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Abstract

Neural responses to sudden changes can be observed in many parts of the sensory pathways at different organizational levels.
For example, deviants that violate regularity at various levels of abstraction can be observed as simple On/Off responses
of individual neurons or as cumulative responses of neural populations. The cortical deviance-related responses supporting
different functionalities (e.g., gap detection, chunking, etc.) seem unlikely to arise from different function-specific neural
circuits, given the relatively uniform and self-similar wiring patterns across cortical areas and spatial scales. Additionally,
reciprocal wiring patterns (with heterogeneous combinations of excitatory and inhibitory connections) in the cortex naturally
speak in favor of a generic deviance detection principle. Based on this concept, we propose a network model consisting of
reciprocally coupled neural masses as a blueprint of a universal change detector. Simulation examples reproduce properties of
cortical deviance-related responses including the On/Off responses, the omitted-stimulus response (OSR), and the mismatch
negativity (MMN). We propose that the emergence of change detectors relies on the involvement of disinhibition. An analysis
of network connection settings further suggests a supportive effect of synaptic adaptation and a destructive effect of N-
methyl-D-aspartate receptor (NMDA-r) antagonists on change detection. We conclude that the nature of cortical reciprocal
wiring gives rise to a whole range of local change detectors supporting the notion of a generic deviance detection principle.
Several testable predictions are provided based on the network model. Notably, we predict that the NMDA-r antagonists
would generally dampen the cortical Off response, the cortical OSR, and the MMN.

Keywords Deviance detection - Neural mass model - Auditory perception - Adaptation - NMDA

1 Introduction ception, seereviews in [64,111]) and enriches the hierarchical
representations of percepts. The ability to detect abrupt tem-
poral changes is thought to be a pervasive property of the

sensory systems, given that deviance-related responses have

Automatic detection of sudden acoustic changes crucially
enables reorientation of attention toward relevant events in

the environment and thereby is important for survival. From
a functional perspective, sensitivity to stimulus deviation
likely plays many roles in the nervous system (e.g., noise
rejection, duration tuning, chunking and grouping, beat per-
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been widely observed from cellular to system levels, across
species, sensory modalities, and spanning from the lower
levels of the sensory pathway to the cortex. For example,
some cells can be sensitive only to the onsets and offsets of
stimuli. These On/Off responses have been observed using
extracellular recording in the superior paraolivary nucleus
(SPON) of rodents [9,23,25,48,51], inferior colliculus (IC)
of chinchillas [28], and the medial geniculate body (MGB)
of the guinea pig [30]. Cortical On/Off responses have been
observed using different recording and imaging techniques,
including single-cell recording in primary auditory cortex
(A1) of awake cats [18,75], and anesthetized rats [86], extra-
cellular recording in A1l of awake marmoset monkeys [82],
surface micro-electrode array in auditory cortex (AC) of
rats [97], multi-unit extracellular recordings across broad
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range of AC of mice [43], flavoprotein fluorescence imag-
ing [4] and two-photon calcium imaging [4,24] in AC of
mice, and MEG in human auditory evoked responses [67].
Generally speaking, these cells can be sensitive to the sudden
changes in specific regular features such as the constancy in
pitch, loudness, duration, and patterns. The deviants that vio-
late these perceptual regularities trigger mismatch responses
at different stages such as frequency following responses
(FFR), middle latency responses (MLR), as well as long
latency responses (LLR) such as the mismatch negativity
(MMN) [91]. An omitted stimulus in a periodic train of
stimuli is a special type of deviant, which elicits the so-
called omitted-stimulus responses/potentials (OSRs/OSPs).
The OSR is time-locked not to the last but to the omitted
stimulus, which reflects temporal expectancy represented
in the neural circuits. OSRs have been observed in differ-
ent sensory systems (e.g., visual, auditory, somatosensory)
in various species, for example, the visual pathway of fish,
reptile, and invertebrate in vivo [14,44,74,77], retinas of sala-
mander in vitro [89,109], and the electrosensory system of
rays [16]. An OSR at the cortical level (often termed the omis-
sion response or omission MMN) has also been observed in
human EEG/MEG [2,15,17,33,45]. To date, investigations of
the underlying mechanisms have been mostly confined to a
certain perceptual level and a particular phenomenon. A uni-
fying view of deviance detection that considers phenomena
across levels is still missing.

Many of the deviance-related activities, though originat-
ing from different stages of the auditory pathway, can be
observed pervasively in the auditory cortex. We hypothesize
that the cortical deviance-related activities are primarily gen-
erated locally through reciprocally connected neural circuits.
In this study, we outline a generic deviance detection prin-
ciple, in an effort to reconcile some confusion and conflict
related to the questions as follows.

Which neural circuits give rise to the diverse cortical
On/Off responses? The response of a neuron or a neural
circuit to a prolonged stimulus can bear three basic features:
a response to the stimulus onset (On response), a sustained
response as long the stimulus is present, and a response to
the stimulus offset (Off response). The On/Off responses
are found in neurons of the superior paraolivary nucleus
(SPON) of the brainstem, the inferior colliculus (IC) of the
midbrain [26], and the auditory cortex in rodents [4,24,86].
These On/Off neurons are thought to support functions such
as duration selectivity (duration tuning), gap detection, and
noise rejection [111]. Knowledge of the generation of On/Off
responses has been mainly derived from observations at non-
cortical stages. The On responses are thought to be due to
adaptive and post-onset inhibitory mechanisms that shape the
responses in the auditory nerve [72]. The Off responses are
widely accepted to arise from post-inhibitory rebound (see
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review in [47] for the detailed cellular and synaptic mech-
anisms), as concluded from observation in SPON neurons
[25]. Other response patterns such as On-Off, On-sustained-
Off can then potentially be explained by mixing of excitatory
and inhibitory inputs with different delays in a feed-forward
network [111]. As for the On/Off responses recorded in the
auditory cortex, they may originate from the ascending non-
cortical On/Off responses [86] or be generated locally in the
cortex. The cortical On/Off neurons show diverse temporal
profiles [24]. Also, a single cortical neuron may have distinct
onset- and offset-frequency receptive fields (FRFs) [75]. Itis
still unclear how the neural circuits give rise to these proper-
ties of cortical On/Off responses.

Is the OSR just sustained resonance? The OSR, elicited
by an unexpected omission in periodic stimuli, is found in
the cortex [2,15,17,33,45], but not in the midbrain (IC, tec-
tum) [67] or the brainstem [55], where only Off responses are
observed. The OSR resembles the Off response as they both
peak at the end of a stimulus (or a train of stimuli) However,
the OSR also reflects temporal expectancy (i.e., neural repre-
sentation of periodicity), which distinguishes it from the Off
response. There are two properties of the OSR. First, the peak
latency includes an additional constant delay (e.g., around
100 ms in human MEG/EEG) from the time when the missing
stimulus would have occurred (due time). It does not depend
on the stimulus-onset asynchrony (SOA) [2,90]. Second, the
peak amplitude can be larger than the entrained responses
during periodic stimuli [33]. Although neural activities that
show sustained resonance can be a mechanism underlying
the temporal expectancy [57,99], sustained response alone
does not explain the additional delay and higher peak ampli-
tude. How the neural circuits maintain the input periodicity
and detect the change is unclear.

Does the OSR reflect prediction or prediction error? This
question rests on whether the OSR is triggered by a similar
mechanism as the MMN. The MMN, elicited by a deviant
among repetitive standard stimuli, is a negative deflection
in the event-related potential (ERP) with the sources most
prominently localized in the auditory cortex. The underly-
ing process leads to the reorientation of attention to higher
cognitive processes. MMNs have been shown for auditory
deviants involving pitch [37,62,69,70,84,98,100,113,114],
intensity [63,79], duration [1,19,34-36,40,63,65,81,87,105],
SOA [13,50,102], sequence (or pattern) [12,32,49,88,101,
117], and more complex features such as rising and falling
tones (reviewed in [71]) or voice [46]. The MMN is gen-
erally accepted to be elicited by the deviant that violates
the regularities, but the underlying mechanism is still under
debate. The MMN is thought to reflect either a prediction-
error signal resulting from the comparison between the input
and the top-down prediction (prediction hypothesis), or an
increased signal caused by the stimulus propagating through
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un-adapted synapses (adaptation hypothesis). The omission
paradigms that elicit the OSR are often used in the debate to
emphasize the need for active prediction, since the adapta-
tion mechanism alone does not produce extra neural activities
without any input. However, according to the computational
models based on either hypothesis, the OSR is qualita-
tively different from the classical MMNss elicited by other
deviants. The adaptation-based model suggests the OSR to
be a rebound response (i.e., sustained resonance) rather than
a modulated N1 [57]. The prediction-based model suggests
the OSR to reflect predictive signals rather than predic-
tion error [108]. Both interpretations implicitly suggest pure
endogenous activities that do not involve a change detection
mechanism. This conflicts with the two properties of ORS
mentioned above. How OSR relates to MMN generation is
not yet clear.

