a braid diagram B as
specified in the introduction to this section, we define the reduced complex associated to L as:
MF(L(2)) := UMF(B)/(X; =0,X; = X;>

Remark 3.34. In order to prove the following two results we need to take a short technical detour. In
their original work, Khovanov—Rozansky [24] and Wu [57] work with categories of Zs-graded matrix
factorizations. The matrix factorizations they associate to webs agree with the ones in this paper
after reducing the Z-grading modulo 2 and, in particular, their total homologies agree. However, the
advantage of Zs-graded matrix factorizations is that they admit a good notion of homotopy equivalence.
Working in the corresponding homotopy category, Khovanov-Rozansky and Wu have proved matrix
factorization analogues of many of the web isomorphisms that exist in the foam 2-category NgrFoam®.
More generally, thanks to the 2-functor between NFoam and Soergel bimodules, which was studied
in [47, Section 4.4], we now know that all web isomorphisms in NgrFoam® imply the analogous
relations in the corresponding homotopy 2-category of matrix factorizations. In the following lemma,
we will use matrix factorization versions of the web relations employed in web evaluation algorithm
from Proposition [4.6] and we will use that these relations preserve the module structure with respect
to alphabet assigned to the marked edge.

Lemma 3.35. There is a homotopy equivalence of complexes over the homotopy category of Zso-graded
matriz factorizations over Sym(X;|X})

(MF(£), dy) = (C(£), dw),

where the target is a chain complex whose chain groups are direct sums of terms MF(QOF) associated
to k-labelled unknots. Upon taking total homology, this induces a homotopy equivalence of complexes
of Sym(X;)-modules:

(Hiot(MF (L)), dy) = (Hiot(C(£)), dy)-

Proof. Consider the 2-ended tangle diagram 7 obtained by cutting open the marked edge in £, and
its associated complex of matrix factorizations

MF(T) := MF(B) ® Zy x.

The web evaluation algorithm from Proposition [£0] together with Remark [3.34] imply that the complex
MF(T) of matrix factorization is homotopy equivalent (in the category of chain complexes over the
homotopy category of Zs-graded matrix factorizations over Sym(X;|X’)) to a complex O(L) whose
chain groups are direct sums of the matrix factorizations Zy, _«, assigned to the trivial k-labelled
1-strand tangle. After closing off the marked edge by tensoring with Zy, «,, we obtain the desired
homotopy equivalence:

MF(£) = MF(T) @ Zy, x;, = O(£) ® Zy, x, = C(L).

This preserves the Sym(X;|X/)-module structure on the matrix factorizations and induces a homotopy
equivalence of Sym(X;|X})/(X; = X/}) = Sym(X;)-modules after taking total homology. O
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In the following, let V := Sym(X;)/(X; = 0) and V' := Sym(X})/(X] = 0).
Proposition 3.36. There is a homotopy equivalence of chain complexes with respect to d;:
V ® Hiot(MF(L)) ~ Hyot(MF(L(4)))

Proof. For the proof we express Hyoi(V ® MF(L)) in two different ways. In the case of £ = OF we get:
Hip(V ® MF(Ok)) = Hiot(V ® Zyi—x ® ZYi;xi) = Hio((V® V/) ® Zy, x;)
=Hin(VoV)®Z0) 2V H*(Sl)®k
=V ® Hiot(MF(O")) ® H*(5")%"

Here the first isomorphism is provided by Proposition [3.141 More generally, we consider a complex
C(L) = O(L) ® 2y, x,—as in the proof of Lemma B38—with vertical differential supported on O(L),
whose chain groups are direct sums of 2y, _«,. Analogously as in the unknot case, we can simplify the
direct summands V ® 2y, _x, of the chain groups of V@ O(L) to terms of the form V ® V'. After

tensoring with the single-strand closure Zy, x, and taking total homology, we get an isomorphism of
chain complexes

