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Methods

Dataset

A dataset containing 144 binding affinity changes (∆∆G) for eight TKIs due to point mutations in
human Abl kinase is provided by Hauser et al.[1]. The authors also provide structure files of the
Abl:TKI complexes. Six of these are structures resolved experimentally via X-ray crystallography
(4WA9, 3UE4, 4XEY, 1OPJ, 3CS9, 3OXZ) and two were obtained via docking (referred to as DOK1
and DOK2). For calculations using Charmm force fields, glycine mutations were excluded, as it is
currently not possible to interpolate between different grid-based energy correction maps (CMAPs)
in Gromacs. Thus, the effective dataset size used in Charmm calculations was of 137 ∆∆G values
rather than 144. The standard error associated with the ∆∆G values was taken to be 0.32 kcal/mol,
based on the interlaboratory variability of the IC50 derived ∆∆G measurements.[1]. Details of the
dataset can be found in Data S1.

System Setup

The structures of the Abl:TKI complexes were taken from Hauser et al.[1]. Apo structures were
generated by discarding the ligand atoms. Crystallographic water molecules were retained. All mutant
structures were generated using FoldX (v4)[2]. Protein protonation states were assigned at pH 7.4 with
the protein preparation tool in HTMD (v1.12)[3], which uses PDB2PQR[4] and PROPKA v3.1[5, 6].
The protonation states of the ligands were kept as they were determined in Hauser et al.[1].

Proteins were modelled with the Amber99sb*-ILDN[7, 8, 9] (we abbreviate this as “A99”), Am-
ber14sb[10] (A14), Charmm22*[11, 12, 13] (C22), and Charmm36[14] (C36) force fields. In addition,
we also tested a modified version of Amber99sb*-ILDN in which the parameters for hydroxyl groups
were adapted as described in Fennel et al.[15]; we refer to this force field as Amber99sb*-ILDN-DC
(A99dc). The TIP3P water model[16] was used. Ligands were modelled with GAFF2 (v2.1)[17] via
AmberTools 16 and CGenFF (v3.0.1)[18] via paramchem[19, 20]. In the GAFF2 models, restrained
electrostatic potential (RESP)[21] charges were used. Geometry optimizations and molecular elec-
trostatic potential calculations (ESP) were performed with Gaussian 09 (Rev. D.01), both at the
HF/6-31G* level of theory. Only 3 optimization steps were carried out to keep ligands’ conformations
close to the bound poses. ESP points were sampled according to the Merz-Kollman scheme[22, 23].
In addition, the σ-hole on halogen atoms was modelled as described by Kolář and Hobza[24]. All
ligand parameters can be found in the input files in Data S2.

The protein-ligand systems were solvated in a dodecahedral box with periodic boundary conditions
and a minimum distance between the solute and the box of 12 Å. Sodium and chloride ions were
added to neutralize the wild type systems at the concentration of 0.15 M. For the mutant systems,
the same number of ions as in the wild type systems was added; i.e. the net charge of the wild type
systems was always zero, while the net charge of the mutant systems was allowed to deviate from zero
according to the mutation.

Because FoldX does not consider the presence of ligands when mutating the protein, clashes with
the ligands in the mutated complexes may occur. A clash was considered present if any protein heavy
atom was within 1.5 Å of any ligand heavy atom. If one or more clashes were present, an approach
similar to the one reported for alchembed[25] was used to resolve them: after 2,000 steepest descent
steps, the ligand vdW interactions were switched on in 2,000 MD steps carried out with a 0.5 fs
timestep, while using position restraints (1,000 kJ mol−1 nm−2) on all heavy atoms.
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Free Energy Calculations

All simulations were carried out in Gromacs 2016[26, 27] on cluster nodes equipped with an Intel Xeon
processor of Ivy Bridge (4 cores, e.g. E3-1270 v2) or Broadwell (10 cores, e.g. E5-2630 v4) architecture
and a Nvidia GeForce GPU 10 series (GTX 1070, GTX 1080, or GTX 1080 Ti). Compute times for
a single ∆∆G estimate with a representative node architecture are shown in Table 1.