The above issues underscore the need for a unifying
view of deviance detection, covering the cortical On/Off
responses, the cortical OSR, and the MMN. Given the rel-
atively uniform wiring patterns across areas in the cortex,
we ask whether cortical deviance detection is supported by
neural circuits of a common structural motif. We propose a
generic deviance detection principle (Fig. 1a), where change
detection can take place locally under proper reciprocal con-
nections (Fig. 1b) by monitoring the neighboring neural
activities that represent a regular feature. This principle is
based on the assumption that the process of deviance detec-
tion can be functionally separated into stages of regularity
formation and change detection.

In the first part of the Results section, we provide simula-
tion examples that reproduce several properties of cortical
On/Off responses, cortical OSR, and MMN. In examples
I and II, we demonstrate that the various types of cortical
On/Off responses, in terms of their temporal profiles and
frequency receptive fields (RFRs), can be attributed to the
connection patterns between input and observation points. In
example III, we demonstrate that the OSR can be regarded
as a change detection response (or an Off response) to the
cessation of constant periodicity. In example IV, we demon-
strate that the sequence MMN can be regarded as a change
response to the switch in sequence regularity (or a mix-
ture of an On response to the deviant and an Off response
to the cessation of regularities). In the second part of the
Results section, we examine the underlying mechanism of
change detection by investigating the generation of simu-
lated On and Off responses. We then look at how altered
connection patterns (e.g., reduced external connections to
inhibitory populations, effect of NMDA-r antagonists, and
synaptic adaptation) affect the emergence of change detec-
tors. In the Discussion section, we derive conclusions with
regard to the above-mentioned questions. Finally, we provide
testable predictions for future verification.
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Fig. 1 Illustration of the role of deviance detection in hierarchical fea-
ture representation. a The process of feature representation includes
the interaction between regularity formation (R) and change detection
(C). The R nodes remain stable (regularity, fr) by accumulating the
ascending information from the lower-level features. The C nodes detect
abrupt temporal changes in the neighboring R node(s) and pass them
to the higher levels as new features ( fc, gray arrows). In this sense, an
R—C pair forms a basic mechanism of deviance detection which takes
place at every level in the hierarchy. b An R—C pair is formed by two
reciprocally coupled nodes. In the simulations, all nodes are allowed to
receive external weighted inputs that reach the excitatory and inhibitory
populations. The inter-node connections (green) are the free parameters,
and the intra-node connections are fixed for simplicity (colour figure
online)

2 Methods
2.1 Model description

The simulations are done with rate-based models which
allow for a simple and scalable network motif while keep-
ing the network dynamics comparable to the experimental
observations such as LFP and MEG/EEG. A network is
used to represent an area in the auditory cortex with each
node in the network comprising one excitatory (E) and one
inhibitory (I) neural population. The dynamics of the E and
I populations are represented by the overall post-synaptic
membrane potential (PSP) v”(¢) and the mean firing rate
mP(t), where the superscript p € {E, I} stands for the
excitatory/inhibitory population. Neural populations inter-
act with each other by means of firing rate via connections
defined in the matrices WEE  WIE WET and W!! which cor-
respond to excitatory-to-excitatory, excitatory-to-inhibitory,
inhibitory-to-excitatory, and inhibitory-to-inhibitory con-
nections, respectively. Self-feedback is allowed. All E pop-
ulations in the network are fed with constant background
input. External stimuli x(¢) reach the E and I populations
via external connections specified by WX and W!¥.

2.1.1 Neural populations
In neural mass modeling, the processing of neural activities

in a population is governed by two operators [38,39,93,94].
The rate-to-potential operator describes a linear transfor-
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mation from the mean firing rate to the mean PSP. The input
firing rate x.(¢), where the subscript ¢ € {e, i} stands for
the excitatory/inhibitory synapse, reaches a population and
is transformed to the EPSP/IPSP v.(¢) in that population.
This transformation is described by the rate-to-potential pro-
cess, which is achieved by convolving the input firing rate
xc(¢) with a synaptic kernel £ (t).

ve(t) = xc (1) @ he(2) ey

The synaptic kernel A (t) is a response curve describing
the dynamics of the post-synaptic potential in response to a
pre-synaptic spike, which depends on the characteristics of
the synapse (Eq. 2). The average synaptic gain H. controls
the peak value of the response curve. The time constant t,
represents the delay due to dendritic effects and neurotrans-
mitter kinetics. The symbol © (¢) denotes the Heaviside step
function, where ® (t > 0) = 1.

H, =t
he(t) = —1O(1)ew (2)
Tc
The convolution of the input x.(#) with the kernel /. (¢)
can be further represented by two first-order ordinary differ-
ential equations (Eqgs. 3,4), which are used in the numerical
simulation:

Ue(t) = uc(t) 3

. H, 2 1
uc(t) = Xe(t) — —uc(t) — 2Uc(t) 4)
T, T, 7

C C

Finally, v.(¢), representing either the EPSP v,(¢) or the

IPSP v; (), contributes to the overall PSP v(7) in the neural
population.

v(t) = v (1) — vi(r) &)

The potential-to-rate operator transforms the overall PSP
v(t) into the output firing rate m(¢) by a nonlinear sigmoid
function S as described in Eq. 6, where eg controls the max-
imum firing rate and r controls the slope at the membrane
potential v for firing.

2eq

1 + e @o—v(0) ©)

m(r) = S (v(r)) =
2.1.2 Nodes

A node, consisting of one excitatory and one inhibitory neural
population, represents the basic building block in a hierar-
chical feature representation (Fig. 1). It represents more of a
functional unit than a structural unit, for example a cortical
column. For N nodes that represent N locations in the audi-
tory cortex and M external inputs that represent the intensity
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of a certain feature such as M tones, the network struc-
ture is defined by four N x N connection matrices WEE,
WIE WEL agnd W11, and two N x M external connection
matrices WEX and W/X. Each element w (non-negative)
in the connection matrices stands for the gain factor on the
firing rate, which reflects the number and strengths of the
synapses established from the source to the target population.
The element wfkl , for example, stands for the connection
strength from the inhibitory population in node k to the
excitatory population in node j. The overall PSP v(¢) of
the excitatory population in node j is now labeled as vE )

and is composed of the respective EPSP vE (1) and IPSP
vE (1)
j,l

i) =, (1) —vf () @)
E () and v (1) are found by solving the differential
equatlons
0F (1) = uk (1) (8)
12 Za]kw m,f:(t)—i—Zw xq(t)+B
e q= 1
2
——u () — —2 Fa ©
€
0F (1) = uj,,-(t) (10)
H [
(0 = — [Z wﬁ’m,ﬁ(x)} —u¥ (1) - = v ()
b olk=1
(11)
In Egs. 9 and 11, w]k s jk , and wqu are elements in

WEE WEI and WEX, The mf(t) and m,{(t) are the fir-
ing rate of the excitatory and inhibitory population in node
k. The x,(¢) is external input g, and B is a constant back-
ground input. The synaptic adaptation term aj; modulates
the connections strength w ka .

Similarly, the overall PSP v(¢) of the inhibitory population
innode j is labeled as v’ (t) and is composed of the respective

EPSP v! (1) and IPSPv L(0):

Vi) = vf (1) = v} () (12)

’ (1) and v ;(t) are found by solving the differential
equatlons

0] () = uj (1) (13)
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H N M
il () =T—e dowlfmi o+ wiXx, o)
€| k=1 g=1 (14)
2 1 1 1
_-Lr_gu/ve(t)_r_ezv-/’e(t)

i);,i(t) = Mj,i(’) (15
N
. H; 2 !
u;’i([) = T—l [l; wjllgm,{(t):| - ‘L'_iuﬁ’i(t) - ?UJI‘J'(I)
(16)

The value of constant background input B is chosen such
that the nodes work in proper conditions (i.e., near a bifur-
cation point for an isolated node). The external input x4 (¢)
reaches both the excitatory and inhibitory populations in node
j with connection strengths wqu and wj ;‘ , where the ratio

wjlff / wJEqX is set to 0.5 by default. The synaptic adaptation
term a represents the efficacy of excitatory-to-excitatory con-
nections WEE The synaptic efficacy (in range [0,1]) varies
according to Equation 17 when synaptic adaptation is con-
sidered, otherwise a is fixed to 1.

2.1.3 Synaptic adaptation

When synaptic adaptation on W is considered, the connec-
tion strength wh” is modulated (as in Eq. 9) by the term ajx,

which varies according to the pre-synaptic activity m f ).

