Determinant of Laplacian on tori of constant positive curvature with one conical point

Victor Kalvin, Alexey Kokotov

July 16, 2018

Abstract

We find an explicit expression for the zeta-regularized determinant of (the Friedrichs extensions) of the Laplacians on a compact Riemann surface of genus one with conformal metric of curvature 1 having a single conical singularity of angle 4π.

1 Introduction

Let X be a compact Riemann surface of genus one and let $P \in X$. According to [1], Cor. 3. 5. 1, there exists at most one conformal metric on X of constant curvature 1 with a (single) conical point of angle 4π at P. The following simple construction shows that such a metric, $m(X, P)$, in fact always exists (and due to 1 is unique).

Consider the spherical triangle $T=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in S^{2} \subset \mathbb{R}^{3}: x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0\right\}$ with all three angles equal to $\pi / 2$. Gluing two copies of T along their boundaries, we get the Riemann sphere \mathbb{P} with metric m of curvature 1 and three conical points P_{1}, P_{2}, P_{3} of conical angle π. Consider the two-fold covering

$$
\begin{equation*}
\mu: X(Q) \rightarrow \mathbb{P} \tag{1.1}
\end{equation*}
$$

ramified over P_{1}, P_{2}, P_{3} and some point $Q \in \mathbb{P} \backslash\left\{P_{1}, P_{2}, P_{3}\right\}$. Lifting the metric m from \mathbb{P} to the compact Riemann surface $X(Q)$ of genus one via μ, one gets the metric $\mu^{*} m$ on $X(Q)$ which has curvature 1 and the unique conical point of angle 4π at the preimage $\mu^{-1}(Q)$ of Q. Clearly, any compact surface of genus one is (biholomorphically equivalent to) $X(Q)$ for some $Q \in \mathbb{P} \backslash\left\{P_{1}, P_{2}, P_{3}\right\}$. Now let X be an arbitrary compact Riemann surface of genus one and let P be any point of X. Take $Q \in \mathbb{P}$ such that $X=X(Q)$ and consider the automorphism $\alpha: X \rightarrow X$ (the translation) of X sending P to $\mu^{-1}(Q)$. Then

$$
m(X, P)=\alpha^{*}\left(\mu^{*}(m)\right)=(\mu \circ \alpha)^{*}(m) .
$$

Now introduce the scalar (Friedrichs) self-adjoint Laplacian $\Delta(X, P):=\Delta^{m(X, P)}$ on X corresponding to the metric $m(X, P)$. For any P and Q from X the operators $\Delta(X, P)$ and $\Delta(X, Q)$ are isospectral and, therefore, the ζ-regularized (modified, i. e. with zero
modes excluded) determinant $\operatorname{det} \Delta(X, P)$ is independent of $P \in X$ and, therefore, is a function on moduli space \mathcal{M}_{1} of Riemann surfaces of genus one. The main result of the present work is the following explicit formula for this function:

$$
\begin{equation*}
\operatorname{det} \Delta(X, P)=C_{1}|\Im \sigma \| \eta(\sigma)|^{4} F(t)=C_{2} \operatorname{det} \Delta^{(0)}(X) F(t) \tag{1.2}
\end{equation*}
$$

where σ is the b-period of the Riemann surface X, C_{1} and C_{2} are absolute constants, η is the Dedekind eta-function, $\Delta^{(0)}$ is the Lapalacian on X corresponding to the flat conformal metric of unit volume, the surface X is represented as the two-fold covering of the Riemann sphere $\mathbb{C} P^{1}$ ramified over the poits $0,1, \infty$ and $t \in \mathbb{C} \backslash\{0,1\}$, and

$$
\begin{equation*}
F(t)=\frac{|t|^{\frac{1}{24}}|t-1|^{\frac{1}{24}}}{(|\sqrt{t}-1|+|\sqrt{t}+1|)^{\frac{1}{4}}} . \tag{1.3}
\end{equation*}
$$

As it is well-known, the moduli space \mathcal{M}_{1} coincides with the quotient space

$$
(\mathbb{C} \backslash\{0,1\}) / G,
$$

where G is a finite group of order 6 , generated by transformations $t \rightarrow \frac{1}{t}$ and $t \rightarrow 1-t$. A direct check shows that $F(t)=F\left(\frac{1}{t}\right)$ and $F(t)=F(1-t)$ and, therefore, the right hand side of (1.2) is in fact a function on \mathcal{M}_{1}.