10,000 energy minimization steps were performed using a steepest descent algorithm. The systems
were subsequently simulated for 100 ps in the isothermal-isobaric ensemble (NPT) with harmonic
position restraints applied to all solute heavy atoms with a force constant of 1,000 kJ mol−1 nm−2.
Equations of motion were integrated with a leap-frog integrator and a time-step of 2 fs. The tempera-
ture was coupled with the stochastic v-rescale thermostat of Bussi et al.[28] at the target temperature
of 300 K. The pressure was controlled with the Berendsen weak coupling algorithm[29] at a target
pressure of 1 bar. The particle mesh Ewald (PME) algorithm[30] was used for electrostatic interac-
tions with a real space cut-off of 10 Å when using Amber force fields and 12 Å when using Charmm
force fields, a spline order of 4, a relative tolerance of 10−5 and a Fourier spacing of 1.2 Å. The Verlet
cut-off scheme[31] with the potential-shift modifier was used with a Lennard-Jones interaction cut-off
of 10 Å with Amber and 12 Å with Charmm force fields, and a buffer tolerance of 0.005 kJ mol−1 ps−1.
All bonds were constrained with the P-LINCS algorithm[32]. For equilibration, 1 ns unrestrained MD
simulations were then performed in the NPT ensemble with the Parrinello-Rahman pressure coupling
algorithm[33] at 1 bar with a time constant of 2 ps. Production simulations were then performed for
3 ns. For the more expensive A99` protocol, simulations of 5 ns were used.

For each free energy calculation, the above procedure for equilibrium simulations (from system
setup to minimization, equilibration, and production MD) was repeated ten times on both the apo and
complex states, of both wild-type and mutant Abl kinase, for each ∆∆G estimate. From each of these
ten equilibrium simulations, 30 equally spaced frames were extracted as the starting configurations for
the non-equilibrium part of the calculations, for a total of 300 non-equilibrium trajectories (in both
directions, wild-type to mutant and mutant to wild-type) for each mutation. For A99`, ten repeated
equilibrium simulations were used for charge-conserving mutations, and twenty for charge-changing
mutations; from these, a total of 400 frames for charge-conserving mutations, and 800 frames for
charge-changing mutations, were extracted. The non-interacting (“dummy”) atoms needed to morph
the wild-type residues into mutant ones were introduced at this stage with the pmx package[34],
using the mutant structure proposed by FoldX as a template. The positions of the dummy atoms
were minimized while freezing the rest of the system. These systems containing hybrid residues were
then simulated for 10 ps to equilibrate velocities. Amino acid side chains were finally alchemically
morphed at constant speed during non-equilibrium simulations of 80 ps in length (100 ps were used
for A99`). The work values associated with each non-equilibrium transition were extracted using
thermodynamic integration (TI)[35] and then used to estimate the free energy differences with the
Bennett’s Acceptance Ratio (BAR)[36, 37, 38].

Point estimates of the free energy differences (Figure S1: ∆Gapo
W T→MT and ∆Gholo

W T→MT ) were cal-
culated with BAR after pooling all available forward and reverse work values coming from the non-
equilibrium trajectories spawned from all equilibrium simulation repeats. Uncertainties in ∆Gapo

W T→MT

and ∆Gholo
W T→MT were estimated as standard errors (σ∆G) by separately considering each equilibrium

simulation and its related non-equilibrium trajectories as independent calculations. These uncertain-
ties were then propagated to the final ∆∆G estimate to obtain the estimate of the standard error
σ∆∆G.

Rosetta Calculations

Binding free energy changes were calculated with Rosetta (v2017.52) using the flex_ddg protocol[39].
These calculations were carried out on cluster nodes equipped with an Intel Xeon processor of
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Broadwell architecture (E5-2630 v4), using one CPU core per ∆∆G calculation. Ligand parame-
ters were obtained with the molfile_to_params.py script provided with Rosetta. The REF2015 and
beta_nov2016 (referred to as βNOV16) scoring functions were used. The final ∆∆G estimates were
the average values of the generalized additive model obtained from 35 iterations of the protocol[39].
The command lines used for the Rosetta calculations and the input files can be found in Data S2.

