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REGULAR FINITE DECOMPOSITION COMPLEXITY

DANIEL KASPROWSKI, ANDREW NICAS, AND DAVID ROSENTHAL

Abstract. We introduce the notion of regular finite decomposition complexity

of a metric family. This generalizes Gromov’s finite asymptotic dimension
and is motivated by the concept of finite decomposition complexity (FDC)
due to Guentner, Tessera and Yu. Regular finite decomposition complexity
implies FDC and has all the permanence properties that are known for FDC,
as well as a new one called Finite Quotient Permanence. We show that for a
collection containing all metric families with finite asymptotic dimension all
other permanence properties follow from Fibering Permanence.

1. Introduction

Guentner, Tessera and Yu introduced finite decomposition complexity (FDC) in

[GTY12] as a generalization of Gromov’s finite asymptotic dimension. In this paper,

we introduce the notion of regular finite decomposition complexity (abbreviated as

regular FDC). As with FDC, regular FDC is a coarse geometric property of metric

families.

A metric family is a set of metric spaces. A metric family X regularly decomposes

over a collection of metric families C if there exists a family Y with finite asymptotic

dimension and a coarse map F : X → Y such that for every (uniformly) bounded

subfamily B of Y the inverse image F−1(B) lies in C. We show in Proposition 2.11

that there exists a smallest collection of metric families that is closed under regular

decomposition and contains all bounded metric families. We call this collection R

and say that a metric family in R has regular FDC. Clearly R contains all metric

families with finite asymptotic dimension. We show in Theorem 2.13 that regular

FDC implies FDC.

The collection R has many permanence properties. Informally, a permanence

property of a collection C of metric families is an operation that when applied

to members of C yields another member of C. All of the permanence properties

proved for FDC in [GTY13] also hold for regular FDC. That is, regular FDC

Date: May 13, 2018.
2010 Mathematics Subject Classification. Primary 20F69; Secondary 20F65.
Key words and phrases. Coarse geometry, permanence properties, asymptotic dimension, de-

composition complexity, assembly maps, integral Novikov conjecture.
The first author was partially supported by the Max Planck Society.
The second author was partially supported by a grant from the Natural Sciences and Engi-

neering Research Council of Canada.
The third author was partially supported by a grant from the Simons Foundation, #229577.

1

http://arxiv.org/abs/1608.04516v2


2 KASPROWSKI, NICAS, AND ROSENTHAL

satisfies Coarse Permanence (Theorem 2.10), Fibering Permanence (Theorem 5.2),

Finite Amalgamation Permanence, Finite Union Permanence, Union Permanence

and Limit Permanence (Corollary 5.13). Regular FDC also satisfies Finite Quotient

Permanence (Theorem 5.28), which FDC is not known to satisfy.

Fibering Permanence is a particularly important permanence property. A typical

special case of Fibering Permanence is the following. Assume C satisfies Fibering

Permanence and f : X → Y is a coarse map with {Y } ∈ C. If for all r > 0 the family

{f−1(Br(y)) | y ∈ Y } is in C, then {X} ∈ C. The general formulation of Fibering

Permanence requires the use of general metric families and so Definition 5.1 is

stated accordingly. We show that if a collection of metric families satisfies Fibering

Permanence and contains all metric families with finite asymptotic dimension, then

all of the other permanence properties mentioned above, except for Finite Quotient

Permanence, are automatically satisfied. That is, we prove the following general

theorem (see Theorems 5.4, 5.6, 5.8, 5.10 and 5.12).

Theorem 1.1. Let C be a collection of metric families that satisfies Fibering Per-

manence and contains all metric families with finite asymptotic dimension. Then

C satisfies Coarse Permanence, Finite Amalgamation Permanence, Finite Union

Permanence, Union Permanence and Limit Permanence.

Using this theorem and the results from [Gue14] and [RR], we obtain the follow-

ing corollary which applies, in particular, to regular FDC.

Corollary 1.2. Let P be a property of metric families that is satisfied by all metric

families with finite asymptotic dimension and that is closed under fibering. Then

the class of (countable) groups with P is closed under extensions, direct unions,

free products (with amalgam) and relative hyperbolicity. Furthermore, all elemen-

tary amenable groups, all linear groups and all subgroups of virtually connected Lie

groups have P.

The definition of regular decomposition is a special case of fibering, and so we

immediately obtain the following theorem.

Theorem. (Theorem 5.3) The collection of metric families with regular FDC is the

smallest collection of metric families that contains all families with finite asymptotic

dimension and satisfies Fibering Permanence.

When proving injectivity results for the assembly maps in algebraic K- and L-

theory for groups with torsion, one has to work with quotients by finite groups.

Hence, Finite Quotient Permanence is a useful property to have at one’s disposal.

It is not hard to see that the collection of metric families with finite asymptotic

dimension satisfies Finite Quotient Permanence (see Proposition 3.2). Similarly, it
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is straightforward to verify that weak FDC (a condition that is looser than FDC,

also introduced by Guentner, Tessera and Yu), satisfies Finite Quotient Permanence

as well. However, the proof techniques used to establish injectivity rely on FDC

and it is not known if FDC satisfies Finite Quotient Permanence. While FDC is a

special case of weak FDC, it is an open question whether or not weak FDC implies

FDC. On the other hand, regular FDC implies FDC (Theorem 2.13) and satisfies

Finite Quotient Permanence (Theorem 5.28). Therefore, we directly obtain the

following consequence of [Kas15, Theorems 8.1 and 9.1].

Theorem 1.3. Let G be a group with regular FDC. Assume there exists a finite

dimensional model for EG and a global upper bound on the order of the finite sub-

groups of G. Then the K-theoretic assembly map

HG
n (EG;KA) → Kn(A[G])

is split injective for every additive G-category A.

If A is an additive G-category with involution such that for every finite subgroup

F ≤ G there exists N ∈ N with K−N(A[F ]) = 0 for all n ≥ N , then also the

L-theoretic assembly map

HG
n (EG;L

〈−∞〉
A ) → L〈−∞〉

n (A[G])

is split injective.

In [Kas15] this result was obtained for groups with “fqFDC” instead of regular

FDC. A group G has fqFDC if for every n ∈ N the family {F\G | F ≤ G, |F | ≤

n} has FDC. But the technical concept of fqFDC does not satisfy most of the

permanence properties discussed above. Thus, one advantage of regular FDC is

that is has all the permanence properties that FDC has and is strong enough to

imply the above result about injectivity of the assembly maps in algebraic K- and

L-theory.

In Section 2 we gather some preliminary facts about the coarse geometry of met-

ric families and introduce regular finite decomposition complexity. In Section 3 we

focus on the asymptotic dimension of metric families, and the asymptotic Assouad-

Nagata dimension of metric families, extending several known facts about these

notions for metric spaces to metric families. In Section 4 we prove an Extension

Theorem for metric families that plays an important role in establishing Finite Quo-

tient Permanence for regular FDC. In Section 5 we study the permanence properties

of regular FDC.

The authors would like to thank the referee for several useful comments.
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2. Preliminaries

We begin by recalling some elementary concepts from coarse geometry utiliz-

ing the language of metric families. Guentner, Tessera and Yu introduced met-

ric families in [GTY12] to define their notion of finite decomposition complexity

(Definition 2.4 below), a generalization of Gromov’s finite asymptotic dimension.

A metric family is a set of metric spaces. A map of metric families, F : X → Y,

is a collection of functions f : X → Y , where X ∈ X and Y ∈ Y, such that each

element in X is the domain of at least one function in F .

The composition G ◦ F : X → Z of G : Y → Z and F : X → Y is the collection

{g ◦ f | f ∈ F, g ∈ G, and the domain of g is the range of f}.

Definition 2.1. Let F : X → Y be a map of metric families.

(i) F is coarse (or uniformly expansive) if there exists a non-decreasing function

ρ : [0,∞) → [0,∞)

such that for every X ∈ X , x, y ∈ X , and f : X → Y in F ,

dY (f(x), f(y)) ≤ ρ(dX(x, y)).

We call ρ the control function for F .

(ii) F is effectively proper if there exists a proper non-decreasing function

δ : [0,∞) → [0,∞)

such that for every X ∈ X , x, y ∈ X , and f : X → Y in F ,

δ(dX(x, y)) ≤ dY (f(x), f(y)).

(iii) F is a coarse embedding if it is both coarse and effectively proper.

(iv) F is coarsely onto if every Y ∈ Y is the range of some f ∈ F and if there

exists a C ≥ 0 such that for every f : X → Y in F and for every y ∈ Y there

exists an x ∈ X such that dY (f(x), y) ≤ C.

(v) F is close to F ′ : X → Y if there exists a C ≥ 0 with the property that for

every f : X → Y in F (respectively, in F ′) there exists an h : X → Y in F ′

(respectively, in F ) such that for all x ∈ X , dY (f(x), h(x)) ≤ C.

(vi) F is a coarse equivalence if it is coarse and there exists a coarse mapG : Y → X

such that G ◦ F is close to the identity map of X and F ◦ G is close to the

identity map of Y.

A subfamily of a metric family Y is a metric family A such that every A ∈ A is

a subspace of some Y ∈ Y. The inverse image of A under the map F : X → Y is

the subfamily of X given by F−1(A) =
{

f−1(A) | A ∈ A, f ∈ F
}

.

A metric family X is called bounded if supX∈X diamX < ∞. The collection of

all bounded metric families is denoted by B.
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Recall that a metric space X is the r-disjoint union of subspaces {Xi | i ∈ I} if

X =
⋃

i∈I Xi, and for every x ∈ Xi and y ∈ Xj with i 6= j, d(x, y) > r. We denote

an r-disjoint union by

X =
⊔

r-disjoint

{Xi | i ∈ I}.