1 —aji(0)

a

ajt) = — kaj(tymg (1) (17)

The adaptation time constant 7, represents the recovery
rate of the synaptic efficacy, and the constant « influences
the decay rate of a i (t).

2.1.4 Short-term plasticity

Short-term plasticity is used only in simulation example III
as a possible solution for the regularity formation of input
periodicity. The plasticity rule adjusts the binding between
the nodes in the bank of oscillators so that the group activ-
ity maintains a stable representation of input periodicity. For

Np nodes in the bank of oscillators, the connection wka

increases if the covariance Cov; i, 4;(t) between m f (1) and

mf (t) from time ¢t — Af to t is positive, and otherwise
decreases gradually back to zero (Eq. 18). Similarly, the
connection wfkl increases if Covjx a;(t) is negative, and
otherwise decreases gradually back to zero (Eq. 19). The
learning rate 7 is set to 0.05, and the weight masks « j; and
Bjr consider the effectiveness of plasticity as a function of
the distance between nodes j and k. The weight masks follow

the Gaussian function exp(—d?/2¢2), where d = |j — k|,

and o is sett0 0.2N;, and 0.4 N, for aj; and B jx, respectively.
Since the resonance frequency increases monotonically with
the node index in the bank of oscillators, the weight masks
avoid the binding between two nodes with distinct resonance
frequencies. So far, this short-term plasticity rule is rather
function-driven than based on biological evidence. The plas-
ticity rule is not the focus of this study because we assume
that short-term plasticity is more involved in the process of
regularity formation than in change detection. More stud-
ies need to be done for a more realistic network model that
maintains the input periodicity.

whE (1) = —whE (1) + neji - max(Covj k. :(1),0)  (18)

Wil (1) = —wi (@) + nBji - Imin(Covj 4 (1), 0)|  (19)
2.1.5 Simulated MEG signals

To synthesize a gross signal from the activities of all neu-
ral populations in the network, both the excitatory current
(or active sink) and inhibitory current (or active source) at
the excitatory populations (i.e., pyramidal cells) are taken
into account [22]. This is a more generalized approach than
just considering the sum of the excitatory inputs weighted by
excitatory-to-excitatory connection strength and the adapta-
tion term [59]. For the network of N nodes, the simulated
MEG signal R(¢) is calculated as the weighted sum of
currents contributed by the active sinks and sources. It is
assumed that the active sinks are due to the EPSP at apical
dendrites through W and the active sources to the IPSP
at the soma through W/ In order to highlight the activities
of specific nodes (e.g., the change detectors), the signals are
weighted by b, where Z],v bj=1.

N N N
R(t)="b; [Z ajwhEmf )+ wfklmlﬁ(l):|
k=1 k=1

j=1
(20)

2.2 Model configurations

The parameter settings of neural population model are kept
the same, as proposed by Jansen and Rit [38] and Jansen
et al. [39], unless otherwise specified. In order to reduce
the number of free parameters, we fix the intra-node con-
nections and only analyze the inter-node connections in the
simulations. The values of intra-node connections are cho-
sen such that a single node stays inactivated under weak
excitatory input and starts to oscillate as the excitatory input
strength increases to e (i.e., half of the maximum value of the
sigmoid function). The adaptation parameters 7, and « are
chosen such that a single node remains oscillating during pro-
longed stimulation, rather than showing only a transient peak
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Table 1 General configurations

Par. Value Unit Description

Impulse response function

Te 10 ms Time constant of average delay through excitatory synapses

T 20 ms Time constant of average delay through inhibitory synapses

H, 3.25 mV Average gain through excitatory synapses

H; 22 mV Average gain through inhibitory synapses

Sigmoid function

€ 2.5 spikes/s Controlling maximum firing rate

r 0.56 1/mV Slop at vy

v 6 mV Membrane potential threshold for firing

Intra-node connections

wij 135 x 0.8 1 Self-feedback excitatory synapses in the jth excitatory population

w§ ]E 135 x 0.6 1 Excitatory synapses from the jth excitatory to the jth inhibitory population

wf/] 135 x 0.2 1 Inhibitory synapses from the jth inhibitory to the jth excitatory population

wj JI 135 x 0.05 1 Self-feedback inhibitory synapses in the jth inhibitory population

Inter-node connections

wka 135 x {0,0.1,...,0.5} 1 Excitatory synapses from the kth excitatory population to the jth excitatory population
w; ,f 135 x {0,0.1,...,0.5} 1 Excitatory synapses from the kth excitatory population to the jth inhibitory population
w fkl 135 x {0,0.1,0.2} 1 Inhibitory synapses from the kth inhibitory population to the jth excitatory population
w§ ,{ 135 x {0, 0.1, 0.2} 1 Inhibitory synapses from the kth inhibitory population to the jth inhibitory population
External connections

w].EqX 220 x 0.2 1 Excitatory synapses from external input ¢ to the jth excitatory population

wj ;( 220 x 0.1 1 Excitatory synapses from external input ¢ to the jth inhibitory population

Inputs

B 220 x 2.5 spikes/s Constant background input

Xq (1) - spikes/s External input g (step function, amplitude = 1.5, rise/fall time = 10 ms)

Synaptic adaptation

Ta 200 ms Time constant of recovery rate of synaptic efficacy

K 2 1 Drop rate in synaptic efficacy

response at the onset. The general configurations are listed in
Table 1.

2.3 Categorization of network behavior

In a two-node network where a prolonged stimulus (2000
ms) is fed to node 1 (Fig. 2a), the behavior of node 2 (i.e., the
time course mZE (1)) is categorized as one of the nine types
based on the level changes and the peak at edges: (1) Inc-
None, (2) Inc-On, (3) Inc-Off, (4) Inc-OnOff, (5) Dec-None,
(6) Dec-On, (7) Dec-Off, (8) Dec-OnOff, and (9) others. (See
Fig. 2b and Table 2 for details of categorization.) The ‘Inc’
and ‘Dec’ stand for increased and decreased activities during
the stimulus. The ‘On,” ‘Off,” and ‘OnOft”’ stand for transient
peak(s) only at the onset, the offset, or both, of the stimulus.

@ Springer

‘None’ stands for no clear peaks at the edges of the stimu-
lus. Bistable or non-responsive behaviors are categorized as
others.

In Fig. 2c, we show eight exemplary On/Off types. Note
that the envelope drawn in Fig. 2c is mainly for visualiza-
tion and to demonstrate the various transient behaviors. From
the viewpoint of simulation, the network does not always
oscillate. The oscillation happens under a certain range of
connection patterns among E/I populations. The tendency to
oscillate depends a lot on the intra-node connection settings.
In our simulation, the Off response relies on the interaction
among E/I populations, but does not necessarily depend on
the oscillating behavior. From the viewpoint of experimen-
tal observation, there are evoked oscillations during/after the
stimulus in the thalamo-cortical auditory system [20].
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(1) Inc-None (2) Inc-On (3) Inc-Off

(4) Inc-OnOff

(5) Dec-None (6) Dec-On (7) Dec-Off

(8) Dec-OnOff

® Inc-None @ Dec-None
® Inc-On ® Dec-On
® Inc-Off ® Dec-Off

® Inc-OnOff @ Dec-OnOff

Fig. 2 Change detectors and the corresponding W solutions. a In the
simulation settings, a prolonged stimulus of 2000 ms is fed to node 1. A
range of inter-node connections W are scanned through, and the various
temporal behaviors of the change detector (i.e., time courses of mZE (1))
are categorized. b For categorization, four variables Amo,, Amsiim,
Amoyyr, and Ampyepos; are calculated according to the time windows
(light blue areas) for each time course sz (t). The time courses that are
not bistable are then categorized as one of the eight On/Off types. See
detailed categorization settings in Table 2. ¢ The exemplary responses of
eight On/Off types. Gray bands represent the duration of stimulus. The
black curves represent the time courses of mZE (1), and the bold black
curves are the envelopes. d All W solutions of the eight On/Off types
in the scanned range are projected onto a 2D plane for visualization
(MATLAB function: tsne), where color dots represent the eight types
({Inc, Dec} x {None, On, Off, OnOff}). The eight exemplary behaviors
in c are labeled in the zoomed in area (colour figure online)

3 Results

The generic deviance detection principle suggests that
deviance detections take place locally in the perceptual hier-

archy as illustrated in Fig. 1. Any two reciprocally coupled
nodes in a network can potentially form an R—C pair that
serves deviance detection. The connections within an R-C
pair can be heterogeneous across locations, thus giving rise
to various behaviors of change detectors. In what follows,
we reproduce some observed phenomena of deviance-related
responses using simple networks (e.g., comprising two, three,
and twenty one nodes) in simulation examples (Sect. 3.1), and
then, we investigate the behavior of change detectors and the
corresponding network settings in Sect. 3.2. The MATLAB
code for Figs. 2, 3,4, 5, 6, 7, 8 and 9 is found in Github:
http://github.com/vscChien/gddp.