Machine Learning

The machine learning (ML) model was built in python using the ExtraTreesRegressor class in the
scikit-learn library[40]. This model uses ensembles of randomized decision trees[41] in a similar fashion
to random forest. The input files and the code (as Jupyter notebooks) used to train and test the
ML models are provided in Data S3. All computations pertaining the ML results were performed on
a desktop machine equipped with an Intel Xeon processor of Broadwell architecture (E5-1630 v4).
While here we describe the general procedure used to prepare the training dataset, to calculate and
select features, and to test the models, the details needed to reproduce all results are found in the
notebooks provided as part of the Supporting Information.

Training Dataset

A dataset for training and validation, containing 484 entries, was created from the Platinum database[42].
From the whole database we excluded entries if they: (i) were not point-mutations; (ii) referred to
PDB-IDs containing “broken ligand structures” as described in the database; (iii) referred to PDB-
IDs in which the ligand was poorly resolved. The latter criterion was applied by matching PDB-IDs
and ligand IDs to the Twilight database (www.ruppweb.org/twilight; v11-01-2018) and excluding
entries if the real-space correlation coefficient (RSCC) was below 0.8.[43, 44] Additional manual cura-
tion was also performed. Details of this and how overall the training/validation dataset was created
are provided in Data S3 (0_filter_platinum_database.ipynb).

Features and Feature Selection

A total of 128 features, which we thought being potentially informative for the prediction of affinity
changes upon protein mutation, were calculated. More specifically, 18 ligand properties (e.g. molecular
weight, calculated logP, number of rotatable bonds) were calculated with RDKit (v2018.09.1; www.
rdkit.org). 21 properties describing the mutation environment (e.g. distribution of ligand and
protein atoms around the mutation site, number of polar/apolar/charged residues in the binding
pocket) were calculated with Biopython (v1.73; www.biopython.org). 13 features describing the
change in the amino acid chemical nature were calculated using precomputed properties for each amino
acid (e.g. change in side-chain volume, hydropathy, number of hydrogen bond donors). Among these
there was also the change in folding free energy upon mutation as predicted by FoldX v4[2]. 6 features
describing protein-ligand interactions (hydrogen bonds, hydrophobic contacts, salt bridges, π-stacking,
cation-π interactions, and halogen bonds) were calculated with the Protein-Ligand Interaction Profiler
(PLIP)[45]. The Vina binding score, along with 59 Vina features were calculated with AutoDock
Vina[46] via scripts that are part of DeltaVina[47]. The latter tool, in conjunction with the molecular
surface calculation library MSMS[48], was also used to calculate 10 pharmacophore-based solvent-
accessible surface area (SASA) features[47]. Finally, the wild-type binding affinity was included. See
Data S3 (1_extract_features.ipynb) for details on all features.

Feature selection was performed with a greedy algorithm using the mlxtend library[49]. We allowed
the selection of any number of features, up to 40, which minimized the mean-squared error of 10-fold
cross-validation on the Platinum dataset. The folds were built such that each of them would contain
a unique set of proteins not present in the other folds. The same feature selection procedure was also
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adopted for the 8-fold nested cross-validation on the TKI dataset. See Data S3 (2_train_test.ipynb)
for details on the feature selection procedure, and the training and testing of the ML model.

Data Analysis

The accuracy of the calculations was evaluated using three performance measures: the root-mean-
square error (RMSE), the Pearson correlation (r), and the area under the precision-recall curve
(AUPRC). The uncertainty in these measures was evaluated by bootstrap. Pairs of experimental
and calculated ∆∆G values were resampled with replacement 105 times. For each bootstrap sample,
RMSE, R, and AUPRC were calculated. From these 105 bootstrap measures, the 2.5 and 97.5
percentiles were taken as the lower and upper bounds of the 95% confidence interval.

