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AFFINE ZIGZAG ALGEBRAS AND IMAGINARY STRATA FOR KLR

ALGEBRAS

ALEXANDER KLESHCHEV AND ROBERT MUTH

Abstract. KLR algebras of affine ADE types are known to be properly stratified if the characteristic
of the ground field is greater than some explicit bound. Understanding the strata of this stratification
reduces to semicuspidal cases, which split into real and imaginary subcases. Real semicuspidal strata
are well-understood. We show that the smallest imaginary stratum is Morita equivalent to Huerfano-
Khovanov’s zigzag algebra tensored with a polynomial algebra in one variable. We introduce affine
zigzag algebras and prove that these are Morita equivalent to arbitrary imaginary strata if the
characteristic of the ground field is greater than the bound mentioned above.

1. Introduction

In this paper we work with the KLR algebras Rθ of Lie type Γ, which is assumed to be of untwisted
affine ADE type, over an arbitrary field k of characteristic p ≥ 0. Here θ =

∑
i∈I niαi is an arbitrary

element of the positive part Q+ of the root lattice. McNamara [22] shows that these algebras are
explicitly properly stratified if p = 0. McNamara’s result is generalized in [20] to the case where
p > min{ni | i ∈ I}.

Informally, a proper stratification of Rθ yields a stratification of the category Rθ-mod of finitely
generated graded Rθ-modules by the categories Bξ-mod for much simpler algebras Bξ, see [17] for
details. Description of the algebras Bξ is easily reduced to the semicuspidal cases, which split into real
and imaginary subcases. In the real case we have Bnα

∼= k[z1, . . . , zn]
Sn , the algebra of symmetric

polynomials in n variables, but the imaginary case Bnδ is not so easy to understand.
The algebras Rθ actually have many proper stratifications. These are determined by a choice of a

convex preorder on the set Φ+ of the positive roots of the corresponding affine root system. In this
paper we always work with a balanced convex preorder as in [19]. We first prove that Bδ

∼= k[z]⊗ Z,
where Z is the zigzag algebra of [12] corresponding to the underlying finite Dynkin diagram Γ′ obtained
by deleting the affine node from Γ, and k[z] is the polynomial algebra. McNamara and Tingley [23]
show that this description of Bδ can be obtained for all convex preorders as an application of their
technique of face functors.

In order to describe the higher imaginary strata, we introduce the main object of study of this
paper—the rank n affine zigzag algebra Z

aff
n , which is defined for any connected graph without loops.

We show that Bnδ is (graded) Morita equivalent to the affine zigzag algebra Z
aff
n corresponding to Γ′

if p > min{ni | i ∈ I} (or p = 0).
To state the results more explicitly, we fix some notation. The simple roots of our affine root

system of untwisted ADE type are denoted αi for i ∈ I = {0, 1, . . . , l}. We assume that 0 is the affine
vertex, so that α1, . . . , αl are the simple roots of the underlying finite root system. Let δ be the
null-root. Let n ∈ Z>0. The semicuspidal algebra Cnδ is a quotient of Rnδ defined in such a way that
the category of finitely generated semicuspidal Rnδ-modules is equivalent to the category Cnδ-mod of
finitely generated graded Cnδ-modules.

We denote by Pn the set of l-multipartitions of n. To every λ ∈ Pn one associates an irreducible
Rnδ-module L(λ) and a standard Rnδ-module ∆(λ), see [20]. While L(λ) is finite dimensional, ∆(λ)
is always infinite dimensional. We have that {L(λ) | λ ∈ Pn} is a complete irredundant system of
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2 ALEXANDER KLESHCHEV AND ROBERT MUTH

irreducible Cnδ-modules up to isomorphism and degree shift, and ∆(λ) is the projective cover of L(λ)
in the category Cnδ-mod.

We denote
∆nδ :=

⊕

λ∈Pn

∆(λ) and Bnδ := EndRnδ
(∆nδ)

op.

Thus, Bnδ is the basic algebra Morita equivalent to Cnδ. It turns out that the parabolically induced
module ∆◦n

δ , which can be considered as a Cnδ-module, is always projective in the category Cnδ-mod.
However, it is a projective generator in Cnδ-mod if and only if p > n or p = 0. So under these
assumptions, the endomorphism algebra of ∆◦n

δ is Morita equivalent to Cnδ and Bnδ. Otherwise, it is
Morita equivalent to their idempotent truncations. The following result is proved under no restrictions
on p. In fact, it holds over an arbitrary commutative unital ground ring k.

Theorem A. Assume that the convex preorder on Φ+ is balanced. Then we have an isomorphism of
graded algebras

EndRnδ
(∆◦n

δ )op ∼= Z
aff
n ,

where Z
aff
n is the affine zigzag algebra of type Γ′. In particular, Bδ

∼= k[z]⊗ Z.

Theorem A appears in the body of the paper as Theorem 6.16 and Corollary 6.17. We note that
Theorem A has been used in a crucial way in the recent proof of Turners conjecture on RoCK blocks
of symmetric groups [8], [7].

The affine zigzag algebra is actually a special case of a more general affinization construction which
we present in §3.2. For any graded symmetric algebra A, free of finite rank over k, we construct an
associated rank n affinization Hn(A) (see Definition 3.2) and prove some fundamental results about
this algebra.

Theorem B. Let A be a graded symmetric k-algebra, free of finite rank over k. Let n ∈ Z>0. Let
k[z1, . . . , zn] be a polynomial algebra in n generators, and Sn be the symmetric group of rank n. Then

(i) Hn(A) is isomorphic to k[z1, . . . , zn]⊗A⊗n ⊗ kSn as a k-module.
(ii) Hn(A) is free as a left/right k[z1, . . . , zn]-module, free as a left/right A⊗n-module, and free

as a left/right kSn-module.
(iii) The center of Hn(A) is Z(Hn(A)) = (k[z1, . . . , zn]⊗Z(A)

⊗n)Sn , the subalgebra of invariants
under the diagonal action of Sn.

(iv) The wreath product A ≀Sn is a homomorphic image of Hn(A).

Parts (i)–(iv) of Theorem B appear in the body of the paper as Theorem 3.8, Corollary 3.10, and
Proposition 3.17. Our affinized symmetric algebras are related to the generalized degenerate affine
Hecke algebras constructed by Costello and Grojnowski [5], and the affine zigzag algebra is closely
related to certain endomorphism algebras associated with the categorification of Heisenberg algebras
by Cautis and Licata [4], see Remarks 3.6 and 4.13.

Acknowledgements. We are grateful to Shunsuke Tsuchioka for alerting us to the connection be-
tween affine zigzag algebras and other algebras which have previously appeared in the mathematical
literature.

2. Preliminaries

2.1. Basic notation. We will often work over a ground ring k which is assumed to be a Noetherian
commutative unital ring. When we assume that k is a field, we write p := chark. If V is a free
k-module with basis {v1, . . . , vn} we denote by {v∗1 , . . . , v

∗
n} the dual basis of V ∗ = Hom

k

(V,k).
Our basic notation is as in [20], in particular, all algebras, modules, ideals, etc., are assumed to be
(Z-)graded. The category of finitely generated graded left modules over a k-algebra H we denote
H-mod.

We will write [1, t] := {1, 2, . . . , t} for t ∈ Z>0. The quantum integers [n] = (qn − q−n)/(q − q−1)
as well as expressions like [n]! := [1][2] . . . [n] and 1/(1− q2) are always interpreted as Laurent series
in Z((q)). The morphisms in this category are all homogeneous degree zero H-homomorphisms,
which we denote homH(−,−). For V ∈ H-mod, let qdV denote its grading shift by d, so if Vm is
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the degree m component of V , then (qdV )m = Vm−d. For U, V ∈ H-mod, we set HomH(U, V ) :=⊕
d∈Z

HomH(U, V )d, where HomH(U, V )d := homH(qdU, V ). If all graded components Vm of a k-
module V are free of finite rank, we denote by dimq V :=

∑
m∈Z

(rkVm)qm ∈ Z((q)) the graded rank
of V .

If µ is a usual partition of n, we write n = |µ|. An l-multipartition of n is a tuple µ = (µ(1), . . . , µ(l))

of partitions such that |µ| := |µ(1)|+ · · ·+ |µ(l)| = n. The set of the all l-multipartitions of n is denoted
by Pn, and P := ⊔n≥0Pn.

2.2. Symmetric group actions. Let Sn be the symmetric group of rank n, generated by the simple
transpositions s1, . . . , sn−1. For a k-module V , we define a left action of Sn on V ⊗n via place
permutation:

σ(v1 ⊗ · · · ⊗ vn) := vσ−11 ⊗ · · · ⊗ vσ−1n,

for all v = v1 ⊗ · · · ⊗ vn ∈ V ⊗n and σ ∈ Sn.
We define a left action of Sn on the polynomial algebra k[z1, . . . , zn], via permutation of generators:

σzi := zσi

for all i ∈ [1, n] and σ ∈ Sn, and extend this action to all f = f(z1, . . . , zn) ∈ k[z1, . . . , zn].
For i ∈ [1, n− 1], define the divided difference operator ∇i on k[z1, . . . , zn] by

∇i(f) :=
f − sif

zi − zi+1
.

The following facts about divided differences are well-known and easily checked:

Lemma 2.1. Let i ∈ [1, n− 1], j ∈ [1, n], and f ∈ k[z1, . . . , zn]. Then:

(i) ∇i(f) =
si(∇i(f)) = −∇i(

sif)
(ii) ∇i(f) = 0 if sif = f
(iii) ∇i(zjf)− zsij∇i(f) = (δi,j − δi+1,j)f .

2.3. Affine root system. Let C = (cij)i,j∈I be a Cartan matrix of untwisted affine ADE type, see [13,
§4, Table Aff 1]. So C corresponds to one of the following Dynkin diagrams:

A
(1)
ℓ

0

1 2 3 ℓ − 1 ℓ

· · ·

D
(1)
ℓ

0

1

2 3 ℓ − 3 ℓ − 2

ℓ − 1

ℓ

· · ·

E
(1)
6

0

1

2

3 4 5 6

E
(1)
7

0 1

2

3 4 5 6 7

E
(1)
8

01

2

3 4 5 6 7 8

We have I = {0, 1, . . . , l}, where 0 is the affine vertex, and set I ′ := {1, . . . , l} = I \ {0}. Let C′ be the
finite type Cartan matrix corresponding to the subset I ′ ⊂ I.

Let (h,Π,Π∨) be a realization of C, with simple roots {αi | i ∈ I} standard bilinear form (·, ·) on h∗,
and Q+ :=

⊕
i∈I Z≥0 · αi. For θ ∈ Q+, we write ht(θ) for the sum of its coefficients when expanded

in terms of the αi’s. Let Φ and Φ′ be the root systems corresponding to C and C
′ respectively, with

Φ+ and Φ′
+ being the corresponding sets of positive roots. Let δ ∈ Φ+ be the null root. We have

Φ+ = Φim
+ ⊔ Φre

+ , where Φim
+ = {nδ | n ∈ Z>0} and

Φre
+ = {β + nδ | β ∈ Φ′

+, n ∈ Z≥0} ⊔ {−β + nδ | β ∈ Φ′
+, n ∈ Z>0}.

A convex preorder on Φ+ is a total preorder � such that for all β, γ ∈ Φ+ we have:
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• If β � γ and β + γ ∈ Φ+, then β � β + γ � γ;
• β � γ and γ � β if and only if β and γ are imaginary or β = γ.

A convex preorder is called balanced if all finite simple roots αi with i ∈ I ′ satisfy αi � δ.

2.4. KLR algebras. Define the polynomials {Qij(u, v) ∈ k[u, v] | i, j ∈ I} as follows. If C 6= A
(1)
1 ,

choose signs εij for all i, j ∈ I with cij < 0 so that εijεji = −1 and set

Qij(u, v) :=





0 if i = j;
1 if cij = 0;
εij(u

−cij − v−cji ) if cij < 0.

For type A
(1)
1 we set

Qij(u, v) :=

{
0 if i = j;
(u− v)(v − u) if i 6= j.

We point out that we have just made a so-called generic or geometric choice of parameters for KLR
algebras. The main results of the paper do not hold for non-generic choices of parameters, and the
imaginary semicuspidal algebra is not isomorphic to the affine zigzag algebra in the non-generic setting.

Fix θ ∈ Q+ of height n. Let Iθ = {i = (i1, . . . , in) ∈ In | αi1 + · · · + αin = θ}. For i ∈ Iθ and
j ∈ Iη, we denote by ij ∈ Iθ+η the concatenation of i and j. The symmetric group Sn acts on Iθ by
place permutations.

The KLR-algebra Rθ is an associative graded unital k-algebra, given by the generators {1i | i ∈
Iθ} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1} and the following relations for all i, j ∈ Iθ and all admissible r, t:

1i1j = δi,j1i,
∑

i∈Iθ1i = 1;(2.2)

yr1i = 1iyr; yryt = ytyr;(2.3)

ψr1i = 1sriψr;(2.4)

(ytψr − ψrysr(t))1i = δir ,ir+1(δt,r+1 − δt,r)1i;(2.5)

ψ2
r1i = Qir,ir+1(yr, yr+1)1i;(2.6)

ψrψt = ψtψr (|r − t| > 1);(2.7)

(ψr+1ψrψr+1 − ψrψr+1ψr)1i = δir ,ir+2

Qir,ir+1(yr+2, yr+1)−Qir ,ir+1(yr, yr+1)

yr+2 − yr
1i.(2.8)

The grading on Rθ is defined by setting deg(1i) = 0, deg(yr1i) = 2, and deg(ψr1i) = −cir,ir+1 .
For any V ∈ Rθ-mod, its formal character is chq V :=

∑
i∈Iθ (dimq 1iV ) · i ∈

⊕
i∈Iθ Z((q)) · i. We

refer to 1iV as the i-word space of V and to its vectors as vectors of word i.
For θ1, . . . , θm ∈ Q+ and θ = θ1 + · · · + θm, we have a parabolic subalgebra Rθ1,...,θm ⊆ Rθ, and

the corresponding (exact) induction functor

Indθ1,...,θm := Rθ1θ1,...,θm ⊗Rθ1,...,θm
− : Rθ1,...,θm-mod → Rθ-mod .

For V1 ∈ Rθ1-mod, . . . , Vm ∈ Rθm-mod, we denote

V1 ◦ · · · ◦ Vm := Indθ1,...,θmV1 ⊠ · · ·⊠ Vm.

Given also Wr ∈ Rθr -mod and fr ∈ HomRθr
(Vr ,Wr) for r = 1, . . . ,m, we denote

f1 ◦ · · · ◦ fm := Indθ1,...,θm(f1 ⊗ · · · ⊗ fm) : V1 ◦ · · · ◦ Vm →W1 ◦ · · · ◦Wm.

We also have the restriction functors:

Resθ1,...,θm := 1θ1,...,θmRθ ⊗Rθ
− : Rθ-mod → Rθ1,...,θm-mod .
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2.5. Diagrammatics for KLR algebras. It is often useful in computations to work with the dia-
grammatic presentation of the KLR algebra as provided in [15]; see that paper for a fuller explanation
of the diagrammatic presentation. We will make extensive use of KLR diagrammatics in §5 and §7.

The diagrammatic treatment for types C 6= A
(1)
1 is given below; in this paper we will always treat the

idiosyncratic type A
(1)
1 calculations symbolically, so we do not provide those diagrammatics here.

We depict the (idempotented) generators of Rθ as the following diagrams:

1i =

i1 i2 · · · in

yr1i =

i1 · · · ir · · · in

ψr1i =

i1 · · · ir
ir+1· · · in

Note that ‘right-to-left’ in the symbolic presentation is to be read as ‘top-to-bottom’ in the diagram-
matic presentation. Then Rθ is spanned by planar diagrams that look locally like these generators,
equivalent up to the usual isotopies (described in [15]). In particular, dots can be freely isotoped along
strands, provided they don’t pass through crossings. Multiplication of diagrams is given by stacking
vertically, and products are zero unless labels for strands match. The defining local relations for Rθ

are drawn as follows:

i j

=





εij

(
i j

−
i j
)

ci,j = −1;

0 i = j;

i j

otherwise,

i j k

−
i j k

=





εij

i j i

i = k, ci,j = −1;

0 otherwise,

i j

−

i j

= δi,j

i i

=

i j

−

i j

.

2.6. Semicuspidal modules. We fix a convex preorder � on Φ+ and n ∈ Z>0. In this paper we will
only deal with imaginary semicuspidal modules. An Rnδ-module V is called (imaginary) semicuspidal
if θ, η ∈ Q+, θ + η = nδ, and Resθ,ηV 6= 0 imply that θ is a sum of positive roots � δ and η is a sum
of positive roots � δ.

Words i ∈ Inδ which appear in some semicuspidal Rnδ-module are called semicuspidal words. We
denote by Inδnsc the set of non-semicuspidal words, and let 1nsc :=

∑
i∈Inδ

nsc
1i. Following [22], define the

semicuspidal algebra

(2.9) Cnδ = Cnδ,k := Rnα/Rnα1nscRnα.

Then the category of finitely generated semicuspidal Rnα-modules is equivalent to the category
Cnα-mod.

From now on until the end of this subsection we assume that k is a field. The irreducible Cnδ-
modules are parametrized canonically by the l-multipartitions λ ∈ Pn, see [19, 20, 22, 26]. The
irreducible corresponding to λ is denoted by L(λ), and its projective cover in Cnδ-mod is denoted
∆(λ).

For the case n = 1, we use a special notation. To every i ∈ I ′ we associate the multipartition
µ(i) ∈ P1 with the only non-trivial partition in the ith component. This gives a bijection I ′ → P1.
We denote

Lδ,i := L(µ(i)), ∆δ,i := ∆(µ(i)) (i ∈ I ′).

Then ∆δ :=
⊕

i∈I′ ∆δ,i is a projective generator in Cδ-mod. In §5 we give more information on these
modules and construct their forms over k which is not necessarily a field.
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3. Affinizations of symmetric algebras

3.1. Symmetric algebras. Let k be a commutative Noetherian ring, and let A be a Z-graded, unital,
associative k-algebra, free of finite rank over k. We consider A ⊗ A as an (A,A)-bimodule via the
action a1 · (b1 ⊗ b2) · a2 = a1b1 ⊗ b2a2. Note then that the multiplication map m : A ⊗ A → A is a
homogeneous degree zero (A,A)-bimodule homomorphism. We consider A∗ =

⊕
t∈Z

(At)
∗ as a graded

(A,A)-bimodule via the action (a1 · f · a2)(b) = f(a2ba1), where the grading is given by considering
elements of (At)

∗ to have degree −t.
We say that A is graded symmetric if it is equipped with an (A,A)-bimodule isomomorphism

ϕ : A
∼
−→ A∗ which is homogeneous of degree −d, for some d ∈ Z. For the rest of this section we

assume that A is graded symmetric; the trivial grading A = A0 is of course permitted.
We may then define an (A,A)-bimodule homomorphism

∆ := (ϕ−1 ⊗ ϕ−1) ◦m∗ ◦ ϕ : A→ A⊗A,

which is homogeneous of degree d. We call ∆(1) the distinguished element of A⊗A. The distinguished
element is homogeneous of degree d, and is symmetric and intertwines elements of A⊗A in the following
sense:

Lemma 3.1. For a k-module V , let τV,V : V ⊗ V → V ⊗ V be the transposition map given by
τV,V (v ⊗ w) = w ⊗ v.