3.1 Simulation examples

3.1.1 Example I: temporal profiles of cortical On/Off
responses

A prolonged tone stimulus can elicit diverse temporal pat-
terns of On/Off responses in the auditory cortex. Neurons can
be sensitive to the onset/offset of the stimulus (i.e., transient
responses at the edges) and also show increased or decreased
firing rate during the stimulus (i.e., level changes) com-
pared with the spontaneous activity [18,24,43,75,78,106]. In
this simulation, we fed the input stimulus (2000 ms dura-
tion) to a two-node network (Fig. 2a), where the change
detector does not directly receive the input stimulus (i.e.,
the external connections to node 2, wfx = wéX = 0).
Varying the inter-node connections W alters the response
of the change detector (e.g., the firing rate of its excita-
tory population mf (t)). We scanned a range of inter-node
connections (WEE, WIE € {0,0.1,...,0.5); WEI, w!l ¢
{0,0.1,0.2}), and categorized each of the time courses of
mf (#) as one of the eight types, based on the level changes
and the peak at edges (Fig. 2b). The W solutions are con-
nection settings that give rise to one of the eight categorized
On/Off types under these specific simulation settings (e.g.,
the intensity and onset/offset time of stimulus, the intensity
of background input, and intra-node connections, etc).

To further investigate the relation between the inter-node
connections W and the On/Off responses, we projected the
W solutions {W;ype i, i = 1,2,...,8} onto a 2D plane
by t-Distributed Stochastic Neighbor Embedding [56]. This
allowed the visualization of the mutual proximity of W solu-
tions in the original eight-dimensional space. We expected to
see clear clusters of different On/Off types, but the result was
not always like that. This means that a certain On/Off type
cannot be simply attributed to certain types of connection.
Instead, the On/Off type is very sensitive to the inter-node
connections W. From Fig. 2d, we observe several things.
(1) Although the W solutions exhibit a clustered pattern,
from a broad perspective, different types are observed when
zooming in. The clustering patterns and their sensitivity to
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Table 2 Settings and variables

for categorization of network Par. Value Unit Description
behavior Time windows
[ton, tofr] [0, 2000] ms Stimulus onset and offset
[t1, 2] [—500, 0] ms Pre-onset window
[t2, 13] [0, 500] ms Post-onset window
(24, t5] [1500, 2000] ms Pre-offset window
(25, t6] [2000, 2500] ms Post-offset window 1
[t7, t3] [3500, 4000] ms Post-offset window 2

Variables comparingmax (mE(t,- <t< tj))

Aniprepost -
Amsiim -
Amop -
Amoft -
Thresholds

OprePost 0.1
Ostim 0

Oon 0.5
Oofr 0.5

spikes/s Bistability check ([#1, 2] versus [#7, 13])

spikes/s Level change ([14, t5] versus [#1, ] and [#7, £3])

spikes/s Onset peak height ([t1, 2] versus [#2, 13])

spikes/s Offset peak height ([#4, t5] versus [t5, t5])

spikes/s Bistable behavior, if Amprepost > OprePost

spikes/s Increased response, if Amgiim > Ostim
Decreased response, otherwise

spikes/s On response, if Amo, > 0on

spikes/s Off response, if Amogr > Oogr

W may potentially explain the diverse, but spatially clus-
tered On/Off responses shown in Figure 5 of [24]. (2) The
Off types are not constrained within Inc/Dec clusters, sug-
gesting that Off responses are not crucially determined by
the level change of mf (t) during the stimulus. (3) The On
and Off types occupy distinct areas in the 2D plane, which
agrees with the conclusion that On and Off responses are
driven by largely nonoverlapping sets of synaptic inputs [86].
(4) However, there are also areas where the On, Off and
OnOff types are close to each other, where neuroplasticity
(e.g., synaptic adaptation, spike-timing-dependent plasticity,
or homeostatic plasticity) may play a role in changing the
neural response from one type to another.

3.1.2 Example lI: distinct onset- and offset-frequency
receptive fields (FRFs)

As demonstrated in Example I, the two-node network
can account for the different temporal profiles of On/Off
responses. A network with the same properties can account
for the distinct onset and offset FRFs in individual cells in
the auditory cortex [75]. For example, the exemplary cell in
Fig. 3ais sensitive to the onsets of sound stimuli at higher fre-
quencies (3200-15,872 Hz) and the offsets of sound stimuli
at lower frequencies (512—16,000 Hz), as reflected by higher
spike density (yellow and red). In addition, this cell shows
suppressed spike density (deep blue) during stimuli at low
and middle frequencies. In short, the On/Off responses vary
across tonal frequencies and across cells.
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In the simulation, we used the two-node network to repro-
duce the distinct FRFs in Fig. 3a—c. For each simulation
trial, the stimulus input (500 ms duration), corresponding
to a pure tone in one trial of the experimental recordings,
was fed to both nodes with different external connection
strength (i.e., wa = 44 x ratiol; wIIX = 22 X ratiol;
wfx =44 x ratio2; wéx = 22 X ratio2, as in Fig. 3d). In
Fig. 3d, the ratios (orange and green) reflect how far the two
nodes are from the stimulus source. Considering the tono-
topic organization in the auditory cortex, the ratios were also
changed for each simulation trial because the stimulus input
in each trial represented a different tonal frequency. The inter-
node connections W were picked up from the W solutions,
were fixed in each example, and the ratios adjusted such
that the responses of node 2 (i.e., the time courses of mg (1)
qualitatively mimicked the experimental observations. The
simulation trials were then merged to make simulated FRFs
(Fig. 3e-g).

In Fig. 3e, the excitatory population E; shows a Dec-
Off response when ratiol = 1 and ratio2 = 0 (the same
as the ideal case used in Example I). The On response
emerges as ratiol decreases, and a small amount of ratio2
results in stronger On responses and weaker Off responses.
In Fig. 3f, E, shows a Dec-Off response when ratiol =1
and ratio2 = 0, and turns into Inc-None type when ratio2
is larger than ratiol. In Fig. 3g, E2 shows a Dec-OnOff
response with the ratio2 values associated with the On
responses.

The two-node network, although rate-based, may provide
a sense of how the exemplary cells in Fig. 3a—c are influenced
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Fig. 3 Distinct onset and offset FRFs. a—c Three exemplary cells that
show distinct onset and offset FRFs (adapted from [75]). The cells were
recorded in the primary auditory cortex in awake cats. Sound stimuli of
pure tone (ranging from 128 to 16,000 Hz) were presented for 500 ms.
The pre-, during-, and post-stimulus spike densities of the cell are color
coded. d In the simulation settings, a two-node network with adjustable
external connections le X and wZE X (orange and green color) is used to
mimic the experimental observations. e-g Simulation results that mimic

the observations in a—c. The green and orange input ratios at the left-

side bar of each plot represent the settings of external connections le X

and wfx for each simulation trial. The firing rate is color coded. The
pre-stimulus firing rate is used as baseline, and the negative value (deep
blue color) during the stimulus represents decreased activity (colour
figure online)

by different sound tones: ratio2 (green) indicates which
tones are closer to (or more directly influencing) the cell,
whereas ratiol (orange) reflects how its surrounding neu-
rons are sensitive to the tonal scope.

3.1.3 Example llI: omitted-stimulus response (OSR)

The OSR resembles the Off response as they both peak at the
offset of a prolonged stimulus or a train of periodic stimuli.
However, the OSR is differentiated from the Off response by
its property of temporal expectation. The peak latencies of
OSR are not constant but proportional to the stimulus-onset
asynchrony (SOA) of the repetitive stimuli as illustrated in
Fig. 4a. The OSR at the cortical level (i.e., omission response
or omission MMN) resembles the classic MMN, as both

a c
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Fig. 4 Omitted-stimulus response (OSR). a Illustrative responses that
show temporal expectation. The peak latencies should be linear to the
SOA if the offsets of stimuli are aligned (red line), or a constant d if the
due times are aligned (empty rectangles). See, for example, Figure 2 in
[2]. b In the simulation settings, the R nodes (left column) are simply
implemented with different time constants 7, and 7;, leading to different
resonance frequencies. A prolonged stimulus or periodic stimuli are fed
to these R nodes. ¢ The simulated MEG signals (black curves) rise after
the due time (black vertical lines) and show different peak latencies and
peak amplitudes (marked with blue triangles). The small peaks (marked
with green triangles) reflect the momentum of the bank of oscillators. d
Simulated peak latencies are linear to the SOA. Simulations are run for
several trials for each SOA where the offset time is changed. The peak
latencies in each simulation trial (blue dots) under the same SOA can be
different, which depends on the network stability during the stimulus
and the offset time. Black dots are the mean peak latencies. The peak
latencies show an approximately constant delay with respect to due time
(time of predictable omission, dashed line) when the SOAs are below
200 ms. The peak latencies become unstable across trials when SOAs
are above 200 ms. In other words, the temporal expectation is preserved
in this network for SOAs smaller than 200 ms (colour figure online)

responses are related to violations to certain expectations
(e.g.,expectation of ‘when’ or ‘what’ concerning the stimuli).