Definition 2.2. Let C be a collection of metric families. Let n ∈ N and r > 0.

A metric family X is (r, n)-decomposable over C if for every X ∈ X there is a

decomposition X = X0 ∪X1 ∪ · · · ∪Xn such that for each i, 0 ≤ i ≤ n,

Xi =
⊔

r-disjoint

{Xij | j ∈ Ji},

and the metric family {Xij | X ∈ X , 0 ≤ i ≤ n, j ∈ Ji} is in C.

The metric family X is n-decomposable over C if X is (r, n)-decomposable over

C for every r > 0.

A metric family X is strongly decomposable over C if it is 1-decomposable over

C. It is weakly decomposable over C if it n-decomposable over C for some n ∈ N.

Notice that if X consists of a single metric space X , then the saying that X is

n-decomposable over B is precisely the statement that X has asymptotic dimension

at most n. Thus, finite asymptotic dimension can be generalized to metric families

as follows. It will be discussed further in Section 3.

Definition 2.3. Let n ∈ N. The metric family X has asymptotic dimension at

most n, denoted asdim(X ) ≤ n, if X is n-decomposable over B.1

Guentner, Tessera and Yu defined finite decomposition complexity as follows.

Definition 2.4. Let D be the smallest collection of metric families containing B

that is closed under strong decomposition, and let wD be the smallest collection

of metric families containing B that is closed under weak decomposition. A metric

family in D is said to have finite decomposition complexity (abbreviated to “FDC”),

and a metric family in wD is said to have weak finite decomposition complexity

(abbreviated to “weak FDC”).

Guentner, Tessera and Yu provided other equivalent formulations of finite de-

composition complexity. One such formulation is the following. Let D0 = B, and

for each ordinal α greater than 0, define Dα to be the collection of metric families

that is strongly decomposable (i.e., 1-decomposable) over
⋃

β<α Dβ.

Theorem 2.5. [GTY12, Theorem 2.4] A metric family X has FDC if and only if

there exists a countable ordinal α such that X ∈ Dα.

1This is equivalent to Bell and Dranishnikov’s definition of a collection of metric spaces having
finite asymptotic dimension “uniformly” ([BD04, Section 1]).
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Inspired by the work of Guentner, Tessera, and Yu, we introduce the notion of

regular finite decomposition complexity.

Definition 2.6. A metric family X regularly decomposes over a collection of metric

families C if there exists a family Y with finite asymptotic dimension and a coarse

map F : X → Y such that for every bounded subfamily B of Y, the inverse image

F−1(B) lies in C.

Definition 2.7. Let R0 = B, the collection of bounded metric families. For each

ordinal α greater than 0, let Rα be the collection of metric families that regularly

decomposes over
⋃

β<αRβ . That is, X ∈ Rα if there exists a metric family Y

with finite asymptotic dimension and a coarse map F : X → Y such that for every

bounded subfamily B of Y, there is an ordinal β < α such that F−1(B) lies in Rβ.

Let R be the collection of metric families that belong to Rα for some count-

able ordinal α. A metric family in R is said to have regular finite decomposition

complexity.

It is straightforward to see that R1 is the collection of metric families with finite

asymptotic dimension.

The collectionR has many nice properties. It is a subcollection ofD (Theorem 2.13

below), and it possesses all of the permanence properties that D does, plus an addi-

tional permanence property concerning quotients by finite groups (Theorem 5.28)

that D is not known to satisfy.

The first of the permanence properties, Coarse Permanence, is proved below.

The remaining permanence properties are established in Section 5.

Definition 2.8. A collection of metric families, C, satisfies Coarse Permanence if

whenever Y ∈ C and F : X → Y is a coarse embedding, then X ∈ C.

Remark 2.9. Our definition of Coarse Permanence varies from the definition of

Coarse Invariance in [Gue14]. To be precise, by [Gue14, Lemma 6.1] a collection

satisfies Coarse Permanence if and only if it satisfies Coarse Invariance and Subspace

Permanence as defined in [Gue14].

To show that R satisfies Coarse Permanence, we prove the stronger fact that Rα

satisfies Coarse Permanence for every ordinal α.

Theorem 2.10. The collection Rα satisfies Coarse Permanence for every ordi-

nal α. In particular:

(1) A subfamily of a metric family in Rα also lies in Rα.

(2) If X and Y are coarsely equivalent metric families, then X ∈ Rα if and

only if Y ∈ Rα.
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Proof. We prove the theorem by induction on α. If Y ∈ R0 (i.e., if Y is bounded)

and F : X → Y is a coarse embedding, then X is also bounded. Hence, the theorem

is true for α = 0.

Now suppose the theorem holds for all ordinals β < α and let F : X → Y be a

coarse embedding, with Y ∈ Rα. By definition, there is a Z ∈ R1 and a coarse map

G : Y → Z such that for every bounded subfamily of Z, the inverse image under

G lies in Rβ for some β < α. Consider the coarse map G ◦ F : X → Z. To prove

that X ∈ Rα, we must show that for every bounded subfamily B of Z the inverse

image (G ◦ F )−1(B) lies in Rβ for some β < α. Since F is a coarse embedding,

the restriction of F to (G ◦ F )−1(B), denoted F : (G ◦ F )−1(B) → G−1(B), is also

a coarse embedding. Therefore, (G ◦ F )−1(B) ∈ Rβ by the induction hypothesis,

and so X ∈ Rα. �

Coarse Permanence enables us to prove the following result, analogous to Theorem 2.5.

Proposition 2.11. The collection R is the smallest collection of metric families

that is stable under regular decomposition and contains B. More specifically, (1) if

a metric family X regularly decomposes over R, then X is in R; and (2) if C is a

collection of metric families that is stable under regular decomposition and contains

B, then R is contained in C.

Proof. For (1), assume that X regularly decomposes over R. Then there exists a

metric family Y ∈ R1 and a coarse map F : X → Y such that for every bounded

subfamily B of Y, the inverse image F−1(B) lies in R; that is, F−1(B) lies in Rα for

some ordinal α. For each n ∈ N, let αn be an ordinal such that F−1(Bn) ∈ Rαn
,

where Bn = {Bn(y) | Y ∈ Y, y ∈ Y } is the subfamily of all balls of radius n in Y.

Let γ be an ordinal with αn < γ for all n ∈ N. For every bounded subfamily B of

Y there exists an n ∈ N such that B is a subfamily of Bn. Thus, F−1(B) ∈ Rαn

by Coarse Permanence 2.10. This shows that in fact X regularly decomposes over

Rγ , and so X ∈ Rγ+1. Therefore, X ∈ R.

For (2) we have to show that for every α, Rα is contained in C. We do this by

induction. By assumption, R0 is contained in C. Now suppose Rβ is contained in C

for all β < α. Therefore, by definition, every family X ∈ Rα regularly decomposes

over C. Since C is stable under regular decomposition, X is also in C. Thus, Rα is

contained in C. �

Remark 2.12. The last proposition implies that R is the same as the collection

of all metric families that belong to Rα for any ordinal α without assuming that α

is countable.

Theorem 2.13. If a metric family X has regular FDC, then X has FDC.
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Proof. This follows directly from the fact that a metric family with finite asymptotic

dimension is in D (see [GTY13, Theorem 4.1]) and the Fibering Theorem for FDC

([GTY13, Theorem 3.1.4]). Note that [GTY13, Theorem 4.1] is only stated for

metric spaces, but the same proof holds for metric families as well. �

There is a more concrete proof of Theorem 2.13 that also motivates the name

“regular FDC”. Suppose X regularly decomposes over a collection C. Then there is

a coarse map F : X → Y, where asdim(Y) < ∞. By [GTY13, Proof of Theorem 4.1]

there is a coarse embedding Y → T , where each T ∈ T is a product of asdim(Y)+1

Gromov 0-hyperbolic spaces. A Gromov 0-hyperbolic space strongly decomposes

over B (since it has finite asymptotic dimension) and therefore we can strongly

decompose T over B in asdim(Y) + 1 steps. This decomposition pulls back to a

decomposition of X over C, again in asdim(Y) + 1 steps. Given a decomposition of

a Gromov 0-hyperbolic space T for some r > 0, the decomposition for r′ >> r can

be chosen in such a way that each of the decomposition pieces for r is contained

in one of the pieces of r′. Hence, the decompositions of X for different values of

r obtained in this way are related to each other. Generally, different values for r

yield completely independent decompositions.

3. Asymptotic dimension of metric families

In this section we generalize some facts about finite asymptotic dimension for

metric spaces to metric families. They will be used in the proof of the Extension

Theorem 4.1 in Section 4, and in the proofs of the permanence properties for regular

FDC in Section 5.

There are several equivalent definitions of asymptotic dimension (as can be found,

for example, in [BD08, Theorem 19]). In [NR] these were generalized to provide

three alternative definitions for a metric family to be n-decomposable over a col-

lection of metric families. In particular, [NR, Proposition 3.1] yields the following

equivalent definition for a metric family to have finite asymptotic dimension.

Recall that the dimension of a covering, U , of a metric space X is the largest

integer n such that every point of X is contained in at most n + 1 elements of U .

The Lebesgue number of U , L(U), is at least λ > 0 if for every x ∈ X the open

ball Bλ(x) in X is contained in some element of U . The mesh of U is mesh(U) =

sup{diam(U) | U ∈ U}.

Proposition 3.1. A metric family X = {Xi}i∈I has finite asymptotic dimension

at most n if and only if for every λ > 0 there exists a cover Ui of Xi, for each i ∈ I,

such that:

(1) the dimension of Ui is at most n for every i ∈ I;

(2) the Lebesgue number L(Ui) ≥ λ for every i ∈ I;
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(3)
⋃

i∈I Ui is a metric family in B (that is, there exists an R > 0 such that

mesh(Ui) ≤ R for every i ∈ I).

