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Tree defence and bark beetles in a
dryingworld: carbonpartitioning,
functioning and modelling

Summary

Drought has promoted large-scale, insect-induced tree mortality in

recent years, with severe consequences for ecosystem function,

atmospheric processes, sustainable resources and global biogeo-

chemical cycles. However, the physiological linkages among

drought, tree defences, and insect outbreaks are still uncertain,

hindering our ability to accurately predict tree mortality under on-

going climate change.Herewepropose an interdisciplinary research

agenda for addressing these crucial knowledge gaps. Our frame-

work includes field manipulations, laboratory experiments, and

modelling of insect and vegetation dynamics, and focuses on how

drought affects interactions between conifer trees and bark beetles.

We build upon existing theory and examine several key assump-

tions: (1) there is a trade-off in tree carbon investment between

primary and secondary metabolites (e.g. growth vs defence); (2)

secondary metabolites are one of the main component of tree

defence against bark beetles and associated microbes; and (3)

implementing conifer-bark beetle interactions in current models

improves predictions of forest disturbance in a changing climate.

Our framework provides guidance for addressing a major short-

coming in current implementations of large-scale vegetation

models, the under-representation of insect-induced tree mortality.

Forests in a drying world

Forests provide vital ecosystem services ranging from commodities
such as food and wood to ecological functions such as climate
regulation and biodiversity conservation (Anderegg et al., 2012).
Yet, rapidly changing climate poses an increasing threat to global
forest health (Trumbore et al., 2015). For example, drought-
related tree mortality events have been documented across all
forested biomes (Allen et al., 2015), and insect and pathogen
outbreaks that often co-occur with drought have been reported as
an important driver of forest decline (Kautz et al., 2017).

As sessile organisms trees respond to drought and biotic attack by
strategically allocating resources, e.g. carbon, nitrogen, and water,
to the biosynthesis of a wide range of metabolic compounds.
Compounds that are directly involved in growth, development,
and reproduction are called primary metabolites, while secondary

metabolites (SMs) fulfil important functions such as herbivore
deterrence (Mith€ofer & Boland, 2012). Over the last decade the
roles of primary carbon metabolism (e.g. assimilation, respiration,
phloem transport) during treemortality have received considerable
attention (Adams et al., 2017), while the mechanistic linkages
between tree physiological processes and SM biosynthesis during
drought remain only partially understood (McDowell et al., 2013;
Anderegg et al., 2015).

Here we focus on drought impacts on physiological interactions
of conifer species with bark beetles, the major mortality agents of
conifer forests in China (Sun et al., 2013), Europe (Seidl et al.,
2016), andNorthAmerica (Fig. 1; Raffa et al., 2008).We provide a
brief overview of general aspects of carbon metabolism, including
allocation of nonstructural carbohydrates (NSC) to the biosynthe-
sis of SMs, and how this process may be influenced by drought.We
then briefly review the current state of knowledge about conifer–
bark beetle interactions, relate this to tree survival, anddescribe how
tree defence and bark beetle infestations are currently simulated in
models. Based on this synthesis, we develop a research agenda
spanning field manipulations, laboratory experiments and vegeta-
tion modelling, which can bridge existing key knowledge gaps for
improved predictions of tree mortality under climate change. This
agenda focuses on: (1) mechanistic linkages between drought, tree
primary, and secondary metabolism; (2) the functional response of
bark beetles to tree SMs; and (3) integration of these relationships
into next-generation vegetation models. Other aspects of climate
change, such as elevated CO2 (Robinson et al., 2012) and
temperature (Jamieson et al., 2012), nutrient limitation (Bj€orkman
et al., 1998) and flooding (Schroeder & Lindel€ow, 2003), may
dampen or amplify the complex interactions between trees and
insects, but are beyond the scope of our assessment.

