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Table S1 Common bark beetle species known to promote or cause significant mortality on 

conifers. Categorization of life history strategy is based on physiological condition of trees beetles 

commonly colonize, although this can vary with population phase (Raffa et al., 1993). 
Common name Scientific name Common host Known fungal symbionts Life history 

strategy 

Western Pine Beetle Dendroctonus brevicomis Pinus coulteri,  

Pinus ponderosa 

Entomocorticium sp. B1, 

Ceratocystiopsis brevicomi2 

Primary 

Southern Pine Beetle Dendroctonus frontalis Pinus echinata,  

Pinus engelmanni, 

Pinus leiophylla,  

Pinus ponderosa,  

Pinus rigida,  

Pinus taeda,  

Pinus virginiana 

Entomocorticium sp. A,  

Ceratocystiopsis ranaculosus3 

Primary 

Jeffrey Pine Beetle Dendroctonus jeffreyi Pinus jeffreyi Grosmannia clavigera Secondary 

Mountain pine Beetle Dendroctonus ponderosae Pinus contorta,  

Pinus ponderosa,  

Pinus albicaulis  

Grosmannia clavigera4, 

Ophiostoma montium5 

Leptographium longiclavatum, 

Entomocorticium dendroctoni6 

Primary 

Douglas-fir Beetle Dendroctonus pseudotsugae Pseudotsuga 

menziesii 

Ophiostoma pseudotsugae7, 

Leptographium abietinum7 

Secondary 

North American Spruce beetle Dendroconus rufipennis Picea engelmannii, 

Picea glauca, 

Picea sitchensis 

Leptographium abietinum8, 

Endoconidiophora rufipenni8   

Primary 

Eastern Larch Beetle Dendroctonus simplex Larix larcina,  

Picea rubens 

 Secondary 

Red turpentine beetle Dendroctonus valens North America: 

Abies concolor 

 

Invasive to China: 

Pinus tabuliformis, 

Pinus armandi 

Leptographium terebrantis9, 

Ophiostoma ips9, 

Leptographium procerum9 

Leptographium sinoprocerum  

Ophiostoma minus10 

Secondary 

Eastern Six-spined Engraver 

 

Ips calligraphus Pinus echinata,  

Pinus elliotti,  

Pinus ponderosa,  

Pinus taeda, 

Pinus virginiana 

 Secondary 

Eastern Five-spined Engraver  Ips grandicollis Pinus resinosa,  

Pinus radiate, 

Pinus taeda, 

Pinus banksiana 

 

Invasive to 

Australia:  

Pinus radiata  

Ophiostoma ips11 Secondary 

Piñon Ips Ips confusus Pinus edulis,  

Pinus monophylla 

 Secondary 

Arizona Five-spined Ips Ips lecontei Pinus ponderosa  Secondary 

Pine Engraver Ips pini Pinus contorta,  

Pinus jeffreyi,  

Pinus lambertiana, 

Pinus ponderosa,  

Pinus resinosa 

Ophiostoma ips12  Secondary 

European Spruce Bark Beetle Ips typographus Picea abies Endoconidiophora polonica13 , 

Grosmannia penicillata13, 

Grosmannia europhioides13, 

Ophiostoma bicolor13, 

Ophiostoma ainoae13 

Primary 

Fir Engraver Scolytus ventralis Abies concolor,  

Abies grandis,  

Abies magnifica 

Trichosporium symbioticum14 Secondary 
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1See citations within 1 (Paine & Birch, 1983), 2(Tang-Wung Hsiau & Harrington, 1997), 3(Hofstetter 

& Moser, 2014), 4(Six & Paine, 1998) , 5(Six, 2003), 6(Six, 2012), 7(Paine et al., 1997), 8(Solheim & 

Safranyik, 1997), 9(Six & Klepzig, 2004), 10(Wang et al., 2012), 11(Smalley et al., 1993), 12(Furniss et 

al., 1995), 13(Kandasamy et al., 2016), and 14(Livingston & Berryman, 1972). 
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Table S2 Multiple chemical groups function in complementary fashion to inhibit bark beetle-

microbial complexes. 

Biological effect Monoterpenes Diterpene acids Phenolics 

Adult repellency ++ ? + 

Adult toxicity ++ ? + 

Egg & larval toxicity + ? ? 