(i) τA,A(∆(1)) = ∆(1), and
(ii) a∆(1) = ∆(1)τA,A(a), for all a ∈ A⊗A.

Proof. For x, y ∈ A we have

(m∗ ◦ ϕ(1))(x ⊗ y) = ϕ(1)(xy) = (y · ϕ(1))(x) = ϕ(y)(x) = (ϕ(1) · y)(x)

= ϕ(1)(yx) = (m∗ ◦ ϕ(1))(y ⊗ x) = (m∗ ◦ ϕ(1))(τA,A(x ⊗ y))

= (τ∗A,A ◦m∗ ◦ ϕ(1))(x ⊗ y) = (τA∗,A∗ ◦m∗ ◦ ϕ(1))(x ⊗ y),

Thus m∗ ◦ ϕ(1) = τA∗,A∗ ◦m∗ ◦ ϕ(1), and, since τA,A ◦ (ϕ−1 ⊗ ϕ−1) = (ϕ−1 ⊗ ϕ−1) ◦ τA∗,A∗ , result (i)
follows.

Now assume ∆(1) =
∑

i x
(i)
1 ⊗x

(i)
2 , and let a ∈ A. Then, using (i) and the fact that ∆ : A→ A⊗A

is a bimodule homomorphism, we have

(a⊗ 1)∆(1) = a ·∆(1) = ∆(a) = ∆(1) · a = ∆(1)(1⊗ a),

and

(1⊗ a)∆(1) =
∑

i

x
(i)
1 ⊗ ax

(i)
2 = τA,A

(
∑

i

ax
(i)
2 ⊗ x

(i)
1

)
= τA,A (a · τA,A(∆(1)))

= τA,A (a ·∆(1)) = τA,A (∆(a)) = τA,A (∆(1) · a)

= τA,A

(
∑

i

x
(i)
1 ⊗ x

(i)
2 a

)
=
∑

i

x
(i)
2 a⊗ x

(i)
1 =

(
∑

i

x
(i)
2 ⊗ x

(i)
1

)
(a⊗ 1)

= τA,A(∆(1))(a ⊗ 1) = ∆(1)(a⊗ 1),

completing the proof of (ii). �

3.2. Affinization. Let n ∈ Z>0. The grading on A induces a grading on the algebra A⊗n. For
1 ≤ t < u ≤ n, let ιt,u : A⊗2 → A⊗n be the algebra homomorphism given by

ιt,u(a1 ⊗ a2) = 1⊗ · · · ⊗ 1⊗ a1 ⊗ 1⊗ · · · ⊗ 1⊗ a2 ⊗ 1⊗ · · · ⊗ 1,

where a1 appears in the tth slot, and a2 appears in the uth slot. Then we define ∆t,u := ιt,u ◦∆(1) ∈
A⊗n.

Let k[z1, . . . , zn] be the graded polynomial algebra with generators z1, . . . , zn in degree d = deg(∆(1)).
Let kSn be the symmetric group algebra over k, concentrated in degree zero.
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Definition 3.2. We define Hn(A), the rank n affinization of A, to be the free product of k-algebras

k[z1, . . . , zn] ⋆ A
⊗n ⋆ kSn,

subject to the following commutation relations:

azj = zja for all for all j ∈ [1, n], a ∈ A⊗n;(3.3)

sia = siasi for all i ∈ [1, n− 1], a ∈ A⊗n;(3.4)

sizj − zsijsi = (δi,j − δi+1,j)∆i,i+1 for all i ∈ [1, n− 1], j ∈ [1, n].(3.5)

Note that the relations are homogeneous, so Hn(A) inherits a graded structure from the algebras A⊗n,
k[z1, . . . , zn] and kSn.

There are algebra homomorphisms

ι(1) : k[z1, . . . , zn] → Hn(A), ι(2) : A⊗n → Hn(A), ι(3) : kSn → Hn(A).

Abusing notation, we use the same labels for elements of the domain of these maps as for their images
in Hn(A); however, Proposition 3.8 will assert that this abuse should result in no significant confusion,
as ι(1), ι(2), ι(3) are in fact embeddings.

Remark 3.6. If one takes A = k, then Hn(A) yields the degenerate affine Hecke algebra, so Definition
3.2 can be viewed as a generalization of this construction; see [18]. Relatedly, Costello and Grojnowski
[5] construct a Cherednik algebra (or degenerate double affine Hecke algebra) Hn associated to a
commutative Frobenius algebra H . Here we have extended their construction to the case of non-
commutative symmetric algebras by making a few simplifying modifications to the last two paragraphs
of [5, §4.2]. Explicitly, we take HΓ = A, u = 1, and replace [5, Definition 4.2.1] with the trivial action
yl(Θ) = 0. Related generalizations of degenerate affine Hecke algebras in the noncommutative case
have also been studied by Tsuchioka [27].

3.3. Bases for affinized symmetric algebras. In this section we prove freeness properties of
Hn(A).

Lemma 3.7. Let V be the graded k-module V := k[z1, . . . , zn]⊗ A⊗n ⊗ kSn. Defining an action of
Hn(A) on V via

zi · (f ⊗ b⊗ w) = zif ⊗ b⊗ w,

a · (f ⊗ b⊗ w) = f ⊗ ab⊗ w,

sj · (f ⊗ b⊗ w) = sjf ⊗ sjb⊗ sjw +∇j(f)⊗∆j,j+1b⊗ w,

for all i ∈ [1, n], j ∈ [1, n− 1], f ∈ k[z1, . . . , zn], a, b ∈ A⊗n, and w ∈ kSn, gives V the structure of
a graded Hn(A)-module.

Proof. First note that the defining relations of A⊗n and k[z1, . . . , zn] are clearly satisfied in this action,
as is the relation (3.3).

For any i ∈ [1, n− 1], a ∈ A⊗n, we have

si · (a · (f ⊗ b⊗ w)) = si · (f ⊗ ab⊗ w)

= sif ⊗ si(ab)⊗ siw +∇i(f)⊗∆i,i+1ab⊗ w,

and
sia · (si · (f ⊗ b⊗ w)) = sia · (sif ⊗ sib⊗ siw) +

sia · (∇i(f)⊗∆i,i+1b⊗ w)

= sif ⊗ (sia)(sib)⊗ siw +∇i(f)⊗
sia∆i,i+1b⊗ w

= sif ⊗ si(ab)⊗ siw +∇i(f)⊗∆i,i+1ab⊗ w,

applying Lemma 3.1(ii) in the last step. Thus sia = siasi as operators on V , so the action satisfies
relation (3.4).
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For i ∈ [1, n− 1] and j ∈ [1, n] we have

si · (zj · (f ⊗ b⊗ w)) = si · (zjf ⊗ b⊗ w)

= zsij(
sif)⊗ sib⊗ siw +∇i(zjf)⊗∆i,i+1b⊗ w,

and

zsij · (si · (f ⊗ b⊗ w)) = zsij · (
sif ⊗ sib⊗ siw) + zsij · (∇i(f)⊗∆i,i+1b⊗ w)

= zsij(
sif)⊗ sib⊗ siw + zsij∇i(f)⊗∆i,i+1b⊗ w.

Then by Lemma 2.1(iii), (sizj−zsijsi) = (δi,j−δi+1,j)∆i,i+1 as operators on V , so the action satisfies
relation (3.5).

It remains to prove that the action satisfies the defining Coxeter relations of kSn. For i, j ∈ [1, n−1]
with |i− j| > 1, we have

si · (sj · (f ⊗ b⊗ w)) = si · (
sjf ⊗ sjb⊗ sjw) + si · (∇j(f)⊗∆j,j+1b⊗ w)

= sisjf ⊗ sisjb⊗ sisjw +∇i(
sjf)⊗∆i,i+1(

sjb)⊗ sjw

+ si(∇j(f))⊗
si(∆j,j+1b)⊗ siw

+∇i(∇j(f))⊗∆i,i+1∆j,j+1b⊗ w,

and similarly

sj · (si · (f ⊗ b⊗ w)) = sjsif ⊗ sjsib⊗ sjsiw +∇j(
sif)⊗∆j,j+1(

sib)⊗ siw

+ sj(∇i(f))⊗
sj(∆i,i+1b)⊗ sjw

+∇j(∇i(f))⊗∆j,j+1∆i,i+1b⊗ w.

But, since ∇i(
sjf) = sj(∇i(f)), ∇j(

sif) = si(∇j(f)), and ∇i(∇j(f)) = ∇j(∇i(f)), it follows that the
relation sisj = sjsi, for all i, j ∈ [1, n− 1] such that |i− j| > 1, holds as operators on V .

Next, for i ∈ [1, n− 1], we have

si · (si · (f ⊗ b⊗ w)) = si · (
sif ⊗ sib⊗ siw) + si · (∇i(f)⊗∆i,i+1b⊗ w)

= f ⊗ b⊗ w +∇i(
sif)⊗∆i,i+1(

sib)⊗ siw

+ si(∇i(f))⊗
si(∆i,i+1b)⊗ siw +∇2

i (f)⊗∆2
i+1b⊗ w

= f ⊗ b⊗ w,

applying Lemma 2.1(i),(ii), and Lemma 3.1(i) in the last step. Thus the relation s2i = 1, for all i ∈
[1, n− 1], holds as operators on V .

Now fix i ∈ [1, n−2], and j ∈ [1, n]. By the previously proved properties, we have that, as operators
on V :

si+1sisi+1zj = si+1si(zsi+1jsi+1 + (δi+1,j − δi+2,j)∆i+1,i+2)

= si+1sizsi+1jsi+1 + (δi+1,j − δi+2,j)∆i,i+1si+1si

= si+1(zsisi+1jsi + (δi,si+1j − δi+1,si+1j)∆i,i+1)si+1

+ (δi+1,j − δi+2,j)∆i,i+1si+1si

= si+1zsisi+1jsisi+1 + (δi,j − δi+2,j)∆i,i+2

+ (δi+1,j − δi+2,j)∆i,i+1si+1si

= (zsi+1sisi+1jsi+1 + (δi+1,sisi+1j − δi+2,sisi+1j)∆i+1,i+2)sisi+1

+ (δi,j − δi+2,j)∆i,i+2 + (δi+1,j − δi+2,j)∆i,i+1si+1si

= zsi+1sisi+1jsi+1sisi+1 + (δi,j − δi+1,j)∆i+1,i+2sisi+1

+ (δi,j − δi+2,j)∆i,i+2 + (δi+1,j − δi+2,j)∆i,i+1si+1si

and similarly

sisi+1sizj = zsisi+1sijsisi+1si + (δi+1,j − δi+2,j)∆i,i+1si+1si

+ (δi,j − δi+2,j)∆i,i+2 + (δi,j − δi+1,j)∆i+1,i+2sisi+1.
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Thus (sisi+1si−si+1sisi+1)zj = zsisi+1sij(sisi+1si−si+1sisi+1) as operators on V . Now we prove that
sisi+1si = si+1sisi+1 as operators on V , via induction on the degree of f in the term f ⊗ b⊗w ∈ V .
The base case deg(f) = 0 is obvious. If the claim holds for f , then

(sisi+1si − si+1sisi+1) · (zjf ⊗ b⊗ w) = (sisi+1si − si+1sisi+1) · (zj · (f ⊗ b⊗ w))

= ((sisi+1si − si+1sisi+1)zj) · (f ⊗ b⊗ w)

= (zsisi+1sij(sisi+1si − si+1sisi+1)) · (f ⊗ b⊗ w)

= zsisi+1sij · ((sisi+1si − si+1sisi+1) · (f ⊗ b⊗ w))

= zsisi+1sij · 0 = 0,

proving the claim. Thus the Coxeter relations hold as operators on V , and V is an Hn(A)-module. �

Theorem 3.8.

(i) The map V = k[z1, . . . , zn]⊗A⊗n ⊗Sn → Hn(A) defined by

f ⊗ a⊗ w 7→ faw

is an an isomorphism of graded Hn(A)-modules.
(ii) Hn(A) is free as a k-module, with graded dimension

dimq Hn(A) = n!

(
dimq A

1− qd

)n

.

Proof. Let B1 be a basis for k[z1, . . . , zn], B2 be a basis for A⊗n, and let B3 be a basis for kSn.
Define the sets

B = {f ⊗ a⊗ w | f ∈ B1,a ∈ B2, w ∈ B3} ⊂ V,

B = {faw | f ∈ B1,a ∈ B2, w ∈ B3} ⊂ Hn(A).

Then B is a k-basis for V . It is straightforward to see that inductive application of the commutation
relations (3.3)–(3.5) allows one to write any element in Hn(A) as a k-linear combination of elements
of B, so B is a spanning set for Hn(A). Moreover, for every faw ∈ B, faw · (1⊗ 1⊗ 1) = f ⊗ a⊗w,
so the elements of B are linearly independent as operators on V , and thus B constitutes a k-basis for
Hn(A).

Since V is a cyclic Hn(A)-module, generated by 1⊗1⊗1, we have anHn(A)-module homomorphism
Hn(A) → V given by 1 7→ 1 ⊗ 1 ⊗ 1, which sends faw ∈ B to f ⊗ a ⊗ w ∈ B. Since the map is a
bijection on k-bases, it is an isomorphism, proving (i). Part (ii) follows from (i). �

Corollary 3.9. Let f ∈ k[z1, . . . , zn], and a ∈ A⊗n.

(i) For all i ∈ [1, n− 1], we have

sifa = (sif)(sia)si +∇i(f)∆i,i+1a.

(ii) For all w ∈ Sn, we have

wfa = (wf)(wa)w + (∗),

where (∗) is a k-linear combination of terms of the form f ′a′w′, where f ′ ∈ k[z1, . . . , zn],
a′ ∈ A⊗n, and w′ ∈ Sn with ℓ(w′) < ℓ(w).

Proof. Part (i) follows from Theorem 3.8(i) and the action of si on V defined in Lemma 3.7. Part (ii)
follows from inductive application of (i). �

Corollary 3.10. Let B1 be a k-basis of k[z1, . . . , zn] and B2 be a basis for A⊗n. Then:

(i) The sets {faw | f ∈ B1,a ∈ B2, w ∈ Sn} and {wfa | f ∈ B1,a ∈ B2, w ∈ Sn} are k-bases
of Hn(A).

(ii) The set {aw | a ∈ B2, w ∈ Sn} is a basis for Hn(A) as a left k[z1, . . . , zn]-module, and
{wa | a ∈ B2, w ∈ Sn} is a basis for Hn(A) as a right k[z1, . . . , zn]-module.

(iii) The set {fw | f ∈ B1, w ∈ Sn} is a basis for Hn(A) as a left A⊗n-module, and {wf | f ∈
B1, w ∈ Sn} is a basis for Hn(A) as a right A⊗n-module.
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(iv) The set {fa | f ∈ B1,a ∈ B2} is a basis for Hn(A) as both a left and right kSn-module.

Proof. By Theorem 3.8(i), the first set in (i) is a basis for Hn(A). Applying Corollary 3.9(ii), one
may use induction on the length of w ∈ Sn to see that the second set in (i) is also a basis for Hn(A),
completing the proof of part (i). Parts (ii)-(iv) follow from part (i) and the fact that af = fa for all
f ∈ k[z1, . . . , zn] and a ∈ A⊗n. �

3.4. Antiautomorphisms of affinized symmetric algebras. In this section we show that an
antiautomorphism of the symmetric algebra A extends to an antiautomorphism of the affinization
Hn(A).

Lemma 3.11. Suppose that ν : A → Aop is an isomorphism of graded k-algebras. Then the map
ν̂ : Hn(A) → Hn(A)

op defined by

ν̂(zi) = zi, ν̂(a) = (ν ⊗ · · · ⊗ ν)(a), ν̂(sj) = sj ,

for all i ∈ [1, n], j ∈ [1, n− 1] and a ∈ A⊗n, is an isomorphism of graded k-algebras.

Proof. It is clear that the ν̂ is a homomorphism upon restriction to the subalgebras k[z1, . . . , zn], A
⊗n,

and kSn. It is likewise straightforward to check that ν̂ preserves the commutation relations (3.3) and
(3.4).

It remains to verify that ν̂ preserves relation (3.5). We have, for all x, y ∈ A,

m ◦ (ν ⊗ ν) ◦ τA,A(x⊗ y) = ν(y)ν(x) = ν(xy) = ν ◦m(x⊗ y).

Thus m ◦ (ν ⊗ ν) ◦ τA,A = ν ◦m, so

τA∗,A∗ ◦ (ν ⊗ ν)∗ ◦m∗ = τ∗A,A ◦ (ν ⊗ ν)∗ ◦m∗ = m∗ ◦ ν∗.

Therefore

∆ ◦ ν = (ϕ−1 ⊗ ϕ−1) ◦m∗ ◦ ϕ ◦ ν = (ϕ−1 ⊗ ϕ−1) ◦m∗ ◦ ν∗ ◦ ϕ

= (ϕ−1 ⊗ ϕ−1) ◦ τA∗,A∗ ◦ (ν ⊗ ν)∗ ◦m∗ ◦ ϕ = τA,A ◦ (ϕ−1 ⊗ ϕ−1) ◦ (ν ⊗ ν)∗ ◦m∗ ◦ ϕ

= τA,A ◦ (ν ⊗ ν) ◦ (ϕ−1 ⊗ ϕ−1) ◦m∗ ◦ ϕ = (ν ⊗ ν) ◦ τA,A ◦ (ϕ−1 ⊗ ϕ−1) ◦m∗ ◦ ϕ

= (ν ⊗ ν) ◦ τA,A ◦∆.

Thus by Lemma 3.1(i) we have

∆(1) = ∆ ◦ ν(1) = (ν ⊗ ν) ◦ τA,A ◦∆(1) = (ν ⊗ ν) ◦∆(1).

Thus for all i ∈ [1, n− 1] we have

ν̂(∆i,i+1) = (ν ⊗ · · · ⊗ ν) ◦ ιi,i+1 ◦∆(1) = ιi,i+1 ◦ (ν ⊗ ν) ◦∆(1) = ιi,i+1 ◦∆(1) = ∆i,i+1.