Let X be a metric space and F a finite group acting isometrically on X . We will

always consider the following metric on the quotient space F\X :

d(Fx, Fx′) := min
h∈F

dX(x, hx′)

Proposition 3.2. Let X be a metric family and let F be a finite group that acts

isometrically on every X ∈ X . Let F\X := {F\X | X ∈ X}. Then

asdim(F\X ) ≤ |F |(asdim(X ) + 1)− 1.

Proof. This was proved for metric spaces in the proof of [BR07, Lemma 2.2]. It

immediately generalizes to metric families. We quickly recall the proof here.

Let n = asdimX . Given λ > 0 there exists an n-dimensional cover UX of X ,

for each X ∈ X , and an R > 0 such that L(UX) ≥ λ and mesh(UX) ≤ R for every

X ∈ X . Let qX : X → F\X denote the quotient map. Then qX(UX) := {qX(U) |

U ∈ UX} is a cover of F\X . By definition of the metric on F\X , we have that

L(qX(UX)) ≥ λ and mesh(qX(UX)) ≤ R. For every y ∈ F\X , q−1
X (y) contains

at most |F | points. Since the dimension of UX is at most n, it follows that the

dimension of qX(UX) is at most |F |(n+ 1)− 1. Therefore, by Proposition 3.1, the

asymptotic dimension of F\X is at most |F |(n+ 1)− 1. �

Definition 3.3. Let Y be a metric family. The asymptotic Assouad-Nagata di-

mension of Y, denoted asdimAN(Y), is the smallest non-negative integer n with the

following property. There exist non-negative constants b and M such that for every

Y ∈ Y and every R > 0 there exists a cover U of Y such that U = U0 ∪ · · · ∪ Un,

where each collection Ui is R-disjoint and mesh(U) ≤ MR + b. The function

DY(r) = Mr + b is called an n-dimensional control function for Y. If there does

not exist an n satisfying the above conditions, then we define asdimAN(Y) = ∞.

Note that asdim(Y) ≤ asdimAN(Y) for any metric family Y.

Let X andZ be metric families and let F : X → Z be a map of families. Following

[BDLM08], define the asymptotic dimension of F , denoted asdim(F ), to be

asdim(F ) := {asdim(A) | A is a subfamily of X and asdim(F (A)) = 0}.

Analogously, the asymptotic Assouad-Nagata dimension of F , denoted asdimAN(F ),

is defined as

sup{asdimAN(A) | A is a subfamily of X and asdimAN(F (A)) = 0}.

While [BDLM08, Theorems 1.2, 8.2, and 2.5], stated below for metric families,

are proved in the case of singleton families, that is, X = {X}, Z = {Z} and

F = {f : X → Z}, their extensions to general metric families is straightforward.
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Theorem 3.4 ([BDLM08, Theorem 1.2]). If F : X → Z is a coarse map, then

asdim(X ) ≤ asdim(F ) + asdim(Z).

The map F is asymptotically Lipschitz if there exist non-negative constants M

and L such that for all f : X → Z in F , and all x, x′ ∈ X , dZ(f(x), f(x
′)) ≤

MdX(x, x′) + L.

Theorem 3.5 ([BDLM08, Theorem 8.2]). If F : X → Z is an asymptotically Lip-

schitz map of metric families, then

asdimAN(X ) ≤ asdimAN(F ) + asdimAN(Z).

Theorem 3.6 ([BDLM08, Theorem 2.5]). Let X and Y be metric families and let

X×Y = {X×Y | X ∈ X , Y ∈ Y}, where each X×Y is equipped with the ℓ1-metric,

d1
(

(x1, y1), (x2, y2)
)

= dX(x1, x2) + dY (y1, y2). Then

asdim(X × Y) ≤ asdim(X ) + asdim(Y)

and

asdimAN(X × Y) ≤ asdimAN(X ) + asdimAN(Y).

Let (X, dX) be a metric space. Recall that the Gromov product of x, y ∈ X with

respect to a base point p ∈ X is

(x|y)p := 1
2 (dX(x, p) + dX(y, p)− dX(x, y)) .

The space X is Gromov 0-hyperbolic if for all x, y, z ∈ X ,

(x|z)p ≥ min{(x|y)p, (y|z)p}.

Lemma 3.7. Let m be a positive integer and T be a metric family such that every

T ∈ T is an ℓ1-metric product of at most m Gromov 0-hyperbolic spaces. Then

asdimAN(T ) ≤ m.

Proof. In the proof of [Roe03, Proposition 9.8] it is shown that if X is a Gromov

0-hyperbolic space then DX(r) = 3r is a 1-dimensional control function for X .

Note that DX is independent of X . Let Z ∈ T . Then Z = X1 × · · · ×Xm, where

each Xj is a Gromov 0-hyperbolic space. Observe that f(n) := 3n−1 + 3n−2 − 1 is

the solution to the linear recurrence f(n) = 3f(n− 1) + 2, n ≥ 3 and f(2) = 3. By

[BDLM08, Theorem 2.4], D
(m)
Xj

(r) = f(m+ 1)r is a (1,m+ 1)-control function for

Xj. By definition, this means that for any r > 0 there is a cover Uj = Uj
0 ∪· · ·∪Uj

m

of Xj such that

(1) each Uj
i is r-disjoint,

(2) mesh(Uj) ≤ D
(m)
Xj

(r),

(3) each x ∈ Xj belongs to at least m elements of Uj .
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For 0 ≤ i ≤ m, let Ui = {U1 × · · · × Um | Uj ∈ Uj
i , 1 ≤ j ≤ m}. Then each Ui is

r-disjoint and, by the third property above, U = U0 ∪ · · · ∪ Um is a cover of Z =

X1 × · · · ×Xm. Hence, DZ(r) = mf(m+ 1)r is an m-dimensional control function

for Z. Note that DZ(r) is independent of Z ∈ T . Thus, DT (r) = mf(m + 1)r is

an m-dimensional control function for T and so asdimAN(T ) ≤ m. �

Remark 3.8. Throughout we have used the ℓ1-metric for products. However,

when working with finite products there is flexibility in the choice of the metric

on the product. Given metric spaces
{

(Xi, dXi
)
}m

i=1
and an extended real number

1 ≤ p ≤ ∞, their ℓp-metric product is X = X1 × · · · ×Xm with the metric

dpX
(

(x1, . . . , xm), (y1, . . . , ym)
)

:=



















(

m
∑

i=1

dXi
(xi, yi)

p

)1/p

if 1 ≤ p < ∞,

max
{

dXi
(xi, yi)

}m

i=1
if p = ∞.

Note that for 1 ≤ p ≤ q ≤ ∞ we have the well-known inequalities dqX ≤ dpX ≤

m1/p−1/qdqX (where, by convention, 1/∞ = 0) and so these metrics are bi-Lipschitz

equivalent with Lipschitz constants depending only on p, q and m.

4. An extension theorem

The goal of this section is to prove the Extension Theorem 4.1. Corollary 4.2,

which follows from the Extension Theorem, is needed to establish Finite Union Per-

manence (Definition 5.7) of Rα, for every ordinal α (Theorem 5.15). An important

step in proving the Extension Theorem is Theorem 4.12, which states that if Y is

a metric family with asdimAN(Y) < ∞, then asdimAN(C(Y)) ≤ asdimAN(Y) + 1,

where C(Y) is the cone of Y (Definition 4.4).

Recall that the class R1 coincides with the collection of all metric families with

finite asymptotic dimension.

Theorem 4.1 (Extension Theorem). Let X be a metric family with a decomposition

X = X0 ∪ X1 for each X ∈ X , X0 = {X0}X∈X , Y ∈ R1 and F : X0 → Y be a

coarse map. Then there is a Y ′ ∈ R1, a coarse embedding Θ: Y → Y ′ and a coarse

map F ′ : X → Y ′ such that the diagram

X0
F

//

F ′|X0   ❆
❆

❆

❆

❆

❆

❆

Y

Θ

��

Y ′

coarsely commutes. That is, Θ ◦ F is close to F ′|X0
.

Corollary 4.2. Let X be a metric family with a decomposition X =
⋃n

i=0 Xi for

each X ∈ X . For each 0 ≤ i ≤ n, let Xi = {Xi}X∈X and let Fi : Xi → Yi be coarse
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maps with Yi ∈ R1. Then there is a coarse map F : X → Y such that Y ∈ R1 and

for every bounded subfamily B of Y there are bounded subfamilies Bi of Yi such that

F−1(B) coarsely embeds into {
⋃n

i=0 Ci | Ci ∈ F−1
i (Bi)}.

Proof. By induction it suffices to prove the case n = 1. Let F ′
i : X → Y ′

i be as in

Theorem 4.1. Define F : X → Y := {Y ′
0 × Y ′

1 | Y ′
i ∈ Y ′

i} to be the product of F ′
0

and F ′
1. Since Θ0 ◦ F0 is close to F ′

0|X0
, for every bounded subfamily B′

0 of Y ′
0 the

inverse image (F ′
0)

−1(B′
0) coarsely embeds into {C0∪X1 | C0 ∈ F−1

0 (Θ−1
0 (B′

0)), X1 ∈

X1}. Because Θ0 is a coarse embedding, the subfamily Θ−1
0 (B′

0) of Y0 is bounded.

The analogous statements hold for bounded subfamilies B′
1 of Y ′

1. Every bounded

subfamily B of Y is a subfamily of {B′
0 × B′

1 | B′
i ∈ B′

i} for bounded subfamilies

B′
i of Y

′
i. Hence, F

−1(B) is a subfamily of (F ′
0)

−1(B′
0) ∩ (F ′

1)
−1(B′

1) which coarsely

embeds into {(C0 ∪ (X1 \ X0)) ∩ ((X0 \ X1) ∪ C1) | Xi ∈ Xi, Ci ∈ F−1
i (Bi)} =

{C0 ∪ C1 | Ci ∈ F−1
i (Bi)}, where Bi denotes the bounded subfamilies Θ−1

i (B′
i) of

Yi. �

An important tool used to prove the Extension Theorem 4.1 is the notion of the

cone of a metric family Y (Definition 4.4).