Remark 1. Using the classical relation (see, e. g. [2] (3.35))

$$
t=-\left(\frac{\Theta\left[\begin{array}{l}
1 \\
0
\end{array}\right](0 \mid \sigma)}{\Theta\left[\begin{array}{l}
0 \\
1
\end{array}\right](0 \mid \sigma)}\right)^{4}
$$

one can rewrite the right hand side as a function σ only.
The classical (see [9) relation $\operatorname{det} \Delta^{(0)}=C|\Im \sigma||\eta(\sigma)|^{4}$ used in (1.2), implies that (1.2) can be considered as a version of Polyakov's formula (relating determinants of the Laplacians corresponding to two smooth metrics in the same conformal class) for the case of two conformally equivalent metrics on a torus: one of them is smooth and flat, another is of curvature one and has one (very special) singular point.

2 Metrics on the base and on the covering

Here we find an explicit expression for the metric m on the Riemann sphere $\mathbb{P}=\mathbb{C} P^{1}$ of curvature 1 and with three conical singularities at $P_{1}=0, P_{2}=1$ and $P_{3}=\infty$.

The stereographic projection (from the south pole) maps the spherical triangle T onto quarter of the unit disk $\{z \in \mathbb{C} ;|z| \leq 1,0 \leq \operatorname{Arg} z \leq \pi / 2\}$. The conformal map

$$
\begin{equation*}
z \mapsto w=\left(\frac{1+z^{2}}{1-z^{2}}\right)^{2} \tag{2.1}
\end{equation*}
$$

sends this quarter of the disk to the upper half-plane H; the corner points $i, 0,1$ go to the points 0,1 and ∞ on the real line. The push forward of the standard round metric

$$
\frac{4|d z|^{2}}{\left(1+|z|^{2}\right)^{2}}
$$

on the sphere by this map gives rise to the metric

$$
\begin{equation*}
m=\frac{|d w|^{2}}{|w||w-1|(|\sqrt{w}+1|+|\sqrt{w}-1|)^{2}} \tag{2.2}
\end{equation*}
$$

on H; clearly, the latter metric can be extended (via the same formula) to $\mathbb{C} P^{1}$. The resulting curvature one metric on $\mathbb{C} P^{1}$ (also denoted by m) has three conical singularities of angle π : at $w=0, w=1$ and $w=\infty$.

Consider a two-fold covering of the Riemann sphere by a compact Riemann surface $X(t)$ of genus 1

$$
\begin{equation*}
\mu: X(t) \rightarrow \mathbb{C} P^{1} \tag{2.3}
\end{equation*}
$$

ramified over four points: $0,1, \infty$ and $t \in \mathbb{C} \backslash\{0,1\}$. Clearly, the pull back metric $\mu^{*} m$ on $X(t)$ is a curvature one metric with exactly one conical singularity. The singularity is a conical point of angle 4π located at the point $\mu^{-1}(t)$.

3 Determinant of Laplacian as function of critical value t

The analysis from [3] in particular implies that one can introduce the standard RaySinger ζ-regularized determinant of the (Friedrichs) self-adjoint Laplacian $\Delta^{\mu^{*} m}$ in $L_{2}\left(X(t), \mu^{*} m\right)$

$$
\operatorname{det} \Delta^{\mu^{*} m}:=\exp \left\{-\zeta_{\Delta^{*} m}^{\prime}(0)\right\}
$$

where $\zeta_{\Delta \mu^{*} m}^{\prime}$ is the operator zeta-function. In this section we establish a formula for the variation of $\zeta_{\Delta \mu^{*} m}^{\prime}(0)$ with respect to the parameter t (the fourth ramification point of the covering (2.3). The derivation of this formula coincides almost verbatim with the proof of [3, Proposition 6.1], therefore, we will give only few details.

For the sake of brevity we identify the point t of the base $\mathbb{C} P^{1}$ with its (unique) preimage $\mu^{-1}(t)$ on $X(t)$.