Therefore, for all i ∈ [1, n− 1] and j ∈ [1, n], we have

ν̂(sizj − zsijsi) = zjsi − sizsij = −(sizsij − zjsi) = −(δi,sij − δi+1,sij)∆i,i+1

= (δi,j − δi+1,j)∆i,i+1 = ν̂((δi,j − δi+1,j)∆i,i+1).

Thus ν̂ preserves relation (3.5), so ν̂ is a graded homomorphism of k-algebras. Now by Corol-
lary 3.10(i), ν̂ is an isomorphism. �

3.5. Centers of affinized symmetric algebras. Let

Xn := k[z1, . . . , zn]⊗ Z(A)⊗n

considered as a subalgebra of k[z1, . . . , zn]⊗A⊗n which in turn is a subalgebra of Hn(A) in a natural
way. The symmetric group Sn acts on Xn with algebra automorphisms as follows:

w · (f ⊗ a) = wf ⊗ wa (f ∈ k[z1, . . . , zn], a ∈ Z(A)⊗n).

Proposition 3.12. The center of Hn(A) is the subalgebra of invariants XSn
n .
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Proof. Let x ∈ XSn
n . Write x =

∑
j fjaj for some f ∈ k[z1, . . . , zn] and aj ∈ Z(A)⊗n. Clearly x

commutes with elements of the subalgebras A⊗n and k[z1, . . . , zn] of Hn(A). Now

six− xsi = si
∑

j

fjaj − xsi =
∑

j

(sifj)(
siaj)si +

∑

j

∇i(fj)∆i,i+1aj − xsi

= sixsi +
∑

j

∇i(fj)∆i,i+1aj − xsi =
∑

j

∇i(fj)∆i,i+1aj ,

applying Corollary 3.9(i) for the second equality. Since k[z1, . . . , zn] acts freely on the left of Hn(A)
by Corollary 3.10, we may show that the last term is zero by instead showing that zi − zi+1 acts on
this term as zero:

(zi − zi+1)
∑

j

∇i(fj)∆i,i+1aj =
∑

j

(fj − f si
j )∆i,i+1aj

=
∑

j

fjaj∆i,i+1 −
∑

j

(sifj)(
siaj)∆i,i+1

= (x− six)∆i,i+1 = 0.

In the second equality we have applied centrality of aj in A⊗n for the first sum, and Lemma 3.1(ii)
for the second sum. Therefore six = xsi, and X

Sn
n ⊆ Z(Hn(A)).

Now we show that Z(Hn(A)) ⊆ XSn
n . Let 0 6= x ∈ Z(Hn(A)). By Theorem 3.8 we may write

x =
∑

w∈Sn
yww for some yw ∈ k[z1, . . . , zn]⊗A⊗n. Let l be maximal such that yu 6= 0 and ℓ(u) = l

for some u ∈ Sn. Then, using centrality of x and Corollary 3.9(ii), we have
∑

w∈Sn

(z11z
2
2 · · · z

n
n)yww =

∑

w∈Sn

yww(z1z
2
2 · · · z

n
n) =

∑

w∈Sn

ℓ(w)=l

(z1w1z
2
w2 · · · z

n
wn)yww + (∗),

where (∗) is a linear combination of basis elements of the form y′w′w′, where y′w′ ∈ k[z1, . . . , zn]⊗A
⊗n

and ℓ(w′) < l. Then, again by Theorem 3.8,

(z1z
2
2 · · · z

n
n − zu1z

2
u2 · · · z

n
un)yu = 0,

but since k[z1, . . . , zn] acts freely on the left of Hn(A) and yu 6= 0, we have that z1z
2
2 · · · z

n
n =

z1u1z
2
u2 · · · z

n
un, and hence u = 1. Thus x ∈ k[z1, . . . , zn]⊗A⊗n.

For t ∈ Z≥0, let B
t
1 be a basis for the homogeneous degree-t polynomials in k[z1, . . . , zn]. Let

B1 =
⋃∞

t=0B
t
1. Then x =

∑
f∈B1

faf for some af ∈ A⊗n. For all b ∈ A⊗n, we have
∑

f∈B1

fafb =
∑

f∈B1

bfaf =
∑

f∈B1

fbaf ,

so by Theorem 3.8, afb = baf for all f , and thus af ∈ Z(A⊗n) = Z(A)⊗n for all f , so x ∈ Xn.
We write degz(x) = m if m is maximal such that af 6= 0 for some f ∈ Bm

1 . We argue by induction
on degz(x) that x ∈ XSn

n . If degz(x) = 0, we have x = a for some a ∈ Z(A)⊗n. Let i ∈ [1, n− 1].
Then we have

asi = sia = siasi,

so Theorem 3.8 implies that a = sia, and thus x ∈ XSn
n . Now for the induction step, assume

degz(x) = m, and x′ ∈ XSn
n for all x′ ∈ Z(Hn(A)) with degz(x

′) < m. Let i ∈ [1, n − 1], and note

that if f ∈ Bt
1, then ∇i(f) is in the span of

⋃t−1
r=0B

r
1 . Then, applying Corollary 3.9(i) for the second

equality, we have
∑

f∈B1

fafsi =
∑

f∈B1

sifaf =
∑

f∈B1

(sif)(siaf )si +
∑

f∈B1

∇i(f)∆i,i+1af

= si



∑

f∈Bm
1

faf


 si + (∗),
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where (∗) is a linear combination of terms of the form fy, where f ∈ Bt
1 for t < m, and y ∈ A⊗n⊗kSn.

Thus, writing xm :=
∑

f∈Bm
1
faf , it follows from Theorem 3.8(i) that (xm − sixm)si = 0, and thus

xm = sixm, for all i ∈ [1, n − 1] by Corollary 3.10. Then xm ∈ XSn
n , so xm ∈ Z(Hn(A)). Thus

x − xm ∈ Z(Hn(A)) and degz(x − xm) < m, so x − xm ∈ XSn
n by the induction assumption.

Therefore x = xm + (x − xm) ∈ XSn
n , as desired. �

We have the immediate corollary:

Corollary 3.13. (Z(A)⊗n)Sn = Z(Hn(A)) ∩ A
⊗n.

3.6. Cyclotomic quotients. By Theorem 3.8 and relation (3.4), the subalgebra of Hn(A) generated
by A⊗n and kSn may be identified with the wreath product A ≀ Sn. For r ∈ [1, n], define the
Jucys-Murphy elements of A ≀Sn as follows:

lr := −

r−1∑

t=1

∆t,r(t, r),

where (t, r) ∈ Sn is the transposition of t and r.

Lemma 3.14. The Jucys-Murphy elements centralize the subalgebra A⊗n of Hn(A).

Proof. Let t < r ∈ [1, n]. Let a = a1 ⊗ · · · ⊗ an ∈ A⊗n, and set

â := a1 ⊗ · · · ⊗ at−1 ⊗ 1⊗ at+1 ⊗ · · · ⊗ ar−1 ⊗ 1⊗ ar+1 ⊗ · · · ⊗ an.

Then a = â ιt,r(at ⊗ ar), and

∆t,r(t, r)a = ∆t,r(
(t,r)a)(t, r) = ∆t,râιt,r(ar ⊗ at)(t, r) = â∆t,rιt,r(ar ⊗ at)(t, r)

= âιt,r(∆(1)(ar ⊗ at))(t, r) = âιt,r((at ⊗ ar)∆(1))(t, r) = a∆t,r(t, r),

using Lemma 3.1(ii) for the fifth equality. Thus the Jucys-Murphy elements are linear combinations
of elements which centralize the subalgebra A⊗n. �

Lemma 3.15. For r ∈ [1, n], the Jucys-Murphy element lr centralizes the subalgebra kSr−1 ⊗A⊗r−1

of Hn(A) generated by s1, . . . , sr−2 and A⊗r−1 ⊗ 1⊗n−r+1. In particular, l1, . . . , ln commute.

Proof. Let i ∈ [1, r − 2]. Then

silr = −

r−1∑

t=1

si∆t,r(t, r) = −

r−1∑

t=1

∆sit,rsi(t, r) = −

r−1∑

t=1

∆sit,r(sit, r)si = lrsi,

as required. �

Corollary 3.16. The Jucys-Murphy elements l1, . . . , ln commute.

Proof. Let t < r. Since lt lies in the subalgebra generated by A⊗n and s1, . . . , st−1, the result follows
from Lemmas 3.14 and 3.15. �

The next proposition involves a choice of a degree d element c ∈ (Z(A)⊗n)Sn . Though we work
with this general choice of c, we note that there is at least one natural choice of such an element; we
may take c = m(∆(1)) ∈ A, and define

c := c⊗ 1⊗ · · · ⊗ 1 + 1⊗ c⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ c,

noting that c ∈ Z(A) since

xm(∆(1)) = m(x ·∆(1)) = m(∆(x)) = m(∆(1) · x) = m(∆(1))x,

for all x ∈ A.
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Proposition 3.17. Let c ∈ (Z(A)⊗n)Sn

d . Let βc : Hn(A) → A ≀Sn be the map which is the identity
on the subalgebra A ≀Sn of Hn(A), and sends

zr 7→ lr + c

for all r ∈ [1, . . . , n]. Then βc is a surjective homomorphism of graded k-algebras. The kernel of βc
is the 2-sided ideal generated by z1 − c.

Proof. It is clear that βc is surjective. By Corollaries 3.13 and 3.16, we have βc(zi)βc(zj) = βc(zj)βc(zi)
for all i, j ∈ [1, n]. By Corollary 3.13 and Lemma 3.14, we have βc(zi)βc(a) = βc(a)βc(zi) for all
i ∈ [1, n] and a ∈ A⊗n. So to see that βc is a homomorphism, it suffices to verify that βc preserves
relation (3.5) of Definition 3.2.

Note that, for all i ∈ [1, n− 1] and j ∈ [1, n] we have

βc(sizj) = si(lj + c) = −

j−1∑

t=1

si∆t,j(t, j) + sic = −

j−1∑

t=1

∆sit,sij(sit, sij)si + csi

and

βc(zsijsi) = −

sij−1∑

t=1

∆t,sij(t, sij)si + csi.

If j /∈ {i, i+ 1}, these terms are equal. If j = i, then sit = t for all t ∈ [1, j − 1], thus

βc(sizi − zi+1si) = ∆i,i+1(i, i+ 1)si = ∆i,i+1 = βc(∆i,i+1),

as desired. If j = i+ 1, then sit = t for all t ∈ [1, j − 2], thus

βc(sizi+1 − zisi) = −∆i+1,i(i + 1, i)si = −∆i,i+1 = βc(−∆i,i+1),

as desired. Thus βc is a homomorphism.

Since l1 = 0, we have z1 − c ∈ kerβc. Let Hn(A) := Hn(A)/Hn(A)(z1 − c)Hn(A), and let

π : Hn(A) → Hn(A) be the natural projection. Then βc factors through to a surjection βc : Hn(A) →
A ≀Sn. Let ι : A ≀Sn → Hn(A) be the inclusion map. We have the commuting diagram:

Hn(A) A ≀Sn

Hn(A)

π βc

βc

ι

Note that βc ◦ π ◦ ι = βc ◦ ι = idA≀Sn
. Then

π ◦ ι ◦ βc ◦ π ◦ ι = π ◦ ι ◦ idA≀Sn
= idHn(A) ◦ π ◦ ι.(3.18)

From the defining relations of Hn(A), we have that zi+1 = sizisi−∆i,i+1si for all i ∈ [1, . . . , n]. Thus
Hn(A) is generated by z1 − c together with the subalgebra A ≀Sn. Therefore π ◦ ι is a surjection, so

(3.18) implies that π ◦ ι ◦ βc = idHn(A). Thus π ◦ ι and βc are mutual inverses, proving the second

statement of the lemma. �

Let l ∈ Z>0, and let C = (c(1), . . . , c(l)) be a sequence of elements of (Z(A)⊗n)Sn

d . We define
the corresponding level l cyclotomic quotient algebra HC

n (A) to be Hn(A) modulo the two-sided ideal
generated by the element

l∏

j=1

(z1 − c(j)).

By Proposition 3.17, HC
n (A)

∼= A ≀Sn when l = 1.
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Proposition 3.19. Let B be a k-basis of A⊗n. The level l cyclotomic quotient HC
n (A) is spanned by

the elements

{zt11 · · · ztnn aw | 0 ≤ t1, . . . , tn < l, a ∈ B, w ∈ Sn}.

In particular, HC
n (A) is finitely generated as a k-module.

Proof. For any u = (u1, . . . , un) ∈ Z
n
≥0 and i ∈ [0, n], we define the sets

Xu
i := {zt11 · · · ztnn | 0 ≤ t1, . . . , ti < l, 0 ≤ tk ≤ uk for k > i} ⊆ k[z1, . . . , zn],

Y u
i := span{fy | f ∈ Xu

i , y ∈ A⊗n ⊗ kSn} ⊆ HC

n (A).

Note that Y u
n is the span of the elements in the statement. Moreover, by Theorem 3.8, every element

of HC
n (A) belongs to some Y u

0 . So the result follows from the following
Claim. Y u

i ⊆ Y u
i+1 for all u ∈ Z

n
≥0 and i ∈ [0, n− 1].

We prove the claim by induction on i. For the base case i = 0, let f = zt11 · · · ztnn ∈ Xu
0 and

y ∈ A⊗n ⊗ kSn. Note that, by the definition of the cyclotomic quotient and Corollary 3.13, we have

zt11 =
∑l−1

k=0 z
k
1bk in HC

n (A), for some b0, . . . , bk ∈ A⊗n. Thus we have

fy = zt11 · · · ztnn y =
l−1∑

k=0

zk1 z
t2
2 · · · ztnn bky ∈ Y u

1 ,

so Y u
0 ⊆ Y u

1 , as desired.
For the inductive step, let i ∈ [1, n − 1] and suppose that Y u

0 ⊆ · · · ⊆ Y u
i for all u ∈ Z

n
≥0. Let

f = zt11 · · · ztnn ∈ Xu
i for some (t1, . . . , tn) =: t ∈ Z

n
≥0, a ∈ A⊗n and w ∈ Sn. In order to show that

Y u
i ⊆ Y u

i+1 it suffices to show that faw ∈ Y u
i+1. By Lemma 3.9(i), we have

si(
sif)(sia)siw = faw +∇i(

sif)∆i,i+1(
sia)siw.(3.20)

Note that sif ∈ Xsit
i−1. So ∇i(

sif) is in the k-span of Xsit
i−1. Therefore

∇i(
sif)∆i,i+1(

sia)siw ∈ Y sit
i−1 ⊆ Y sit

i ⊆ Y u
i+1,

where the first containment holds by the induction assumption, and the second containment follows
since (sit)i+1 = ti < l, and (sit)k = tk ≤ uk for k > i+ 1. Similarly

(sif)(sia)siw ∈ Y sit
i−1 ⊆ Y sit

i ⊆ Y u
i+1.

So, to complete the proof that faw ∈ Y u
i+1, it suffices to show that siY

u
i+1 ⊆ Y u

i+1. For this, let
g ∈ Xu

i+1 and x ∈ A⊗n ⊗ kSn. By Lemma 3.9(i), we have sigx = sigx′ + ∇i(
sig)x′′ for some

x′, x′′ ∈ A⊗n ⊗ kSn. But
sig ∈ Xu

i+1, and ∇i(
sig) is in the k-span of Xu

i+1, so sigx ∈ Y u
i+1. �

We complete this section with three conjectures.

Conjecture 3.21. The spanning set of Proposition 3.19 constitutes a k-basis for HC
n (A).

Conjecture 3.22. The algebra HC
n (A) is graded symmetric.

Conjecture 3.23. If A is cyclic cellular, then so is HC
n (A).

Note that in level 1 the conjectures hold. Indeed, Conjecture 3.21 in level 1 follows from Propo-
sition 3.17. For Conjecture 3.22 we can use a bimodule isomorphism A ≀ Sn → (A ≀ Sn)

∗ given by
a1 ⊗ · · · ⊗ an ⊗ σ 7→ ϕ(aσ1) ⊗ · · · ⊗ ϕ(aσn) ⊗ (σ−1)∗. Conjecture 3.23 in level 1 is the main result
of [9]. The conjectures are also known to hold for any level when A = k. Indeed, HC

n (k) is a de-
generate cyclotomic Hecke algebra. Now, for Conjecture 3.21 see for example [18, Theorem 7.5.6],
Conjecture 3.22 can be deduced for example from [11, Corollary 6.18] and [2], and Conjecture 3.23
can be seen from [10], [6], [1].
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4. Zigzag algebras

Let Γ = (Γ0,Γ1) be a connected graph without loops or multiple edges. Eventually, we will need
only the case where Γ is of finite ADE type, but we do not need to assume that in this section.
We maintain our assumption that k is a commutative Noetherian ring. If i, j ∈ Γ0 are such that
{i, j} ∈ Γ1, we say that i and j are neighbors.

4.1. Huerfano-Khovanov zigzag algebras. The zigzag algebra Z := Z(Γ) of type Γ is defined
in [12] as follows:

Definition 4.1. First assume that |Γ0| > 1. Let Γ be the quiver obtained by doubling all edges
between connected vertices and then orienting the edges so that if i and j are neighboring vertices in
Γ, then there is an arrow ai,j from j to i and an arrow aj,i from i to j. For example, Aℓ is the quiver

1 2 3 · · · ℓ − 1 ℓ

a2,1 a3,2 a4,3 aℓ−2,ℓ−1 aℓ,ℓ−1

a1,2 a2,3 a3,4 aℓ−2,ℓ−1 aℓ−1,ℓ

Then Z(Γ) is the path algebra kΓ, generated by length-0 paths ei for i ∈ Γ0, and length-1 paths ai,j ,
modulo the following relations:

(i) All paths of length three or greater are zero.
(ii) All paths of length two that are not cycles are zero.
(iii) All length-two cycles based at the same vertex are equal.

The algebra Z(Γ) is graded by path length. If |Γ0| = 1, i.e. Γ = A1, we merely decree that Z(Γ) :=
k[c]/(c2), where c is in degree 2. So that we may consider this algebra among the wider family of
zigzag algebras, we will write e1 := 1.

For type Γ 6= A1, for every vertex i, let j be any neighbor of i, and write ci for the cycle ai,jaj,i.
The relations in Z imply that ci is independent of choice of j. Define c :=

∑
i∈Γ0

ci. Note that
ci = cei = eici. The following results are easily verified:

Lemma 4.2.

(i) The zigzag algebra Z(Γ) is free of finite rank over k, with k-basis:

{ai,j | {i, j} ∈ Γ1} ∪ {cmei | i ∈ Γ0, m ∈ {0, 1}}.