Let (Y, dY ) be a metric space and let ρ : [0,∞) → [0,∞) be a non-decreasing

function. Let C(Y ) denote the space Y × [0,∞) with the metric dC(Y ) generated

by the symmetric, non-negative function

d′((y, t), (y′, t′)) = |t− t′|+ dY (y,y′)
max{ρ(max{t,t′}),1}

via the chain condition. That is,

dC(Y )((y, t), (y
′, t′)) = inf

{

n−1
∑

i=0

d′((yi, ti), (yi+1, ti+1))

}

,

where the infimum is taken over all finite sequences (“chains”) of the form

{(yi, ti) ∈ Y × [0,∞) | i = 0, . . . , n}

with (y, t) = (y0, t0) and (y′, t′) = (yn, tn).

Remark 4.3. Note that the cone C(Y ) depends on the choice of ρ, which we

suppress from the notation. For different choices of ρ the resulting cones will not

necessarily be coarsely equivalent. For example, for constant ρ the cone is quasi-

isometric to the product Y ×[0,∞), while this is in general not the case if ρ is proper.

Most of the following results hold for any choice of ρ, but for Proposition 4.10 we

will have to use a specific choice of ρ.

Definition 4.4. Given a metric family Y, define the cone of Y, denoted C(Y), to

be the metric family {C(Y )}Y ∈Y .
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Lemma 4.5. For (y, t), (y′, t′) ∈ C(Y ) we have

dC(Y )((y, t), (y
′, t′)) = inf

s≥max{t,t′}

{

2s− t− t′ + dY (y,y′)
max{ρ(s),1}

}

.

Proof. Since (y, t), (y, s), (y′, s), (y′, t′) is a chain from (y, t) to (y′, t′) we have that

dC(Y )((y, t), (y
′, t′)) ≤ d′((y, t), (y, s)) + d′((y, s), (y′, s)) + d′((y′, s), (y′, t′))

= 2s− t− t′ + dY (y,y′)
max{ρ(s),1} ,

provided s ≥ max{t, t′}. It follows that

dC(Y )((y, t), (y
′, t′)) ≤ inf

s≥max{t,t′}

{

2s− t− t′ + dY (y,y′)
max{ρ(s),1}

}

.

Let ǫ > 0. Then there exists a chain {(yi, ti) | i = 0, . . . , n} with (y, t) = (y0, t0)

and (y′, t′) = (yn, tn) such that

n−1
∑

i=0

d′((yi, ti), (yi+1, ti+1)) < dC(Y )((y, t), (y
′, t′)) + ǫ.

Let s′ = maxi ti. Then

n−1
∑

i=0

d′((yi, ti), (yi+1, ti+1)) =
n−1
∑

i=0

|ti − ti+1|+
n−1
∑

i=0

dY (yi,yi+1)
max{ρ(max{ti,ti+1}),1}

≥ |t0 − s′|+ |tn − s′|+
n−1
∑

i=0

dY (yi,yi+1)
max{ρ(s′),1}

≥ 2s′ − t− t′ + dY (y,y′)
max{ρ(s′),1} .

Hence,

dC(Y )((y, t), (y
′, t′)) = inf

s≥max{t,t′}

{

2s− t− t′ + dY (y,y′)
max{ρ(s),1}

}

. �

For t ≥ 0, define the function φt : [0,∞) → [0,∞) by

φt(r) := inf
s≥t

{

2(s− t) + r
max{ρ(s),1}

}

= inf
u≥0

{

2u+ r
max{ρ(u+t),1}

}

.

Note that dC(Y )((y, t), (y
′, t′)) = φmax{t,t′}(dY (y, y

′)) + |t− t′|.

Corollary 4.6. The subspace Yt := Y × {t} ⊆ C(Y ) is isometric to Y equipped

with the metric φt ◦ dY .

Example 4.7. Let ρ(s) = es. For this ρ, an elementary calculus exercise reveals

that

φt(r) =

{

e−tr if 0 ≤ r < 2et,

2 (ln(r/2)− t) + 2 if r ≥ 2et.

Proposition 4.8. For all t ≥ 0, the function φt has the following properties.

(1) If t′ ≥ t then φt′ ≤ φt.

(2) φt is strictly increasing.

(3) limr→∞ φt(r) = ∞,
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(4) For all r, r′ ≥ 0, we have |φt(r
′)− φt(r)| ≤ |r′ − r|/max{ρ(t), 1}. That is,

φt is (1/max{ρ(t), 1})-Lipschitz.

(5) If ρ is proper, then limt→∞ φt(r) = 0 for all r ≥ 0.

(6) φt is a homeomorphism.

(7) φt is concave. That is, φt(λr + (1 − λ)r′) ≥ λφt(r) + (1 − λ)φt(r
′) for all

r, r′ ≥ 0 and 0 ≤ λ ≤ 1.

(8) φt is subadditive. That is, φt(r + r′) ≤ φt(r) + φt(r
′) for all r, r′ ≥ 0.

Furthermore, for any M ≥ 1, φt(Mr) ≤ Mφt(r).

(9) For all δ ≥ 0, φt ≤ φt+δ + 2δ.

Proof. (1) Assume t′ ≥ t and r′ ≥ r ≥ 0. Since ρ is non-decreasing, we have for

u ≥ 0,

2u+ r
max{ρ(u+t′),1} ≤ 2u+ r′

max{ρ(u+t),1}

and it follows that φt′(r) ≤ φt(r
′). Hence, φt′ ≤ φt and φt is non-decreasing.

(2) Assume 0 ≤ x ≤ y and φt(x) = φt(y). For each positive integer n there exists

un ≥ 0 such that
1
n + φt(y) > 2un + y

max{ρ(un+t),1} .

Let C = 1
2 (1 + φt(y)). The above inequality implies that un < C for all n. We also

have that

φt(y) = φt(x) ≤ 2un + x
max{ρ(un+t),1} .

Thus, for all n,
1
n > y−x

max{ρ(un+t),1} ≥ y−x
max{ρ(C+t),1} ≥ 0.

It follows that y − x = 0 and so x = y, which shows that φt is strictly increasing.

(3) Suppose limr→∞ φt(r) = ∞ is false. Since φt is an increasing function, φt is

bounded; that is, there exists a C > 0 such that φt(r) ≤ C for all r ≥ 0. For each

positive integer n there exists un ≥ 0 such that

1 + φt(n) > 2un + n
max{ρ(un+t),1} .

This implies that un < C′ = 1
2 (1 + C) for all n. Hence,

1 + C > 2un + n
max{ρ(un+t),1} ≥ n

max{ρ(C′+t),1} ≥ 0

for all n, a contradiction.

(4) Assume r′ ≥ r ≥ 0. For u ≥ 0,

2u+ r′

max{ρ(u+t),1} = 2u+ r
max{ρ(u+t),1} + r′−r

max{ρ(u+t),1}

≤ 2u+ r
max{ρ(u+t),1} + r′−r

max{ρ(t),1} .

Therefore, φt(r
′) ≤ φt(r)+(r′−r)/max{ρ(t), 1}. Since 0 ≤ φt(r

′)−φt(r), it follows

that |φt(r
′)− φt(r)| ≤ |r′ − r|/max{ρ(t), 1}.

(5) If ρ is proper, then limt→∞ 1/max{ρ(t), 1} = 0 and so it follows from (4)

that limt→∞ φt(r) = 0 for all r ≥ 0.
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(6) The map φt is surjective since it is continuous, φt(0) = 0 and limr→∞ φt(r) =

∞. It is injective and open because it is continuous and strictly increasing. Hence

φt is a homeomorphism.

(7) Let r, r′ ≥ 0 and 0 ≤ λ ≤ 1. Then

φt(λr + (1− λ)r′) = inf
u≥0

{

2u+ λr+(1−λ)r′

max{ρ(u+t),1}

}

= inf
u≥0

{

λ
(

2u+ r
max{ρ(u+t),1}

)

+ (1− λ)
(

2u+ r′

max{ρ(u+t),1}

)}

≥ λ inf
u≥0

{

2u+ r
max{ρ(u+t),1}

}

+ (1− λ) inf
u′≥0

{

2u′ + r′

max{ρ(u′+t),1}

}

= λφt(r) + (1− λ)φt(r
′).

Thus, φt is concave.

(8) It is well-known that any concave function f on an interval containing 0 and

with f(0) = 0 is subadditive and satisfies f(Mx) ≤ Mf(x) for M ≥ 1 and all x. In

particular, φt has the stated properties.

(9) Let δ ≥ 0. Then

φt+δ(r) = inf
u≥0

{

2u+ r
max{ρ(u+t+δ),1}

}

= inf
u≥δ

{

2u− 2δ + r
max{ρ(u+t),1}

}

≥ inf
u≥0

{

2u− 2δ + r
max{ρ(u+t),1}

}

= φt(r)− 2δ. �

Corollary 4.9. For all t ≥ 0, the map θt : Y → C(Y ) given by θt(y) = (y, t) is

(1/max{ρ(t), 1})-Lipschitz and a coarse embedding.

Proof. By Proposition 4.8, for all y, y′ ∈ Y

dC(Y )(θt(y), θt(y
′)) = φt(dY (y, y

′)) ≤ (1/max{ρ(t), 1})dY (y, y
′).