Carbon allocation to tree SM biosynthesis

Carbon is assimilated by plants via photosynthetic uptake of
atmospheric CO2 (source activity) where solar energy is fixed in
chemical bonds of carbon-rich compounds, particularly sugars and
starch, referred to as NSC. These are then partitioned among
several sinks within the plant, including respiration, structural
growth, reproduction, storage and defence (Fig. 2). Carbon
allocation is traditionally thought to be driven by the source–sink
balance between carbon supply via photosynthesis and carbon
demand for growth, a major sink that determines the availability of
NSC for other demands (Le Roux et al., 2001; Dietze et al., 2014).
For example, the ‘growth-differentiation balance hypothesis’
(GDBH; Herms & Mattson, 1992) predicts that during environ-
mental stress source activity initially outweighs sink activity and
increases allocation to SMs but, as stress persists or intensifies this
balance shifts as more carbon is allocated to growth rather than to
NSC and SMs. While the GDBH has been validated for specific
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metabolic pathways, such as phenolics, and constitutive defence
responses under some forms of stress, such as nutrient limitation
(Koricheva et al., 1998), we note that an increasing number of
studies have found that allocation to terpenoids can increase
concurrently with growth, contrary to the nonlinear relationships
predicted by GDBH (Villari et al., 2014; Klutsch & Erbilgin,
2018).

Functional trade-offs between primary and secondary
metabolism in trees

We propose that the dynamics of SMs are driven by a functional
trade-off (sensu active storage; Dietze et al., 2014) rather than solely
by resource availability. Carbon investment is coordinated between
primary (growth, respiration, and osmoregulation via NSC) and
secondary metabolism (protection and defence via SMs) in
response to environmental and internal cues (Fig. 2). Trees may
preferentially allocate carbon to SMs rather than to growth because
their long lifespan increases the risk of exposure to periods of both
abiotic (e.g. drought) and biotic stress (i.e. insect attacks and
pathogen infection). Glasshouse studies with tree seedlings have
revealed such a conservative strategy, with allocation to storage
(Weber et al., 2019) and constitutive SM (Huang et al., 2019)
prioritized over growth under carbon limitation. However, it
remains unknown to what extent the allocation schemes in tree

seedlings can be extrapolated to mature trees, with which bark
beetles are associated in nature.

Conifer species can optimize their defence capacity through
both constitutive (always present) SMs that reduce the proba-
bility of successful herbivore attack, and induced SMs that are
newly-produced upon attack or wounding and are usually more
effective against a particular herbivore (Fig. 2; Franceschi et al.,
2005; Kessler, 2015). Investment into induced SMs occurs only
when needed and therefore plants can avoid unnecessary cost in
the absence of herbivores. However, the activation, synthesis and
accumulation of combined constitutive and induced SMs may be
too slow to reach effective levels against mass-attacking beetles
and prevent lethal damage, when populations are high (Boone
et al., 2011). In addition, field studies have shown that local
NSC storage was used for production of induced SMs in
response to simulated or actual bark beetle attack (Raffa et al.,
2017; Roth et al., 2018) or fungal infection (Goodsman et al.,
2013; Arango-Velez et al., 2018), while NSC stored in distant
organs could not be mobilized to attacked stem sections (Wiley
et al., 2016). Such results indicate that mobilization and
transport of NSC play an important role in allocation to
induced defence in conifers. We conclude that trees need to
balance the trade-offs between growth, storage and multipartite
defences, especially when environmental stress causes source
limitation.

Bri�sh 
Columbia Western    

US 

Fig. 1 Cumulative tree mortality caused by
mountain pine beetle (percentage/1-km2 grid
cell) across the western United States (1997–
2012) andBritishColumbia (2001–2010) from
aerial survey data. The forest areas were
adjusted according to Simard et al. (2011).
The data presented here are the middle
estimate (as detailed in Hicke et al. (2015) and
Meddens et al. (2012)). In western United
States (1997–2012) and British Columbia
(2001–2010), c. 3.04 and 5.10 million
hectares of conifers have been killed by
mountain pine beetles.
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Drought impacts on the functional trade-offs