(ii) The graded dimension of Z is dimq Z = |Γ0|(1 + q2) + 2|Γ1|q.
(iii) The center of Z is the k-span of the elements {1} ∪ {cei | i ∈ Γ0}.
(iv) There is a k-algebra isomorphism ν : Z → Z

op such that ν(ei) = ei, ν(a
i,j) = aj,i, for all

i, j ∈ Γ0, and ν(c) = c.
(v) The linear function tr : Z → k given on basis elements by

tr(ei) = 0, tr(ai,j) = 0, tr(cei) = 1,

for all i, j ∈ Γ0, satisfies tr(xy) = tr(yx) for all x, y ∈ Z.
(vi) The bilinear form 〈·, ·〉 : Z ⊗ Z → k given by 〈x, y〉 := tr(xy) is nondegenerate, symmetric

and associative.
(vii) The map ϕ : Z → Z

∗ given by ϕ(a) = 〈a,−〉 is a (Z,Z)-bimodule isomorphism of degree −2,
with ϕ(ei) = (cei)

∗, ϕ(ai,j) = (aj,i)∗, ϕ(cei) = e∗i .

Lemma 4.2 implies that Z is a graded symmetric algebra. Following §3.1, we have a (Z,Z)-bimodule
homomorphism ∆ : Z → Z⊗ Z, with distinguished degree 2 element

∆(1) =
∑

i∈Γ0

(
ei ⊗ cei + cei ⊗ ei +

∑

j with {i,j}∈Γ1

aj,i ⊗ ai,j
)
∈ Z⊗ Z.(4.3)
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4.2. Affine zigzag algebras. The major focus of this paper will be the affine zigzag algebra, con-
structed via the affinization process presented in Definition 3.2 for A = Z = Z(Γ).

Definition 4.4. For n ∈ Z>0, we refer to the affinization Z
aff
n (Γ) := Hn(Z(Γ)) of the zigzag algebra

Z(Γ) as the affine zigzag algebra of rank n and type Γ.

The algebra Z
⊗n is generated by the elements

ei := ei1 ⊗ ei2 ⊗ · · · ⊗ ein for i = (i1, i2, . . . , in) ∈ Γn
0 ,

ai,jr := 1⊗ · · · ⊗ ai,j ⊗ 1⊗ · · · ⊗ 1 (rth slot) for r ∈ [1, n], {i, j} ∈ Γ1,

cr := 1⊗ · · · ⊗ c⊗ 1⊗ · · · ⊗ 1 (rth slot) for r ∈ [1, n],

subject only to the relations

(4.5)
∑

i∈Γn
0
ei = 1, eiej = δi,jei, crei = eicr,

(4.6) ai,jr ak,lt = ak,lt ai,jr , ai,jr ct = cta
i,j
r , crct = ctcr (for t 6= r)

(4.7) ai,jr ei = δj,irei1,...,ir−1,i,ir+1,...,ina
i,j
r , eia

i,j
r = δi,ira

i,j
r ei1,...,ir−1,j,ir+1,...,in ,

(4.8) ai,jr ak,lr ei = δj,kδi,lδir,lcrei, c2r = 0, cra
i,j
r = ai,jr cr = 0

for all admissible r, t ∈ [1, n], i, j ∈ Γn
0 , and i, j, k, l ∈ Γ0.

Taking into account Definitions 3.2 and 4.1 and the description of ∆(1) in (4.3), we may provide a

more direct presentation of Zaff
n (Γ):

Lemma 4.9. The algebra Z
aff
n (Γ) is the graded k-algebra generated by the elements

{ei | i ∈ Γn
0} ∪ {cr, zr, a

i,j
r | r ∈ [1, n], i, j ∈ Γ0 with {i, j} ∈ Γ1} ∪ {st | t ∈ [1, n− 1]},

with deg(ei) = deg(st) = 0, deg(cr) = deg(zr) = 2, deg(ai,jr ) = 1, subject only to the relations (4.5),
(4.6), (4.7), (4.8) together with

srei = esrisr, sra
i,j
t = ai,jsrtsr, srct = csrtsr,

zrzt = ztzr, zra
i,j
t = ai,jt zr, zrct = ctzr, zrei = eizr,

srst = stsr (for |t− r| > 1), s2r = 1, srsr+1sr = sr+1srsr+1,

(srzt − zsrtsr)ei =





(δr,t − δr+1,t)(cr + cr+1)ei ir = ir+1;

(δr,t − δr+1,t)a
ir+1,ir
r a

ir ,ir+1

r+1 ei {ir, ir+1} ∈ Γ1;

0 otherwise,

for all admissible r, t ∈ [1, n], i ∈ Γn
0 , and i, j ∈ Γ0.

We finish this subsection with three properties of affine zigzag algebras which follows easily from
the general theory of affinization developed in section 3.

Lemma 4.10. The affine zigzag algebra Z
aff
n (Γ) is free as a k-module, with graded dimension

dimq Z
aff
n (Γ) = n!

(
(1 + q2)|Γ0|+ 2q|Γ1|

1− q2

)n

.

Proof. This follows from Theorem 3.8 and Lemma 4.2(ii). �

Lemma 4.11. There is an isomorphism of graded k-algebras ν̂ : Z
aff
n (Γ) → Z

aff
n (Γ)op, given on

generators by ν̂(zt) = zt, ν̂(ei) = ei, ν̂(a
i,j
t ) = aj,it , ν̂(su) = su.

Proof. This follows from Lemmas 3.11 and 4.2(iv). �

Lemma 4.12. If the ground ring k is indecomposable, so is the affine zigzag algebra Z
aff
n (Γ).

Proof. Note that Z
aff
n (Γ) is non-negatively graded, and by Proposition 3.12 and Lemma 4.2(iii), the

center of Zaff
n (Γ) has rank one in degree zero. Thus the only primitive central idempotent in Z

aff
n (Γ)

is 1, so the result follows. �
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4.3. Diagrammatics for the affine zigzag algebra. We provide a diagrammatic description of
the algebra Z

aff
n (Γ), which renders the relations described in Lemma 4.9 with more clarity. We depict

the (idempotented) generators as the following diagrams:

ei =

i1 i2 · · · in

zrei =

i1 · · · ir · · · in

crei =

i1 · · · ir · · · in

srei =

i1 · · · ir
ir+1· · · in

i1 · · ·ir+1 ir · · · in

aj,irr ei =

i1 · · · ir · · ·im

i1 · · · j · · · in

for {ir, j} ∈ Γ1.

The red color is just intended to highlight that the label for the rth strand has changed. Then Z
aff
n (Γ)

is spanned by planar diagrams that look locally like these generators, equivalent up to the usual
isotopies (cf. [15]). In particular, dots, arrows, and x’s can be freely moved along strands, provided
they don’t pass through crossings. Multiplication of diagrams is given by stacking vertically, and
products are zero unless labels for strands match.

Then the defining local relations can be drawn as follows:

(i) Z
⊗n relations:

i

k

j = 0 (i, j, k distinct)

i

i

j =

i

i

(∀j)

i

j

=

i

j

=

i

i

= 0

(ii) kSn relations:

i j

=

i j i j k

=

i j k

(∀i, j, k)

(iii) (Z⊗n,k[z1, . . . , zn]) commutation relations:

i

j

=

i

j

i

i

=

i

i

(iv) (kSn,Z
⊗n) commutation relations:

i j

j k

=

i j

j k

i j

k i

=

i j

k i

(∀i, j, k)

i j

=

i j i j

=

i j

(∀i, j)

(v) (k[z1, . . . , zn],kSn) commutation relations:

ji

−

ji

=

ji

−

ji

=





ii

+

ii

if i = j;

ji

j i

if {i, j} ∈ Γ1;

0 otherwise.
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Remark 4.13. In their work on the categorification of the Heisenberg algebra hΓ for Γ of affine ADE
type, Cautis and Licata [4] introduce a certain 2-category HΓ. The 1-morphisms in this category
are generated by objects Pi and Qi, for each i ∈ Γ0. Comparing the local relations between 2-
morphisms [4, §6.1, §10.3] with the diagrammatic above, it can be seen that EndHΓ (Pn) satisfies the

defining relations of Zaff
n (Γ), up to some signs. More generally, Rosso and Savage [24] introduce a

monoidal category HB associated to any Frobenius superalgebra B, recover the above category as a
special case, and study in particular the endomorphism algebra of Pn [24, §8.4].

5. The minuscule imaginary stratum category

For the remainder of the paper we assume � is a balanced order on Φ+, and denote d := ht(δ), see
§2.3. We also assume that the graph Γ is the Dynkin diagram corresponding to the finite type Cartan
matrix C

′, and write Z for Z(Γ), Zaff
n for Zaff

n (Γ). We do not assume that k is a field unless otherwise
stated.

5.1. Irreducible semicuspidal modules. Recall from §2.6 that, when k is a field, the irreducible
semicuspidal Rδ-modules may be canonically labeled Lδ,i, for i ∈ I ′. The following theorem, proved
in [16, Lemma 5.1, Corollary 5.3], gives a characterization of the these important modules via their
words.

Lemma 5.1. Let k be a field. For each i ∈ I ′, Lδ,i can be characterized up to isomorphism and
grading shift as the unique irreducible Rδ-module such that i1 = 0 and id = i for all words i of Lδ,i.

In this section we will use this lemma to recognize the irreducible semicuspidal Rδ-modules as
certain homogeneous modules which are concentrated in degree zero.

Following [21], for 1 ≤ r < d and i ∈ Iδ, we say sr ∈ Sd is i-admissible if cir ,ir+1 = 0. More
generally, if sr1 · · · srt is a reduced expression for w ∈ Sd and each srk is (srk+1

· · · srti)-admissible,
then we say w is i-admissible. This property is independent of reduced expression for w. In addition,
admissibility is preserved by products in the sense that if w is i-admissible and w′ is (wi)-admissible,
then w′w is i-admissible. The connected component of i is

Con(i) := {wi | i-admissible w ∈ Sd}.

Clearly Con(i) = Con(j) if and only if i ∈ Con(j). We say that i is homogeneous provided that
ir = is for some r < s implies there exist t, u with r < t < u < s such that cir,it = cir ,iu = −1.

Lemma 5.2. If θ ∈ Q+ and i ∈ Iθ is a homogeneous word, then there exists an Rθ-module M with
character

∑
j∈Con(i) j. If k is a field, this module is irreducible.

Proof. If k is a field, this is [21, Theorem 3.4]. The part of the proof verifying the relations of Rθ on
the k-module

⊕
j∈Con(i) k · vj works for an arbitrary commutative ground ring k. �

With the intention of applying this lemma, we associate to each i ∈ I ′ a special homogeneous word
bi ∈ Iδ.

Type A
(1)
ℓ : bi := 012 · · · (i− 1)ℓ(ℓ− 1)(ℓ− 2) · · · (i+ 1)i

Type D
(1)
ℓ : bi :=





0234 · · · ℓ(ℓ− 2)(ℓ− 3) · · · (i + 1)123 · · · i if 1 ≤ i ≤ ℓ− 2;

0234 · · · (ℓ− 2)ℓ123 · · · (ℓ− 1) if i = ℓ− 1;

0234 · · · (ℓ− 1)123 · · · (ℓ− 2)ℓ if i = ℓ

Type E
(1)
6 : b

i :=





024354265431 if i = 1;

024354136542 if i = 2;

024354126543 if i = 3;

024354123654 if i = 4;

024354123465 if i = 5;

024354123456 if i = 6
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Type E
(1)
7 : bi :=





013425463542765431 if i = 1;

013425463541376542 if i = 2;

013425463541276543 if i = 3;

013425463541237654 if i = 4;

013425463541234765 if i = 5;

013425463541234576 if i = 6;

013425463541234567 if i = 7

Type E
(1)
8 : bi :=





087654231435642576435428765431 if i = 1;

087654231435642576435413876542 if i = 2;

087654231435642576435412876543 if i = 3;

087654231435642576435412387654 if i = 4;

087654231435642576435412348765 if i = 5;

087654231435642576435412345876 if i = 6;

087654231435642576435412345687 if i = 7;

087654231435642576435412345678 if i = 8.

We will write Gi := Con(bi) and

Gδ :=
⋃

i∈I′

Gi.

We need one more combinatorial notion for words:

Definition 5.3. Let i ∈ Iδ. For t ∈ {1, . . . , d}, define the t-neighbor sequence of i to be nbrt(i) :=
(n1, . . . , nt) ∈ {0, N, S}t, where

nr =





S, if ir = it;

N, if cir,it < 0;

0, otherwise.

Then nbrt(i), the reduced t-neighbor sequence of i, is achieved by deleting all 0’s from nbrt(i).

Example 5.4. Take C = A
(1)
7 . Then i = 01726354 ∈ G4, nbr6(i) = 000N0S, and nbr6(i) = NS.

The following lemma is clear:

Lemma 5.5. If sr is i-admissible, then nbrsr(t)(sri) = nbrt(i).

Now we prove numerous useful facts about the special words bi:

Lemma 5.6. Let i, j ∈ I ′ such that ci,j = −1.

(i) If i ∈ Gδ, then i is homogeneous.
(ii) For all i ∈ Gi, we have i1 = 0, id = i, i1 is a neighbor of i2, and id−1 is a neighbor of id.

(iii) If C 6= A
(1)
1 and i ∈ Gδ, then

nbrt(i) =

{
(NSN)aNS, if 1 < t < d;

(NSN)aNNS, if t = d,

for some a ≥ 0.
(iv) If i ∈ Gδ and r < d− 1, then sri ∈ Gδ if and only if sr is i-admissible.
(v) For any i, i′ ∈ Gi, there exists a unique wi′,i ∈ Sd such that wi′,ii = i′ and wi′,i is i-

admissible.
(vi) There exists a unique wi,j ∈ Sd such that wi,jb

j = bi, and wi,j = w1sd−1w2, where w2 is

bj-admissible and w1 is sd−1w2b
j-admissible.

(vii) For any i ∈ Gi and j ∈ Gj such that ci,j = −1, there exists a unique wi,j ∈ Sd such that
wi,jj = i and wi,j = w1sd−1w2, where w2 is i-admissible and w1 is sd−1w2i-admissible.
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(viii) If C 6= A
(1)
1 and i ∈ Gδ, then sd−1i ∈ Gid−1 .

Proof. (i) It is straightforward to check that b
i satisfies the homogeneity condition. Thus by [21,

Lemma 3.3], every i ∈ Gi satisfies this condition.

(ii) If 1 < r < d, then (bi)r has a neighbor somewhere to the left and right in bi, so no bi-

admissible element w may send r to 1 or d, so i1 = (bi)1 = 0, and id = (bi)d = i for every i ∈ Gj .
Moreover it cannot be that id−1 = id by (i), and if it were the case that cid,id−1

= 0, then we would

have sd−1i ∈ Gi, but (sd−1i)d 6= i, a contradiction. Thus id−1 and id are neighbors, and a similar
argument proves the same for i1 and i2.

(iii) We have by part (ii) that s1 and sd−1 are never admissible transpositions for i ∈ Gδ. Therefore,

by Lemma 5.5, it is enough to check that that statement (iii) holds for the special words bi, which
may be readily done.

(iv) The statement holds for r = 1 by part (ii), since s1 is never i-admissible, and i1 = 0 for
every i ∈ Gδ. Let 1 < r < d − 1. If sr is not i-admissible, then cir,ir+1 = −1 by (i). By part (iii),
nbrr+1(i) = (NSN)aNS for some a ≥ 0. Then nbrr(sri) = (NSN)aS. But then again by part (iii),

sri /∈ Gδ.
(v) The existence of wi′,i is guaranteed by the definition of Gi = Con(i), and we note that i-

admissible elements are in bijection with Gi since i-admissible elements cannot transpose similar
letters. This proves uniqueness.

(vi) In types A
(1)
ℓ and E

(1)
ℓ , it is straightforward to verify that if j < i ∈ I ′, then we have sd−1b

j ∈ Gi.

Thus there exists sd−1b
j-admissible u ∈ Sd such that usd−1b

j = bi, so taking wi,j := usd−1 satisfies

the claim. On the other hand, if j > i, then wi,j := w−1
j,i also satisfies the claim. In type D

(1)
ℓ , if

i < j ∈ I ′, we have sd−1b
j ∈ Gi. Thus there exists sd−1b

j-admissible u ∈ Sd such that usd−1b
j = bi,

so taking wi,j := usd−1 satisfies the claim. On the other hand, if j < i, then wi,j := w−1
j,i must also

satisfy the claim. Uniqueness follows as in the proof of (v), from consideration of the fact that no
similar letters are transposed in this product.

(vii) We may take wi,j = wi,biwi,jwbj ,j to show existence. Uniqueness follows as in the proof of
(v).

(viii) Let i ∈ Gi. Then j := id−1 is a neighbor of i = id by part (ii). By part (vii), i = wi,bjbj =

w1sd−1w2b
j , where w2 is bj-admissible and w1 is sd−1w2b

j-admissible. But (sd−1w2bj)d−1 = j and
id−1 = j, so it follows from admissibility of w1 that w1 fixes the (d− 1)th and dth positions. Thus we

have that w1sd−1 = sd−1w1 and w1 is w2b
j-admissible. So sd−1i = w1w2b

j ∈ Gj . �

Lemma 5.7. Let k be a field. For each i ∈ I ′, chq Lδ,i =
∑

i∈Gi i.

Proof. By Lemmas 5.2 and 5.6(i), there exists a homogeneous irreducible Rδ-module with character∑
i∈Gi i. By Lemmas 5.1 and 5.6(ii), this module must be Lδ,i. �

Corollary 5.8. We have that Gδ is a complete set of semicuspidal words in Iδ, and so Cδ =
Rδ/Rδ1nscRδ, where 1nsc =

∑
i∈Iδ\Gδ 1i.

5.2. A spanning set for Cδ. For each w ∈ Sd, we choose a distinguished reduced expression w =
sr1 · · · srt . Based on this set of choices, we define, for every w ∈ Sn, an element ψw = ψr1 · · ·ψrt ∈ Rδ.
We warn the reader that ψw is dependent on the choice of distinguished reduced expression for w, as
ψr’s do not in general satisfy braid relations in Rδ, see (2.8). We will see however, that the images of
the elements ψw in Cδ are well defined.

Recalling the elements of Sd defined in Lemma 5.6(v)–(vii), we will write ψi,j (resp. ψi,j) for ψwi,j

(resp. ψwi,j
).

Lemma 5.9. The algebra Cδ is non-negatively graded. Moreover, in Cδ we have:

(i) The elements ψw are independent of reduced expression for w for all w ∈ Sd.
(ii) ψryt = ysr(t)ψr, for all admissible r, t.

