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Abstract 24 

How do we recall vivid details from our past based only on sparse cues? Research suggests that the 25 

phenomenological reinstatement of past experiences is accompanied by neural reinstatement of the 26 

original percept. This process critically depends on the medial temporal lobe (MTL). Within the MTL, 27 

perirhinal cortex (PRC) and parahippocampal cortex (PHC) are thought to support encoding and 28 

recall of objects and scenes, respectively, with the hippocampus (HC) serving as a content-29 

independent hub. If the fidelity of recall indeed arises from neural reinstatement of perceptual 30 

activity, then successful recall should preferentially draw upon those neural populations within 31 

content-sensitive MTL cortex that are tuned to the same content during perception. We tested this 32 

hypothesis by having eighteen human participants undergo functional magnetic resonance imaging 33 

(fMRI) while they encoded and recalled objects and scenes paired with words. Critically, recall was 34 

cued with the words only. While HC distinguished successful from unsuccessful recall of both objects 35 

and scenes, PRC and PHC were preferentially engaged during successful vs. unsuccessful object and 36 

scene recall, respectively. Importantly, within PRC and PHC, this content-sensitive recall was 37 

predicted by content tuning during perception: Across PRC voxels, we observed a positive 38 

relationship between object tuning during perception and successful object recall, while across PHC 39 

voxels, we observed a positive relationship between scene tuning during perception and successful 40 

scene recall. Our results thus highlight content-based roles of MTL cortical regions for episodic 41 

memory and reveal a direct mapping between content-specific tuning during perception and 42 

successful recall. 43 

Significance Statement 44 

Episodic memory, our ability to encode and later recall experiences, involves neural overlap between 45 

perceptual and recall activity. Research has shown that this phenomenon depends on the medial 46 

temporal lobe (MTL). Within MTL, perirhinal (PRC) and parahippocampal cortex (PHC) are engaged 47 

during encoding and recall of objects and scenes, respectively, linked by content-independent 48 
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hippocampus (HC). Here, we find that within MTL cortex, content tuning during perception predicts 49 

successful recall of that content: We observe a positive relationship between object tuning and 50 

object recall across PRC voxels, and between scene tuning and scene recall across PHC voxels. These 51 

results highlight the role of stimulus content for understanding MTL, and demonstrate a clear 52 

mapping between content tuning and content recall.  53 
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1 Introduction 54 

One of the most intriguing features of the human brain is its ability to recall vivid episodes from 55 

long-term memory in response to sparse cues. For example, the word ‘breakfast’ may elicit recall of 56 

visual information including spatial (e.g. a bright kitchen) and object details (e.g. a croissant). This 57 

phenomenological reinstatement of past experiences is mirrored in cortical reinstatement – a neural 58 

reactivation of the original perceptual trace (Danker and Anderson, 2010). The medial temporal lobe 59 

(MTL) and its subregions play a key role in recall (Zola-Morgan and Squire, 1990; Eichenbaum et al., 60 

2007). Anatomically, the MTL’s input/output regions, perirhinal cortex (PRC) and parahippocampal 61 

cortex (PHC), have differentially weighted reciprocal connections to the ventral and dorsal visual 62 

stream, respectively (Suzuki and Amaral, 1994a; Lavenex and Amaral, 2000; van Strien et al., 2009). 63 

They are therefore well-suited to relay content-sensitive signals from sensory areas to the 64 

hippocampus (HC) during perception and encoding and vice versa during retrieval. Indeed, these 65 

parallel information streams converge in the HC, enabling it to support memory in a content-66 

independent manner (Davachi, 2006; Eichenbaum et al., 2007; Danker and Anderson, 2010). In 67 

support of this view, human functional imaging studies have linked object-related vs. spatial 68 

processing to PRC vs. PHC for a range of tasks, including perception (Litman et al., 2009), context 69 

encoding (Awipi and Davachi, 2008; Staresina et al., 2011), reactivation after interrupted rehearsal 70 

(Schultz et al., 2012), and associative retrieval of object-scene pairs (Staresina et al., 2013b). 71 

Conversely, the HC, instead of representing perceptual content, is thought to store indices linking 72 

distributed cortical memory traces (Teyler and DiScenna, 1986; Teyler and Rudy, 2007), thereby well-73 

suited to coordinate pattern completion from partial cues (Marr, 1971; Norman and O’Reilly, 2003; 74 

Staresina et al., 2012; Horner et al., 2015).  75 

The reciprocity of MTL connectivity implies overlapping activity profiles between perception and 76 

retrieval in content-sensitive pathways, and is thought to underlie cortical reinstatement 77 