A bootstrap procedure was also used to obtain p-values for the differences between approaches.
In this case, triplets of ∆∆G values were resampled with replacement together 105 times: ∆∆G
values from experiment and from the two approaches to be compared. At each bootstrap iteration,
the difference in the performance measure of interest (e.g. RMSE) between the two computational
approaches to be compared was stored. At the end of the procedure, 105 bootstrap differences (e.g.
∆RMSE) would have been collected. The fraction of differences crossing zero was multiplied by two
so to provide a two-tailed p-value for the difference observed. Data analysis was performed in python
using the numpy[50], scipy[51], pandas[52], scikit-learn[40], matplotlib[53], and seaborn[54] libraries.
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Figures

Figure S1: Thermodynamic cycle used in the MD-based free energy calculations.
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Figure S2: Accuracy of the ∆∆G estimates for all force fields tested with the MD-based free energy
calculations. (a) Scatter plots of experimental versus calculated ∆∆G values. The identity line is
shown as a dashed gray line. The four quadrants indicate the location of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) according to the definition of resistant
and susceptible mutations used[1]. Each ∆∆G estimate is color-coded according to its absolute error
with respect to the experimental ∆∆G value. (b) Summary of the performance of the ∆∆G estimates
across approaches in terms of RMSE, Pearson correlation, and AUPRC (point estimates and the 95%
CIs are shown). Differences at three levels of significance are reported using labels within the chart.
Based on these results, and on this dataset, these force fields qualitatively perform in the following
order: A99 = A99` > A14 > A99dc > C22 > C36.
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Figure S3: Effect of halogen bond modeling on Charmm calculations. Shown are scatter plots of
experimental versus calculated ∆∆G values for the estimates obtained with the Charmm22*/CGenFF
force field (C22, left), and for the same force field when modelling halogen bonds with an additional
σ-hole particle (C22σ, middle) as described by Gutiérrez et al.[55]. As only bosutinib, dasatinib, and
gefitinib contain halogen-bonding atoms (Cl, Br, I), the ∆∆G estimates concerning these inhibitors
only are plotted. The identity line is shown as a dashed gray line. Each ∆∆G estimate is color-coded
according to its absolute error with respect to the experimental ∆∆G value. The performance of
the estimates in terms of RMSE, Pearson correlation, and AUPRC (point estimates and the 95%
bootstrapped confidence intervals) are shown on each plot. The scatter plot on the right shows
the agreement between C22 and C22σ estimates. Overall, the addition of σ-hole particles to model
halogen bonding did not significantly improve the results on this dataset. “RMSE”: root mean square
error; “AUPRC”: area under the precision-recall curve; “AUROC”: area under the receiver operating
characteristic curve.
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Figure S4: Results obtained with a consensus force field approach in which results from pairs of
force fields are averaged while considering half of the simulated time for each of the two[56]. On the
diagonal of the matrices are the performances achieved by the parent force fields using all simulation
data available. The off-diagonal elements show the performance of the consensus results obtained by
averaging the results of the parent force fields (abbreviations as defined in Table S1) when using half
of the simulation data from each parent (i.e. the first five equilibrium simulation repeats and the
associated non-equilibrium trajectories). Cells are color-coded depending whether performance of the
consensus approach was better, in between, or worse than the performance of the two parent force
fields.
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Figure S5: Performances of the methods by change in net charge upon mutation. (a) Scatter plots
of experimental versus calculated ∆∆G values. The identity is shown as a dashed gray line. Each
∆∆G estimate is color-coded according to charge change associated with the mutation. Error bars are
omitted for clarity. (b) Distribution of absolute errors (|∆∆Gcalc−∆∆Gexp|) by net charge change and
approach used. (c) RMSE for the ∆∆G estimates involving charge-conserving and charge-changing
mutations (point estimates from the original samples and 95% bootstrapped confidence intervals are
shown). Overall, no significant dependence of the results on the net charge change of the system was
observed.
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Figure S6: Uncertainty of the MD-based free energy calculations. Shown is the Gaussian kernel
density estimate of the standard errors (σ) for the 144 ∆∆G values obtained with the different force
fields and protocols tested. Vertical dashed lines mark the root-mean-square of the σ values (numerical
results reported in the table at the bottom). The data for OP3 are from the three repeated calculations
in Hauser et al.[1]. A99, A14, A99dc, C22, and C36 (shades of green) return similar distributions of σ
values (RMSσ between 0.47 and 0.55 kcal/mol). The more expensive A99` protocol (blue) returned
slightly more precise estimates (RMSσ = 0.40 kcal/mol), whereas OP3 (red) achieved considerably
higher precision (RMSσ = 0.22 kcal/mol). Comparing the overall accuracy (RMSE) of the ∆∆G
estimates to their overall precision (RMSσ), one notes that these tend to be more precise than they
are accurate, roughly by a factor of two for the non-equilibrium calculations (A99, A14, A99dc, C22,
C36) and by a factor of five for the equilibrium OP3 calculations.