Proof. All of these follow from Corollary 5.8 and Lemma 5.6(i). We have 1i = 0 in Cδ if ir = ir+1 for
some 1 ≤ r < d. So there are no generators ψr1j in negative degrees, hence (i). Part (iii) also follows
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from that observation, together with relation (2.5). Finally, semicuspidal words have no subwords of
the form iji, so, by relation (2.8), the images of ψ’s satisfy braid relations in Cδ, hence (ii). �

Lemma 5.10. The following facts hold in Cδ:

(i) y1 = · · · = yd−1.
(ii) (y1 − yd)

2 = 0.
(iii) y1 ∈ Z(Cδ).

Proof. Assume first that C = A
(1)
1 . Then d = 2, and so claim (i) is trivial. We have Gδ = {01} and

110 = 0 in Cδ, hence 0 = ψ1110ψ1 = ψ2
1101 = ±(y1 − y2)

2101 = ±(y1 − y2)
2, proving claim (ii). For

(iii), it follows from KLR relations that y1 commutes with every generator of Rδ except ψ1. However,
in Cδ we have ψ1y1 = ψ1y1101 = 110ψ1y1 = 0, and similarly y1ψ1 = 0.

Now let C 6= A
(1)
1 . We will use the diagrammatic presentation for Rδ, see §2.5. We prove (i) first.

Let i = 0i2i3 · · · id ∈ Gδ. Let 1 < r < d. The following diagram is zero in Cδ since, by Corollary 5.8
and Lemma 5.6(ii), all semicuspidal words start with 0, and ir 6= 0:

0 i2 i3 · · ·
ir−1 ir

ir+1· · · id

.

We will simplify this diagram using relations. Note that we may ignore strands to the right of ir and
strands whose colors do not neighbor ir. Omitting such strands, and recalling from Lemma 5.6(iii)
that nbrk(i) = (NSN)aNS for some a ≥ 0, we have, using the relations in Rδ:

N S N N S N · · · N S N N S

= ±

N S N N S N · · · N S N N S

∓

N S N N S N · · · N S N N S

= ±

N S N N S N · · · N S N N S

= ±

N S N N S N · · · N S N N S

±

N S N N S N · · · N S N N S

.

The first term in the last line involves an (S, S)-crossing and hence is zero in Cδ. We may continue
on in this fashion, moving the S strand past NSN -triples, until we arrive at

±

N S N N S N · · · N S N N S

.

The (N,S) crossing opens, giving ±(ys − yr)1i, for some s < r. Recalling that the initial diagram
was zero, we have ys1i = yr1i. Applying induction on r, for every semicuspidal word i, it follows that
y1 = · · · = yd−1 in Cδ.

Now we prove (ii). Let i = 0i2i3 · · · id ∈ Gδ. Again, this diagram is zero in Cδ:

0 i2 i3 · · ·
id−1 id
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As in the proof of (i), we omit non-neighbors of id, and use the fact that nbrd(i) = (NSN)aNNS
from Lemma 5.6(iii) to write

0 i2 i3 · · ·
id−1 id

=

N S N N S N · · · N S N N N S

.

We then move the S-strand past (NSN)-strands as in the first part, to arrive at

N S N N S N · · · N S N N N S

.

Applying the quadratic relation twice yields ±(yt−yd)(ys−yd)1i, for some t < s < d. But yt = ys = y1
by (i), so we have (y1 − yd)

21i = 0 for all semicuspidal words i, which implies that (y1 − yd)
2 = 0 in

Cδ. �

Lemma 5.11. Let u ∈ Sd and i = i1 · · · id ∈ Iδ. We have ψu1i = 0 in Cδ unless:

(i) i ∈ Gδ, ui ∈ Gid , and u = wui,i, in which case deg(ψu1i) = 0, or;
(ii) i ∈ Gδ, ui ∈ Gj for some j ∈ I ′ such that cj,id = −1, and u = wui,i, in which case

deg(ψu1i) = 1.

Proof. The lemma is easily checked in type A
(1)
1 , since then Gδ = {01} and ψ1101 = 0. Suppose we

are not in type A
(1)
1 and that ψu1i = euiψu1i 6= 0. Then i, ui ∈ Gδ by Corollary 5.8. We may write

u = w′w′′, where w′′ ∈ Sd−1 and w′ is a minimal length left coset representative of Sd−1 in Sd. By
Lemma 5.9(i), ψu = ψw′ψw′′ . By Lemma 5.6(iv), w′′ must be i-admissible. If w′ = id, then uid = id,
deg(ψu1i) = 0 and we are in case (i) by the uniqueness of Lemma 5.6(v). Let w′ 6= id. Then for some
r, w′ = srsr+1 · · · sd−1 is a reduced expression for w′. By Lemma 5.9(i), ψu = ψrψr+1 · · ·ψd−1ψw′′

in Cδ. By Lemma 5.6(iv), srsr+1 · · · sd−2 is sd−1w
′′i-admissible. Further, cid−1,id = −1 by Lemma

5.6(ii), so deg(ψu1i) = 1, and we are in case (ii) by the uniqueness of Lemma 5.6(vii). �

Given a word i = i1 · · · id ∈ Gδ, define

Wi = {wj,i ∈ Sd | j ∈ Gj for some j such that cj,id 6= 0}.

Note that by Lemma 5.6(vii) and (viii), Wi is in bijection with
⋃

j∈I′,cj,id 6=0G
j .

Lemma 5.12. Let u ∈ Sd and i ∈ Iδ. If deg(ψu1i) ≥ 1, then (y1 − yd)ψu1i = 0 in Cδ.

Proof. By Lemma 5.11, we only need consider the case where i ∈ Gδ and u ∈Wi. Since deg(ψu1i) ≥ 1,
it must be that ui ∈ Gj , where cj,id = −1, so (ui)d = j 6= id and (ui)1 = i1 = 0. Thus u(1) = 1 and
u(d) < d. By Lemma 5.9(ii), we have (y1 − yd)ψu1i = ψu(y1 − yu(d))1i, but y1 − yu(d) = 0 in Cδ by
Lemma 5.10(i). �

Proposition 5.13. The following is a spanning set for Cδ:

X := {yb1(y1 − yd)
mψw1i | i ∈ Gδ, w ∈Wi, m+ deg(ψw1i) ≤ 1, b ∈ Z≥0}.

Proof. By the basis theorem [15, Theorem 2.5] or [25, Theorem 3.7], we have that

{yb11 · · · y
bd−1

d−1 (y1 − yd)
bdψw1i | i ∈ Iδ, w ∈ Sd, bi ∈ Z≥0}

spans Rδ. We get the spanning set X by throwing out elements of this set which are known to be
zero or redundant in Cδ via Lemmas 5.10, 5.11 and 5.12. �
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5.3. A basis for Cδ. To prove linear independence of X , we construct a graded Rδ-module which
descends to a faithful Cδ-module. For i, j ∈ Iδ, set

Vi,j :=





k[z, x]/(x2) if i, j ∈ Gδ and id = jd

qk[z, x]/(x) if i, j ∈ Gδ and cid,jd = −1

k[z, x]/(1) otherwise,

where z, x are generators in degree 2, and q stands for a degree shift up by 1. Note that Vi,j = 0
in the ‘otherwise’ cases above—it is presented as is for convenience in defining an action on V . Set
V =

⊕
i,j∈Iδ Vi,j. We will label polynomials f ∈ k[z, x] belonging to the i, j-th component of V with

subscripts, a la fi,j . Recall the signs εi,j from §2.4.

Lemma 5.14. The vector space V is a graded Rδ-module, with the action of generators defined in

types C 6= A
(1)
1 as follows:

1k · fi,j = δk,ifi,j

yr · fi,j = (zf − δr,dxf)i,j

ψr · fi,j =





fsri,j if sr is i-admissible;

fsd−1i,j if r = d− 1 and id = jd;

εid,jd(xf)sd−1i,j if r = d− 1 and id−1 = jd;

0 otherwise.

If C = A
(1)
1 , the action of 1k, yr are as above, but ψ1v = 0 for all v ∈ V .

Proof. First we argue that the actions of the generators are well-defined. The only non-obvious case
is the action of ψr. Let r, i, j be such that ψr|Vi,j

6= 0. We show that ψr|Vi,j
: Vi,j → Vsri,j is a

well-defined k-linear homomorphism. Assume first that r < d−1. Then ψr|Vi,j
6= 0 implies that sr is i-

admissible. Since id = (sri)d, we either have Vi,j = Vsri,j = k[z, x]/(x2) or Vi,j = Vsri,j = k[z, x]/(x),
so in either case ψr|Vi,j

: f 7→ f is well-defined. Assume next that r = d − 1 and id = jd. In this

case Vi,j = k[z, x]/(x2), and by Lemma 5.6(ii), id−1 is a neighbor of id, so (sd−1i)d = id−1 is a
neighbor of jd, and sd−1i ∈ Gδ by Lemma 5.6(viii), so Vsd−1i,j = k[z, x]/(x). Thus ψd−1|Vi,j

: f 7→ f
is well-defined. Finally, assume that r = d − 1 and id−1 = jd. In this case cid,jd = −1 by Lemma
5.6(ii), so Vi,j = k[z, x]/(x). Since (sd−1i)d = jd, we have Vsd−1i,j = k[z, x]/(x2). Thus the map
ψd−1|Vi,j

: f 7→ εid,jdxf is well-defined.

Now we check that the action satisfies the defining relations of Rδ. If C = A
(1)
1 then Gδ = {01}.

Since ψ’s act as zero on V , the only relation that is not clearly satisfied is (2.6). In this case, for
f ∈ V01,01, we have as desired:

Q01(y1, y2) · (101 · f01,01) = (y1 − y2) · ((y2 − y1) · f01,01) = −(x2f)01,01 = 0.

Let C 6= A
(1)
1 . The relations (2.2), (2.3) and (2.7) are obvious. Since 1k acts as the projection

V →
⊕

j∈Iδ Vk,j and ψr restricts to a map Vi,j → Vsri,j for all i, j ∈ Iδ, relation (2.4) is satisfied as
well.

For relation (2.5), we have

yt · (ψr · (1i · fj,k)) =





δi,j(zf − δt,dxf)srj,k if sr is j-admissible;

δi,j(zf − δt,dxf)sd−1j,k if r = d− 1, jd = kd;

δi,jεjd,kd
(zxf − δt,dx

2f)sd−1j,k if r = d− 1, jd−1 = kd;

0 otherwise.

(5.15)
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and

ψr · (ysrt · (1i · fj,k)) =





δi,j(zf − δsrt,dxf)srj,k if sr is j-admissible;

δi,j(zf − δsrt,dxf)sd−1j,k if r = d− 1, jd = kd;

δi,jεjd,kd
x(zf − δsrt,dxf)sd−1j,k if r = d− 1, jd−1 = kd;

0 otherwise.

(5.16)

Since ir 6= ir+1 for every r ∈ [1, d−1] and i ∈ Gδ by Lemma 5.6(i), in order to show that relation (2.5)
is satisfied, we simply must show that (5.15) and (5.16) are equal in every case. First, note that if sr
is j-admissible, then r < d − 1 by Lemma 5.6(ii), so δsrt,d = δt,d in this case, and we have equality.
Next, assume that r = d − 1, jd = kd and 0 6= fj,k ∈ Vj,k. Since (sd−1j)d = jd−1 6= jd by Lemma
5.6(ii), we have that xf = 0 ∈ Vsd−1j,k = k[z, x]/(x), so we have equality in the second case. In the

third case, note that x2 = 0 ∈ Vj,k for any j,k, so equality holds in this case as well.
For relation (2.6), note that sr is i-admissible if and only if sr is sri-admissible, so

ψr · (ψr · (1i · fj,k)) =





δi,jfj,k if sr is j-admissible;

δi,jεjd−1,kd
(xf)j,k if r = d− 1 and jd = kd;

δi,jεjd,kd
(xf)j,k if r = d− 1 and jd−1 = kd;

0 otherwise,

(5.17)

and

Qir ,ir+1 · (1i · fj,k) =





δi,jfj,k if cjr ,jr+1 = 0;

δi,jεjd−1,jd(xf)j,k if r = d− 1;

0 otherwise,

(5.18)

If sr is j-admissible (and hence cjr,jr+1 = 0), then (5.17) and (5.18) are equal. If r = d − 1 and
jd = kd, then the expressions clearly agree. Note that in every other case, (5.17) and (5.18) are both
zero, since (xf)j,k = 0 whenever jd 6= kd.

Finally, we check relation (2.8). Fix r ∈ [1, d − 2], and write σ = srsr+1sr = sr+1srsr+1. If
r < d− 2, then

ψr+1 · (ψr · (ψr+1 · (1i · fj,k))) = ψr · (ψr+1 · (ψr · (1i · fj,k))),

since both terms are equal to δi,jfσj,k if cjr ,jr+1 = cjr,jr+2 = cjr+1,jr+2 = 0, and both are zero
otherwise. Now assume r = d − 2, and assume that either ψd−1 · (ψd−2 · (ψd−1 · (1i · fj,k))) or
ψd−2 · (ψd−1 · (ψd−2 · (1i · fj,k))) is nonzero. Then we must have Vj,k, Vσj,k 6= 0. Then, since
j, σj ∈ Gδ, by Lemma 5.6(i), we have that jd−2, jd−1, jd are all distinct, and by Lemma 5.6(ii),
cjd−1,jd = cjd−1,jd−2

= −1. Thus ψd−2 · (ψd−1 · (ψd−2 · (1i · fj,k))) = 0, since sd−2 is not j-admissible.
Thus ψd−1 · (ψd−2 · (ψd−1 · (1i · fj,k))) must be nonzero. If jd = kd, then jd−1 6= kd, which implies
jd−2 = (sd−2sd−1j)d−1 = kd = jd, a contradiction. Then we must have jd−1 = kd and cjd−2,jd = 0, in
which case ψd−1 · (ψd−2 · (ψd−1 · (1i · fj,k))) = δi,jεjd−1,jd(xf)σj,k. But, since (σj)d = jd−2 6= jd = kd,
we have that xf = 0 in Vσj,k, another contradiction. Thus (ψr+1ψrψr+1 − ψrψr+1ψr)1i = 0 as an
operator on V . Moreover, jr 6= jr+2 for every j ∈ Gδ by Lemma 5.6(i), so the right side of relation
(2.8) also acts identically as zero on V . �

Theorem 5.19. The set X of Proposition 5.13 is a basis for Cδ.

Proof. Note that

{(zb)i,j | i, j ∈ Gδ,cid,jd = −1, b ∈ Z≥0}

∪ {(zbxm)i,j | i, j ∈ Gδ, id = jd,m ∈ {0, 1}, b ∈ Z≥0}

is a basis for V . The Rδ-module V factors through to a Cδ-module since 1nscV = 0 by Corollary 5.8.
Letting i, j ∈ Gδ, w ∈ Wi,m+ deg(ψw1i) ≤ 1, b ∈ Z≥0, we have, by Lemma 5.6(vii),

yb1(y1 − yd)
mψw1i · 1j,j =

{
δi,j(z

b)wi,i if deg(ψw1i) = 1;

δi,j(z
bxm)wi,i if deg(ψw1i) = 0.
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For all w ∈ Wi, wi ∈ Gδ, (wi)d = id when deg(ψw1i) = 0, and (wi)d is a neighbor of id when
deg(ψw1i) = 1. Moreover, wi = ui for w, u ∈Wi if and only if w = u, so the elements of X act on V
as linearly independent operators. Taking into account Proposition 5.13, we deduce that X is a basis
for Cδ. �

For each α ∈ Q+ and dominant weight Λ associated to C, there is an important quotient RΛ
α of

Rα called the cyclotomic KLR algebra (see e.g. [2, 15]). Of relevance to the discussion at hand is

the level-one case RΛ0

δ ; it is by definition the quotient of Rδ by the two-sided ideal generated by the

elements {y
δi1,0

1 1i | i ∈ Iδ}. By [16, Lemma 5.1], when k is a field, {Lδ,i | i ∈ I ′} is a full set of

irreducible modules for RΛ0

δ , so 1i = 0 in RΛ0

δ unless i ∈ Gδ. So by Corollary 5.8, there is a natural

surjection Cδ ։ RΛ0

δ
∼= Cδ/Cδy1Cδ.

Lemma 5.20. There is an isomorphism of graded k-algebras Cδ
∼= k[y1]⊗RΛ0

δ , and RΛ0

δ , considered
as a subalgebra of Cδ, has basis

{(y1 − yd)
mψw1i | i ∈ Gδ, w ∈Wi,m+ deg(ψw1i) ≤ 1}.(5.21)

Proof. We may construct a map ϕ : RΛ0

δ → Cδ via:

1i 7→ 1i, ψr 7→ ψr, yr 7→ yr − y1.

All defining relations of RΛ0

δ are preserved by the map—the only non-obvious relation to check is (2.5),
which follows since y1 is central in Cδ by Lemma 5.10(iii). Thus ϕ is a well-defined homomorphism

of graded k-algebras which splits the natural surjection Cδ ։ RΛ0

δ . The set (5.21) is clearly in the
image of ϕ, so the result follows by Lemmas 5.10, 5.11, 5.12 and Theorem 5.19. �

5.4. Description of the algebra Bδ. Recall the signs εi,j from §2.4. Define

ξ1 :=





1 if C = A
(1)
1 ;

ε10 · · · εℓ,ℓ−1ε0,ℓ if C = A
(1)
ℓ>1;

(−1)ℓ if C = D
(1)
ℓ ;

−1 if C = E
(1)
ℓ .

Then for all other i ∈ I ′, define ξi such that ξiξj = −1 whenever ci,j = −1 (this is possible as Γ is a
tree). We also define, for all i, j ∈ I ′ with ci,j = −1, the constants

µji =

{
εji if ξi = 1;

1 if ξi = −1.

Lemma 5.22. For all i, j ∈ I ′ with ci,j = −1, we have εjiξi = µijµji.

Proof. This is a direct check, just using the fact that by definition εij = −εji. �

Assume for a moment that k is a field. Then {Lδ,i | i ∈ I ′} is a complete set of irreducible Cδ-
modules up to isomorphism and degree shift, Moreover, the orthogonal idempotents {1i | i ∈ Gδ} in
Cδ are primitive, since by Theorem 5.19, the space (1iCδ1i)0 is 1-dimensional. Set

1i := 1bi (for i ∈ I ′), 1∆ :=
∑

i∈I′

1i.

By Lemma 5.7, we have 1iLδ,i 6= 0, and 1iLδ,j = 0 for every i 6= j ∈ I ′. So the projective cover ∆δ,i

of Lδ,i in Cδ is isomorphic to Cδ1i, and

∆δ :=
⊕

i∈I′

∆δ,i
∼= Cδ1∆.

is a projective generator in Cδ-mod. We want to compute the endomorphism algebra

Bδ := EndCδ
(∆δ)

op ∼= 1∆Cδ1∆.