(Eichenbaum et al., 2007; Danker and Anderson, 2010). Indeed, there is evidence that neural activity 78 
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that was present during the original encoding of a memory is reinstated during retrieval, as 79 

demonstrated using univariate analyses of encoding-retrieval overlap (Nyberg et al., 2000; Wheeler 80 

et al., 2000; Kahn et al., 2004), correlative encoding-retrieval similarity measures (Staresina et al., 81 

2012; Ritchey et al., 2013), and multivariate decoding approaches (Polyn et al., 2005; Johnson et al., 82 

2009; Mack and Preston, 2016; Liang and Preston, 2017). Moreover, cortical reinstatement scales 83 

with the reported fidelity of recall (Kuhl et al., 2011; Kuhl and Chun, 2014). Content-sensitive 84 

retrieval representations in higher-order visual cortex/MTL, as investigated here, may differ from 85 

frontoparietal representations in that they may be closer to the perceptual trace (Favila et al., 2018). 86 

The precise topographical mapping of content-sensitivity at perception to cortical reinstatement at 87 

retrieval, however, is unclear. If cortical reinstatement reflects a restoration of a distinct neural state 88 

during the original encoding experience, then successful recall of content should predominantly 89 

draw on neural populations that distinguished the content from others during perception. That is, 90 

the more content-tuned neural populations are during perception, the more diagnostic they should 91 

be of successful recall of their preferred content. 92 

Here, we investigated content-sensitivity of MTL subregions during episodic memory recall, and how 93 

it maps to content tuning during perception. To this end, we had participants undergo fMRI while 94 

they encoded and retrieved adjectives paired with an object or scene image. During retrieval, they 95 

only saw the adjective cue and tried to recall the associated object or scene. If HC contributes to 96 

recall in a content-independent fashion (as predicted by MTL connectivity), we would expect similar 97 

involvement during cued recall of both objects and scenes. Conversely, since MTL anatomy predicts 98 

content-sensitivity in PRC and PHC, we expect a preference for object recall in PRC and for scene 99 

recall in PHC. Critically, within PRC, we expect a positive correlation such that voxels exhibiting 100 

stronger object tuning during perception should be recruited more strongly for successful object 101 

recall. In contrast within PHC, we expect a positive correlation such that voxels exhibiting stronger 102 

scene tuning during perception should be recruited more strongly for successful scene recall. 103 
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2 Materials and Methods 104 

2.1 Participants 105 

A total of 34 volunteers (all right-handed, native English speakers, normal or corrected-to-normal 106 

vision) participated in the fMRI experiment. Sixteen participants were excluded from data analysis. 107 

Of those, one was excluded due to excessive movement, and one due to non-compliance. Fourteen 108 

datasets suffered data loss due to scanner malfunction. The results of the remaining n=18 109 

participants (11 female; mean age 22.7 yrs, range 18-33 yrs) are reported here. We note that the 110 

final sample size is within range, albeit on the lower end, of recent fMRI studies investigating 111 

content specificity in MTL cortex (e.g. Liang & Preston, 2017: n=15; Mack & Preston, 2016: n=24; 112 

Reagh & Yassa, 2014: n=18, Staresina et al., 2012: n=20). All participants gave written informed 113 

consent in a manner approved by the local ethics committee, and were paid for their participation. 114 

2.2 Stimuli and Procedure 115 

Stimuli consisted of 60 images of objects and 60 images of scenes (Konkle et al., 2010a, 2010b) as 116 

well as 120 English adjectives (Staresina et al., 2011). An additional 5 objects, 5 scenes, and 10 117 

adjectives were used for practice. Per stimulus subcategory (e.g. desk, garden, etc.), only one image 118 

was used. Adjective-image pairs were randomized for each participant. 119 

During fMRI, participants viewed stimuli via projection to a mirror mounted on the head coil, and 120 

responded using an MR compatible button box. The fMRI task (Figure 1A) used a slow event-related 121 

design, consisting of four runs (two object runs, two scene runs). Object and scene runs were 122 

presented in an alternating order that was counterbalanced across participants. Each run included 123 

an encoding and a retrieval phase (30 trials each), as well as pre- and post-encoding resting phases 124 

(3 minutes each). In each trial of the encoding phase, participants saw an object or scene image (400 125 

x 400 pixels) presented in the center of the screen together with an adjective. Participants were 126 

asked to press the left or right button on a right-hand button box if they thought the adjective and 127 
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image matched or did not match, respectively (“decide whether the adjective could be used to 128 

describe the image”). Adjective-image pairs were presented for 5s, followed by 10s of an arrows task 129 