The generic deviance detection principle suggests that
the cortical OSR is a change detection response (or an Off
response) to the end of a stable periodicity representation. In
our simulation, the periodicity was represented by a bank of
oscillators [53,57] comprising multiple nodes (i.e., R nodes)
with different resonance frequencies (implemented by dif-
ferent time constants 7, and t; for simplicity). The use of a
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bank of oscillators is based on the observation that the audi-
tory cortex shows a spatial representation of both frequency
and periodicity [7,8,52]. In the bank of oscillators, the tempo-
ral feature of periodicity is transformed into a spatial pattern
represented by the R nodes. Unlike the conventional bank of
oscillators, that are not connected to each other, the R nodes
are inter-connected with short-term plasticity on WEE and
WE! Note that applying short-term plasticity on WEE and
W!E also works well in this example. The plasticity enhances
the connections between two nodes if they oscillate with
high covariance, while it reduces the connections otherwise
(Egs. 18 and 19). This enables the resonance among R nodes
to be sustained after the due time. The change detector (C
node) that connects to the R nodes (as in Fig. 4b) is expected
to peak when the sustained resonance drops. In Fig. 4c, we
simulated MEG signals resulting from prolonged (CONST)
and periodic stimuli (SOAs: 75, 125, 175, and 250 ms; stim-
ulus duration: 50 ms). The OSR peaks are marked by blue
triangles. When the SOA was increased, the peak latency
increased and the peak amplitude decreased, which is in line
with MEG observations [2]. The small peak before the OSR
(particularly clear for SOA 125 and 175) is located at the
time of the omitted stimulus, which resembles the expected
evoked potential before the OSR (e.g., Figure 7B in [14]). In
Fig. 4d, we show that the n-node network (n = 21 in this
example) is able to respond with the correct timing (i.e., a
constant delay after the detectable omission) if the SOA is
within 150 ms. The peak latencies become unstable for SOAs
larger than 200 ms. This limitation is due to the limit of res-
onance frequencies in the bank of oscillators. As shown in
Fig. 4c, the simulated MEG data for SOA 250 is not as stable
compared to the faster SOAs.

In this example, we have demonstrated that the cortical
OSR can reflect a detection mechanism upon the stable repre-
sentation of periodicity. The sustained resonance was crucial
for temporal expectation. This is in line with the observation
that the auditory brainstem does not generate overt OSRs
[55], likely because sustained resonance has not happened
at that stage. Source analysis, as well as fMRI, showed that
the OSR (more specifically, the fast OSR [45]) is localized to
the auditory cortex [2,60,76,116], suggesting that the audi-
tory cortex has the capacity to represent a certain range of
periodicity locally (e.g., under 200 ms). However, we have
not yet fully investigated the neural mechanism underlying
temporal expectancy. The bank of oscillators, which only
assumes heterogeneity across neural populations, is so far a
good candidate for implementation.

3.1.4 Example IV: sequence mismatch negativity (MMN)

The responses in aroving paradigm reveal the progress of reg-
ularity formation and change detection, and thus are useful
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Fig.5 Sequence MMN (roving paradigm). a Brain responses to transi-
tions between regular and random sound sequences (adapted from [5]).
There are transient peaks at the onsets/offsets of sound sequences as well
as at the transitions from regular (REG) to random (RAND) sequences.
In addition, the RMS amplitude is higher during regular sequences. b
In the simulation settings, a three-node network is used for mimicking
the observation in a. The R nodes (nodes 1 and 2) receive the stimulus
inputs representing RAND and REG, respectively. The inter-node con-
nections W, between the C node (node 3) and the R nodes, are picked up
from the W solutions such that the C node shows Inc-OnOff responses
to the stimulus inputs. The connections between the R are tuned to result
in the different level shifts during the stimulus and the elimination of
the transient peak at the transition from RAND to REG. ¢ Simulated
MEG signals of the three-node network

for demonstrating the generic deviance detection principle. In
Fig. 5a, an MEG study shows how the human brain responds
to the switch between regular and random complex acoustic
patterns [5]. There are On and Off responses at the onsets
and offsets of the stimulus sequence. An MMN response is
elicited by the transition from regular to random sequences
(REG-RAND), while there is only a gradually rising root
mean square (RMS) amplitude the other way around (RAND-
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Fig.6 The generation of On responses. a In the simulation settings, a
prolonged stimulus of 2000 ms is fed to the R node (node 1) in a two-
node network. The inter-node connections W is chosen from the W
solutions that give rise to Dec-OnOft responses in the C node (node 2)
(see Fig. 2b). The node responses to the stimulus (gray period) are shown
as firing rates (upper plot) and as PSPs (lower plot). As an Dec-OnOff
response, the time course mZE (t) (black curve) shows a lower amplitude
during the stimulus and transient peaks at the onset and offset of the
stimulus. To understand the generation of On response in population
E», the magenta rectangle indicates the period of transient disinhibi-
tion where population /; is transiently inhibited by population /; (red
arrow), and population E peaks right after the transient disinhibition
(black arrow). b A similar example for Inc-OnOff response, where the
generation of an On response is also due to the transient disinhibition
(colour figure online)

REG). Also, the RMS amplitude is higher during regular
sequences compared to random sequences.

In the simulation, we used a three-node network to repro-
duce the temporal profile of the RMS in Fig. 5a. Two stimulus
inputs (REG and RAND) that represent the random and reg-
ular features were fed to nodes 1 and 2, respectively, as in
Fig. 5b. The intensity and rise/fall time of the two stimulus
inputs were the same as in the previous examples, and the
durations were set to match the experiment in [5]. The inter-
node connections W between nodes 1,2 and node 3 were
chosen from the W solutions in Fig. 2d. The connections
between nodes 1 and 2 did not have to be symmetric and were
manually tuned to match the observed RMS. In Fig. 5c, the
simulated MEG signal shows (1) On and Off responses at the
onset and offset of stimulus sequences, (2) MMN response
to the transition from regular to random sequences (REG-
RAND), and (3) different RMS amplitudes during REG and
RAND presentations.

The three-node network demonstrates how the inter-node
connections W among the three nodes alone can account for
the transient responses to the onsets and offsets, the selectiv-
ity to the direction of transition, as well as the level changes
in RMS amplitude during random or regular sequences. For
more realistic settings, the rise/fall time of the two stimulus
inputs can be set differently. For example, it is reasonable to
set a longer rise time for the REG stimulus input because it
takes some time (at least a sequence length) to form regularity
representation. This also explains why there is no MMN in
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Fig. 7 The generation of the Off responses. a In the simulation set-
tings, a prolonged stimulus of 2000 ms is fed to the R node (node 1)
in a two-node network. The inter-node connections W is chosen from
the W solutions that give rise to Dec-Off responses in the C node (node
2) (see Fig. 2b). The node responses to the stimulus (the gray period)
are shown as firing rates (upper plot) and as PSPs (lower plot). As an
Dec-Off response, the time course mf (t) (black curve) shows a lower
amplitude during the stimulus and a transient peak at the offset of stim-
ulus. The population /5 is strongly inhibited during the stimulus, which
is reflected by the negative PSP of population I vé (t) (red curve in
the green rectangle). The disinhibition is followed by the Off response
in population E; thereafter (black curve in the magenta rectangle). b
Phase portraits (P 1: during stimulus, P2: offset of stimulus, P3: post-
stimulus) of node 2. The phase portrait P3 (i.e., when there is only
background input) runs counter-clockwise, and the phase portrait P1
(i.e., during the stimulus) shifts downward and runs clockwise, reflect-
ing the strong inhibition of />. The phase portrait P2 shows the transient
trajectory of transition from P 1 to P3. The magenta dot denotes the time
of stimulus offset. ¢ The simulation settings for a Inc-Off response. The
firing rate sz(t) shows higher amplitude during the stimulus and a
transient peak at the offset of the stimulus. Same as in a, population
I is strongly inhibited during the stimulus, which is then followed by
the Off response. d The phase portraits are similar to b except that the
amplitude of vf (t) is larger during P 1 than P3. The two examples show
that the generation of Off responses is not relevant to the increased or
decreased activities in E7 , but to the inhibition on /5 during the stimulus
(colour figure online)

the RAND-REG transition. Moreover, the intensity of the two
stimulus inputs may reasonably be set differently because
the status of neural populations under regular and random
sequences can be dramatically different, which explains the
level changes in RMS amplitude. In this simulation example,
we used identical stimulus inputs, in an attempt to highlight
the effect of inter-node connections W on the shaping of the
network activity. Note that this simulation example sheds
light on the contribution of a change detector, rather than the

@ Springer



Biological Cybernetics

details of regularity formation. To understand how the REG
sequence causes higher RMS amplitude, we assumed short-
term plasticity on WEE and W!E in the lower-level neural
populations at the stage of regularity formation. This follows
the suggestion by a dynamic causal modeling study [3] that
synaptic gain modulation in the auditory cortex is involved
in processing regular sequences.