Observe that the definitions of Cδ, ∆δ, 1∆, Bδ, Lδ,i, etc. make sense over an arbitrary commutative
ground ring k. In fact, all our computations below will be done in this generality.
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The following lemma follows from consideration of Theorem 5.19:

Lemma 5.23. For i, j ∈ I ′, HomCδ
(∆δ,i,∆δ,j) ∼= 1iCδ1j as k-modules, and 1iCδ1j has k-basis

{yb1(y1 − yd)
m1j | b ∈ Z≥0,m ∈ {0, 1}} if i = j,

and

{yb1ψi,j1j | b ∈ Z≥0} if ci,j = −1,

and is zero otherwise.

Recall that Γ is the Dynkin diagram corresponding to the finite type Cartan matrix C
′, so the

vertices of Γ are identified with the set I ′. The following theorem establishes a Morita equivialence
between the cyclotomic KLR algebra RΛ0

δ and the zigzag algebra Z = Z(Γ).

Theorem 5.24. Consider 1∆R
Λ0

δ 1∆ as a subalgebra of Cδ via Lemma 5.20.

(i) 1∆R
Λ0

δ 1∆ has basis

{(y1 − yd)
m1j | j ∈ I ′, m ∈ {0, 1}} ∪ {ψi,j1j | i, j ∈ I ′, ci,j = −1}.

(ii) There is an isomorphism of graded algebras

(5.25) ϕ : 1∆R
Λ0

δ 1∆
∼
−→ Z, 1i 7→ ei, (y1 − yd)1i 7→ ξicei, ψj,i1i 7→ µjia

j,i,

Proof. Part (i) follows immediately from Lemma 5.20. For part (ii), let ϕ : 1∆R
Λ0

δ 1∆
∼
−→ Z be the

degree zero homogeneous linear isomorphism defined on basis elements as in (5.25). To check that ϕ
respects multiplication, observe that elements of the form (y1 − yd)1i and ψj,i1i have degrees 1 and 2

respectively, and both 1∆R
Λ0

δ 1∆ and Z are concentrated in degrees 0,1,2. Thus the only non-obvious
check is that ϕ(ψi,j1j · ψk,l1l) = ϕ(ψi,j1i)ϕ(ψk,l1l).

Note that by (i), if x ∈ 1∆R
Λ0

δ 1∆ is in degree 2, then 1ix1j = 0 whenever i 6= j. Thus

ψi,j1j · ψk,l1l = δj,k1iψi,jψj,l1l = δj,kδi,lψi,jψj,i1i.

By Lemma 5.6(vi), wi,j = w1sd−1w2 for some w2 which is b
j-admissible, and some w1 which is

sd−1w2b
j-admissible, and wj,i = w−1

i,j . Then by Lemma 5.9(i), we may write

ψi,j1j · ψk,l1l = δj,kδi,lψw1ψd−1ψw2ψw
−1
2
ψd−1ψw

−1
1
1i.

Since w−1
2 is sd−1w

−1
1 bi-admissible, and w2 is w−1

2 sd−1w
−1
1 bi-admissible, it follows from relation (2.6)

that ψw2ψw
−1
2
1sd−1w

−1
1

= 1sd−1w
−1
1

. Thus we have

ψi,j1j · ψk,l1l = δj,kδi,lψw1ψd−1ψd−1ψw
−1
1
1i.

Since w−1
2 sd−1w

−1
1 bi = bj , where w−1

1 is bi is bi-admissible and w−1
2 is sd−1w

−1
1 bi-admissible, we have

by Lemma 5.6(ii) that (w−1
1 b

i)d = i and (w−1
1 b

i)d−1 = j. Thus by relation (2.6) we have

ψi,j1j · ψk,l1l = δj,kδi,lψw1εj,i(yd−1 − yd)ψw
−1
1

1i = δj,kδi,lψw1εj,i(y1 − yd)ψw
−1
1

1i

= δj,kδi,lεj,i(y1 − yd)ψw1ψw
−1
1
1i = δj,kδi,lεj,i(y1 − yd)1i.

The second equality follows from Lemma 5.10(i). The third equality follows since w1, being w
−1
1 bi-

admissible, cannot involve s1 or sd−1 by Lemma 5.6(ii). The fourth equality follows by admissibility
of w1 and w−1

1 . Thus

ϕ(ψi,j1j · ψk,l1l) = ξiδj,kδi,lεjicei

Now ϕ(ψi,j1i)ϕ(ψk,l1l) = κai,jak,l, for some κ ∈ k. The zigzag relations imply that this is zero unless
i = l and j = k. So

ϕ(ψi,j1i)ϕ(ψk,l1l) = δj,kδi,l(µija
i,j)(µjia

j,i) = δj,kδi,lµijµjicei

Thus it follows from Lemma 5.22 that ϕ(ψi,j1j · ψk,l1l) = ϕ(ψi,j1i)ϕ(ψk,l1l). �

Corollary 5.26. Let z be an indeterminate in degree 2. We have isomorphisms of graded algebras

Bδ = EndCδ
(∆δ)

op ∼= 1∆Cδ1∆ ∼= k[y1]⊗ 1∆R
Λ0

δ 1∆ ∼= k[z]⊗ Z ∼= Z
aff
1

∼= EndCδ
(∆δ).
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Proof. The first isomorphism is standard. The second isomorphism follows from Lemma 5.20. The
third isomorphism follows from Theorem 5.24. The fourth isomorphism follows from the definition of
Z
aff
1 . The fifth isomorphism follows from Lemma 4.11. �

Now, to avoid confusion, we will write vi := 1i for the generating vector of word bi in ∆δ,i = Cδ1i.
Let vδ :=

∑
i∈I′ vi ∈ ∆δ.

Corollary 5.27. The k-algebra EndCδ
(∆δ) is generated by the homomorphisms

ei : vδ 7→ 1ivδ, z : vδ 7→ y1vδ, ci : vδ 7→ ξi(y1 − yd)1ivδ, ai,j : vδ 7→ µjiψj,i1ivδ,

where i runs over I ′ and j runs over all neighbors of i in I ′, subject only to the same relations as
their namesakes in k[z]⊗ Z ∼= Z

aff
1 :

∑

i∈I′

ei = 1, ei ◦ ej = δi,jei, ai,j ◦ ak,l = δj,kδi,lci ek ◦ a
i,j = δi,ka

i,j ,

ci ◦ cj = 0, ei ◦ cj = cj ◦ ei = δi,jcj , ai,j ◦ ck = ck ◦ a
i,j = 0, ai,j ◦ ek = δj,ka

i,j ,

for all admissible i, j, k, l ∈ I ′, and z ◦ g = g ◦ z for all generators g.

Proof. Follows directly from tracing through the isomorphisms of Corollary 5.26. �

6. On the higher imaginary stratum categories

Suppose for a moment that k is a field. It is shown in [20, 22] that the Rnδ-module ∆◦n
δ =

Indδ,...,δ(∆
⊠n
δ ) factors through to a projective Cnδ-module, and ∆◦n

δ is a projective generator for Cnδ

if chark = 0 or chark > n. We will build on the previous section to explicitly describe for all n
the algebra EndCnδ

(∆◦n
δ ) as the rank n affine zigzag algebra Z

aff
n (Γ), defined in §4.2, where Γ is the

finite type Dynkin diagram of type C
′. This gives a Morita equivalence between Cnδ and Z

aff
n when

chark = 0 or chark > n. In fact, our proof that EndCnδ
(∆◦n

δ ) ∼= Z
aff
n (Γ) works over any commutative

until ground ring k.

6.1. Endomorphisms of ∆◦n
δ . First we compute the graded dimension of EndCnδ

(∆◦n
δ ):

Lemma 6.1. For n ∈ Z≥0 we have

dimq EndCnδ
(∆◦n

δ ) =
n!(ℓ+ 2(ℓ− 1)q + ℓq2)n

(1− q2)n
.

Proof. By the Mackey Theorem [15, Proposition 2.18] (see also [20, Theorem 4.3]), the restriction
Resδ,...,δIndδ,...,δ(∆

⊠n
δ ) has filtration with n! subquotients all of which are isomorphic to ∆⊠n

δ . But

∆⊠n
δ is projective as a C⊗n

δ -module, so these subquotients are in fact summands. So Frobenius
Reciprocity gives

EndCnδ
(∆◦n

δ ) ∼= HomC
⊗n
δ

(
∆⊠n

δ , (∆⊠n
δ )⊕n!

)
∼= (EndCδ

(∆δ)
⊗n)⊕n! ∼= ((k[z]⊗ Z)⊗n)⊕n!

as k-modules. The result now follows by Lemma 4.2(ii). �

Recalling ei, z, ci, a
i,j ∈ EndCδ

(∆δ) from Corollary 5.27, we set c :=
∑

i∈I′ ci. Let i = (i1, . . . , in) ∈

(I ′)n, g ∈ {z, c, ai,j} and 1 ≤ r ≤ n. We define endomorphisms

ei := ei1 ◦ · · · ◦ ein , gr := id◦(r−1) ◦ g ◦ id◦(n−r) ∈ EndCnδ
(∆◦n

δ ).

Writing
∆i := ∆δ,i1 ◦ · · · ◦∆δ,in ,

we have that ∆◦n
δ =

⊕
i∈(I′)n ∆i, and ei is the projection to the summand ∆i.



28 ALEXANDER KLESHCHEV AND ROBERT MUTH

6.2. Twist endomorphisms. We describe one more family of endomorphisms of ∆◦n
δ . Let Lδ :=⊕

i∈I′ Lδ,i. For i ∈ (I ′)n, we will write Li := Lδ,i1 ◦ · · · ◦ Lδ,in . As explained in [19], there exists, for

every i, j ∈ I ′, a distinguished nonzero degree-zero homomorphism ri,j : Lδ,i ◦ Lδ,j → Lδ,j ◦ Lδ,i. We
will describe this map explicitly later in this section. We have L◦2

δ =
⊕

i,j∈I′ Lδ,i ◦ Lδ,j, so we may

consider r :=
∑

i,j∈I′ ri,j as an endomorphism of L◦2
δ . More generally, for t ∈ [1, n− 1], we have an

endomorphism rt of L
◦n
δ given by

rt := id◦(t−1) ◦ r ◦ id◦(n−t−1) .

It can be seen as in [19, Theorem 4.2.1], that r1 . . . , rn−1 satisfy Coxeter relations of the symmetric
group Sn, and, together with the projections L◦n

δ → Li, generate a subalgebra T of dimension ℓnn!
in EndCnδ

(L◦n
δ ) = EndCnδ

(L◦n
δ )0.

The projective C⊗n
δ -module ∆⊠n

δ surjects onto L⊠n
δ , which induces a (degree zero) surjection π :

∆◦n
δ → L◦n

δ . For t ∈ [1, n−1], the Coxeter relations imply that r2t is the identity function on L◦n
δ , so rt

is an isomorphism of L◦n
δ . Since ∆◦n

δ is a projective Cnδ-module, rt lifts to a surjection r̃t : ∆
◦n
δ → L◦n

δ .
Then, again by projectivity of ∆◦n

δ , r̃t lifts to an endomorphism r̂t : ∆◦n
δ → ∆◦n

δ , as shown in the
commuting diagram below:

L◦n
δ

∆◦n
δ

L◦n
δ

∆◦n
δ

rt

∼

π π
r̃t

r̂t

Moreover, since rt is a degree zero map, we have r̂t ∈ EndCnδ
(∆◦n

δ )0. We also have, for every i ∈ (I ′)n,
the projection ei : ∆◦n

δ → ∆i ⊂ ∆◦n
δ , which lifts the projection L◦n

δ → Li ⊂ L◦n
δ to an element of

EndCnδ
(∆◦n

δ )0.

Lemma 6.2. We have:

(i) Every element of T ⊆ EndCnδ
(L◦n

δ ) may be lifted to an element of EndCnδ
(∆◦n

δ )0, and this
lift is unique.

(ii) The elements r̂1, . . . , r̂n−1 satisfy the Coxeter relations of Sn.

Proof. By the above paragraph, we have the endomorphisms {r̂1, . . . , r̂n−1}, and {ei | i ∈ (I ′)n}
in EndCnδ

(∆◦n
δ )0, which lift the generators of T . Thus every element of T may be lifted to an

element of EndCnδ
(∆◦n

δ )0. But T has a basis which lifts to give ℓnn! linearly independent elements
in EndCnδ

(∆◦n
δ )0, so by Lemma 6.1, this constitutes a basis for EndCnδ

(∆◦n
δ )0. It follows that lifts of

elements of T to EndCnδ
(∆◦n

δ )0 must be unique. Part (ii) follows from (i) and the fact that r1, . . . , rn−1

satisfy Coxeter relations. �

Let σ, σ′ ∈ R2δ be the following products of ψ’s, displayed diagrammatically:

σ :=

1 2 · · · d d+1 d+2 · · · 2d

, σ′ :=

1 2 · · · d d+1 d+2 · · · 2d

.

The labels in this case only indicate strand position and are not meant to color the strands.
In order to understand the multiplicative structure of EndCnδ

(∆◦n
δ ), we will need to describe the

maps r̂t more explicitly and examine commutation relations between these maps and the others
detailed in §6.1. The following two lemmas are steps in this direction. Their proofs are straightforward
but rather lengthy exercises in manipulating KLR diagrams. For this reason we defer the proofs until
§7.

The generators vi ∈ ∆δ,i introduced in §5.4, yield generators

vi = vi1,...,in := 1⊗ vi1 ⊗ · · · ⊗ vin ∈ ∆i = Indδ,...,δ(∆δ,i1 ⊠ · · ·⊠∆δ,in),

for i = (i1, . . . , in) ∈ (I ′)n. The elements a⊗ b for a, b ∈ Rδ are interpreted as elements of R2δ via the
parabolic embedding Rδ ⊗Rδ →֒R2δ. With this notation we have:
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Lemma 6.3. Let i, j ∈ I ′. In ∆δ,i ◦∆δ,j, we have

σ′vi,j =





ξi[yd ⊗ 1 + 1⊗ (yd − 2y1)]vi,i if i = j;

ξiεij(ψj,i ⊗ ψi,j)vi,j if ci,j = −1;

0 otherwise.

Lemma 6.4. Let i, j,m ∈ I ′ with ci,j = −1. In ∆δ,m ◦∆δ,i, we have

(ψj,i ⊗ 1)σvm,i = [σ(1 ⊗ ψj,i) + δj,mξj(1⊗ ψj,i)− δi,mξi(ψj,i ⊗ 1)]vm,i.

Now we briefly describe the construction of the map ri,j , presented in [14,19]. It is recommended
that the interested reader consult that paper for a thorough treatment. If x is an indeterminate in
degree 2, let ι : Rδ → k[x]⊗Rδ be the algebra homomorphism defined by ι(1i) = 1i, ι(ψr) = ψr, and
ι(yr) = yr + x. Let Lδ,i,x := k[x] ⊗ Lδ,i be the k[x] ⊗ Rδ-module with action twisted by ι. We may
perform the same construction with another indeterminate x′, and consider the k[x, x′]⊗R2δ-modules

Lδ,i,x◦Lδ,j,x′ and Lδ,j,x′◦Lδ,i,x. There is a nonzero homomorphism ri,jx,x′ : Lδ,i,x◦Lδ,j,x′ → Lδ,j,x′◦Lδ,i,x

defined in terms of certain intertwining elements of R2δ. Then r
i,j is equal to

ri,j := [(x − x′)−sri,jx,x′ ]x=x′=0,(6.5)

where s is maximal such that ri,jx,x′(Lδ,i,x ◦ Lδ,j,x′) ⊂ (x− x′)sLδ,j,x′ ◦ Lδ,i,x.

For any i ∈ I ′, let v̄i ∈ Lδ,i be the image of vi in the quotient ∆δ,i ։ Lδ,i. Writing v̄i,j for
1⊗ v̄i ⊗ v̄j ∈ Lδ,i ◦ Lδ,j, it can be seen as in [19, Proposition 8.2.1] that

ri,jx,x′(v̄i,j) = (x − x′)κσv̄j,i + (x − x′)κ−1σ′v̄j,i,(6.6)

where κ =
∑d

a=1

∑d
b=1 δbi

a,b
j

b
.

Lemma 6.7. For t ∈ [1, n− 1], the homomorphism r̂t ∈ EndCnδ
(∆◦n

δ ) satisfies

r̂t(vi) = (1⊗· · ·⊗1⊗ (σ + δit,it+1ξit)⊗1⊗ · · ·⊗1)vsti,

where (σ + δit,it+1ξit) is inserted in the (t, t+ 1)th slots, for all i ∈ (I ′)n.

Proof. Let i, j ∈ I ′. All y′s and ψ’s of positive degree act as zero on Lδ,i and Lδ,j since these modules
are concentrated in degree zero. So by Lemma 6.3, we have σ′v̄j,i = δi,jξi(x− x′)v̄j,i. Thus, (6.5) and
(6.6) give ri,j(v̄i,j) = (σ + ξiδi,j)v̄j,i.

It may be seen via Theorem 5.19 and word/degree considerations that (1bibj∆δ,j ◦∆δ,i)0 has basis
{vi,i, σvi,i} if i = j, and {σvj,i} if i 6= j. Thus Lemma 6.2(i) implies that r̂1(vi,j) = (σ + δi,jξi)vj,i.
The result for general n follows from this case. �

6.3. Commutation relations in EndCnδ
(∆◦n

δ ). Now we examine commutation relations between
elements of EndCnδ

(∆◦n
δ ). We will use the following generator of ∆◦n

δ :

vδ,...,δ := 1⊗ vδ ⊗ · · · ⊗ vδ =
∑

i∈(I′)n

vi.

Lemma 6.8. The following relations hold in EndCnδ
(∆◦n

δ ):

r̂t ◦ ei = esti ◦ r̂t,(6.9)

(r̂t ◦ a
i,j
u − ai,j

st(u)
◦ r̂t) ◦ ei = 0,(6.10)

(r̂t ◦ cu − cst(u) ◦ r̂t) ◦ ei = 0,(6.11)

(r̂t ◦ zu − zst(u) ◦ r̂t) ◦ ei =





(δu,t − δu,t+1)(ct + ct+1) ◦ ei if it = it+1;

(δu,t − δu,t+1)a
it+1,it
t ◦ a

it,it+1

t+1 ◦ ei if cit,it+1 = −1;

0 otherwise,

(6.12)

for all t ∈ [1, n− 1], u ∈ [1, n], and i ∈ (I ′)n.
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Proof. It is enough to check these relations in the case n = 2. We note that (6.9) holds by construction
of the map r̂t. For i, j,m ∈ I ′ such that ci,j = −1, we have

r̂1 ◦ a
i,j
1 ◦ ej,m(vδ,δ) = (ψj,i ⊗ 1)(σ + δi,mξi)vm,i = (σ + δj,mξj)(1⊗ ψj,i)vm,i

= ai,j2 ◦ r̂1 ◦ ej,m(vδ,δ),

where Lemma 6.7 has been applied for the first equality and Lemma 6.4 has been applied for the
second equality. Thus (6.10) holds when u = 1. Since r̂21 = 1, the claim also holds for u = 2,
completing the proof of (6.10).