Recent meta-analyses of drought manipulations have revealed that
reduced NSC during drought is common, particularly in the roots
of conifers where 33.5% reduction was observed (Adams et al.,
2017; Li et al., 2018). This response is often due to reduced starch,
which can occur despite increased sugar concentrations – a finding
consistent with the role of soluble sugars as osmolytes (Dietze et al.,
2014). Similar to NSC dynamics, SM response to drought is not
consistent, and can varywith the timing and severity of drought, the
age and size of the tree, the type and ontogeny of the organ, and the
class of SM (Jamieson et al., 2017; Holopainen et al., 2018). The
lack of concurrent assessments of NSC and SMs in most drought
experimentsmakes it difficult tomechanistically link SMdynamics
to the carbon balance and to derive allocation trade-offs (Ryan
et al., 2015).

The relationship betweenNSCand SMsduring drought can also
be altered by the presence of insects. Drought-induced sink
limitation may lead to an increase in NSC which are available for
both constitutive and induced SMs.However, when severe drought
causes source limitation, NSC are required for life-maintaining
functions like respiration and osmoregulation and thus are less
available for constitutive SMs, but may be preferentially used for
biosynthesis of induced SMs once attack occurs. Unfortunately,
empirical evidence on how severe drought influences the

inducibility of SMs is still rare because manipulations of both
drought and biotic stress are challenging in the field.

The role of SMs in tree defence against bark beetles

Co-evolutionary interactions between plants and insects have given
rise to an enormous variety of SMs with complex modes of action.
While a subcortical habitat provides nutrition and shelter for bark
beetles, they must also contend with substantial constitutive and
induced tree defences (Franceschi et al., 2005; Erbilgin, 2019),
which can repel or kill attacking beetles at the time of colonization.
During pheromone-mediated mass attacks, bark beetles may
overwhelm these defences by exploiting plant-derived compounds,
and by introducing various microorganisms that can detoxify tree
SMs (Table 1).

Conifer–bark beetle interactions

Conifers have elaborate networks of ducts and glands that store
large amounts of oleoresin, a viscousmixture of terpenes that confer
anatomical and chemical components of defence (Table 2). Resin
exudation can physically entomb or delay attacking beetles while
delivering SMs that can adversely affect multiple life history aspects
of bark beetles and their symbionts. For example, at high
concentrations, phloem monoterpenes kill bark beetles and their
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Fig.2 Schematic representationofhowclimatechanges impact treecarbonallocationand its interactionswithbiotic agents suchasbarkbeetles andpathogens.
Under environmental stress like drought and heat, tree coordinate carbon supply via photosynthesis (1) and the demands for growth and reproduction (2),
respiration (3), storage of nonstructural carbohydrates (NSC) (4) and production of constitutive secondary metabolite (CSM) (5) and induced secondary
metabolite (ISM) (6). However, long-term severe stress can strongly limit photosynthesis and thus remobilization of storage compounds (7) may play an
important role in allocation to tree defence. The production of CSMprovides a first line of defence that allows repelling and/or poisoning insects andpathogens
(8), while investment into ISM occurs after biotic attacks (9). Trees integrate constitutive and induced defence to enhance resistance to bark beetle–fungal
complex (10),which in turn contendwith treedefencebyexploitinghostmonoterpenes (e.g.a-pinene) forproductionof aggregationpheromones andutilizing
the host phenolic compounds (e.g. stilbenes and flavan-3-ols) as a carbon source (11).
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fungal and bacterial symbionts (Raffa, 2014; Chiu et al., 2017).
Interactions can be complex, as bark beetles exploit lower
concentrations ofmonoterpenes as cues that facilitate host location,
recognition, and acceptance. Furthermore, bark beetles exploit
monoterpenes as stimulators, precursors, and synergists of aggre-
gation pheromones (Blomquist et al., 2010; Chiu et al., 2018), and
some beetle-associated bacteria degrade monoterpenes (Boone
et al., 2013), both of which introduce feedbacks factoring the
beetles. In addition to monoterpenes, diterpenes exert strong
antifungal activity against a broad range of species (Table 2). To
date no sesquiterpenes have been shown to affect bark beetles or
their symbionts, but future work on this group of compounds is
needed.