root-mean-square (RMS) σ

OP3 A99` A99 A14 A99dc C22 C36

RMSE[a] 1.07 0.91 0.91 0.97 0.98 1.03 1.21
RMSσ[a] 0.22 0.40 0.50 0.55 0.51 0.47 0.48

RMSE/RMSσ 4.77 2.29 1.82 1.77 1.93 2.18 2.51
[a]values in kcal/mol
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Figure S7: Results obtained with a combined Rosetta and MD consensus approach[56]. Each cell
shows the performance of the consensus results obtained by averaging the results from Rosetta (REF15
scoring function at the top, βNOV16 function at the bottom) and the free energy calculations (abbre-
viations as defined in Table S1; the use of two abbreviations, e.g. “A14+C22”, denotes a consensus
force field result). Cells are color-coded depending on whether the performance of the consensus
approach was better, in between, or worse than the performance of Rosetta or MD alone.
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Figure S8: Scatter plot of ∆∆G estimates obtained with a consensus score by averaging the results of
R15 and A99. Shown are the experimental versus calculated ∆∆G values. The identity is shown as a
dashed gray line. The four quadrants indicate the location of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) according to the definition of resistant and susceptible
mutations used[1] and the threshold ∆∆Gcalc > 1.36 kcal/mol. Each ∆∆G estimate is color-coded
according to its absolute error with respect to the experimental ∆∆G value. The point estimate and
95% confidence interval (xupper

lower) for the performance measures used (RMSE, Pearson correlation, and
AUPRC) are shown.

420246
Experimental G, kcal/mol

4

2

0

2

4

6

C
al

cu
la

te
d 

G
, k

ca
l/m

ol

avg(A99,R15)
RMSE = 0.620.71

0.53

Pears = 0.710.82
0.52

AUPRC = 0.610.80
0.38

TP = 8

FN = 11 TN = 122

FP = 3

0.0

0.7

1.4

2.1

2.8

|
G

ca
lc

G
ex

p|

S14



Figure S9: Scatter plot of ∆∆G estimates obtained with mCSM-Lig[57]. Shown are the experimental
versus calculated ∆∆G values. The identity is shown as a dashed gray line. The four quadrants
indicate the location of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN) according to the definition of resistant and susceptible mutations used[1] and the
threshold ∆∆Gcalc > 1.36 kcal/mol. Each ∆∆G estimate is color-coded according to its absolute
error with respect to the experimental ∆∆G value. The point estimate and 95% confidence interval
(xupper

lower) for the performance measures used (RMSE, Pearson correlation, and AUPRC) are shown.
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Figure S10: Precision-recall curves in order of decreasing area under the curve (AUPRC). Abbre-
viations used are as defined in Table 1 and S1; “max(A99,R15)” refers to the consensus approach
in which, for each mutation, the most positive ∆∆G estimate among A99 and R15 was selected,
and “avg(A99,R15)” to the consensus approach in which the ∆∆G estimates of A99 and R15 were
averaged. The expected curve for a random estimator is shown as a dashed black line (baseline with
AUPRC of 0.13). The precision and recall when considering the threshold of ∆∆Gcalc > 1.36 kcal/mol
is marked by a purple circle on the curves. The circle in pink indicates the precision and recall when
classifying the largest 15% ∆∆Gcalc as resistant. The exact numerical values for precision and recall
under these conditions are shown in Table S2.