Let $Y(\lambda ; \cdot)$ be the (unique) special solution of the Helmholz equation (here λ is the spectral parameter) $\left(\Delta^{m}-\lambda\right) Y=0$ on $X \backslash\{t\}$ with asymptotics $Y(\lambda)(x)=\frac{1}{x}+O(x)$ as $x \rightarrow 0$, where $x(P)=\sqrt{\mu(P)-t}$ is it the distinguished holomorphic local parameter in a vicinity of the ramifiction point $t \in X(t)$ of the covering (2.3). Introduce the complex-valued function $\lambda \mapsto b(\lambda)$ as the coefficient near x in the asymptotic expansion

$$
Y(x, \bar{x} ; \lambda)=\frac{1}{x}+c(\lambda)+a(\lambda) \bar{x}+b(\lambda) x+O\left(|x|^{2-\epsilon}\right) \text { as } x \rightarrow 0 .
$$

The following variational formula is proved in [3, Propositon 6.1]:

$$
\begin{equation*}
\partial_{t}\left(-\zeta_{\Delta^{*} m}^{\prime}(0)\right)=\frac{1}{2}(b(0)-b(-\infty)) . \tag{3.1}
\end{equation*}
$$

The value $b(0)$ is found in [3, Lemma 4.2]: one has the relation

$$
\begin{equation*}
b(0)=-\left.\frac{1}{6} S_{S c h}(x)\right|_{x=0}, \tag{3.2}
\end{equation*}
$$

where $S_{S c h}$ is the Schiffer projective connection on the Riemann surface $X(t)$.
Since $\lambda=-\infty$ is a local regime, in order to find $b(-\infty)$ the solution Y can be replaced by a local solution with the same asymptotic as $x \rightarrow 0$. A local solution \widehat{Y} with asymptotic

$$
\widehat{Y}(u, \bar{u} ; \lambda)=\frac{1}{u}+\hat{c}(\lambda)+\hat{a}(\lambda) \bar{u}+\hat{b}(\lambda) u+O\left(|u|^{2-\epsilon}\right) \text { as } u \rightarrow 0
$$

in the local parameter $u^{2}=z-s$ was constructed in [3, Lemma 4.1] by separation of variables; here z and $w=\mu(P)$ (resp. s and t) are related by (2.1) (resp. by (2.1) with $z=s$ and $w=t$) and $\hat{b}(-\infty)=\frac{1}{2} \frac{\bar{s}}{1+|s|^{2}}$. One can easily find the coefficients $A(t)$ and $B(t)$ of the Taylor series $u=A(t) x+B(t) x^{3}+O\left(x^{5}\right)$. As a local solution replacing Y we can take $A(t) \widehat{Y}$. This immediately implies $b(-\infty)=A^{2}(t) \hat{b}(-\infty)-B(t) / A(t)$. A straightforward calculation verifies that

$$
\begin{equation*}
b(-\infty)=\partial_{t} \log \left(|t||t-1|(|\sqrt{t}+1|+|\sqrt{t}-1|)^{2}\right)^{1 / 4} \tag{3.3}
\end{equation*}
$$

Observe that the right hand side in (3.3) is actually the value of $\partial_{w} \log \rho(w, \bar{w})^{-1 / 4}$ at $w=t$, where $\rho(w, \bar{w})$ is the conformal factor of the metric (2.2); this is also a direct consequence of [8, Lemma 4].

Using (3.1) together with (3.2) and (3.3), we are now able to derive an explicit formula for $\operatorname{det} \Delta^{\mu^{*} m}$.

4 Explicit formula for the determinant

Equations (3.1), (3.2) and (3.3) imply that the determinant of the Laplacian $\operatorname{det} \Delta^{\mu^{*} m}=$ $\exp \left\{-\zeta_{\Delta^{\mu^{*} m}}^{\prime}(0)\right\}$ can be represented as a product

$$
\begin{equation*}
\operatorname{det} \Delta^{\mu^{*} m}=C|\Im \sigma||\tau(t)|^{2}\left|\frac{1}{|t||t-1|(|\sqrt{t}+1|+|\sqrt{t}-1|)^{2}}\right|^{1 / 8} \tag{4.1}
\end{equation*}
$$

where $\tau(t)$ is the value of the Bergman tau-function (see [4], [5], 6]) on the Hurwitz space $H_{1,2}(2)$ of two-fold genus one coverings of the Riemann sphere, having ∞ as a ramification point at the covering, ramified over $1,0, \infty$ and t. More specifically, τ is a solution of the equation

$$
\frac{\partial \log \tau}{\partial t}=-\left.\frac{1}{12} S_{B}(x)\right|_{x=0}
$$