The relation (6.11) follows from (6.10) when C 6= A
(1)
1 since ct may be expressed in terms of aijt ’s.

When C = A
(1)
1 , we have

r̂1 ◦ c1 ◦ e11(vδ,δ) = [(y1 − y2)⊗ 1](σ + 1)v1,1

c2 ◦ r̂1 ◦ e11(vδ,δ) = (σ + 1)[1⊗ (y1 − y2)]v1,1.

The equality of these expressions is easily verified by direct application of KLR relations.
For relation (6.12), we have

(r̂1 ◦ z1 ◦ eji − z2 ◦ r̂1 ◦ eji)(vδ,δ) = [(y1 ⊗ 1)(σ + δi,jξj)− (σ + δi,jξj)(1⊗ y1)]vi,j

= [σ(1 ⊗ y1)− σ′ + δi,jξj(y1 ⊗ 1)− (σ + δi,jξj)(1 ⊗ y1)]vi,j

= [−σ′ + δi,jξj(y1 ⊗ 1)− δi,jξj(1 ⊗ y1)]vi,j ,

after applying KLR relation (2.5) to write (y1 ⊗ 1)σ1bibj = (σ(1 ⊗ y1)− σ′)1bibj .
Therefore, when i = j, we have by Lemma 6.3 that

(r̂1 ◦ z1 ◦ eji−z2 ◦ r̂1 ◦ eji)(vδ,δ)

= ξi[−(yd ⊗ 1)− (1⊗ (yd − 2y1)) + (y1 ⊗ 1)− (1⊗ y1)]vi,i

= ξi[((y1 − yd)⊗ 1) + (1⊗ (y1 − yd))]vi,i

= (c1 + c2) ◦ eii(vδ,δ)

On the other hand, if ci,j = −1, then Lemma 6.3 gives us

(r̂1 ◦ z1 ◦ eji−z2 ◦ r̂1 ◦ eji)(vδ,δ) = −ξiεij(ψj,i ⊗ ψi,j)vi,j = ξiεji(ψj,i ⊗ ψi,j)vi,j

= [µij(1⊗ ψi,j)][µji(ψj,i ⊗ 1)]vi,j = ai,j1 ◦ aj,i2 ◦ eji(vδ,δ),

applying Lemma 5.22 for the third equality. The case ci,j = 0 follows immediately from Lemma 6.3.
Thus relation (6.12) holds for u = 1, and the case u = 2 follows from (6.9), (6.10) and (6.11). �

Now we define some convenient notation for elements of EndCnδ
(∆◦n

δ ). For w = st1 · · · stm ∈ Sn,
define r̂w := r̂t1 ◦· · ·◦ r̂tm ∈ EndCnδ

(∆◦n
δ )0. By Lemma 6.2(ii) this definition is independent of reduced

expression for w. For t ∈ Z
n
≥0 and u ∈ {0, 1}n, we set

zt := z◦t11 ◦ · · · ◦ z◦tnn , cu := c◦u1
1 ◦ · · · ◦ c◦un

n .

For i, j ∈ I ′, we say i and j are connected if i = j or ci,j = −1. We say i, j ∈ (I ′)n are connected if
ir and jr are connected for all r ∈ [1, n]. For connected i, j ∈ I ′ and r ∈ [1, n], let âi,jr ∈ EndCnδ

(∆◦n
δ )

be defined

âi,jr :=

{
ai,jr if ci,j = −1;

id if i = j.

For connected i, j ∈ (I ′)n, set

ai,j := âi1,j11 ◦ · · · ◦ âin,jnn .

Lemma 6.13. The algebra EndCnδ
(∆◦n

δ ) has basis

{zt ◦ cu ◦ ai,wj ◦ r̂w ◦ ej},(6.14)

ranging over w ∈ Sn, t ∈ Z
n
≥0, i, j ∈ (I ′)n such that i and wj are connected, and u ∈ {0, 1}n such

that ur = 0 if ir 6= (wj)r.
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Proof. First, we argue that the elements of (6.14) are linearly independent. This argument proceeds
along similar lines to the proof of [19, Theorem 4.2.1].

Let Dnd
d,...,d be a set of minimal left coset representatives in Snd/Sd × · · · ×Sd. Note that, by the

KLR basis theorem [15, Theorem 2.5], ∆◦n
δ has k-basis {ψwv}, where w ∈ Dnd

d,...,d, and v ranges over

basis elements for ∆⊠n
δ .

For w ∈ Sn, define the block permutation bl(w) ∈ Snd by

bl(w)(a) = w(⌈a/d⌉)d+ (a− 1 mod d)− d+ 1.

Diagrammatically speaking, bl(w) is achieved by replacing each strand of the diagram of w by d
parallel strands. E.g., bl(s1) = σ ∈ S2d.

Let j ∈ (I ′)n, and assume w = st1 · · · stm . Then, by the definition of r̂w, we have

r̂w(vj) = (ψbl(stm ) + κm) · · · (ψbl(st1 )
+ κ1)vwj ,

for some constants κ1, . . . , κm ∈ k. Recombining terms, this may be written in turn as

ψbl(w−1)vwj + (∗),

where (∗) is a k-linear combination of terms of the form ψw′v, where v ∈ ∆⊠n
δ , and w′ ∈ Dnd

d,...,d is

such that ℓ(w′) < ℓ(bl(w−1)).
Then, considering the action of an element of (6.14) on ∆◦n

δ , we have

zt ◦ cu ◦ ai,wj ◦ r̂w ◦ ej(vδ,...,δ) =

ψbl(w−1)(y
t1
1 (y1 − yd)

u1ψ(wj)1,i1 ⊗ · · · ⊗ ytnn (y1 − yd)
unψ(wj)n,in)vi + (∗),

where (∗) is again a k-linear combination of terms of the form ψw′v, where v ∈ ∆⊠n
δ , and w′ ∈ Dnd

d,...,d

is such that ℓ(w′) < ℓ(bl(w−1)). Thus, by Lemma 5.23 and induction on the word length of w, it can
be shown that the elements (6.14) form a linearly independent set of endomorphisms. Now, comparing
graded dimension of the set (6.14) with Lemma 6.1 proves the result. �

Theorem 6.13 has the immediate corollary:

Corollary 6.15. The algebra EndCnδ
(∆◦n

δ ) is generated by the homomorphisms

{ei | i ∈ (I ′)n} ∪ {cr, zr, a
i,j
r | r ∈ [1, n], i, j ∈ I ′ with ci,j = −1} ∪ {r̂t | t ∈ [1, n− 1]}.

6.4. Proof of the Main Theorem. Now we prove the main result of the paper (which appears as
Theorem A in the introductory section):

Theorem 6.16. The map ϕ : Zaff
n (C′) → EndCnδ

(∆◦n
δ ), defined on generators by

ei 7→ ei, ai,jt 7→ ai,jt , ct 7→ ct, su 7→ r̂u, zt 7→ zt,

for all t ∈ [1, n], u ∈ [1, n − 1], i ∈ (I ′)n, and i, j ∈ I ′ such that ci,j = −1, is an isomorphism of
graded k-algebras.

Proof. By Corollary 5.27, Lemma 6.2(ii), and Lemma 6.8, the images of the generators obey the defin-

ing relations of Zaff
n as presented in Lemma 4.9. Hence ϕ defines a graded k-algebra homomorphism.

Moreover, ϕ surjects onto the generators of EndCnδ
(∆◦n

δ ) by Corollary 6.15, so it follows that ϕ is an
isomorphism by comparison of the graded dimensions in Lemma 4.10 and Lemma 6.1. �

Corollary 6.17. If k is a field of characteristic p = 0 or p > n, then Bnδ is Morita equivalent to
Z
aff
n (C′).

Proof. In this situation the module ∆◦n
δ is a projective generator for Bnδ, see [20, Lemma 6.22], so

Bnδ is Morita equivalent to EndCnδ
(∆◦n

δ )op ∼= (Zaff
n )op. Then the result follows by Lemma 4.11. �
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7. Appendix

This section is devoted to proving Lemmas 6.3 and 6.4, which are crucial in determining the
commutation relations among generating endomorphisms of ∆◦n

δ . In all cases, the approach to proving
these lemmas is similar:

(i) Every element of ∆δ,i ◦∆δ,j should be written as a linear combination of terms of the form
ψw(x1⊗x2)vi,j , where x1, x2 ∈ Rδ, and w is a minimal left coset representative for S2d/Sd×
Sd. Diagrammatically speaking, this is a matter of moving beads, and crossings of strands
which originate from the same side, to the top of the diagram by applying KLR relations.

(ii) Once all terms are rewritten as in (i), use Lemmas 5.9 through 5.12 to simplify the expressions
(x1⊗x2)vi,j , rewriting these elements of ∆δ,i⊠∆δ,j in the form of the basis in Theorem 5.19.

We have written a Sage program which performs steps (i) and (ii), and have used this algorithm

to verify Lemmas 6.3 and 6.4 in the exceptional cases of type E
(1)
ℓ . This program is available upon

request. In the following proofs we assume C is of type A
(1)
ℓ or D

(1)
ℓ .

Lemma 6.3. Let i, j ∈ I ′, and recall that vi,j is a generator for ∆δ,i ◦∆δ,j. Then we have

σ′vi,j =





ξi[yd ⊗ 1 + 1⊗ (yd − 2y1)]vi,i if i = j;

ξiεij(ψj,i ⊗ ψi,j)vi,j if ci,j = −1;

0 otherwise.

Proof. Case i = j, C = A
(1)
ℓ . If ℓ = 1, the result is easily checked. Assume ℓ ≥ 2. We depict σ′vi,i

diagrammatically, where vi,i is conceived to be at the top of the diagram:

0 1 · · ·i−1 ℓ · · · i 0 1 · · ·i−1 ℓ · · · i

.

We now move crossings up, when possible, to act on the individual factors ∆δ,i, and use Lemmas 5.6

and 5.11 to recognize when these terms are zero. Applying the braid relation to the
1 0 1

braid,

we see that the
1 0 1

term allows for the (0, 1)-crossing to move up to act on ∆δ,i as zero, leaving

only the remainder term ε01
1 0 1

. This behavior will occur frequently enough that we will merely

say that the (i, i+ 1, i)-braid ‘opens’. Indeed, the (1, 0, 1)- through (i− 1, i− 2, i− 1)-braids open in
succession, giving:

0 1 · · ·i−1 ℓ · · ·i+1 i 0 1 · · ·i−1 ℓ · · ·i+1 i

ε01 · · · εi−2,i−1

=

0 1 · · ·i−1 ℓ · · ·i+1 i 0 1 · · ·i−1 ℓ · · ·i+1 i

ε01 · · · εi−2,i−1εi+2,i+1 · · · εℓ,ℓ−1ε0,ℓ

,

after the (ℓ, 0, ℓ)-braid opens, followed by the (ℓ − 1, ℓ, ℓ − 1)- through (i + 2, i + 1, i + 2)-braids in
succession. Now, applying the (i, i+ 1, i)-braid relation, this is equal to

0 1 · · ·i−1 ℓ · · ·i+1 i 0 1 · · ·i−1 ℓ · · ·i+1 i

ε01 · · · εi−2,i−1εi+2,i+1 · · · εℓ,ℓ−1ε0,ℓ

+

0 1 · · ·i−1 ℓ · · ·i+1 i 0 1 · · ·i−1 ℓ · · ·i+1 i

ε01 · · · εi−2,i−1εi+1,iεi+2,i+1 · · · εℓ,ℓ−1ε0,ℓ

(7.1)
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In the left term in (7.1), the (i, i − 1, i)-braid opens, introducing an (i + 1, i)-double crossing, which
opens to give

−ξi[1⊗ (yd−1 − yd)]vi,i = −ξi[1⊗ (y1 − yd)]vi,i.

In the right term in (7.1), the (i, i− 1)-double crossing opens to give

ξi[yd ⊗ 1− 1⊗ yi]vi,i = ξi[yd ⊗ 1− 1⊗ y1]vi,i,

proving the claim.

Case i = j, C = D
(1)
ℓ , 1 ≤ i ≤ ℓ− 2. We depict σ′vi,i diagrammatically:

0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·i+1 1 · · · i 0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·i+1 1 · · · i

.

We begin dragging the 0-strand to the right to simplify the diagram. The (2, 0, 2)-braid opens, followed
by the (3, 2, 3)- through (ℓ− 1, ℓ− 2, ℓ− 1)-braids in succession. Then the (ℓ− 2, ℓ, ℓ− 2)-braid opens,
followed by the (ℓ− 3, ℓ− 2, ℓ− 3)- through (i+ 1, i+ 2, i+ 1)-braids in succession, giving (excluding
straight strands on the left):

ℓ−2· · ·i+1 1 2 · · ·i−1 i 0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·i+1 1 2 · · ·i−1 i

(−1)ℓ+iε02ε23 · · · εi,i+1εℓ−2,ℓ−1

.

Now the (ℓ−2, ℓ−1)-double crossing opens, introducing a (ℓ−2, ℓ−3, ℓ−2)-braid which opens, followed
by a (ℓ−2, ℓ−3)-double crossing which opens. This sequence repeats until the (i+2, i+1, i+2)-braid
opens, followed by (i+ 2, i+ 1)-double crossing which opens. Finally, the (i+ 1, i, i+ 1)-braid opens,
giving:

1 2 · · ·i−1 i 0 2 · · ·i−1 i i+1· · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·i+1 1 2 · · ·i−1 i

(−1)ℓ+iε02ε23 · · · εi−1,i

.

Now the central (i − 1, i, i − 1)- through (1, 2, 1)-braids open in succession, and then (i − 2, i − 1)-
through (1, 2)-double crossings open in succession. Then the (2, 0, 2)-braid opens, followed by the
(3, 2, 3)- through (i− 1, i− 2, i− 1)-braids opening in succession, giving (omitting straight strands on
the left):

i 0 2 · · ·i−1 i i+1· · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·i+1 1 2 · · ·i−1 i

(−1)ℓ+i+1

.
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Now, applying the braid relation to the (i, i− 1, i)-braid gives

i 0 2 · · ·i−1 i i+1· · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·i+1 1 2 · · ·i−1 i

(−1)ℓ+i+1

+

i 0 2 · · ·i−1 i i+1· · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·i+1 1 2 · · ·i−1 i

(−1)ℓ+i+1εi−1,i

In the term on the left, the (i, i+1, i)-braid opens, introducing (i−1, i)- and (i, i+1)-double crossings
which open, finally introducing an (i, i− 1, i)-braid which opens, giving

(−1)ℓ+i[1⊗ (yd−1 − yd)]vi,i = (−1)ℓ+i[1⊗ (y1 − yd)]vi,i

In the term on the right, the (i, i−1)-double crossing opens, followed by an (i, i+1)-crossing opening,
finally introducing an (i, i− 1, i)-braid which opens, giving

(−1)ℓ+i+1[yd ⊗ 1− 1⊗ y1]vi,i,

proving the statement.

Case i = j, C = D
(1)
ℓ , i = ℓ, ℓ− 1. We’ll check the i = ℓ case, the other case being similar. We depict

σ′vi,i diagrammatically:

0 2 · · ·ℓ−2ℓ−1 1 2 · · ·ℓ−2 ℓ 0 2 · · ·ℓ−2ℓ−1 1 2 · · ·ℓ−2 ℓ

.

As in the last case, we begin by pulling the 0-strand to the right. The (2, 0, 2)-braid opens, then the
(3, 2, 3)- through (ℓ − 1, ℓ − 2, ℓ − 1)-braids open in succession, giving (omitting straight strands on
the left):

1 2 · · ·ℓ−2 ℓ 0 2 · · ·ℓ−2ℓ−1 1 2 · · ·ℓ−2 ℓ

ε02ε23 · · · εℓ−2,ℓ−1

=

1 2 · · ·ℓ−2 ℓ 0 2 · · ·ℓ−2ℓ−1 1 2 · · ·ℓ−2 ℓ

−ε02εℓ−2,ℓ−1

,

after the (1, 2, 1)-braid opens, followed by the (2, 1, 2)- through (ℓ − 2, ℓ − ℓ − 3, ℓ − 2)-braids. Now
the (2, 3)- through (ℓ− 2, ℓ− 1)-braids open in succession. Then (2, 0, 2)-braid opens, followed by the
(3, 2, 3)- through (ℓ − 2, ℓ − 3, ℓ − 2)- braids in succession, giving (omitting straight strands on the
left):

ℓ 0 2 · · ·ℓ−2ℓ−1 1 2 · · ·ℓ−2 ℓ

(−1)

=

ℓ 0 2 · · ·ℓ−2ℓ−1 1 2 · · ·ℓ−2 ℓ

(−1)

+

ℓ 0 2 · · ·ℓ−2ℓ−1 1 2 · · ·ℓ−2 ℓ

−εℓ−2,ℓ

,

after applying the braid relation to the (ℓ, ℓ− 2, ℓ)-braid. In the left term, the (ℓ, ℓ− 2, ℓ)-braid opens,
then the (ℓ− 2, ℓ)-double crossing opens, giving

−(1⊗ (yd−1 − yd))vi,i = −(1⊗ (y1 − yd))vi,i.

In the right term, the (ℓ, ℓ− 2)-double crossing opens, giving

(yd ⊗ 1− 1⊗ yℓ−2)vi,i = (yd ⊗ 1− 1⊗ y1)vi,i,

proving the claim in this case.
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Case ci,j = −1, C = A
(1)
ℓ . We have j = i+1 or j = i−1. We will prove the statement in the former

case; the latter is similar. We write σ′vi,j diagrammatically:

0 1 · · ·i−1 ℓ · · · j i 0 1 · · ·i−1 i ℓ · · · j

=

0 1 · · ·i−1 ℓ · · · j i 0 1 · · ·i−1 i ℓ · · · j

ε01 · · · εi−1,i

,

after the (1, 0, 1)- through (i, i−1, i)-braids open in succession. Now the (ℓ, 0, ℓ)-braid opens, followed
by the (ℓ− 1, ℓ, ℓ− 1)- through (j, j+1, j)-braids in succession, giving ξiεij(ψj,i⊗ψi,j)vi,j , as desired.