In addition to terpenes, conifer phloem also contains a highly
diverse array of phenolic compounds, such as stilbenes, flavonoids,
vanilloids, hydroxycinnamic acids, lignans, condensed tannins, and
others. Some flavonoids have shown to directly affect beetles by
acting as anti-feedants (Hammerbacher et al., 2019), and phenyl-
propanoid 4-allylanisole can inhibit attraction of several bark beetle
species to their aggregation pheromone (Joseph et al., 2001).
Several soluble phenolics, such as stilbenes and some flavonoids, are
fungicidal at high concentrations (Table 2). However, these
relationships involve complex feedbacks, as some bark beetle
symbionts can circumvent this anti-fungal activity through the
bioconversion of phenolics to carbon sources for larvae in the dying
phloem (Zhao et al., 2019). Likewise, as of yet there is no evidence
of anti-beetle or anti-symbiont activity for many of the phenolics
present in conifer tissue, so a defence function cannot currently be
ascribed for these.

Linking SM dynamics to tree defence against bark beetle
attack

Higher concentrations of monoterpenes, particularly induced
concentrations in response to challenge inoculations with beetle-

vectored fungi that simulate beetle attack, have been shown to
predict tree survival from bark beetle attack in a number of genera,
including Pinus, Abies, and Picea (Raffa et al., 2005; Zhao et al.,
2011; Schiebe et al., 2012). In Norway spruce (Picea abies),
enhanced resin flow and accumulation of multiple toxic terpenes
induced by treatment with methyl jasmonate reduced colonization
by the European spruce bark beetle (Ips typographus, Erbilgin et al.,
2006) and infection by the blue-stain fungus (Endoconidiophora
polonica, Zeneli et al., 2006). Similarly, increased induced resin
flow and higher densities of resin ducts have been associated with
higher tree survival in lodgepole (Pinus contorta), limber (P. flexilis)
and loblolly (P. taeda) pines (Ferrenberg et al., 2014; Denham
et al., 2019). The relative proportions of monoterpene compounds
have also been related to tree survival in some systems (Raffa et al.,
2005; Boone et al., 2011; Erbilgin et al., 2017). It should be noted
that the key SMs and their efficacies vary with systems (i.e. tree
species, beetle species, fungal and bacterial species). Also, conifer–
bark beetle dynamics are complicated by feedbacks arising from the
cooperative behaviour of pheromone-mediatedmass attacks, so the
efficacy of both physical and chemical defences varies with beetle
density (Boone et al., 2011).

Table 1 Major bark beetle species known to promote or cause significant mortality on conifers.

Common
name

Scientific
name Common host Known fungal symbionts

Life
history
strategy

Southern
Pine Beetle

Dendroctonus
frontalis

Pinus echinata, Pinus engelmanni, Pinus
leiophylla, Pinus ponderosa, Pinus rigida, Pinus

taeda, Pinus virginiana

Entomocorticium sp. A, Ceratocystiopsis ranaculosus Primary

Mountain
Pine Beetle

Dendroctonus

ponderosae

Pinus contorta, Pinus ponderosa, Pinus albicaulis Grosmannia clavigera, Ophiostoma montium,

Leptographium longiclavatum, Entomocorticium
dendroctoni

Primary

North
American
Spruce
beetle

Dendroconus

rufipennis

Picea engelmannii, Picea glauca, Picea sitchensis Leptographiumabietinum, Endoconidiophora rufipenni Primary

Pi~non Ips Ips confusus Pinus edulis, Pinus monophylla Secondary
European
Spruce Bark
Beetle

Ips
typographus

Picea abies Endoconidiophora polonica, Grosmannia penicillata,
Grosmannia europhioides, Ophiostoma bicolor,

Ophiostoma ainoae

Primary

Categorization of life history strategy is based on physiological condition of trees beetles commonly colonize, although this can vary with population phase
(Raffa et al., 1993). For an extensive list of species, see Supporting Information Table S1.