Also, φt is strictly increasing and a homeomorphism (and therefore proper). �

Observe that Corollary 4.9 implies that for any metric family Y, the map of

families Θ: Y → C(Y) given by Θ := {θ0 : Y → C(Y )}Y ∈Y is a coarse embedding.

We prove the following very general extension result.

Proposition 4.10. Let X be a metric family with a decomposition X = X0∪X1 for

every X ∈ X . Let X0 = {X0}X∈X and let Y be any metric family. If F : X0 → Y

is a coarse map then there exist a monotonically increasing function ρ : [0,∞) →

[0,∞) and a coarse map F ′ : X → C(Y) such that Θ ◦F is close to F ′|X0
. Here the

cone C(Y) is constructed using the function ρ.

Proof. Let ρ′ : [0,∞) → [0,∞) be a monotonically increasing function such that

dY (f(x), f(y)) ≤ ρ′(dX(x, y)) for all x, y ∈ X0 ∈ X0 and f : X → Y in F . Define
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ρ(t) := max{ρ′(3t + 2), 1}. For each X = X0 ∪ X1 ∈ X , let p : X0 ∪ X1 → X0

be a map with dX(p(x), x) ≤ dX(X0, x) + 1 and define f ′ : X0 ∪ X1 → C(Y ) by

x 7→ (f(p(x)), dX (x,X0)). We have

dX(p(x), p(x′)) ≤ dX(x, x′) + dX(x,X0) + dX(x′, X0) + 2

≤ 3max{dX(x, x′), dX(x,X0), dX(x′, X0)} + 2

and thus,

dY (f(p(x)),f(p(x′)))
max{ρ(max{dX(x,X0),dX(x′, X0)}),1}

≤
ρ′(3max{dX(x,x′), dX(x,X0), dX(x′, X0)}+2)
max{ρ′(3max{dX(x,X0), dX(x′,X0)}+2),1}

≤ max{ρ′(3dX(x, x′) + 2), 1}

= ρ(dX(x, x′)).

Hence,

dC(Y )(f
′(x), f ′(x′)) ≤ |dX(x,X0)− dX(x′, X0)|+

dY (f(p(x)),f(p(x′)))
max{ρ(max{dX(x,X0),dX(x′,X0)}),1}

≤ dX(x, x′) + ρ(dX(x, x′))

which shows that f ′ is a coarse map. Observe that for x ∈ X0,

dC(Y )(θ0 ◦ f(x), f
′(x)) = dC(Y )((f(x), 0), (f(p(x)), 0)) ≤ dX(x, p(x)) ≤ 1,

and so θ0 ◦ f and f ′|X0
are close. �

Next, we analyze the large scale dimension theory of C(Y) for a metric family Y.

Lemma 4.11. Let Y be a metric family and B be a family of subsets of [0,∞) with

the Euclidean metric. Let YB = {Y ×B ⊂ C(Y ) | Y ∈ Y, B ∈ B}. If asdimAN(Y) <

∞ and asdimAN(B) = 0, then asdimAN(YB) ≤ asdimAN(Y).

Proof. Since asdimAN(B) = 0 there exist non-negative constants M ′ and b′ such

that for each B ∈ B and each R > 0 there exists a cover AB of B that is R-

disjoint and mesh(AB) ≤ M ′R + b′. Note that AB must be a countable collection

otherwise [0,∞) would have an uncountable discrete subset, an impossibility. Let

AB = {Aj | j = 1, 2, . . .} and for each j ≥ 1, let aj = inf Aj . Since AB is R-disjoint,

|ai − aj | ≥ R for i 6= j. Observe that Ak ⊆ [ak, ak +M ′R+ b′].

Let n = asdimAN(Y). There is an M ≥ 1 and a b ≥ 0 such that for each Y ∈ Y,

R > 0 and positive integer k, there is a cover Uk of Y with the property: Uk =

Uk
0 ∪· · ·∪ Uk

n , where each collection Uk
j is φ−1

ak+M ′R+b′(R)-disjoint and mesh(Uk) ≤

Mφ−1
ak+M ′R+b′(R)+ b. For 0 ≤ j ≤ n, let Wj = {U ×Ak | U ∈ Uk

j , k ≥ 1}. Observe

that W = W0 ∪ · · · ∪ Wn is a cover of Y ×B and each Wj is R-disjoint.
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Let (y, t), (y′, t′) ∈ U ×Ak ∈ Wj . Then, making use of Proposition 4.8, we have

dC(Y )((y, t), (y
′, t′)) = φmax{t,t′}(dY (y, y

′)) + |t− t′|

≤ φak
(dY (y, y

′)) +M ′R+ b′

≤ φak+M ′R+b′(dY (y, y
′)) + 2(M ′R+ b′) +M ′R+ b′

≤ φak+M ′R+b′
(

Mφ−1
ak+M ′R+b′(R) + b

)

+ 3M ′R+ 3b′

≤ MR+ φak+M ′R+b′(b) + 3M ′R+ 3b′

≤ (M + 3M ′)R + φ0(b) + 3b′.

Hence, mesh(W) ≤ (M + 3M ′)R + φ0(b) + 3b′ and so

asdimAN(YB) ≤ n = asdimAN(Y). �

Theorem 4.12. Let Y be a metric family with asdimAN(Y) < ∞. Then

asdimAN(C(Y)) ≤ asdimAN(Y) + 1.

Proof. Let p : C(Y) → {[0,∞)} be {pY : C(Y ) → [0,∞)}Y ∈Y , where pY (y, t) = t

for (y, t) ∈ C(Y ). The map p is 1-Lipschitz since

|pY (y, t)− pY (y
′, t′)| = |t− t′|

≤ φmax{t,t′}(dY (y, y
′)) + |t− t′|

= dC(Y )((y, t), (y
′, t′)).

Recall that YB = {Y ×B ⊂ C(Y ) | Y ∈ Y, B ∈ B}, where B is a family of subsets

of [0,∞). Note that for any Y ∈ Y and any A ⊂ Y × [0,∞), we have A ⊂ Y ×pY (A)

and pY (A) = pY (Y × pY (A)). Hence, any subfamily A of C(Y) is also a subfamily

of Yp(A) and asdimAN(A) ≤ asdimAN(Yp(A)).

Let C denote the collection of all families, B, of subsets of [0,∞). We have

asdimAN(p) = sup{asdimAN(YB) | B ∈ C and asdimAN(B) = 0}.

By Lemma 4.11, asdimAN(p) ≤ asdimAN(Y). Note that asdimAN([0,∞)) = 1. By

Theorem 3.5,

asdimAN(C(Y)) ≤ asdimAN(p) + asdimAN([0,∞)) ≤ asdimAN(Y) + 1. �

We can now prove the main theorem of this section.

Proof of Theorem 4.1. Let n = asdim(Y). By [GTY13, Proof of Theorem 4.1],

there is a coarse embedding Ψ: Y → T , where each T ∈ T is a metric product of

n+1 Gromov 0-hyperbolic spaces. Recall that Θ: T → C(T ) is a coarse embedding

(see the discussion following Corollary 4.9) and thus, so is Θ ◦ Ψ. By Lemma 3.7,

asdimAN(T ) ≤ n + 1. Theorem 4.12 implies that asdimAN(C(T )) ≤ n + 2 and so

asdim(C(T )) ≤ asdimAN(C(T )) ≤ n+ 2 and, in particular, asdim(C(T )) is finite.
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That is, C(T ) ∈ R1. The conclusion of Theorem 4.1 now follows by applying

Proposition 4.10 to Ψ ◦ F : X0 → T . �

5. Permanence properties

In this section we prove several permanence properties for regular FDC. We be-

gin by showing that regular FDC satisfies Fibering Permanence (Definition 5.1) and

then show that all of the other permanence properties are satisfied for every collec-

tion of metric families that satisfies Fibering Permanence and contains all metric

families with finite asymptotic dimension. We then use these permanence proper-

ties to show that several important classes of groups have regular FDC. Finally, we

show that regular FDC possesses Finite Quotient Permanence (Definition 5.25), a

property that FDC is not known to possess.

Definition 5.1. A collection of metric families, C, satisfies Fibering Permanence if

the following holds. Let F : X → Y be a coarse map of metric families. If Y ∈ C and

for every bounded subfamily Z of Y the inverse image F−1(Z) ∈ C, then X ∈ C.

Theorem 5.2. Regular FDC satisfies Fibering Permanence.

Proof. Let α be an ordinal number and let P (α) be the following statement: If

there exists a Y ∈ Rα and a coarse map F : X → Y such that for every bounded

subfamily Z of Y, F−1(Z) ∈ R, then X ∈ R. We prove by induction on α that

P (α) is true for all α, thereby establishing the theorem.

If Y is bounded and F : X → Y is a coarse map such that for every bounded

subfamily Z of Y, F−1(Z) ∈ R, then X = F−1(Y) ∈ R. Thus, P (0) is true. Now

assume that P (β) is true for every β < α, and assume there exists a Y ∈ Rα and a

coarse map F : X → Y such that for every bounded subfamily Z in Y, F−1(Z) ∈ R.

Since Y ∈ Rα, there exists a metric family W with asdim(W) < ∞ and a coarse

map G : Y → W such that for every bounded subfamily B in W , there exists a

β < α such that G−1(B) ∈ Rβ . Consider the coarse map G ◦F : X → W and let B

be a bounded subfamily of W . By Proposition 2.11, it will follow that X ∈ R if we

can show that (G ◦ F )−1(B) ∈ R. Note that the restriction of F to (G ◦ F )−1(B),

denoted F : (G ◦ F )−1(B) → G−1(B), is a coarse map and that G−1(B) ∈ Rβ for

some β < α. Now let Z be a bounded subfamily of G−1(B) (which is a subfamily

of Y). By assumption, F−1(Z) ∈ R. Applying the induction hypothesis P (β) to

(G ◦ F )−1(B), we have that (G ◦ F )−1(B) ∈ R. �

Since regular FDC satisfies Fibering Permanence and the definition of regular

decomposition is a special case of fibering, we immediately obtain the following

theorem.
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Theorem 5.3. The collection of metric families with regular FDC is the small-

est collection of metric families that contains all families with finite asymptotic

dimension and satisfies Fibering Permanence.