Hiot(V @ C(L)) =V @ Hypt (C(L)) @ H*(S1)®F
in which the vertical differential acts trivially on the tensor factor H*(S*)®* contributed by the single-
strand closure Zy, x,. Using the homotopy equivalences from Lemma[3.35] which preserve the Sym(X;)-
module structures before and after taking total homology, we now get:
(31) Hiot(V@MF (L)) ~ Hiot(V @ C(L)) 2V @ Hyor(C(L)) @ H*(ST)®F

~V & Hip(MF(L)) @ H*(S")®*

On the other hand, we can tensor [B0) with V' and take Hy,; homology to get:
(32) Hyot(V @ MF(L)) =2 Hyor (V @ MF' (L))

= Hio: (V & % & Zﬂ(yi)70> = Htot(MF(ﬁ(Z))) ® H*(Sl)®/€.

On the latter complex, the vertical differential acts trivially on the tensor factor H*(S')®*, which is
again the contribution of the closure of the marked edge. Since the homotopy category of graded chain
complexes of C-vector spaces is Krull-Schmidt, we can cancel the factors of H*(S*)®* in (31]) and [32),
which produces the desired homotopy equivalence. O

Corollary 3.37. The reduced Khovanov-Rozansky homology is computed by the reduced complex:
KER"™ (£()) 2 H. (Hyor(MEF(L(0))). d7)

Proof. Analogously as in [39, Proof of Theorem 4.12], it follows from the 2-functor from foams to
matrix factorizations that (Hyo(MF(L)),d?) and grtaut([£]*'~) are isomorphic as chain complexes
of H ,ﬁv -modules. The reduced homology is then obtained from tensoring the chain groups of these
complexes with the H ,ﬁv -module <7T,J€V ) before taking vertical homology. Clearly, this is equivalent to
tensoring with the isomorphic H}¥-module V ® H}Y. Now the claim follows from Proposition 3361 [

Definition 3.38. Let £(i) be the closure of a balanced labelled braid diagram B with a marked lower
boundary point o; of minimal label. Then we define the reduced colored HOMFLY-PT homology of £
reduced at i as

KhR™ (L(0)) := H.(H* (MF(L(0)))), dy)-
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Let Wi = Vp/(X; = XI|j # i) = V/(X; = X)), which is still isomorphic to a polynomial
ring containing a tensor factor Sym(X;). Thus we can write Wi = Wi/(X; = 0) @ Sym(X;). In
the following, we consider UMF(B)/(X; = X/) as a (vertical) complex of matrix factorizations over
Wi/(X; =0).

Lemma 3.39. As a complex of matriz factorizations over Wi /(X; = 0), the reduced complex MF (L(1))
is homotopy equivalent to the iterated mapping cone UMF(B)/(X; = X)) ® Zx,. Here Zx, is the
(vertical) Koszul complex over Sym(X;) with respect to the sequence consisting of e;(X;) for 1 <1< k.

Proof. For 0 < | < k define W§ := Wg/(ex(X;) = 0]z > 1) and MF(L(i)), := W @ UMF(B),
which is a free matrix factorization over W. As special cases we have MF(L(i)), = UMF(B)/(X; =
X7%) and MF(L(i)), = MF(L(i)). Now Rasmussen’s one-variable argument from [44, Lemma 5.15]
shows that MF(L(i)), is homotopy equivalent, as a complex of matrix factorizations over W, to

MF(L(7)); 41 ® Ze,(x,)- The same holds over sub-rings Wi with I’ < I, and so we can simultaneously
trade quotienting out all generators e;(X;) against tensoring with the Koszul complex Zx, . O

After taking positive homology, we get a homotopy equivalence of vertical complexes

(33) H™(MF(L(i))) ~ HT(UMF(B)/(X; = X})) ® Zx,

Lemma 3.40. KhR™ (L(i)) is isomorphic to KhR ™ (L(i)) if the marked points o; and oy lie on the
same component of L.