Pheromone inhibit + ? + 

Microbial inhibition + +++ ++ 

Updated from Raffa et al. (2005), with Kopper et al. (2005), Adams et al. (2011), Hammerbacher et 

al. (2011), Reid and Purcell (2011), Boone et al. (2013), Hammerbacher et al. (2014), Mason et al. 

(2015), Reid et al. (2017), Chiu et al. (2017), Zhao et al. (2019), and Hammerbacher et al. (2019). 

The biological effects of secondary metabolites are shown as inhibitory (+) or untested (?).  
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Table S3 A list of the 34 bark beetle infestation models included in the review 

 
Year Authors Model name Model 

type 
Extent Genus Defense Comment on defense 

mechanism 

2000 Biesinger et al. - other none Dendroctonus structure  

2006 Bone et al. - ABM local Dendroctonus structure  

2006 Hughes et al.  
 

- ABM local Dendroctonus structure  

2007 Seidl et al. - FLM local Ips climate Tree-based drought 
stress function 

2008 Cairns et al. Landis-BDA FLM local Dendroctonus structure  

2008 Nelson & Lewis - other none Dendroctonus structure NSC only implicitly 
considered 

2009 Chubaty et al. - other none Dendroctonus structure  

2009 Powell & Bentz - other local Dendroctonus structure  

2009 Seidl et al. PICUS-EFISCEN FLM regional Ips climate Tree-based drought 
stress function 

2010 Lewis et al. - other none n.s. structure  

2010 Perez & 
Dragicevic 

GIS-ABM ABM local Dendroctonus none  

2011 Edburg et al. 
 

CLM4 DGVM local Dendroctonus none  

2011 Fahse & Heurich SAMBIA ABM local Ips structure  

2011 Kausrud et al.  - other none n.s. structure  

2011 Pérez & 
Dragićević 
 

ForestSimMPB ABM local Dendroctonus none  

2012 Jönsson et al.  LPJ-GUESS DGVM regional Ips climate Tree-based drought 
stress threshold 

2013 Temperli et al. LandClim FLM local Ips climate Tree-based drought 
stress function 

2014 Bone & Altaweel - ABM local Dendroctonus structure  

2014 Chen-
Charpentier & 
Leite - 

other none n.s. structure  

2014 Kautz et al.  IPS ABM local Ips structure  

2015 Temperli et al. 
LandClim 

FLM local Dendroctonus climate Tree-based drought 
stress function 

2015 Duncan et al. - other none Dendroctonus none  

2015 Régnière et al. - ABM none Dendroctonus none  

2016 Křivan et al. - other local n.s. none  

2016 Landry et al. IBIS-MIM DGVM regional Dendroctonus none  

2016 Louis et al. - ABM regional Ips structure  

2017 Loehman et al. FireBGC FLM regional Dendroctonus none Tree-based drought 
stress not applied to 
bark beetle 
susceptibility 

2017 Seidl & Rammer 
 

iLand FLM local Ips physiology Tree-based NSC pool 
function 

2018 Foster et al.  UVAFME FLM local Dendroctonus structure Tree stress is growth-
related, but not 
directly drought-
related 

2018 Honkaniemi et 
al. BBDYN 

ABM local Ips structure  

2018 Kautz et al. LPJ-GUESS DGVM continental n.s. none  

2018 Nelson et al. - ABM local Dendroctonus structure  

2018 Scheller et al. 
 

Landis-BDA FLM regional n.s. climate Climatic drought index 
(PDSI) threshold 

2018 Goodsman et al. FATES-IMAP DGVM regional Dendroctonus structure  
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Method S1: Description of the Insect Mortality and Phenology module incorporated into the 

FATES-IMAP(Goodsman et al., 2018) 

FATES-IMAP is a dynamic global vegetation model which represents insect demography as a 

function of weather-related driving variables. Insect phenology and mortality are simulated 

using the integral projection approach for stochastic rate summation modeling. Currently, 

the IMAP extension of FATES only simulates tree mortality due to MPB attack. In the current 

FATES-IMAP model, MPB populations emerge in one-hectare habitat patches and attack 

trees locally within the patch. All patches are assumed to have endemic populations of 

beetles with demographics governed by weather fluctuations. At endemic levels, local MPB 

populations are assumed to persist in weakened trees either already dying of other causes 

or have highly compromised defences (Safranyik & Carroll, 2006). Once beetle populations 

exceed the endemic threshold, they attack vigorous host trees and their dynamics are 

henceforth governed by host availability in addition to weather. 