Fibering Permanence is a strong property for a collection of metric families,

C, to possess. As we show below, if C satisfies Fibering Permanence and con-

tains all bounded metric families, then C must also satisfy Coarse Permanence

(Definition 2.8) and Finite Amalgamation Permanence (Definition 5.5). If C ad-

ditionally contains all metric families with finite asymptotic dimension, then C

must also satisfy Finite Union Permanence (Definition 5.7), Union Permanence

(Definition 5.9), and Limit Permanence (Definition 5.11).

Theorem 5.4. Let C be a collection of metric families that satisfies Fibering Per-

manence and contains all bounded metric families. Then C satisfies Coarse Per-

manence.

Proof. Let F : X → Y be a coarse embedding with Y ∈ C. Then for every bounded

subfamily B of Y the inverse image F−1(B) is again bounded. Thus, X ∈ C by

Fibering Permanence. �

Note that we are not able to combine Theorem 5.4 with Theorem 5.2 to deduce

Coarse Permanence for regular FDC, since our proof of Fibering Permanence for

regular FDC uses Proposition 2.11, which relies on Theorem 2.10.

Definition 5.5. A collection of metric families, C, satisfies Finite Amalgamation

Permanence if the following holds. If X =
⋃n

i=1 Xi and each Xi ∈ C, then X ∈ C.

Theorem 5.6. Let C be a collection of metric families that satisfies Fibering Per-

manence and contains all bounded metric families. Then C satisfies Finite Amal-

gamation Permanence.

Proof. It suffices to prove Finite Amalgamation Permanence in the case n = 2. Let

X1,X2 ∈ C be given and define X1×X2 := {X1×X2 | Xi ∈ Xi}. Define a coarse map

P : X1 ×X2 → X1 by projection onto the first factor. For every bounded subfamily

B of X1 the inverse image P−1(B) is coarsely equivalent to X2. Thus, Fibering

Permanence implies that X1 × X2 ∈ C. By fixing Z ∈ X1, Y ∈ X2, z ∈ Z and

y ∈ Y , we obtain a coarse embedding F : X1 ∪ X2 → X1 × X2 by sending X1 ∈ X1

to X1 × Y via x1 7→ (x1, y) and sending X2 ∈ X2 to Z × X2 via x2 7→ (z, x2).

Therefore, since C satisfies Coarse Permanence (by Theorem 5.4), X1 ∪X2 ∈ C. �

Definition 5.7. A collection of metric families, C, satisfies Finite Union Perma-

nence if the following holds. For n ∈ N, let X1, . . . ,Xn ∈ C and let X be a metric

family. If for each X ∈ X there exist Xi ∈ Xi, 1 ≤ i ≤ n, such that X =
⋃n

i=1 Xi,

then X ∈ C.
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Theorem 5.8. Let C be a collection of metric families that satisfies Fibering Per-

manence and contains all metric families with finite asymptotic dimension. Then

C satisfies Finite Union Permanence.

Proof. It suffices to prove the case n = 2. Let X ,X1,X2 be metric families, where

X1,X2 ∈ C. Assume that for each X ∈ X there exist X1 ∈ X1 and X2 ∈ X2 such

that X = X1 ∪X2. Define a map fX : X → R by fX(x) = dX(x,X2)− dX(x,X1),

where dX is the metric on X . Notice that fX is a 2-Lipschitz map. Therefore,

F = {fX} : X → {R} is a coarse map to a metric family with asymptotic dimension

1. Let U be a bounded subfamily of {R} (i.e., a collection of uniformly bounded

subsets of R). If we show that F−1(U) ∈ C, then it will follow from Fibering

Permanence that X ∈ C.

Let D = sup{diam(U) : U ∈ U}. Then U is a subfamily of the family V =
{

(−∞, D], [−D,∞)
}

. Notice that f−1
X

(

(−∞, D]
)

= BD(X2) and f−1
X

(

[−D,∞)
)

=

BD(X1), where BD(Xi) denotes the D-neighborhood of Xi. Thus, F−1(V) is

coarsely equivalent to the amalgamation X1 ∪ X2, which lies in C by Finite Amal-

gamation Permanence (Theorem 5.6). Since F−1(U) is a subfamily of F−1(V), it

also lies in C by Coarse Permanence (Theorem 5.4). This completes the proof. �

Definition 5.9. A collection of metric families, C, satisfies Union Permanence2 if

the following holds. Let X = {Xi}i∈I be a metric family in which each Xi ∈ X is

expressed as a union of metric subspacesXi =
⋃

i∈Ji
Xij . If {Xij | i ∈ I, j ∈ Ji} ∈ C

and for each r > 0 there exist subspaces Yi(r) ⊆ Xi such that {Yi(r)}i∈I ∈ C and

{Zij(r) = Xij \ Yi(r) | j ∈ Ji} is an r-disjoint collection for each i ∈ I, then X ∈ C.

Theorem 5.10. Let C be a collection of metric families that satisfies Fibering

Permanence and contains all metric spaces with finite asymptotic dimension. Then

C satisfies Union Permanence.

Proof. Note that, by the previous theorems, C satisfies Coarse Permanence, Finite

Amalgamation Permanence, and Finite Union Permanence.

Let X = {Xi}i∈I be a metric family in which each Xi ∈ X is expressed as a

union of metric subspaces Xi =
⋃

i∈Ji
Xij . Suppose that {Xij | i ∈ I, j ∈ Ji} ∈ C

and for each r > 0 there exist subspaces Yi(r) ⊆ Xi such that {Yi(r)}i∈I ∈ C

and {Zij(r) = Xij \ Yi(r) | j ∈ Ji} is an r-disjoint collection for each i ∈ I. Let

Y ′
i (1) = Yi(1) and for n ≥ 2 define Y ′

i (n) := Bn−1(Y
′
i (n−1))∪Yi(n). (If

⋃

r∈N Yi(r)

is empty, then choose Y ′
i (1) to be a single point.) Notice that for every i ∈ I and

every n ∈ N, Y ′
i (n) ⊆ Y ′

i (n+ 1) and the collection {Z ′
ij(n) := Xij \ Y

′
i (n) | j ∈ Ji}

is n-disjoint. Also, for each i ∈ I,
⋃∞

n=1 Y
′
i (n) = Xi. Since {Yi(n)}i∈I ∈ C for each

2Note that in [Gue14] a collection is said to satisfy Union Permanence if it satisfies the above
definition of Union Permanence, as well as Finite Union Permanence.
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n ∈ N, Coarse Permanence and Finite Union Permanence imply that {Y ′
i (n)}i∈I =

{Bn−1(Y
′
i (n− 1)) ∪ Yi(n)}i∈I ∈ C for each n ∈ N.

For each i ∈ I and j ∈ Ji, let Lij denote the ray [0,∞) considered as a graph

with vertex set N ∪ {0}. For each i ∈ I, let Ti be the rooted tree obtained from
⊔

j∈Ji
Lij by identifying the set {0 ∈ Lij | j ∈ Ji} to one point pi, the root of Ti.

For every i, define a map fi : Xi → Ti inductively as follows. Map all of Y ′
i (1) to the

root pi ∈ Ti. Now assume the map is defined for Y ′
i (n) and let y ∈ Y ′

i (n+1)\Y ′
i (n)

be given. Define fi(y) = n ∈ Lij ⊂ Ti, where y ∈ Xij . This is well-defined because

if y ∈ Xij ∩Xik for distinct j, k ∈ Ji, then y ∈ Z ′
ij(n)∩Z ′

ik(n), which is impossible

since Z ′
ij(n) and Z ′

ik(n) are disjoint.

We want to show that F = {fi : Xi → Ti}i∈I is a coarse map. Let x, y ∈ Xi

be given. Then there exist n,m ∈ N with n − 1 ≤ dXi
(x, y) ≤ n and fi(x) =

m ∈ Lij . We can assume without loss of generality that m ≤ fi(y). Then x ∈

Xij∩Y
′
i (m+1)\Y ′

i (m) and y /∈ Y ′
i (m). We have y ∈ Bn(Y

′
i (m+1)) ⊆ BN (Y ′

i (N)) ⊆

Y ′
i (N + 1), where N = max{n,m + 1}. If N = m + 1, then y ∈ Xij by the N -

disjointness of {Z ′
ij(N) | j ∈ Ji}, and so fi(y) ∈ [m,N ] = [m,m + 1] ⊆ Lij ; that

is, dTi
(fi(x), fi(y)) ≤ 1. If n > m+ 1, then fi(y) ∈ [m,N ] = [m,n] ⊆ Lik for some

k ∈ Ji, and d(fi(x), fi(y)) ≤ n+m ≤ 2n ≤ 2dXi
(x, y) + 2. Thus, F : X → {Ti}i∈I

is a coarse map.

Since each Ti is a tree, Lemma 3.7 implies that the family {Ti}i∈I has asymptotic

dimension at most one. Let U be a bounded subfamily of {Ti}i∈I and let m be an

integer greater than sup{diam(U) | U ∈ U}. Then U is a subfamily of

V = {B2m(pi) ⊆ Ti | i ∈ I} ∪ {Lij \ [0,m] | i ∈ I, j ∈ Ji}.

We have that F−1(V) is a subfamily of {Y ′
i (2m+ 1) | i ∈ I} ∪ {Xij | i ∈ I, j ∈ Ji}.