Proof. Equation (33) shows that KhR™ (L(#)) is the homology of an iterated mapping cone on endo-
morphisms of the complex H*(UMF(B)/(X; = X}))), which does not depend on 4. Since cones on
homotopic chain maps are isomorphic in the homotopy category, it suffices to show that the endomor-
phism of H*(UMF(B)/(X; = X)) given by multiplying by e;(X;) is homotopic to the endomorphism
given by multiplying by ¢;(X;/). In fact, it is enough to check this homotopy between endomorphisms
locally, i.e. on the complex associated to a single crossing, where the alphabets X; and X, are assigned
to opposite sides of a single strand. This has been done by Rose and the author in [47, Proposition 60]
in the framework of webs and foams, and an analogous proof works in the present setting. 0

As a by-product we get that the S action on KhR ™~ (L(i)) factors through the quotient Sp/(Y; =
Y/, X; = 0) where we identify alphabets Y,,Y; which belong to the same link component. In
particular, all alphabets on the component containing the marked point o; act by zero.

Corollary 3.41. The triply-graded vector space KhROO(E(i)) is independent of the diagram of the
labelled link with marked component specified by 1.

Proof. From Corollary we get an isomorphism of chain complexes with respect of d:
(34) (H*(MF(L)),dy) = (H* (UMF(B)/(X; = X)), d;) ® H*($)®"

and this decomposition does not depend on 4, only on its label. Since HT(MF(L£)) is invariant under
Reidemeister 2 and 3 and Markov moves up to homotopy, so is H*(UMF(B)/(X; = X/})). The same
is true for this complex tensored with Zx,, as we may assume that the alphabet X is associated to an
edge not participating in the move (see proof of Lemma [340). O

Remark 3.42. H.(H*(UMF(B)/(X; = X/)),d;) is a triply-graded link invariant which is the colored
generalization of what Rasmussen calls the middle HOMFLY homology, [44, Definition 2.9]. It carries
exactly the same amount of information as KhR™(L).
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Remark 3.43. In the uncolored case, Rasmussen shows that KhR*™(£) = KhR ™ (£(i)) ® KhR>®(O),
see [44} Section 2.8]. The key ingredient for this is an isomorphism UMF(B)/(X; = X})) = MF(L(i))®
Sym(X;) of double complexes with respect to d and d;. We suspect that this also holds in the colored

case, but do not know a proof of this fact.

Theorem 3.44. There is a spectral sequence
KhR™(L(i)) ~ KoR®™(L(i))

whose k" differential lowers horizontal grading by k, homological grading by k and it increases the
internal grading by 2kN .

Proof. Analogously as in the unreduced situation of Theorem[3.23] we have a vertical complex of matrix
factorizations MF(L(7)) with potential zero, from which HOMFLY-PT as well as gl homologies can
be recovered:

KhR™ (L(i)) = H.(H"(MF(L()))), d})

KRR*™ (£(i)) = H. (Hio(MF(L()). d;)
The proof now proceeds as for Theorem 23] or its uncolored predecessor in [44]. The necessary
reduced analogue of Lemma B.24] can be proved by using the web evaluation algorithm introduced
in Proposition .6, which allows to keep the marked edge undisturbed in the simplification process.
Further, it is easy to check by hand that the additional bigon relation (4I]) holds in the categorified
framework and that it causes a homogeneous shift in horizontal grading in all webs appearing in the
algorithm (just like removing circles of labels that sum up 3 0;). O

Lemma 3.45. For any web W appearing in [B], the singular Sorgel bimodule Dec(W) is finitely
generated over Sp.

Proof. This would be obvious from the definition of Dec(W) if Sg would contain an alphabet for every
web edge of W. However, W contains additional web edges on top of the ones already present as arcs of
the diagram B—mnamely the ones introduced in crossing resolutions, e.g. W1, Wy, W3 and Wy in (35).
It remains to show that all decorations on these additional web edges can be expressed as Sg-linear
combination of only a finite number of basis decorations. For this, we consider a typical web appearing
at a crossing site:

Y, W Y
(35) Wo W1
Y, W. Y.