Table 2 Multiple chemical groups function in complementary fashion to
inhibit bark beetle–fungal complexes.

Biological effect Monoterpenes Diterpene acids Phenolics

Adult repellency ++ ? +
Adult toxicity ++ ? +
Egg and larval toxicity + ? ?
Pheromone inhibit + ? +
Microbial inhibition + +++ ++

Modified from Raffa et al. (2005). For references, see Supporting Informa-
tion Table S2. The biological effects of secondary metabolites are shown as
inhibitory (+) or untested (?).
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Drought has facilitated bark beetle outbreaks in central Europe
and North America, resulting in regional scale mortality of spruce
and pine forests (Meddens et al., 2015; Seidl et al., 2016).
Experimental drought manipulations and field observations have
related drought-related mortality to reduced resin flow (Netherer
et al., 2015) or reduced resin duct density and area (Gaylord et al.,
2013). Information on drought-induced changes in the compo-
sition of resins, volatile emissions and other defensive SMs, is sparse
(Ryan et al., 2015). Even less is known about bark beetle-associated
fungi, whose growth and germination rely on soluble sugars from
living cells (Oliva et al., 2014), but may also be inhibited by SMs
(Table 2). Therefore a depletion of NSC and SMs during severe
drought may result in contrasting effects on bark beetle-associated
fungi.

Modelling tree defence and bark beetle infestations in
dynamic vegetation models

Bark beetle infestations can be simulated across a wide range of
spatial scales, from stand to continental. An increasing number of
process-based infestation models have emerged over the last two
decades (Fig. 3), addressing a variety of different bark beetle species,
research questions, and management contexts (Seidl et al., 2011).
Historically, model development has progressed mainly in two
directions. First, spatially-explicit agent-based models (ABMs) of
bark beetles have been developed from principles established in
earlier quantitative aggregation and attack models (Burnell, 1977;
Berryman et al., 1989). ABMs enable the detailed simulation of
host–bark beetle interactions at the level of individual trees and
beetles, and explicitly consider processes such as dispersal, tree
defence, aggregation, and colonization explicitly (e.g. Kautz et al.,
2014; Honkaniemi et al., 2018). However, ABMs are currently
only applicable locally, and typically neglect vegetation dynamics
and variation in climate. Second, model development has focused
on integrating bark beetle dynamics into models of vegetation
dynamics, specifically into forest landscapemodels (FLMs, Seidl&
Rammer, 2017) and dynamic global vegetation models (DGVMs,
Landry et al., 2016). These developments are motivated by the
growing awareness of the importance of bark beetles for vegetation
dynamics (Running, 2008), and the high climate sensitivity of the
host–bark beetle system (Raffa et al., 2008). The level of process
representation (e.g. insect development, dispersal and aggregation)
in these integrated models, however, is usually lower than in the
dedicated ABMs. In the following we will first show the effects of
tree defence on simulated bark beetle dynamics, and subsequently
review the current state-of-the-art inmodelling tree defence to bark
beetles.

Simulating the impact of tree defence on bark beetle
infestations

An example for a DGVM simulating bark beetle infestation is the
FATES-IMAPmodel (Functionally Assembled Terrestrial Ecosys-
tem Simulator) (Fisher et al., 2015) coupled to an Insect Mortality
and Phenology module (Goodsman et al., 2018; Supporting
Information Methods S1). To gauge the effect that varying levels

