Task-dependent recruitment of modality-specific and multimodal regions during conceptual processing

Philipp Kuhnke^{1,2}, Markus Kiefer³, and Gesa Hartwigsen^{1,2}

¹Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences (MPI CBS), Leipzig, Germany;

²Research Group 'Modulation of Language Networks', Department of Neuropsychology, MPI CBS, Leipzig, Germany;

³Department of Psychiatry, Ulm University, Germany

y @FriedericiLab

Introduction

- Conceptual knowledge (e.g. about objects in the world) underlies many cognitive abilities, such as word comprehension
- Concepts are (at least partly) composed of perceptual and motor features represented in modality-specific perceptual-motor brain regions
- In addition, multimodal "convergence zones" integrate modality-specific representations into increasingly abstract representations [2,3]
- Unclear to what extent retrieval of perceptualmotor features & recruitment of modality-specific regions depend on task demands

Research question:

To what extent does retrieval of sound and action features & recruitment of auditory and motor regions depend on task?

Methods

- **40 participants** (healthy, right-handed, 18-35 years)
- event-related fMRI
- 3T scanner (32-channel head coil)
- dual-GE EPI sequence (TR = 2 s; TE = 12/33 ms; 2.5 mm³ voxels; 90 axial slices)
- Localizers for motor (hand movements) & auditory (sound perception) regions
- Analysis: whole-brain random-effects group analysis (SPM12)
- **Threshold**: voxel-wise FDR q < 0.05 (extent > 20 voxels)

Results

Action feature retrieval (high > low action words)

- Lexical decisions: no significant activations
- Sound judgments: no significant activations
- Action judgments:

Sound feature retrieval (high > low sound words)

- Lexical decisions: no significant activations
- Action judgments: no significant activations
- Sound judgments:

Multimodal conceptual regions:

Engaged both during the explicit retrieval of action &

MCC/PCC

Explicit retrieval of action features

Explicit retrieval of sound features

sound features

Multimodal conceptual regions

Action judgment: high > low action words (Overlap with sound perception or movement execution

correspond to "heteromodal" regions engaged

Interaction analyses:

both motor & non-motor activations significantly stronger during action judgments than other tasks

both auditory & non-auditory activations significantly stronger during sound judgments than other tasks

Discussion

- Retrieval of sound & action features of concepts involves both (1) modality-specific perceptual-motor regions and (2) higher-level regions outside modality-specific systems
- Many of the **higher-level regions** were engaged in the retrieval of both sound and action features, indicating that they are multimodal
- Retrieval of perceptual-motor features is strongly task-dependent
 - Significant activations for sound or action feature selectively when task-relevant
 - Significantly **stronger activity** for a specific feature when task-relevant (vs. other tasks)
 - Both modality-specific & multimodal regions show a task-dependent response to individual perceptualmotor features
- → Conceptual processing relies on a **flexible, multilevel architecture** grounded in the perceptual-motor systems

References

[1] Kiefer, M., & Pulvermüller, F., 2012. Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex 48, 805-825. doi:10.1016/j.cortex.2011.04.006

during conceptual processing in general [2,3]

[2] Binder, J.R., & Desai, R.H., 2011. The neurobiology of semantic memory. Trends Cogn. Sci. 15, 527–536. doi:10.1016/j.tics.2011.10.001

[3] Binder, J.R., Desai, R.H., Graves, W.W., & Conant, L.L., 2009. Where Is the Semantic System? A Critical Review and Meta-Analysis of 120 Functional Neuroimaging Studies. Cereb. Cortex 19, 2767–2796. doi:10.1093/cercor/bhp055

Contact

Philipp Kuhnke PhD student

Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

kuhnke@cbs.mpg.de