Here, the edges labelled with the alphabets Y; come from arcs in the diagram B and the edges

labelled by W, alphabets are new. After eliminating Wy, we see that the singular Soergel bimodule
associated to this web is isomorphic to:

Sym(Y;|Wa[Ws) Sym (Y| Y5[ W1 [Wa[Ws) Sym(W, |Ws|Y,)
(Y = Wo UWs) vmWelWe) Ty W, = Yo U W) oY WilWe) (W UWs = 1)
It is well known that Sym(Wsy|W3) is a free Sym(Wz LU W3)-module of rank (IW‘%AU]XVM) with a basis
given by Schur polynomials 7y'2 with A € P([Wa|, [W3|). Thus, the left tensor factor is of finite rank
over Sym(Y?). The case of the right tensor factor is completely analogous and, consequently, the total
bimodule is finitely generated over Sym(Y1|Y2|Y]|Y5). O

(36)

Proposition 3.46. For a labelled knot IC, the reduced colored HOMFLY-PT homology KhRoo(IC) is
finite dimensional.
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Proof. From Lemma we see that HT(MF(L)) = H" (Dec(B) ® Zy «) is finitely generated over Sp
and so is the iterated mapping cone HT(MF (L)) ® Zx,. From (34) and Lemma [3.39 we see:
HT(MF(£)) ® Zx, = HT(UMF(B)/(X,; = X})) @ H*(S")** ® 2Zx, ~ HT(MF(L(i))) ® H*(S")®"

The vertical homology of this iterated cone is isomorphic as a triply-graded vector space to a direct
sum of 2% copies of KhR ™~ (K) and we shall argue that it is finite-dimensional. The generators Sym(X;)
act null-homotopically on the iterated cone (any chain endomorphisms f induces a null-homotopic
endomorphism of Cone(f)) and, thus, by zero on its vertical homology. By the proof of Lemma [3.40]
the same holds for all alphabets in Sg in the case of a knot £ = K. The vertical homology of the
iterated cone is a finitely generated Sg-module, but all variables act by zero, so it is finitely generated
over ©. Consequently, its tensor factor KhR' (K) is finite-dimensional. O

Theorem 3.47. For a labelled knot K, the reduced colored HOMFLY-PT homology KhR " (K) is a
stabilization of reduced colored gl homologies KhRg‘N (K) for large N. More precisely:

(37) @ KR, (K) = KR} (K)

Proof. We know that KhR™ (K) is finite-dimensional and, thus, supported in finitely many internal
gradings. Since the k¥ differential in the spectral sequence from Theorem [3.44] increases the internal
grading by 2Nk, all higher differentials must be trivial for large N. So the spectral sequence, which
is known to compute gl homology, must have already converged on the first page, which is precisely
the grading-collapsed version of HOMFLY-PT homology displayed in (7). 0

Corollary 3.48. (Refined exponential growth for HOMFLY-PT homology) There exist spec-
tral sequences

(3) KER©(KH) ~  (RER™())”

(39) KhR™”(KF) ~ KR (KF ') @ KhR™ (KY).

In particular, the colored HOMFLY-PT homologies of a knot grow at least exponentially in color.
Proof. Immediate from Theorem .47 and the spectral sequences from Corollary for N>0. O
Corollary 3.49. (Color-reducing spectral sequences) For k > h there is a spectral sequence
(40) KhR™(K*) ~ KhR™(KM).

Proof. Immediate from Theorem [3.47 and the spectral sequences from Corollary 234 for N > 0. O

4. APPENDIX ON WEB EVALUATION

This appendix contains an algorithm for the evaluation of gl webs with two boundary points. For
this, we work in the decategorified framework of gl webs, see e.g. Cautis—-Kamnitzer—-Morrison’s paper
[6] or Murakami—Ohtsuki—Yamada’s earlier work [36]. In this section, we will draw webs as oriented
upwards instead of leftwards. First we recall the annular web evaluation algorithm of Queffelec—Rose.
For this, we will need the following terminology.