where S_{B} is the Bergman projective connection on the covering Riemann surface $X(t)$ of genus one and x is the distinguished holomorphic parameter in a vicinity of the ramification point t of $X(t)$. We remind the reader that the Bergman and the Schiffer projective connections are related via the equation

$$
S_{S c h}(x)=S_{B}(x)-6 \pi(\Im \sigma)^{-1} v^{2}(x)
$$

where v is the normalized holomorphic differential on $X(t)$ and that the Rauch variational formula (see, e. g., 4) implies the relation

$$
\frac{\partial \log \Im \sigma}{\partial t}=\left.\frac{\pi}{2}(\Im \sigma)^{-1} v^{2}(x)\right|_{x=0}
$$

The needed explicit expression for τ can be found e. g. in [6, f-la (18)] (it is a very special case of the explicit formula for the Bergman tau-function on general coverings of arbitrary genus and degree found in [5] as well as of a much earlier formula of Kitaev and Korotkin for hyperelliptic coverings [7]). Namely, [6, f-la (18)] implies that

$$
\begin{equation*}
\tau=\eta^{2}(\sigma)\left[\frac{v(\infty)^{3}}{v\left(P_{1}\right) v\left(P_{2}\right) v(Q)}\right]^{\frac{1}{12}} \tag{4.2}
\end{equation*}
$$

where P_{1} and P_{2} are the points of the $X(t)$ lying over 0 and $1, Q$ is a point of $X(t)$ lying over t and ∞ denotes the point of the covering curve $X(t)$ lying over the point at infinity of the base $\mathbb{C} P^{1} ; v$ is an arbitrary nonzero holomorphic differential on $X(t)$; and, say, $v\left(P_{1}\right)$ is the value of this differential in the distinguished holomorphic parameter at P_{1}. (One has to take into account that $\tau=\tau_{I}^{-2}$, where τ_{I} is from [6].) Taking

$$
v=\frac{d w}{\sqrt{(w(w-1)(w-t)}},
$$

and using the following expressions for the distinguished local parameters at P_{1}, P_{2}, Q and ∞

$$
x=\sqrt{w} ; \quad x=\sqrt{w-1} ; \quad x=\sqrt{w-t} ; \quad x=\frac{1}{\sqrt{w}}
$$

one arrives at the relations (where \sim means $=u p$ to insignificant constants like ± 2, etc.)

$$
v\left(P_{1}\right) \sim \frac{1}{\sqrt{t}} ; \quad v\left(P_{2}\right) \sim \frac{1}{\sqrt{t-1}} ; \quad v(Q) \sim \frac{1}{\sqrt{t(t-1)}} ; \quad v(\infty) \sim 1 .
$$

These relations together with (4.2) and (4.1) imply (1.2).

References

[1] Ching-Li Chai, Chang-Shou Lin, Chin-Lung Wang, Mean field equation, hyperelliptic curves and modular forms: I, Cambridge Journal of Mathematics, Vol. 3, N 1-2, 2015
[2] C. Clemens, A scrapbook of complex curve theory, Grad. Studies in Math., Vol 55
[3] V. Kalvin, A. Kokotov, Metrics of constant positive curvature, Hurwitz spaces and det Δ, IMRN, 2018; in press; arXiv:1612.08660
[4] A. Kokotov, D. Korotkin, Tau-functions on Hurwitz spaces, Mathematical Physics, Analysis and Geometry, 7 (2004), no. 1, 47-96.
[5] A. Kokotov, D. Korotkin, Isomonodromic tau-function of Hurwitz Frobenius manofolds, Int. Math. Res. Not. IMRN (2006), pp. 1-34
[6] A.Kokotov, I. Strachan, On the isomonodromic tau-function for the Hurwitz spaces of branched coverings of genus zero and one, Mathematical Research Letters, 12, 2005, no. 5-6, 857-875.
[7] V. Kitaev, D. Korotkin, On solutions of the Schlesinger equations in terms of theta-functions, International Mathematics Research Notices, 1998, no. 17,877905.
[8] V. Kalvin, On Determinants of Laplacians on Compact Riemann Surfaces Equipped with Pullbacks of Conical Metrics by Meromorphic Functions, in preparation
[9] J. Polchinski, Evaluation of the one loop string path integral. Comm. Math. Phys. 104 (1986), no. 1, 37-47