of tree vigour and defence have on vegetation–insect dynamics, we
conducted simulation experiments in which we varied the
incipient-epidemic threshold (i.e. the beetle population density
that startsmass attacking healthy trees and is a proxy of tree defence)
of the FATES-IMAPmodel in a stand undergoing amountain pine
beetle outbreak (Fig. 4). When the incipient-epidemic threshold
was decreased to the endemic mountain pine beetle population
level, all the appropriate host trees in the stand were quickly
depleted in the simulation, whereas when the incipient epidemic
threshold was increased, the outbreak duration increased while the
outbreak severity decreased (Fig. 4). Low severity outbreaks could
take a long time to deplete the hosts and thus increase the likelihood
that the outbreak will be prematurely terminated by an extremely
cold winter, as simulated bark beetle populations suffer high winter
mortality that diminishes their populations to endemic levels.
These simulation results imply that dynamically varying levels of
tree defence (e.g. in response to changing drought regimes) could
have profound impacts on outbreak trajectories, and consequently
on projections of future vegetation dynamics.

Approaches to simulate tree defence against bark beetle
infestation

In our comprehensive review of simulation models (Methods S2;
Table S3), we found that how tree defence against bark beetles is
considered in models varies widely, and ranges from detailed
approaches linking a tree’s physiological status to its defence
capacity to not explicitly considering the process of tree defence in
modelling (Fig. 3). In the majority of the models reviewed (74%),
host susceptibility– i.e. the inverse of tree resistance anddefence– is
determined as a function of parameters related to vegetation
structure, such as tree age, size, basal area, growth, and distance to
previously infested trees (Seidl et al., 2011). As tree susceptibility
increases, the number of attacking beetles required for successful
colonization is reduced (Fig. 4). A smaller subset of simulation
approaches (21%), also explicitly considers climatic variables and
their effect on tree defence and bark beetle susceptibility.
Specifically, indicators of water usage and drought stress are
employed, e.g. tree evapotranspiration relative to potential evap-
otranspiration (Temperli et al., 2015). Other approaches to
account for drought stress include a tree-specific threshold relating
water demand to water supply (J€onsson et al., 2012), or a climatic
drought index (Scheller et al., 2018). We found only one model
(3%) relating defence capacity directly to a tree’s physiological
status, which simulated susceptibility as a function of the NSC
reserves in individual host trees (Seidl & Rammer, 2017).

A research agenda for filling knowledge gaps toward
more mechanistic predictions of bark beetle damage
under drought

Lacking a detailed understanding of the physiological mechanisms
by which tree defence and herbivores respond to drought, we have
shown how modellers often rely on simplified metrics for
simulations of tree–bark beetle interactions in vegetation models.
Here, we identify threemajor knowledge gaps and propose research
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actions that can help inform future projections with more
mechanistic insights. Although not exhaustive, the agenda outlined
later would produce substantial progress toward understanding tree
defence andbark beetle attack, and allowmore accurate simulations
of forest dynamics.
1 Determinemechanistic linkages between primary and secondary
metabolism and their responses to drought (Fig. 5 Partitioning).
Action: Drought experiments and observational studies will be
needed to achieve this objective. Hundreds of drought experiments
have been conducted in recent years (Hoover et al., 2018), but
investigations have mostly focused on primary metabolisms. We

propose to add new perspectives on defence metabolism into
existing drought field experiments, specifically:

� Establish a standardized cross-calibrated protocol for
sampling and analysing concentrations of NSC (e.g. soluble
sugars and starch; Landhausser et al., 2018) and SMs (e.g.
phenolics and terpenes) relevant for defence from a broad
range of species and/or functional groups across a gradient of
water availability. Archived sample material from previous
drought studies can also be suitable for analysing concen-
trations of SMs. Note that for volatile terpenoids samples
should be stored under –80°C.
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Climate
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Fig. 3 Distribution of bark beetle infestation
models (n = 34) across three variables: bark
beetle genus (Ips, Ips typographus; ns, models
that simulate several genera or that are not
specifically parameterized for a single species
or genus), implemented defence mechanism,
and model type (DGVM, dynamic global
vegetation model; FLM, forest landscape
model; ABM, agent-based model). For the full
list of models and methodological details see
Supporting Information Methods S2 and
Table S3. Flowwidth represents the number of
models for each block of the three variables
that are assigned to vertically-arranged axes.
Both level of process detail in defence
mechanism (centred axis) and spatial scope of
the model type (right axis) typically increase
from bottom to top. Structural parameters
(e.g. tree age or size) play a major role in
simulated tree defence yet, while climate-
driven defence triggers (e.g. drought indices)
are less frequent, andonly onemodel explicitly
accounts for tree physiology-based defence
(nonstructural carbohydrates pool) against
bark beetles.
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Fig. 4 Stand level trajectories for live trees larger than 20 cm in diameter at breast height due to mountain pine beetle outbreaks simulated using the FATES-
IMAP (Functionally Assembled Terrestrial Ecosystem Simulator – InsectMortality and Phenology) model with different stand-level attack (incipient-epidemic)
thresholds. This threshold is used as proxy for tree defence of all trees in a stand. The fitted estimate is c. 343 beetles per hectare, which corresponds to the
trajectory with open circles. The endemic population level is 40 beetles per hectare. When the incipient-epidemic threshold is decreased to the endemic
population level, all suitable host trees in the stand are quickly depleted.
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� Normalize NSC and SM data within each species and field
site before relating them, following the approach of Adams et al.
(2017). Complementary data such as photosynthesis and
growth are also needed to better understand the role of source
vs sink limitation on SM dynamics (Ryan et al., 2015).
� Future in situ drought studies should – where possible –

apply isotope labelling (e.g. 13CO2) to trace the flow of
metabolites within the trees and from trees to insects, which can
help identify the key physiological processes. This includes
assessing the potential of phloem failure during drought to
inhibit carbon transport to tissues attacked by bark beetles and
pathogens (Sevanto, 2018); partitioning the relative contribu-
tion of newly-assimilated vs old stored carbon to the production
of SM(Huang et al., 2018), andunravelling the role of terpenoids
in anatomical and chemical components of tree defence.

2 Assess the role of SMs on the attack behaviour, development, and
survival of bark beetles and their microbial associates as well as tree
survival (Fig. 5: Functioning).
Action:Conduct laboratory assays and field surveys to identify the
key defence compounds and how they influence bark beetle
dynamics and tree survival.

� Bioassays with bark beetles at concentrations present in
constitutive and induced phloem tissues will help determine
which secondary compounds are bioactive among the vast array
of compounds present. Behavioural assays should assess effects
of both nonvolatile compounds in bark and volatile compounds
emitted by trees and fungi on beetle host selection and
pheromone communication (Chiu et al., 2018; Kandasamy
et al., 2019). Fitness assays can benefit frommetrics of beetle life
cycle (e.g. fecundity, growth rate, size, and survival) in
combination with various levels of phloem nutritional quality
and bioactive defence components.
� Field surveys are needed to establish the relationships of SM-

based anatomical and chemical defence to bark beetle dynamics

in different tree species that are attacked by different species of
bark beetles and their associated microbiota. Within each
species, resin flow, terpene chemistry and phenolic chemistry,
should be analysed in mature trees that are subsequently not
attacked or attacked, during endemic, transitory, and epidemic
phases of bark beetles (Boone et al., 2011; Amin et al., 2013;
Ghimire et al., 2016). Note that analyses of total concentrations
are more effective when focused on groups that have docu-
mented bioactivity, such as total monoterpenes or diterpenes
rather than total terpenoids, and likewise to total stilbenes or
phenylpropanoids rather than total phenolics.

3 Simulate drought-mediated tree defence against bark beetles by
incorporating the functional mechanism derived from suggestions
in (1) and (2) (Fig. 5: Modelling).
Action: Implement the linkages between primary and secondary
metabolism (and their responses to drought) as proxymechanisms,
where validated, for tree defence into vegetation models. This
requires an improved physiological foundation in modelling
vegetation dynamics, as many vegetation models still employ
phenomenological or statistical approaches rather than first
principles of ecophysiology for simulating vegetation growth and
survival (Bugmann et al., 2019).