Definition 4.1. A gly web is in ladder form (or just is a ladder web) if any of its edges is either
vertical or horizontal. The former are called the uprights and the latter the rungs of the ladder web.

Every gl web can be isotoped into ladder form, although not uniquely, see [6 Theorem 5.3.1].
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Lemma 4.2. [40, Lemma 5.2] The annular closure (c.f. 22))) of a gly ladder web can be rewritten as
a Zq* ] -linear combination of annular closures of identity webs (i.e. nested, labelled essential circles)
using only the following four relations:

(1) Sliding ladder rungs around the annulus

’, - -~ ’ - ~ ’ - ~ ’ - -~
RACT LTSRN , L TR RACT IO , = .
1 1 L L 1 1 1 1 L L 1 1
I: I 1 1 1 1 I : I 1 1 1 1
1 1 1 1 1 1 1 1
e 1 1 _ web | o 1 b e 1 1 _ web | o 1 4
web [ oo web 1o "
1 1 1 1 1 1 1 1
1 1 I) | 1 1 1 1 I ¢ | 1 1
A \N f’ ! A \§ " ! A \§ f’ ! A \N f’ !
‘~~ -~ —'I ‘~~ - —'I ‘~~ - —'I ‘~~ - —'I
(2) Ladder rung combination
A~ ];2 S ES j; ES
L4 N
; ; J1¢iz 1 1
4 i _ {Jl +J2} 4 1 _ [Jl +Jz]
, = ) , ) = )
1 J
3 J1 ¢ J1
I N N N
k l k l k l k l
(3) Frobenius relations
N N N N
2 == 2 5 N == 2
N N N N

(4) Square switch relations

S j; S Pi1—i' 4
< >

A A § : |:k_.71_l+¢72:| A FS
Y i j2 44’
! §'>0 J <

A FS - A FS

k l k l

Here we write m for the ¢g-binomial coefficients. We recall the explicit algorithm, which is used to

prove this result, as we will need a certain subroutine later.

Proof. [40] At the start, and then throughout, the algorithm combines all possible adjacent ladder
rungs pointing in the same direction using relations (2) and (3). As a first goal, the algorithm aims
to free the leftmost upright from the rest of the diagram by repeatedly applying relation (4) to pairs
of rungs adjacent to it. If possible, this has the effect of increasing a label on the leftmost upright
or it allows to reduce the number of rungs touching it, which shows that this algorithm eventually
terminates and succeeds in splitting of the leftmost upright. It suffices to argue that relation (4) can
always be applied to a pair of rungs connected to the leftmost upright (except in the trivial case when
the leftmost upright is already disconnected). Clearly, one can always find a leftwards rung above a
rightward rung by relation (1), however, they might be separated by trapped rungs further to the right
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in the web. We reproduce an example given in [40]:

I~

S

AN
AY

FS

Yv¥v

Y
AY

Y

Here the black rungs are the chosen ones, which are separated by trapped rungs colored red. The blue
rungs are not trapped and can be moved outside the local picture by applying relation (3). Queffelec
and Rose show that all trapped rungs can be untrapped by applying relations (3) and (4), without
moving the chosen pair of rungs on the left. We shall call this:

The untrapping subroutine: Its strategy is to move the lowest leftward pointing trapped rung
downwards until it becomes untrapped. This is possible because below this leftward rung, there can
only be rightward pointing trapped rungs, which do not obstruct the downward passage of the leftward
rung. To see this, we distinguish three cases:

e The rightward rung appears below the leftward rung, but they are adjacent to four different
uprights. Then the leftward rung slides down past the other rung by a planar isotopy.

e The rightward rung appears below the leftward rung and they share exactly one upright. Then
the leftward rung can be moved down past the rightward rung by relation (3).

e The rightward rung appears immediately below the leftward rung. Then we apply relation (4)
to switch them, which creates summands in which the leftwards rung is below the corresponding
rightward rung (this includes the possible case of label 0 on a rung, in which case we think of
it as erased).