3.2 The requirements for a change detector

The generic deviance detection principle emphasizes the
ubiquity of local change detection and its separation from
regularity formation. In the previous simulation examples,
we demonstrated that the behavior of a change detector can
account for many phenomena (e.g., diverse cortical On/Off
responses, distinct onset and offset FRFs, cortical OSR, and
sequence MMN). Here, we present a more detailed analysis
of the exact requirements for a change detector to work. First,
we investigated how and under which conditions the On and
Off responses occur. Then, we examined how changes in con-
nection strengths affect the generation of On/Off responses
through three factors: (1) external input to inhibitory popu-
lations, (2) blockage of NMDA receptor channels, and (3)
synaptic adaptation.

3.2.1 The generation of On responses

It has been proposed that On responses could be due to adap-
tive and post-onset inhibitory mechanisms that reshape the
onset response in auditory nerve fibers [72]. In our simula-
tions, we found that the On responses can also be due to the
transiently inhibited activity of the inhibitory population I
at the onset of a stimulus. As shown in Fig. 6, population I/,
is shortly inhibited by population /; , and the low vé (t) leads
to a transient peak in vf (#) (indicated by the red and black
arrows in the magenta rectangles). The system returns to sta-
bility soon after the vf (t) peak brings vé (t) up again. These
On responses were due to transient disinhibition; therefore,
the inter-node connection W/ plays an important role in the
generation of the On responses.

3.2.2 The generation of Off responses

It is widely accepted that Off responses followed by
decreased activity (i.e., the Dec-Off responses) arise from
post-inhibitory rebound that is related to the intrinsic con-
ductance property of the neuronal membranes [48]. However,
the generation of Off responses that follow increased activ-
ity (i.e., the Inc-Off responses) cannot be simply explained
by the post-inhibition mechanism (see review in [47,111]).
Next, we examined under which conditions the Dec-Off and
Inc-Off responses might arise at the network level.
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In Fig. 7, the population E> shows Off responses for both
cases: the decreased and increased activity during a stimu-
lus. In the simulations, both Dec-Off and Inc-Off responses
resulted from the same mechanism. As shown in Fig. 7a,
c, the Off response came in two steps. First, the popula-
tion I, received strong inhibition from population /; during
the stimulus (reflected by the negative PSP v (¢) during
t = 3000 to 5000 ms). Second, the population E, activity
peaked before I recovered after stimulus offset (the transient
peak U2E (t) during ¢+ = 5000 to 5100 ms). The occurrence
of Off responses can also be represented by phase portraits
as shown in Fig. 7b, d. The trajectories of the phase por-
traits show how vf (¢t) and vé (t) evolved interactively. When
there was only background input, £ and I, oscillated in the
normal steady state (the counter-clockwise blue trajectories)
where E, excites I, and I inhibits E5. During stimulus
presentation, £, and I oscillated in a reversed steady state
(the clockwise green trajectories) where E had an additional
inhibitory effect on I, through the pathway Er — I} — I,
and I had an additional disinhibitory effect on E, through
the pathway I, — I} — E3 , due to the involvement of
active I during stimulus. The Off responses are depicted
by the magenta trajectories during the transition from the
reversed steady state to the normal steady state.

The simulations provide clues for the underlying neu-
ral mechanisms. The inter-node connection W'/ is critical
for a network to give rise to the Off responses because the
inhibitory population I, first has to be inhibited (i.e., dis-
inhibition). The inter-node connection W/ is important to
maintain the network in the working state (e.g., the reversed
steady state), otherwise the network gets ‘overheated’ during
disinhibition. With these structural prerequisites, the excita-
tory population £, may show a transient Off response before
the inhibitory population I, catches up again following stim-
ulus offset.

The timing of stimulus offset (i.e., the initial point in the
state space when the transition begins) and other parameters
that alter the trajectories of the two steady states (such as the
stimulus intensity, and the settings of WEE and W!E) also
affected the generation of Off responses, but these factors
were not critical. Moreover, the decreased activity during the
stimulus is not critical for the generation of the Off response
at network level (cf., it is necessary in the post-inhibitory
mechanism at cellular level). As shown in Fig. 7d, the ampli-
tude of vf (t) during the stimulus (green trajectory) can be
larger compared to no stimulus (blue trajectory).

3.2.3 Factors influencing the On/Off responses

We considered the effect of three factors with respect to
the generation of On/Off responses: (1) external input to
inhibitory populations, (2) blockage of NMDA receptor
channels, and (3) synaptic adaptation. More specifically, we
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assessed how each of these three factors influences the dis-
tribution of W solutions in the two-node network.

Since disinhibition played an important role in the gen-
eration of both On and Off responses, as illustrated in the
above simulations (Figs. 6, 7), we were interested in seeing
the contribution of external input to the inhibitory population
I; . In condition II, the external connection W!X was set to
zero in comparison with the default setting W/X = 0.5WEX
(condition I).

The NMDA-r antagonist MK-801 is found to reduce inhi-
bition during stimulation and thus to reduce the Off responses
[4]. NMDA-r antagonists are also known to reduce the ampli-

tude of the MMN [61]. In condition III, we mimicked the
effect of NMDA-r antagonists by reducing the connection
strength of WEE by 25% and reducing W!E by 50%. The
difference in reduction applied to the two connections was
based on the fact that excitatory synapses on inhibitory neu-
rons are mainly covered by NMDA channels and therefore
are more sensitive to NMDA-r antagonists than the excitatory
synapses on excitatory neurons [80]. The setting of external
connections remained the same as the default setting. Note
that in principle, both conditions II and IIT may be due to
NMDA-r antagonists, because they are based on decreased
excitatory input to the inhibitory populations. So, if NMDA-
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Fig. 8 The effects of factors influencing the strength of connections
W on the occurrence of On/Off responses. The W solutions of On/Off
responses projected onto a 2D plane under a condition I: default, b
condition II: WX = 0, ¢ condition IIl: NMDA-r antagonist, and d
condition IV: synaptic adaptation. Dots with different colors and sizes
represent different response types. e The contingency table of W solu-
tions for condition I versus II. The value in each cell of the table (in

red, with grayscale background) is the number of W solutions over the
total number of scanned Ws. A cell without a value means there was
no W solution in that case. The cyan and magenta rectangles highlight
the W solutions of On/Off types under one condition but not under the
other. f Condition I versus III. g Condition I versus IV. h The bar chart
represents the proportions of W solutions of On/Off types under the
four conditions (colour figure online)
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Fig. 9 Network responses without and with synaptic adaptation. a
Example of Inc-None type response in population E, under condition
1 (i.e., no adaptation) turning into Inc-On type under condition IV (i.e.,
when synaptic adaptation is applied on W£E). b Example of Dec-None
type turning into Inc-Off type. ¢ Example of Dec-None type turning
into Dec-Off type

r antagonists are indeed the cause of reduced connection
strengths to inhibitory populations, the effect in condition
II and III should occur simultaneously. Other effects caused
by NMDA -r antagonists, such as the changes in NMDA cur-
rents, synaptic plasticity and synaptic time constants, were
not included.

The phenomenon of synaptic adaptation is ubiquitous in
the nervous system and has been suggested to be one of the
mechanisms underlying deviance detection. Since we sug-
gest that deviance-related responses can be interpreted as
change detection responses to regularity representation, it is
important to know whether synaptic adaptation promotes the
emergence of change detectors. In condition IV, the synaptic
adaptation is considered. The intra- and inter-node connec-
tions WEE were modulated by the synaptic efficacy term a
as described in Eq. 17. Note that as described in Eq. 9, the
external input via WEX to the excitatory populations is not
affected by synaptic adaptation.