� An explicit representation of physiology-based tree defence
in large-scale models requires the consideration of species-
specific differences in tree traits and physiology (rather than the
use of plant functional types).
� Important thresholds of various tree–bark beetle systems,

such as the number of beetles required to overcome trees
defences, need to be made context-specific in models, account-
ing for the interactive effects of environmental drivers (e.g.
drought) and beetle population dynamics (endemic vs epidemic
conditions).
� The multi-scaled nature of bark beetle outbreaks should be

considered more explicitly in models, by simulating the cross-
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Fig. 5 A simplified representation of
framework showing the proposed three
interdependent areas: (1) partitioning, that is,
the trade-offs betweenprimaryand secondary
metabolisms in a changing climate;
(2) functioning, that is, the effectiveness of
secondary metabolites, including
constitutively expressed and also induced by
biotic attacks (dashed line), on behaviour,
development and survival of biotic agents
(e.g. bark beetle and its associated fungi);
(3) modelling, that is, the implementation of
mechanistic relationships derived in (1) and (2)
into current vegetation models.
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scale amplification that allows some beetle species to intermit-
tently transition from killing individual or small patches of trees
to killing trees across the spatial extent of subcontinents (Raffa
et al., 2008). A promising avenue of model development in this
regard is the integration of ABM approaches (individual tree–
beetle interactions) via carbon relations and defencemetabolism
into FLMs and DGVMs that are able to track ecosystem
dynamics at the landscape to global scale.
� Better reference data for model calibration and evaluation

are needed. Remote sensing data hold high potential in this
regard, as they are becoming increasingly available and can
provide long-term and consistent estimates of forest canopy
mortality across large spatial extents (Senf et al., 2018).
However, improved attribution of mortality agents is needed
for a consistent benchmarking of models against remotely
sensed disturbance data (Kautz et al., 2017). Additional data on
insect populations are also needed for calibration of insect
component for host–bark beetle interactions.

Conclusions and outlook

In this Viewpoint we propose an ambitious research agenda
bridging carbon partitioning, defence functioning and vegetation
modelling, which will provide substantial progress toward project-
ing future tree mortality from bark beetle outbreaks. Our synthesis
strongly suggests that much knowledge necessary to improve
vegetationmodels can be achieved throughmodification of existing
research protocols and by capitalizing on the wealth of data and
samples already collected fromfieldmanipulations.There aremany
aspects of climate–plant–insect interactions that have not been
addressed here, in particular the interactive effects of drought,
nutrient limitation, elevated CO2 and temperature on carbon
balance and allocation ofNSC to SMs; the role of volatile emissions
for selection and aggregation of insects; and the interactions of
insects and their associated microbiota. Many of these interactions
are currently not well understood and should be addressed in future
work to fully understand ecological impacts.

Our framework provides a mechanistic linkage between carbon
allocation, which plays a key role in general plant responses to
environmental changes (Mooney, 1972), and SMs, a critical and
fundamental component of plant defence against insects and
pathogens (Kessler, 2015). Thus, despite its focus on interactions
between conifer species and bark beetles our research agenda also
serves as a framework for improving the general understanding of
plant–herbivore interactions and can be used as a blueprint for
predicting other types of plant–insect system in a changing climate.
Implementing our framework in other plant biological systems
must take into account that impacts of climate change on carbon
allocation to defence may vary among plant functional groups (e.g.
evergreen vs deciduous, woody vs herbaceous plants) and with the
mode of action of SMs against different types of herbivores (e.g.
defoliator vs stem borer). Also, the spatial and temporal scales at
which a biological system operates will determine the type and
structure of the most adequate vegetation model (e.g. ABM vs
FLM) for simulation and prediction. Implementing our research
agenda in any plant–herbivore system will thus require

interdisciplinary collaborations among ecologists, entomologists
and vegetation modellers.
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