In the FATES-IMAP model, the rate at which MPB attack host trees depends on the 

incipient-epidemic threshold, which is the minimum density of beetles on a per hectare basis 

that is required to overcome a single well-defended host tree (Carroll et al., 2006). 

Researchers have estimated that, for MPB, the endemic threshold is approximately 40 

beetles per hectare, whereas the incipient-epidemic threshold varies between 300 – 500 

beetles per hectare (Carroll et al., 2006). The FATES-IMAP model assumes that beetles are 

clustered within local one-hectare patches and it therefore uses the cumulative mass 

function of the negative binomial distribution instead of a step function to represent the 

probability of tree mortality as a function of local beetle density (Ives & May, 1985; 

Goodsman et al., 2016; Goodsman et al., 2017). The current version of the FATES-IMAP 

model does not vary the incipient-epidemic threshold as a function of carbohydrate 

availability or vigor. This means that the dynamic interplay between tree physiology, tree 

defence, and bark beetle infestations described in the previous sections is not captured in 

FATES-IMAP, but that the process representation in the model would allow for such dynamic 

interactions to be implemented. 
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Method S2: Host tree defense implementation in process-based bark beetle models  

We employed an in-depth literature search targeting process-based bark beetle infestation 

models that were published in the years 2000 – 2018. Simulation studies without an explicit 

representation of the bark beetle infestation process, or follow-up studies applying the same 

bark beetle model to a different research question were not considered here.  

Finally, screening resulted in 34 simulation studies from which we extracted the year and 

authors of publication, the model name and the following attributes (Table S3):  

Model type – 4 types were differentiated: ´ABM´ (agent-based models), ´FLM´ (forest 

landscape models), ´DGVM´ (dynamic global vegetation models), and ´other´ (including 

models that can´t be assigned to one of the other types, e.g. ordinal- and partial differential 

equation models, non-spatial models) 

Extent – areal extent of model application, 4 levels were differentiated: ´local´ (1-10² km²), 

´regional´ (10³-105 km²), ´continental´ (>105 km²), and ´none´ (including studies without an 

indication of extent of application) 

Genus – bark beetle genus to which the model is applied, 3 groups were differentiated: 

´Dendroctonus´ (D. ponderosae, D. rufipennis, D. frontalis), ´Ips´ (I. typographus), and ´n.s.´ 

(including models that simulate several genera, or that are not specifically parameterized for 

a single species or genus) 

Defense – Defense mechanism against bark beetles applied in the model, 4 groups were 

differentiated: ´none´ (ignorance or rudimentary representation of tree defense, e.g. only 

determined by host species or tree size/age threshold), ´structure´ (determined by tree or 

stand parameters, e.g. tree size, age, DBH, basal area; pre-disturbances, e.g. fire, windthrow, 

and distance-to-previous infestations; or beetle population density), ´climate´ (considering 

climate sensitivity, e.g. tree-specific drought-stress indices), and ´physiology´ (considering 

tree physiological processes, i.e. NSC, that determine defense capacity). Following this 

hierarchical classification, the latter category typically comprises the former one. 

The 34 reviewed models where applied to address a range of different research questions at 

varying spatial and temporal scales, thus they naturally differ in the level of process detail 

implemented. The growing attention to bark beetle models is reflected by the fact, that 
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almost half of the models have been published between 2014 and 2018. Overall, most 

models are parameterized for North American Dendroctonus species (55%), in comparison to 

mainly European Ips species (27%), or to non-species specific models (18%). Among model 

types ABMs (33%), FLMs (27%) and other types (27%) are most frequent; DGVMs (12%) 

instead scarcely simulate bark beetle disturbance yet. A quarter of models represent tree 

defense against bark beetles only rudimentary or even ignore it, while in the remaining 

models (72%) structural parameters play a major role, with climate- or tree physiology-based 

parameters (18% and 3%, respectively) being far less represented. 
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