Since {Xij | i ∈ I, j ∈ Ji} and {Y ′
i (2m+ 1) | i ∈ I} lie in C, Finite Amalgamation

Permanence implies that F−1(V) ∈ C. By Coarse Permanence, the subfamily

F−1(U) also lies in C. Thus, Fibering Permanence implies that X ∈ C. �

The next permanence property we establish is Limit Permanence, as defined by

Guentner [Gue14].

Definition 5.11. A collection of metric families, C, satisfies Limit Permanence if

the following holds. Let X = {Xi}i∈I be a metric family. If for every R > 0 there

exists an indexing set JR and, for each i ∈ I, an R-disjoint decomposition

Xi =
⊔

R-disjoint

{Yij | j ∈ JR}

such that {Yij | i ∈ I, j ∈ JR} ∈ C, then X ∈ C.
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Theorem 5.12. Let C be a collection of metric families that satisfies Fibering Per-

manence and contains all metric families with finite asymptotic dimension. Then

C satisfies Limit Permanence.

Proof. Let X = {Xi}i∈I be a metric family. Suppose that for every R > 0 there

exist an indexing set JR and R-disjoint decompositions

Xi =
⊔

R-disjoint

{Yij | j ∈ JR},

such that the family {Yij | i ∈ I, j ∈ JR} lies in C.

For each i ∈ I, let X ′
i be the space with the same underlying set as Xi equipped

with the metric d′i defined as follows. For x, y ∈ Xi, d
′
i(x, y) = 0 if x = y, and if

x 6= y, then

d′i(x, y) = inf{max{1, di(xm, xm+1) | m ∈ N} | xm ∈ Xi : ∃n ∈ N, x0 = x, xn = y}.

This metric can be viewed as follows. We call two points r-connected if one can be

reached from the other by any number of jumps of length at most r. In the above

metric the distance between two points is the smallest r such that the two points

are r-connected, with the exception that two different points have distance at least

one. The latter is only necessary to obtain a metric instead of a pseudo-metric.

The metric d′i is an ultrametric; that is, it satisfies d′i(x, y) ≤ max{di(x, z), di(z, y)}

for all x, y, z ∈ Xi. This ultrametric is coarsely equivalent to the pseudo-ultrametric

constructed from a metric in [Lem03, Lemma 8]. Note that d′i(x, y) ≤ max{di(x, y), 1}.

Thus, F = {idi : Xi → X ′
i}i∈I , the map of metric families consisting of the identity

functions on the underlying sets, is coarse. Furthermore, since for every r > 0,

two r-balls in X ′
i will either coincide or be disjoint, it is straightforward to show

using Proposition 3.1 that asdim(X ′) = 0. Let Br = {Br(x) | i ∈ I, x ∈ X ′
i} be

the subfamily of all r-balls in X ′. Then, for each R > 0, the family F−1(BR) is a

subfamily of {Yij | i ∈ I, j ∈ JR}, and so F−1(BR) ∈ C by Theorem 5.4. Hence, by

Fibering Permanence, X ∈ C. �

We now have the following corollary.

Corollary 5.13. Regular FDC satisfies Finite Amalgamation Permanence, Finite

Union Permanence, Union Permanence, and Limit Permanence.

In Theorem 2.10 we showed that Rα satisfies Coarse Permanence for every ordi-

nal α. We now show that Rα also satisfies Finite Amalgamation Permanence and

Finite Union Permanence. The fact that Rα satisfies Finite Union Permanence

will play an important role in the proof that regular FDC satisfies Finite Quotient

Permanence (Theorem 5.28).
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Theorem 5.14. The collection Rα satisfies Finite Amalgamation Permanence for

every ordinal α.

Proof. We prove the theorem by induction on α. Clearly, if each Xi ∈ R0 = B,

then also X ∈ R0. Now assume the statement holds for all β < α. Assume that

X =
⋃n

i=1 Xi, where each Xi is in Rα. Then, for each i there is a Yi ∈ R1 and a

coarse map Fi : Xi → Yi such that the inverse image of a bounded subfamily lies

in Rβi
for some βi < α. Note that the family Y =

⋃n
i=1 Yi lies in R1. The inverse

image F−1(B) of a bounded subfamily B of Y under the canonical map F : X → Y

is a finite union of metric families lying in Rβ , where β = maxi βi < α. Therefore,

F−1(B) ∈ Rβ by the induction hypothesis. Hence, X ∈ Rα. �

Theorem 5.15. The collection Rα satisfies Finite Union Permanence for every

ordinal α.

Proof. Let n ∈ N, and let X ,X1, . . . ,Xn be metric families, where each Xi ∈ Rα.

Assume that for eachX ∈ X there existXi ∈ Xi, 1 ≤ i ≤ n, such thatX =
⋃n

i=1 Xi.

We prove that X ∈ Rα by induction on α.

The case α = 0 is trivial. (The case α = 1 is the fact that finite asymptotic

dimension satisfies Finite Union Permanence. The proof of this fact for metric

spaces, which can be found in [BD08, Corollary 26], immediately generalizes to

metric families.) Suppose that the statement holds for all β < α, and assume

that Xi ∈ Rα for every i = 1, . . . , n. Then there are coarse maps Fi : Xi → Yi,

where asdimYi < ∞, such that the inverse images of bounded subfamilies Bi of Yi

under Fi lie in Rβi
, with βi < α. By Corollary 4.2, there exists a metric family

Y ′ with asdimY ′ < ∞ and a coarse map F : X → Y ′ such that for every bounded

subfamily B of Y ′ there are bounded subfamilies Bi of Yi such that the inverse

image F−1(B) coarsely embeds into {
⋃n

i=1 Ci | Ci ∈ F−1
i (Bi)}. Therefore, by

the induction assumption, F−1(B) lies in Rβ , where β = maxi βi < α. Hence,

X ∈ Rα. �

Given a group G together with a finite symmetric generating set S ⊂ G, the

length of g ∈ G with respect to S is the non-negative integer |g|S = min{n | g =

s1s2 · · · sn, sj ∈ S}. The corresponding left-invariant word metric on G is given by

dS(g, h) = |g−1h|S . Any two such finite generating sets for G yield quasi-isometric

metric spaces. More generally, a countable group G admits a proper, left-invariant

metric that is unique up to coarse equivalence. Hence, asymptotic dimension, FDC,

and regular FDC are well-defined for countable groups, and in the following we will

assume all groups to be countable.

Since regular FDC satisfies Coarse Permanence, Fibering Permanence, Finite

Union Permanence, Union Permanence, and Limit Permanence (Theorem 2.10,
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Theorem 5.2 and Corollary 5.13), the following permanence properties for groups

now follow from [Gue14, Theorems 7.2.1, 7.2.3, 7.2.5 and Corollary 7.2.4].

Corollary 5.16. If G is a (countable) direct union of subgroups that each have

regular FDC, then G has regular FDC. In particular, a countable discrete group

has regular FDC if and only if its finitely generated subgroups do.

Corollary 5.17. If G acts on a locally finite space X with regular FDC and there

exists an x ∈ X for which the stabilizer subgroup Gx has regular FDC, then G has

regular FDC.

Corollary 5.18. The class of groups with regular FDC is closed under group ex-

tensions.

Corollary 5.19. The class of groups with regular FDC is closed under the forma-

tion of free products (with amalgamation).

Corollary 5.20. A group acting on a tree has regular FDC if and only if all of the

vertex stabilizers have regular FDC.

Since regular FDC satisfies all of the permanence properties that FDC does, the

proofs that the following groups have regular FDC are precisely the same as in

[GTY12] and [GTY13].

Theorem 5.21. The following classes of groups have regular FDC:

(1) Elementary amenable groups.

(2) Countable subgroups of GLn(R), where R is any commutative ring with

unit.

(3) Countable subgroups of virtually connected Lie groups.

Proof. The class of elementary amenable groups is the smallest class of groups

that contains all finite groups and all finitely generated abelian groups, and is

closed under extensions and countable direct unions. Since all finite groups and

all finitely generated abelian groups have finite asymptotic dimension, they have

regular FDC. Therefore, elementary amenable groups have regular FDC by Corol-

laries 5.16 and 5.18.

By Corollary 5.16, to prove that countable subgroups of GLn(R) have regular

FDC it suffices to show that all finitely generated subgroups of GLn(R) have regular

FDC. When R is a field, the proof makes use of the Fibering Theorem 5.2 and

is exactly the same as the proof of [GTY12, Theorem 3.1], except that in the

proof of [GTY12, Lemma 3.9] FDC has to be replaced by regular FDC. For the

generalization to linear groups over commutative rings, the proof is analogous to

the proof of [GTY13, Theorem 5.2.2], making use of the fact that nilpotent groups
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are elementary amenable and hence have regular FDC by (1) and the fact that

regular FDC is closed under group extensions (Corollary 5.18).

A countable subgroup of a virtually connected Lie group has a finite index sub-

group that is contained in a connected Lie group. A subgroup of a connected Lie

group can be written as an extension with linear quotient and abelian kernel, and

thus has regular FDC. �

Example 5.22. Included in the class of elementary amenable groups are the iter-

ated wreath products of the infinite cyclic group. Let G0 = Z and, for n ≥ 1, let

Gn = Gn−1 ≀ Z, the wreath product of Gn−1 with Z. There is a natural inclusion

Gn →֒ Gn+1. Define Gω to be the direct union
⋃

n≥0 Gn. By Theorem 5.21(1),

Gn, n ≥ 0, and Gω have regular FDC. Note that for n > 1 the group Gn is not a

linear group, [Rob96, Corollary 15.1.5]. Furthermore, Gω is not solvable because it

contains Gn for every n and Gn has derived length n+ 1.

Since regular FDC satisfies Coarse Permanence, Fibering Permanence, Finite

Union Permanence, and Union Permanence, it is an axiomatically extendable prop-

erty of metric families, as defined by Ramras and Ramsey [RR, Definition 3.7].