The responses of the two-node network with a range of
inter-node connections Ws (as in Example I in Sect. 3.1)
were simulated, and each W was assigned to one of the nine
types of responses (Also see Fig. 2b). Four conditions were
tested: (I) the default condition, where synaptic adaptation
was not applied, and WX = 0.5WEX 1) w!X = 0, (IIT)
WEE = 0 reduced by 25% and W'E = 0 reduced by 50%,
and (IV) synaptic adaptation applied. To visualize the results,
the W solutions of types 1 to 9 were projected onto a 2D
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plane (Fig. 8a—d). The number of W solutions under the four
condition is summarized in the contingency table (Fig. 8e—g)
and the bar chart (Fig. 8h).

The bar chart (Fig. 8h) shows that the number of W solu-
tions of Off types in condition II was reduced compared to
condition I. Most of the Off types under condition I became
None types under condition II (e.g., Inc-Off — Inc-None
among 1.25% of the scanned Ws. See the cyan rectangle in
Fig. 8e). This suggests that the external connection W'¥ is
supportive of the generation of Off responses, because the
I1-to- 1, disinhibition was enhanced due to the external input
via WX,

In condition III, the number of W solutions of Off types
was reduced, but the number of W solutions of On types was
slightly increased, compared to condition I (Fig. 8h). This
is in line with experimental results showing that NMDA-r
antagonists reduce Off responses but On responses are not
affected [41,104].

In condition IV, the number of W solutions of both On
and Off types was greatly increased (Fig. 8h). Many of
the None types under condition I turned into On and Off
types under condition IV (e.g., 3.28%: Inc-None — Inc-On;
1.62%: Dec-None — Inc-Off; 2.82%: Dec-None — Dec-
Off. See the magenta rectangle in Fig. 8g). This suggests
that synaptic adaptation greatly promotes the emergence of
change detectors. To see how synaptic adaptation alters the
network responses, Fig. 9a—c shows three examples of altered
responses due to synaptic adaptation. The three examples
show typical type transitions from condition I to condition
Iv.

4 Discussion

In this paper, we propose a generic deviance detection prin-
ciple based on the observation that many deviance-related
cortical responses occur without clear evidence of func-
tionally specific wiring patterns. The proposed mechanism
suggests that reciprocal wiring in the cortex gives rise to
the emergence of change detectors that respond to abrupt
changes in regular features. With this notion, the deviance-
related responses observed in the cortex such as cortical
On/Off responses, the cortical OSR and the MMN can be
regarded as responses of change detectors at different levels
of abstraction.

The simulation examples demonstrate that the network
responses can indeed resemble the properties of cortical
On/Off responses (Figs. 2, 3), the cortical OSR (Fig. 4),
as well as the MMN (Fig. 5). We then investigated the
wiring patterns in the network that support the generation
of On/Off responses (Figs. 6, 7). The results suggest that the
inhibitory-to-inhibitory connections are important for both
On and Off responses, which implies that these deviance-
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related responses are closely related to disinhibition. In the
simulations that mimicked the effect of NMDA-r antago-
nists and synaptic adaptation, the results show that NMDA-r
antagonists suppress the Off responses and mildly promote
On responses, whereas synaptic adaptation generally boosts
both On and Off responses (Figs. 8, 9). In what follows, we
provide our viewpoints regarding the questions raised in the
introduction. Some testable predictions raised by our model
are presented at the end of the discussion.

Different processes in regularity formation, but same mech-
anism in change detection. The generic deviance detection
principle suggests that change detection may rely on a com-
mon neural mechanism (i.e., the local reciprocal wiring),
while regularity formation may, depending on the level of
abstraction, require different brain resources and time to col-
lect relevant information.

There are a number of dissimilarities among deviance-
related responses, which, discussed as follows, are mainly
due to differences in the process of regularity formation. We
take the differences between cortical OSR and MMN as an
example. In terms of the temporal window of integration
(TWI), a pitch MMN can be elicited by traditional oddball
paradigms even when the SOA is larger than 500 ms [6,83],
while the estimated length of TWI for cortical OSRs is much
shorter (160—170 ms) [112]. In terms of attention, it has been
suggested that fast and slow periodic sequences elicit cortical
OSRs by two different mechanisms: The fast OSR (period-
icity > 5 Hz) is elicited automatically, while the slow OSR
(periodicity < 2 Hz) requires the involvement of attention
[45]. The slow OSR can be elicited at large SOAs such as 800
ms in [29]; and 1000 to 2000 ms in [17]. The need for atten-
tion suggests that the cortical OSR and MMN are different
processes [66]. In terms of required repetition, a successful
elicitation of MMN needs only two or three repetitions for
simple feature-repetition regularities [10,21,96,110], while
the cortical OSR requires up to 9 repetitions in a train for a
successful elicitation [33]. The above observations suggest
different processes, related to the degree of difficulty in reg-
ularity formation, underlie cortical OSR and MMN.

There are also several similarities among the deviance-
related responses that support the notion of a common
mechanism for change detection. In terms of latency, the peak
latencies of cortical On/Off responses, cortical OSRs, and the
MMN all fall in the range of 100-200 ms [2,63,76,79,112].
In terms of spatial distribution, the sources of cortical Off
response and MMN are similar. As revealed in animal studies,
the sources of Off responses appear to be in the non-tonotopic
area adjacent to the tonotopic area [4,97]. In dense mapping
MMN studies, the pitch MMN was reported to be generated
in the secondary auditory area (or spreading more widely

over the core and belt areas). This is distinct from the sources
of the P1 and N1, at the core areas (Al and AAF) [73,92].
Cortical responses to the onset, offset, and pitch change of a
continuous stimulus all share similar topography and tem-
poral profiles, as suggested in several EEG/MEG studies
[68,115,116]. Deviance-related responses also show simi-
larities in their dependency on several factors regarding the
regularities (e.g., probability of deviant, randomness in SOA,
number of repetitions, effect of the NMDA-r antagonists)
and the deviance magnitude (e.g., the sharpness in temporal,
spectral, contextual changes). These observations support the
notion of a common neural substrate of change detection for
different deviance-related responses.

The recurrent nature of the intracortical wiring makes
change detection ubiquitous. Functionally speaking, the
ubiquity of change detection across the brain facilitates per-
ceptual representation across the hierarchy. Edge information
atall levels, provided by the local change detectors, augments
the representational space. Such information compression
may also contribute to energy saving. In this sense, the
change detectors are more like high-pass filters than com-
parators that subtract top-down signals from the bottom-up
signals. The abundant recurrent wiring patterns in the cor-
tex provide a suitable environment for the emergence of
change detectors. We take the diversity of cortical On/Off
responses [18,24,106] as an example. Even though these
responses could originate from the feed-forward mixture of
non-cortical On/Off responses at earlier stages such as the
thalamus, midbrain, and brainstem, the cortex provides more
abundant chances for the emergence of On/Off responses. In
simulation I, we demonstrated that various types of On/Off
responses can be generated by different inter-node connec-
tions (Fig. 2). In simulation II, we further demonstrated that
for a specific connection setting, the difference in input ratios
to nodes gives rise to distinct onset and offset FRFs (Fig. 3).
The W solutions of On/Off responses projected onto the 2D
plane (Fig. 2c) also provided an explanation for the diverse
(and spatially clustered) cell responses observed in auditory
cortex in awake mice, as shown in Figure 5 in [24]. These
results suggest that change detection is a basic and ubiquitous
operation in the cortex.

We then study the generation of On and Off responses.
On responses were due to a transient disinhibition (i.e.,
a quick and light inhibition on the inhibitory population
of the change detector) before the network reached the
steady state (Fig. 6). Off responses were always associated
with a release from long-lasting disinhibition (i.e., a long
and strong inhibition on the inhibitory population of the
change detector) before the network came back to the steady
state without the stimulus (Fig. 7). This is in line with the
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rebound after inhibition hypothesis [31,97]. We suggest that
the inhibitory-to-inhibitory connections are a key aspect of
change detection.

NMDA-r antagonists dampen the deviance-related
responses. We suggest that the NMDA-r antagonists could
generally dampen the deviance-related responses through
three aspects: (1) voltage dependency, (2) synaptic plastic-
ity, and (3) E/I balance. First, the NMDA-r antagonists block
the voltage-dependent NMDA channels and reduce the addi-
tional NMDA currents that reflect mismatch signals [41].
Second, the antagonists damage the spike-timing-dependent
plasticity (STDP) and hamper the ability of regularity for-
mation [4,42,103]. Third, the NMDA-r antagonists alter
the connection patterns and E/I balance. Blocking NMDA
receptors leads to decreased activity in the GABAergic
interneurons and increased pyramidal excitation, because the
GABAergic interneurons are tenfold more sensitive to the
NMDA-r antagonists than the pyramidal neurons [27,80].