∆∆Gcalc > 1.36 kcal/mol
Top 15% (22) ∆∆Gcalc

Thresholds:
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Figure S11: Scatter plot of ∆∆G estimates obtained with a consensus score by taking the more
positive ∆∆G value among those of A99 and R15. Shown are the experimental versus calculated
∆∆G values. The identity is shown as a dashed gray line. The four quadrants indicate the location of
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) according to the
definition of resistant and susceptible mutations used[1] and the threshold ∆∆Gcalc > 1.36 kcal/mol.
Each ∆∆G estimate is color-coded according to its absolute error with respect to the experimental
∆∆G value. The point estimate and 95% confidence interval (xupper

lower) for the performance measures
used (RMSE, Pearson correlation, and AUPRC) are shown.
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Tables

Table S1: Summary of the MD-based free energy calculations. For the performance measures, the
point estimates and their 95% confidence intervals are shown. “Abbr.”: abbreviation; “RMSE”: root
mean square error; “AUPRC”: area under the precision-recall curve.

Abbr. Force Field RMSE (kcal/mol) Pearson AUPRC

A99 Amber99sb*-ILDN[7, 8, 9]
and GAFF[17] v2.1 0.911.05

0.77 0.440.59
0.24 0.560.77

0.32

A99` Amber99sb*-ILDN[7, 8, 9]
and GAFF[17] v2.1 0.911.08

0.74 0.420.59
0.20 0.510.75

0.26

A14 Amber14sb[10]
and GAFF[17] v2.1 0.971.14

0.80 0.410.60
0.21 0.340.60

0.16

A99dc Amber99sb*-ILDN-DC[7, 8, 9, 15]
and GAFF[17] v2.1 0.981.14

0.81 0.320.47
0.14 0.290.55

0.13

C22 Charmm22*[11, 12, 13]
and CGenFF[18] v3.0.1 1.031.21

0.85 0.240.44
0.01 0.250.48

0.11

C36 Charmm36[14] and
CGenFF[18] v3.0.1 1.211.46

0.96 −0.000.28
−0.28 0.220.39

0.07
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Table S2: Binary classification performance of the methods tested. The threshold ∆∆Gcalc > 1.36
kcal/mol was used to classify mutations as resistant. In addition, the recall and precision of the
results when classifying the largest 15% ∆∆Gcalc as resistant are shown; this shows what the recall
and precision are when a fixed number (22) of top-scoring mutations (i.e. those predicted to be most
resistant, with largest ∆∆Gcalc) is selected. Abbreviations for the methods tested are used as defined
in Tables 1 and S1.

∆∆Gcalc > 1.36 kcal/mol Top 15%

Approach Recall Precision Balanced
Accuracy F1 Score

Matthews
Correlation
Coefficient

Recall Precision

OP3 0.47 0.53 0.70 0.50 0.43 0.58 0.50
A99 0.37 0.88 0.68 0.52 0.53 0.53 0.45
A99` 0.26 0.83 0.63 0.40 0.43 0.58 0.50
A14 0.16 0.60 0.57 0.25 0.26 0.42 0.46
A99dc 0.21 0.50 0.59 0.30 0.26 0.42 0.36
C22 0.11 0.33 0.54 0.16 0.12 0.37 0.33
C36 0.11 0.40 0.54 0.17 0.15 0.16 0.14
R15 0.74 0.48 0.81 0.58 0.52 0.58 0.50
R16 0.53 0.43 0.71 0.48 0.39 0.47 0.41
ML1 0.16 0.33 0.55 0.21 0.15 0.26 0.23
ML2 0.16 0.50 0.57 0.24 0.23 0.53 0.45

avg(A99,R15) 0.42 0.73 0.70 0.53 0.51 0.58 0.50
max(A99,R15) 0.79 0.48 0.83 0.60 0.54 0.58 0.50
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