After all leftward trapped rungs have been moved downwards and outside the local picture, all right-
wards (formerly) trapped rungs can be moved upwards by relation (3). Then, the chosen rungs adjacent
to the leftmost upright are no longer separated and relation (4) can be applied, as desired.

Once the leftmost upright is disconnected, the algorithm is recursively applied to the rest of the
diagram. O

Definition 4.3. We call an gl ladder web of type EF if each leftward-oriented ladder rung appears
under all rightward-oriented ladder rungs adjacent to the same two uprights. Analogously, we call a
web an gl ladder web of type FE if rightward rungs appear below leftward rungs in each column.

We need a generalization of the untrapping subroutine

Lemma 4.4. The resorting subroutine. Any gly ladder web can rewritten as a Z[g*™']-linear
combination of ladder webs of type EF (FE), using only the relations (2), (3) and (4).

Proof. We only describe an algorithm for resorting to EF webs. The other case is completely analogous;
instead of the relations (4), it uses the relations (4’), which can be deduced from (4):

(4’) Other square switch relations

1+ & 1 E Y 7]'//\
4 N
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¥ S A - ¥ S A
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Also, we have the choice of starting from the leftmost or from the rightmost upright in the ladder web
diagram; we describe the former. Without further mention, we assume that the algorithm applies the
relations (2) whenever possible.

Suppose that adjacent to the leftmost upright, there is a leftward rung immediately above a rightward
rung. Then the untrapping subroutine shows that all rungs that are trapped between our chosen
rungs can be moved away, modulo relations applied further to the right in the web. The result is a
configuration, in which our chosen rungs form a square that can be switched via relation (4). In doing
so, the leftward rung moves down past the rightward rung. As long as there are leftward rungs above
rightward rungs in the first column, this procedure can be iterated. Finally, it terminates in a linear
combination of webs in which the rungs in the first column satisfy the EF condition.

Now suppose that the rungs in the first x — 1 columns on the left are already sorted to satisfy the
EF condition. Suppose there is a leftward rung immediately above a rightward rung in the 2** column.
By the untrapping routine we may assume that there are no trapped further to the right in the web.
Since the web is already of type EF in the (z — 1) column, there are also no trapped rungs on the
left. Thus, relation (4) can be applied to move the leftward rung down past the rightward rung. This
process does not change anything to the left of the z*" column (modulo relation (3)) and it terminates
after finitely many iterations in a linear combination of webs, in which the rungs in the first 2 columns
satisfy the EF condition. 0

Remark 4.5. Via quantum skew Howe duality [0], the existence of a resorting subroutine follows from
the triangular decomposition of quantum gl,,,.

In the following, we need another bigon relation which is satisfied for gl webs in R2:

N -k

5
J

k k k

Proposition 4.6. Let W be a balanced gly ladder web with a marked boundary point of label k and
consider the partial closure W of all unmarked boundary strands:

- -
- - ~ - - ~
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W:
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~~~~~~~~~~

Then W can be rewritten as a Z[qT']-linear combination of the k-labelled web edge using only the four
relations from Lemma [{.2 and the additional relation [@). The latter is used in the following form
(and its horizontally reflected version):

(5) Partial closure relations

'¢ \I
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Proof. We describe an explicit algorithm for the case that W has closed strands on both sides of the
marked upright; the other cases are easier. First we apply the resorting subroutine from Lemma [£.4]
to replace W by a linear combination of webs of type FE. Then the relation (5) can be applied to
the rightmost upright to remove its closure. We interpret the resulting webs as ladder webs whose
rightmost upright has label 0 at the bottom and the top.

In the next step, we resort all webs to EF type. This has the effect of removing any interaction with
the rightmost upright and reduces the problem to ladder webs with one fewer upright. Also, having
resorted, we can now use the reflected version of relation (5) to remove the closure of the leftmost
upright. After finitely many steps of resorting between types FE and EF, and removing closures via
the relations (5), the algorithm terminates in a multiple of the marked edge. O
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