The adaptation-based and prediction-based models of
MMN agree on the voltage-dependency aspect and suggest
that the reduced MMN amplitude is due to the reduction in
NMDA currents [58,107,108]. The prediction-based mod-
els also mention the need for STDP to form prediction
signals [107,108]. In addition to these two aspects, our sim-
ulation results show that the altered E/I balance, as an
effect of NMDA-r antagonists, can reduce the emergence
of change detectors. In condition III (Fig. 8c), we reduced
the strengths of WEE and W/E by 25% and 50%, respec-
tively, and recounted the number of each of the On/Off
types in the scanned range of inter-node connection Ws.
The number of Off types decreased, whereas the number of
On types is slightly increased relative to the default setting
(Fig. 8h). These results suggest that the NMDA-r antagonists
may dampen the cortical Off response, cortical OSR, and the
MMN.

We cannot draw further quantitative conclusions from the
effect of NMDA-r antagonists because the uniform search
range of Ws in the simulation is just a simplification. The
exact proportion of strength reduction due to NMDA-r antag-
onists is not available. The settings of 25% and 50% in
connection strength reduction in condition III were arbitrary
so that a single node still oscillates under a certain range of
input intensity, which eliminates the case when the nodes are
saturated and no On/Off responses are generated at all. The
time constant 7., due to the blockage of NMDA channels,
was not modified in the simulation in order to focus on the
effect of W change.

Synaptic adaptation facilitates change detection. Synaptic
adaptation is a pervasive short-term plasticity that is consid-
ered as a mechanism underlying deviance detection, in the
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sense that a rare stimulus triggers stronger neural activity via
un-adapted pathways. Given the pervasiveness of synaptic
adaptation, we were interested in how it affects the behav-
ior of change detectors in our simulations. In condition IV
(Fig. 8d), the strength of W was modulated by short-term
adaptation according to the activity of pre-synaptic excita-
tory populations. After scanning through the W's, we found
that the number of W solutions of both On and Off types
was increased compared with the default condition (Fig. 8g).
More specifically, many W solutions of None type turned
into On and Off types when synaptic adaptation was applied
(as examples in Fig. 9 show). We suggest that synaptic
adaptation facilitates change detection by turning many oth-
erwise None type responses (usually reflected by saturated
activity in the excitatory populations) to either On or Off
responses.

The OSR is not just sustained resonance. The OSR is differ-
entiated from the Off response by its peak latencies that are
proportional to the SOA in repetitive stimuli, reflecting the
role of temporal expectancy. To maintain a short continuation
of neural activity (i.e., sustained resonances) that preserves
the periodicity of the repetitive stimuli, models that claim
to account for the OSR utilize either an adaptive approach
[99] or population coding approach [57]. However, sustained
resonances alone cannot fulfill all observations in terms of
peak amplitude and peak latency of the response. First, for the
peak amplitude, the OSR cannot simply rely on the sustained
resonance since the amplitude of OSR can be stronger than
the evoked response during entrainment [33]. Second, for the
peak latency, there should be a constant delay following the
due time after stimulus offset [2,90], but the sustained reso-
nance rises exactly at the due time. Therefore, even though the
sustained resonance is time-locked to the subsequent stimu-
lus, there seems to be additional neural circuits responsible
for the extra delay in peak latency and the stronger peak
amplitude than the evoked responses. In simulation III, we
demonstrated that the simulated OSR solves the two issues
mentioned above (Fig. 4). Our model suggests that the cor-
tical OSR can be interpreted as a cortical Off response at the
end of sustained resonance. The simulation results are also in
line with the finding that there is a pre-activated response at
the time of expected onset followed by a mismatch response
[2,11,85].

The OSR is not a prediction signal. The omission paradigm
is often used to differentiate the contribution of adaptation
and prediction in MMN generation. This is based on the
assumption that the OSR could not arise without a stimulus
and the involvement of active prediction. Interestingly, the
models based on either the adaptation or prediction hypothe-
ses interpret the OSR as essentially different from the MMN



Biological Cybernetics

that is triggered by the classic oddball paradigm. In the
adaptation-based model, the OSR is regarded as a rebound
response (i.e., sustained resonance) rather than a delayed N1
[57,58]. In the prediction-based model, the OSR is regarded
as a pure prediction signal that originates from the memory
unit rather than prediction error [108]. Both interpretations
imply that the OSR is essentially different from the MMN
because no additional NMDA current is generated. The prob-
lem is that neither the rebound response nor the prediction
signal explains the two observations in terms of amplitude
and latency mentioned above. As demonstrated in simula-
tions Il and IV (Figs. 4, 5), we suggest that the cortical OSR
and MMN are essentially the same, both being the activity
of change detectors.

The cross-modal omission paradigm is also used to
emphasize the need for prediction. The brain can predict
an upcoming event (e.g., a handclap sound) from the pre-
ceding events of another modality (e.g., a silent handclap
video, or self-paced button press), and an OSR is trig-
gered if an expected stimulus is omitted. In a motor-auditory
(MA) paradigm, participants show OSRs when the sound,
expected to be initiated by the self-paced button press, is
omitted [85]. In a visual-auditory (VA) paradigm, an OSR
is elicited by occasionally omitting the sound that accom-
panied a handclap video [95]. To date, cross-modal OSRs
have not been considered by computational models. How
does the generic deviance detection principle view the OSRs
in these cross-modal paradigms that seem to be bound to an
active predicting process? Here, we provide our viewpoint.
First, the prediction is likely to be supported by the associa-
tion between the cross-modal events (e.g., handclap video or
button press, followed by a sound stimulus) that have to be
paired or learned (e.g., by Hebbian learning) in advance via
direct or indirect connections. The existence of association
is reflected by the pre-activation at 40 to 80 ms in the audi-
tory cortex elicited by a visual event [95] or by a motor event
[85,95]. In the MA paradigm, there is no pre-activation in
the auditory cortex in the random condition where the button
press is followed by a randomly selected sound and there is
also no OSR thereafter [85]. This suggests that 48 trials are
not enough to associate the button press to all 48 sound sam-
ples. Second, due to the pre-activation in the auditory cortex,
the MA and VA paradigms can then be regarded as classic
oddball paradigms where the standard is a ‘weak—strong’
sound pair and the deviant is a ‘weak—omission’ sound pair.
In this sense, the cross-modal omission paradigm resembles
an ‘intensity MMN’ or ‘duration MMN’ paradigm rather than
an omission paradigm. This analogy explains why OSRs are
elicited in the VA and MA conditions but not in auditory-
only conditions (like a classic omission paradigm) [95]. More
specifically, the SOAs (average 1155 ms) in the paradigm are
above the temporal window of integration (TWI) for temporal
features such as periodicity, but still within the TWI for iden-

tity features such as intensity and duration. The analogy can
be verified if the VA and MA conditions fail to elicit ‘omis-
sion’ responses when the SOAs are larger than TWI for the
identified features. Based on this analogy, the deviance detec-
tion that takes place in the auditory cortex stands alone from
the process of association. This would explain why the pre-
activation does not differ when the chance of sound omission
is 50% verses 12%, while the mismatch response follow-
ing the pre-activation depends on the proportion of omission
trials for both VA and MA conditions [95]. Association is
less likely to be reduced by the 50% omissions, whereas
deviance detection relies much more heavily on probabil-
ity. Taken together, given the pre-activation via association
and the analogy to the classic MMN paradigm, computa-
tional models that account for the classic MMN (e.g., either
prediction-based or not) could potentially also account for
the mismatch responses in cross-modal omission paradigms.
From the viewpoint of generic deviance detection princi-
ple, the process of deviance detection (including regularity
formation and change detection) takes place locally in the
auditory cortex, even in the case of cross-modal VA and MA
paradigms.

Testable predictions. In terms of the location of response,
there are some testable predictions of our model. First, The
cortical Off response, cortical OSR, and MMN should show
similar laminar profiles, for example sink in layer 2/3 [41].
Second, inhibited activity of inhibitory interneurons near the
location of the deviance response should be observed dur-
ing stimulus presentation (regularity formation). Taking the
pitch MMN as an example (assuming cortical area A has the
best frequency (BF) of standard tone A, area B has the BF
of deviant tone B, and area X is the location of MMN), the
inhibitory interneurons in area X should be inhibited by tone
A. In addition, area X can be a broader area (which may still
include area B) that surrounds area A. In terms of the effect of
NMDA-r antagonists, there are also several testable predic-
tions of our model. First, the cortical OSR should be sensitive
to the NMDA-r antagonists as are the other MMNs. Second,
the amplitude of entrainment to periodic stimuli in omission
paradigms should also be reduced by NMDA-r antagonists.
Note: this prediction may have been partially supported by
impaired delta entrainment in patients with schizophrenia
[54].
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