Case ci,j = −1, C = D
(1)
ℓ , 1 ≤ i, j ≤ ℓ− 2. We have j = i + 1 or j = i − 1. We will prove the

statement in the former case; the latter is similar. We write σ′vi,j diagrammatically:

0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · · j 1 · · · i 0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 1 · · · j

.

Dragging the 0-strand to the right, the (2, 0, 2)-braid opens, then the (3, 2, 3)- through (ℓ−1, ℓ−2, ℓ−1)-
braids open in succession. Then (ℓ, ℓ−2, ℓ)- and (ℓ−2, ℓ, ℓ−2)-braids open, followed by (ℓ−3, ℓ−2, ℓ−2)-
through (j +1, j+2, j+1)-braids opening in succession. This gives (omitting straight strands on the
left):

ℓ−2· · ·j+1 j 1 · · · i 0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 1 · · · j

(−1)ℓ+i+1ε02ε23 · · · εi+1,i+2εℓ−2,ℓ−1

.

Now the (ℓ− 2, ℓ− 1)-double crossing opens. The (ℓ− 2, ℓ− 3, ℓ− 2)-braid opens, which introduces an
(ℓ− 2, ℓ− 3)-double crossing which opens. This sequence repeats, until the (j + 2, j + 1, j + 1)-braid
opens, introducing a (j+2, j+1)-double crossing which opens. Finally, a (j+1, j, j+1)-braid opens,
giving (omitting straight strands on the left):

j 1 2 · · ·i−1 i 0 2 · · ·i−1 i j j+1· · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 1 2 · · ·i−1 i j

(−1)ℓ+i+1ε02ε23 · · · εi,i+1

.

Now the (i, j, i)-braid opens, and then the (i − 1, i, i − 1)-through (1, 2, 1)-braids open in succession.
Finally, the (j, j + 1, j)-braid opens, giving:

j 1 2 · · ·i−1 i 0 2 · · ·i−1 i j j+1· · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 1 2 · · ·i−1 i j

(−1)ℓ+iε02ε12εi+2,i+1

.
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Now the (j, j + 1)-double crossing opens, followed by the (i− 1, i)- through (1, 2)-double crossings in
succession, giving (omitting strands on the right):

j 1 2 · · ·i−1 i 0 2 · · ·i−1 i j j+1· · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 1 2 · · ·i−1 i j

(−1)ℓ+i+1ε02ε23εi−1,i

.

Now the (2, 0, 2)-braid opens, followed by the (3, 2, 3)- through (j, i, j)-braids in succession, giving
(−1)ℓ+i+1εi,i+1(ψj,i ⊗ ψi,j)vi,j , as desired.

Case ci,j = −1, C = D
(1)
ℓ , ℓ− 2 ≤ i, j ≤ ℓ. We will check the case i = ℓ − 2, j = ℓ. The other cases

are similar. We write σ′vi,j diagrammatically:

0 2 · · · ℓ 1 · · ·ℓ−2 0 2 · · ·ℓ−1 1 · · ·ℓ−2 ℓ

.

Dragging the 0-strand to the right, the (2, 0, 2)-braid opens, then the (3, 2, 3)- through (ℓ−1, ℓ−2, ℓ−1)-
braids open in succession. The (ℓ−3, ℓ−2, ℓ−2)-braid opens, and then the (ℓ−4, ℓ−3, ℓ−4)- through
(1, 2, 1)-braids open in succession, giving (omitting straight strands on the left):

ℓ 1 2 · · ·ℓ−3ℓ−2 0 2 · · ·ℓ−3ℓ−2ℓ−1 1 2 · · ·ℓ−3ℓ−2 ℓ

−ε02ε12εℓ−2,ℓ−1

=

ℓ 1 2 · · ·ℓ−3ℓ−2 0 2 · · ·ℓ−3ℓ−2ℓ−1 1 2 · · ·ℓ−3ℓ−2 ℓ

−εℓ−2,ℓ−1

,

after the (ℓ−4, ℓ−3)- through (1, 2)-double crossings open in succession, followed by the (2, 0, 2)- and
(3, 2, 3)- through (ℓ − 3, ℓ − 4, ℓ − 3)-braids opening in succession. Now the (ℓ − 2, ℓ− 3, ℓ− 2)-braid
opens, introducing an (ℓ− 2, ℓ− 1)-double crossing which opens, followed by (ℓ− 2, ℓ− 3, ℓ− 2)- and
(ℓ, ℓ− 2, ℓ)-braids opening, which gives −εij(ψj,i ⊗ ψi,j)vi,j , as desired.

Case ci,j = 0, all types. By the usual manipulations of KLR elements (cf. [3, §2.6]), we may write

σ′vi,j as a sum of terms of the form 1bjbiψw(xi ⊗ xj), where xi ∈ ∆δ,i and xj ∈ ∆δ,j , and w ⊳ σ′

(where we consider σ′ as an element of S2d) is a minimal left coset representative for S2d/Sd ×Sd.

Since (bjbi)1 = (bjbi)d+1 = 0 and i1 = 0 for every word i of ∆δ,i and ∆δ,j, it follows that w = id.
But 1j∆δ,i = 0 by Lemma 5.23, so σ′vi,j = 0. �

Lemma 6.4. Let i, j,m ∈ I ′ with ci,j = −1. Then we have

(ψj,i ⊗ 1)σvm,i = [σ(1 ⊗ ψj,i) + δj,mξj(1⊗ ψj,i)− δi,mξi(ψj,i ⊗ 1)]vm,i.

Proof. Case m = j, C = A
(1)
ℓ . Since i and j are neighbors, either j = i− 1 or j = i+ 1. We will prove

the claim in the former case; the latter is similar. We depict (ψj,i ⊗ 1)σvj,i diagrammatically:

0 1 · · ·j−1 ℓ · · · i j 0 1 · · ·j−1 j ℓ · · · i

=

0 1 · · ·j−1 ℓ · · · i j 0 1 · · ·j−1 j ℓ · · · i
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Applying the braid relation to the (i, j, i)-braid, we have σ(1 ⊗ ψj,i)vj,i, plus the error term:

0 1 · · ·j−1 ℓ · · ·i+1 i j 0 1 · · ·j−1 j ℓ · · ·i+1 i

εj,i

.

the (i, i+ 1, i)- through (ℓ, ℓ− 1, ℓ)-braids open in succession, giving

0 1 · · ·j−1 ℓ · · · i j 0 1 · · ·j−1 j ℓ · · · i

εi−1,iεi+1,i · · · εℓ,ℓ−1

=

0 1 · · ·j−1 ℓ · · · i j 0 1 · · ·j−1 j ℓ · · · i

εi−1,iεi+1,i · · · εℓ,ℓ−1ε0,ℓ

,

after the (0, ℓ, 0)-braid opens. Now, the (1, 0, 1)- through (j, j− 1, j)-braids open in succession, giving
ξj(1 ⊗ ψj,i)vj,i, as desired.

Case m = i, C = A
(1)
ℓ . We show that the claim holds in the case i = j + 1; the case i = j − 1 is

similar. We depict (ψj,i ⊗ 1)σvi,i diagrammatically:

0 1 · · ·j−1 j ℓ · · · i 0 1 · · ·j−1 j ℓ · · · i

=

0 1 · · ·j−1 j ℓ · · · i 0 1 · · ·j−1 j ℓ · · · i

.

Applying the braid relation to the (i, j, i)-braid, we get σ(1 ⊗ ψj,i)vi,i plus the error term:

0 1 · · ·j−1 j ℓ · · ·i+1 i 0 1 · · ·j−1 j ℓ · · ·i+1 i

εj,i

.

For this term, the (i + 1, i, i+ 1)- through (ℓ, ℓ− 1, ℓ)-braids open, giving

0 1 · · ·j−1 j ℓ · · · i 0 1 · · ·j−1 j ℓ · · · i

εi−1,iεi+1,i · · · εℓ,ℓ−1

=

0 1 · · ·j−1 j ℓ · · · i 0 1 · · ·j−1 j ℓ · · · i

εi−1,iεi+1,i · · · εℓ,ℓ−1ε0,ℓ

,

after the (0, ℓ, 0)-braid opens. Now the (1, 0, 1)- through (j, j − 1, j)-braids open in succession, giving
−ξi(ψj,i ⊗ 1)vi,i, as desired.

Case m = j, C = D
(1)
ℓ , 1 ≤ i, j ≤ ℓ− 2. We check that (6.4) holds in the case j = i + 1. The case

j = i− 1 is similar. We depict (ψj,i ⊗ 1)σvj,i diagrammatically, with vj,i at the top of the diagram:

0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 1 2 · · ·i−1 i j 0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 j 1 2 · · ·i−1 i

.
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The j-strand moves past the first (i, i)-crossing, as the open term in the (i, j, i)-braid relation is zero.
This gives

0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 1 2 · · ·i−1 i j 0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 j 1 2 · · ·i−1 i

.

Applying the braid relation to the (i, j, i)-braid, we have σ(1⊗ ψj,i)vj,j , plus a remainder term. Now
we simplify the remainder term. The (i, j, i)-braid opens, followed by the (i − 1, i, i − 1)- through
(1, 2, 1)-braids opening in succession. This gives

0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 1 2 · · ·i−1 i j 0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 j 1 2 · · ·i−1 i

ε1,2 · · · εj−2,j−1εj,j−1

.

Now the (2, 1, 2)- and (0, 2, 0)-braids open, followed by the (3, 2, 3)- through (ℓ− 1, ℓ− 2, ℓ− 1)-braids
and the (ℓ, ℓ− 2, ℓ)-braid, giving

0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 1 2 · · ·i−1 i j 0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 j 1 2 · · ·i−1 i

ε02εj,j+1 · · · εℓ−2,ℓ−1εℓ−2,ℓ

.

Now the (ℓ − 2, ℓ, ℓ − 2)-braid opens, followed by the (ℓ − 3, ℓ − 2, ℓ − 3)- through (j, j + 1, j)-braids
opening in succession, giving

0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 1 2 · · ·i−1 i j 0 2 · · ·ℓ−2ℓ−1 ℓ ℓ−2· · ·j+1 j 1 2 · · ·i−1 i

(−1)ℓ+j+1ε02εℓ−2,ℓ−1

.

Now the (ℓ− 2, ℓ− 1)-double crossing opens. Then the (ℓ− 2, ℓ− 3, ℓ− 2)-braid opens, followed by the
(ℓ− 3, ℓ− 2)-double crossing. This pattern repeats until the (j + 2, j + 1, j + 2)-braid opens, followed
by the (j + 1, j + 2)-double crossing. Then the (j + 1, j, j + 1)-braid opens, which gives (omitting
strands outside the central area)

1 2 · · ·i−1 i j 0 2 · · ·i−1 i j j+1j+2

(−1)ℓ+j+1ε02εj,j+1

· · ·

=

1 2 · · ·i−1 i j 0 2 · · · i−1 i j j+1j+2

(−1)ℓ+j+1ε02ε23 · · · εj−1,j

after the (2, 3)- through (j, j +1)-double crossings open. Now the (2, 0, 2)-crossing opens, followed by
the (3, 2, 3)- through (j, j − 1, j)-braids, giving (−1)ℓ+j+1(1 ⊗ ψj,i)vj,i, as desired.
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Case m = j, C = D
(1)
ℓ , ℓ− 2 ≤ i, j ≤ ℓ. We check that the claim holds in the case i = ℓ − 2, j = ℓ.

The other cases are similar. We depict (ψj,i ⊗ 1)σvj,i diagrammatically:

0 2 · · ·ℓ−1 1 · · ·ℓ−2 ℓ 0 2 · · · ℓ 1 · · ·ℓ−2

.

The ℓ-strand moves past the first (ℓ − 2, ℓ − 2)-crossing, and applying the braid relation to the next
(ℓ− 2, ℓ, ℓ− 2)-braid gives (1⊗ ψℓ,ℓ−2)vℓ,ℓ−2 plus an error term:

0 2 · · ·ℓ−1 1 · · ·ℓ−2 ℓ 0 2 · · · ℓ 1 · · ·ℓ−3ℓ−2

εℓ,ℓ−2

.

Now the (ℓ − 3, ℓ− 2, ℓ − 3)- through (1, 2, 1)-braids open in succession. Then the (2, 1, 2)-braid and
(0, 2, 0)-braids open, followed by the (3, 2, 3)- through (ℓ− 1, ℓ− 2, ℓ− 1)-braids opening in succession,
giving:

0 2 · · ·ℓ−1 1 2 · · ·ℓ−2 ℓ 0 2 · · ·ℓ−1 ℓ 1 · · ·ℓ−2

−ε0,2εℓ−2,ℓ−1εℓ,ℓ−2

.

Now the (2, 3)- through (ℓ− 2, ℓ− 1)-double crossings open, introducing a (2, 0, 2)-braid, which opens.
Then the (3, 2, 3)- through (ℓ−2, ℓ−3, ℓ−2)-braids open, followed by a (ℓ, ℓ−2, ℓ)-braid which opens,
giving ξℓ(1⊗ ψℓ,ℓ−2)vℓ,ℓ−2, as desired.

Case m = i, C = D
(1)
ℓ , 1 ≤ i, j ≤ ℓ− 2. We show that the claim holds in the case i = j+1; the case

i = j − 1 is similar. We depict (ψj,i ⊗ 1)σvi,i diagrammatically:

0 2 · · · ℓ ℓ−2· · ·i+1 1 · · · i 0 2 · · · ℓ ℓ−2· · ·i+1 1 · · · i

.

Now the (i+1)-strand moves up to the right past the first (i, i)-crossing. Applying the braid relation
to the next (i, i+ 1, i)-braid gives (1 ⊗ ψj,i)σvi,i, plus a remainder term:

0 2 · · · ℓ ℓ−2· · ·i+1 1 · · ·i−1 i 0 2 · · · ℓ ℓ−2· · ·i+1 1 · · ·i−1 i

εi+1,i

.

Dragging the i-strand to the left, the (i − 1, i, i − 1)- through (1, 2, 1)-braids open in succession,
followed by the (2, 1, 2)- and (0, 2, 0)-braids. Then the (3, 2, 3)- through (ℓ−1, ℓ−2, ℓ−1)-braids open
in succession, followed by the (ℓ, ℓ − 2, ℓ)-braid, giving (omitting straight strands outside the central
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area):

ℓ−2· · ·i+1 1 2 · · ·i−1 i 0 2 · · ·i−1 i i+1· · · ℓ ℓ−2· · ·i+2i+1

ε02εi+1,i+2 · · · εℓ−2,ℓ−1εℓ−2,ℓ

.

Now the (2, 3)- through (i, i + 1)-double crossings open, introducing a (2, 0, 2)-braid which opens,
followed by (3, 2, 3)- through (i, i− 1, i)-braids which open, giving:

ℓ−2· · ·i+1 1 2 · · ·i−1 i 0 2 · · ·i−1 i i+1· · · ℓ ℓ−2· · ·i+2i+1

εi+2,i+1 · · · εℓ−2,ℓ−3

=

ℓ−2· · ·i+2i+1 1 · · · i 0 2 · · ·ℓ−1

(−1)ℓ+iεi,i+1εℓ−2,ℓ−1

,

after the (ℓ−2, ℓ, ℓ−2)-braid opens, followed by the (ℓ−3, ℓ−2, ℓ−3)-through (i+1, i+2, i+1)-braids
in succession. Now the (ℓ−2, ℓ)-double crossing opens. The (ℓ−2, ℓ−3, ℓ−2)-braid opens, followed by
an (ℓ− 2, ℓ− 3)-double crossing which opens. This sequence repeats until the (i+2, i+1, i+2)-braid
opens, followed by an (i + 2, i + 1)-double crossing which opens. Finally, the (i + 1, i, i + 1)-braid
opens, giving −ξi(ψj,i ⊗ 1)vi,i, as desired.

Case m = i, C = D
(1)
ℓ , ℓ− 2 ≤ i, j ≤ ℓ. We show that the claim holds in the case i = ℓ − 2, j = ℓ;

the other cases are similar. We depict (ψj,i ⊗ 1)σvi,i diagrammatically:

0 2 · · ·ℓ−1 ℓ 1 · · ·ℓ−2 0 2 · · ·ℓ−1 ℓ 1 · · ·ℓ−2

.

The ℓ-strand moves up past the first (ℓ − 2, ℓ − 2)-crossing. Applying the braid relation to the next
(ℓ− 2, ℓ, ℓ− 2)-braid gives σ(1 ⊗ ψℓ,ℓ−2)vℓ−2,ℓ−2, plus an error term:

0 2 · · ·ℓ−1 ℓ 1 · · ·ℓ−3ℓ−2 0 2 · · ·ℓ−1 ℓ 1 · · ·ℓ−3ℓ−2

εℓ,ℓ−2

.

Now we simplify this error term. The (ℓ− 3, ℓ− 2, ℓ− 3)- through (1, 2, 1)-braids open in succession,
giving (omitting straight strands to the right):

0 2 · · ·ℓ−1 ℓ 1 · · ·ℓ−3ℓ−2 0 2 · · ·ℓ−1 ℓ

ε12 · · · εℓ,ℓ−2

=

0 2 · · ·ℓ−1 ℓ 1 2 · · ·ℓ−2 0 2 · · ·ℓ−1 ℓ

−ε02εℓ−2,ℓ−1εℓ,ℓ−2

,

after the (2, 1, 2)- and (0, 2, 0)-braids open, followed by the (3, 2, 3)- through (ℓ− 1, ℓ− 2, ℓ− 1)-braids
opening in succession. Now, the (2, 3)- through (ℓ − 2, ℓ − 1)-braids open in succession. Then the
(2, 0, 2)- braid opens, followed by the (3, 2, 3)- through (ℓ−2, ℓ−3, ℓ−2)-braids opening in succession.
Finally the (ℓ, ℓ− 2, ℓ)-braid opens, giving (ψℓ,ℓ−2 ⊗ 1)vℓ−2,ℓ−2, as desired.

Case j 6= m 6= i, all types. We may write

(ψj,i ⊗ 1)σvm,i = σ(1 ⊗ ψj,i)vm,i + (∗),
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where (∗) is a linear combination of terms of the form 1bjbmψw(x1 ⊗ x2), where x1 ∈ ∆δ,m, x2 ∈ ∆δ,i,
and w ⊳ σ is a minimal left coset representative for S2d/Sd ×Sd. As in the similar case in Lemma

6.3, it follows that ψw = 1. Thus x1 is a vector of word bj and x2 is a vector of word bm. Hence by
Lemma 5.23, it follows that (∗) is zero unless m neighbors both j and i. But since i neighbors j by
assumption, this cannot be the case. �
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