Such a property is extendable to relatively hyperbolic groups [RR, Theorem 3.9].

That is, we obtain the following corollary.

Corollary 5.23. If G is relatively hyperbolic with respect to the peripheral subgroups

H1, . . . , Hn, and each Hi has regular FDC, then G has regular FDC.

Regular FDC also behaves well with respect to taking quotients by finite groups

(Theorem 5.28 below). This permanence property is not known for FDC and was

one of the main motivations for our introduction of regular FDC.

Let X be a metric space and F a finite group acting isometrically on X . Recall

that on the quotient space F\X we use the following metric.

d(Fx, Fx′) := min
h∈F

dX(x, hx′)

Remark 5.24. With this choice of metric the quotient map qX : X → F\X

is contracting and is therefore a coarse map with control function equal to the

identity on [0,∞). Furthermore, an F -equivariant coarse map f : X → Y with

control function ρ induces a coarse map f̄ : F\X → F\Y that also has control

function equal to ρ and makes the following diagram commute.

X
f

//

qX

��

Y

qY

��

F\X
f̄

// F\Y
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Definition 5.25. A collection, C, satisfies Finite Quotient Permanence if the fol-

lowing holds. If X ∈ C and F is a finite group that acts isometrically on every

X ∈ X , then the family F\X := {F\X | X ∈ X} is also in C.

Proposition 5.26. Let C be a collection that satisfies Finite Quotient Permanence.

Let X = {Xi}i∈I be in C, and let F = {Fi}i∈I be a collection of finite groups such

that there exists an integer M with supi |Fi| ≤ M and such that Fi acts isometrically

on Xi, for each i ∈ I. Then F\X := {Fi\Xi | i ∈ I} is in C.

Proof. Since the orders of the finite groups Fi have a uniform bound, there are

finitely many finite groups, G1, . . . , Gn, such that each Fi is isomorphic to one of

the Gj ’s. Let F =
⊕n

j=1 Gj , and define the action of F on Xi by choosing an

isomorphism from one of the summands of F to Fi and letting the other summands

act trivially. This action of F on Xi is isometric and F\X = F\X . Thus, F\X ∈ C

since C satisfies Finite Quotient Permanence. �

Remark 5.27. It is straightforward to generalize the proof of Proposition 3.2 to

show that if X = {Xi}i∈I is a metric family with asymptotic dimension at most n

and F = {Fi}i∈I is a collection of finite groups such that each Fi acts isometrically

on Xi and there exists an integer M with supi |Fi| ≤ M , then asdim(F\X ) ≤

M(n+ 1)− 1.

Proposition 3.2 tells us that finite asymptotic dimension satisfies Finite Quotient

Permanence. The next theorem can be thought of as a generalization of this fact.

While it is not hard to prove that weak FDC satisfies Finite Quotient Permanence,

we do not know whether it holds for FDC. Note that Finite Quotient Permanence

is the only permanence property that we cannot derive from Fibering Permanence.

Theorem 5.28. The collection Rα satisfies Finite Quotient Permanence, for every

ordinal α. In particular, R satisfies Finite Quotient Permanence.

Proof. We prove the theorem by induction on α. The case α = 0 is clear, since if

X is bounded, then so is F\X for any finite group F acting isometrically on every

X ∈ X .

Now assume that the statement is true for all β < α. Let X ∈ Rα be given,

and let F be a finite group that acts isometrically on every X ∈ X . By definition,

there is a Y ∈ R1 and a coarse map G : X → Y such that the inverse image of

each bounded subfamily of Y lies in Rβ for some β < α. Since G is coarse, there

is a control function ρ : [0,∞) → [0,∞) with dY (g(x), g(x
′)) ≤ ρ(dX(x, x′)) for all

g : X → Y in G and all x, x′ ∈ X .

Let g : X → Y be a map in G. (Recall that, by the definition of a coarse map

of metric families, for each X ∈ X there is at least one g ∈ G mapping X to some
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Y ∈ Y.) Define a map gF : X →
∏

F Y by gF (x) =
(

g(h−1x)
)

h∈F
. Note that gF

is F -equivariant, where F acts on
∏

F Y by permuting factors. Equip
∏

F Y with

the ℓ1-metric, d1. Then, F acts isometrically on
∏

F Y , and

d1
(

gF (x), gF (x
′)
)

=
∑

h∈F

dY
(

g(h−1x), g(h−1x′)
)

≤
∑

h∈F

ρ(dX(h−1x, h−1x′))

= |F | · ρ(dX(x, x′)).

Hence, the map gF is coarse with control function ρ′ = |F | · ρ. Thus, GF = {gF}

defines a coarse map from X to the metric family YF =
{
∏

F Y | Y ∈ Y} with

control function ρ′. Furthermore, since gF is F -equivariant, it induces a coarse map

ḡF : F\X → F\
∏

F Y also with control function ρ′ (see Remark 5.24). Therefore,

GF = {ḡF } defines a coarse map from F\X to F\YF with control function ρ′.

Let Q = {q : X → F\X | X ∈ X} and P = {p :
∏

F Y → F\
∏

F Y | Y ∈ Y},

be the quotient maps. Then we have the following commutative diagram (see

Remark 5.24).

X
GF

//

Q

��

YF

P

��

F\X
GF

// F\YF

By Theorem 3.6 and Proposition 3.2, asdim
(

F\YF

)

≤ |F |·
(

|F | asdim(Y)+1
)

−1.

Thus, the family F\YF has finite asymptotic dimension. Therefore, by definition,

to prove that F\X is in Rα it suffices to show that for every bounded subfamily

B of F\YF , the inverse image under GF is in Rβ , for some β < α. Using the

commutative diagram above, every A ∈ (P ◦GF )
−1(B) is an F -invariant subspace

of some X ∈ X . Thus, F\(P ◦ GF )
−1(B) = Q

(

(P ◦ GF )
−1(B)

)

= (GF )
−1(B).

Therefore, if we show that (P ◦ GF )
−1(B) lies in Rβ for some β < α, then it will

follow from the induction assumption that (GF )
−1(B) is in Rβ , as desired.

Let R be the uniform bound on the diameters of the elements of B. For each

B ∈ B, pick a point z ∈ p−1(B), then

p−1(B) ⊆
⋃

h∈F

B2R(hz) ⊆
∏

F

Y.

For k ∈ F , let πk :
∏

F Y → Y be projection to the kth coordinate. Let Bh,k :=

B2R(πk(hz)) ⊆ Y . Then

B2R(hz) ⊆
∏

k∈F

Bh,k.

Suppose that gF (x) ∈ B2R(hz). Then, by definition,

d1
(

gF (x), hz
)

=
∑

k∈F

dY
(

g(k−1x), πk(hz)
)

≤ 2R,
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and so dY
(

g(x), πe(hz)
)

≤ 2R, where e denotes the identity element of F . That is,

g(x) ∈ Bh,e. Therefore, g
−1
F (B2R(hz)) ⊆ g−1(Bh,e) for each h ∈ F . Thus,

(p ◦ gF )
−1(B) ⊆ g−1

F

(

⋃

h∈F

B2R(hz)

)

=
⋃

h∈F

g−1
F (B2R(hz)) ⊆

⋃

h∈F

g−1(Bh,e).

This implies that there exist bounded subfamilies B1, . . . ,B|F | of Y such that every

metric space in (P ◦GF )
−1(B) is a subspace of

⋃|F |
j=1 Xj , for someXj ∈ G−1(Bj), 1 ≤

j ≤ |F |. By the definition of G, since each Bj is bounded there is a β < α such that

G−1(Bj) ∈ Rβ for every j, 1 ≤ j ≤ |F |. Since Rβ satisfies Finite Union Permanence

(Theorem 5.14) and Coarse Permanence (Theorem 2.10), (P ◦GF )
−1(B) is also in

Rβ. This completes the proof. �

We immediately obtain the following corollary by applying Finite Quotient Per-

manence for R (using the version from Proposition 5.26) to the family {GF | F ≤

G, |F | < ∞}, where GF = G for every F , and F acts on GF by left translation.

Corollary 5.29. Let G be a countable group that has regular FDC and a global up-

per bound on the orders of its finite subgroups. Then the metric family {F\G | F ≤

G, |F | < ∞} has regular FDC.

In order to apply the first author’s injectivity results for algebraic K- and L-

theory [Kas15, Theorems 8.1 and 9.1] to a countable group G that has FDC, a

finite dimensional model for EG (the universal space for proper G-actions) and a

global upper bound on the orders of its finite subgroups, one must verify that the

metric families {F\G | F ≤ G, |F | < n} have FDC for every n ∈ N. The first au-

thor achieved this in [Kas15, Theorem 4.13] for every finitely generated subgroup

of GLn(R), where R is a commutative ring with unit. The proof depended on

a very technical proof that a stronger version of this is true for solvable groups.

Furthermore, that proof cannot be generalized to elementary amenable groups. It

is possible to circumvent this technical condition for solvable groups and prove

injectivity for linear groups by using the powerful theorem that solvable groups

satisfy the Farrell–Jones Conjecture. (For details see [Kas16, Theorem 1.1], where

injectivity is proved for every countable subgroupG of a linear group with a finite di-

mensional model for EG.) However, since all of these classes of groups have regular

FDC (Theorem 5.21) and regular FDC implies FDC (Theorem 2.13), Corollary 5.29

yields a unified proof that the metric families {F\G | F ≤ G, |F | < n} have FDC

for such groups for every n ∈ N. In this sense, Corollary 5.29 shows that regu-

lar FDC is a useful concept for establishing split injectivity of assembly maps and

might lead to new injectivity results once FDC is known for more classes of groups

(see Theorem 1.3).
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