(active baseline task) (Stark and Squire, 2001) during which participants indicated the direction of 130 

left- or right-pointing arrows by pressing the left or right button. In the retrieval phase, the 131 

adjectives from the encoding phase were presented again in randomized order. Adjectives were 132 

presented for 5s, and participants were asked to press the left button if they successfully recalled 133 

the associated image, and the right button if they did not. Each retrieval trial was again followed by 134 

10s of the arrows task. Before and after encoding, participants additionally engaged in an odd-even 135 

numbers task for 180s (offline resting phase), separated from the task phases by a transition screen 136 

(10s each). In the odd-even task, participants were presented with random numbers between 1 and 137 

99 and pressed the left button for even numbers and the right button for odd numbers. Altogether, 138 

each run lasted 22 min. 139 

 140 

Figure 1. Experimental paradigm. A. The fMRI task consisted of two object and two scene runs, each 141 

comprising an encoding and a retrieval phase. During encoding, participants saw adjective-object or adjective-142 

scene pairs. During retrieval, only the adjective was presented and participants tried to recall the associated 143 

object or scene from memory. Not shown: Each fMRI trial was followed by 10s of an active baseline task (ITI, 144 

arrows task), and the encoding phase was preceded and followed by a resting phase (odd-even numbers task, 145 

180s) (see main text for details). B. In the post-fMRI recall task, participants typed in descriptions of the 146 

associated object and scene for each adjective.  147 
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Since memory responses given during the fMRI task were subjective, two measures were taken to 148 

ensure that the scanned retrieval portion accurately captured brain activity related to success vs. 149 

failure to recall. First, prior to the fMRI task, participants were explicitly instructed only to press 150 

’recall’ if they could vividly recall details of the associated image and to press ‘forgotten’ otherwise. 151 

Second, we additionally employed a post-fMRI recall task (Figure 1B) in order to obtain an objective 152 

memory measure. Again, participants were presented with each adjective, in the same order as 153 

during the fMRI retrieval phase. The task was to type a brief description of the associated image or a 154 

‘?’ in case the target image was not recalled.  155 

Critically, only trials with matching subjective and objective memory responses entered fMRI 156 

analyses (i.e. subjective ‘recall’ response during the fMRI task plus successful recall in the post-test, 157 

or subjective ‘forgotten’ response during the fMRI task plus unsuccessful recall in the post-test). This 158 

resulted in the following conditions of interest: object-recalled (OR), object-forgotten (OF), scene-159 

recalled (SR), scene-forgotten (SF). 160 

2.3 fMRI acquisition 161 

Brain data were acquired using a GE Discovery MR750 3T system (GE Medical Systems) and a 32-162 

channel head coil. For the functional runs, we used a gradient-echo, echo-planar pulse sequence (48 163 

slices, 2.5mm isotropic voxels, TR=1000ms, TE=30ms, ascending acquisition order, multiband factor 164 

3, 1300 volumes per run). The slice stack was oriented in parallel to the longitudinal MTL axis and 165 

covered nearly the whole brain (in some participants with larger brains, superior frontal cortex was 166 

not covered). The first 10 images of each run were discarded prior to analysis to allow for 167 

stabilization of the magnetic field. Additionally, a high-resolution whole-brain T1-weighted structural 168 

image (1x1x1mm, TR=7.9ms, TE=3.06ms) was acquired for each participant.  169 

2.4 fMRI preprocessing and analysis 170 

Regions of interest (ROI) strategy. Considering the high anatomical variability of the MTL (Pruessner 171 

et al., 2002), all analyses were carried out in unsmoothed, single-participant space within anatomical 172 
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ROIs of the MTL (HC, PRC, PHC). These were hand-drawn on each participant’s T1 images using 173 

existing guidelines (Insausti et al., 1998; Pruessner et al., 2000, 2002), and resampled to functional 174 

space. To maximize object vs. scene sensitivity in the MTL cortex ROIs, considering gradual changes 175 

in content sensitivity along the parahippocampal gyrus (Litman et al., 2009; Liang et al., 2013), the 176 

posterior third of PRC and the anterior third of PHC were excluded from analysis (Staresina et al., 177 

2011, 2012, 2013b). Across participants, the average number of voxels per bilateral ROI, in functional 178 

space and accounting for signal dropout, was 649.89 voxels (SEM: 15.07 voxels) for HC, 146.83 179 

(11.68) for PRC, and 345.22 (10.92) for PHC. Signal dropout was defined through the implicit masking 180 

procedure in the SPM first-level GLM estimation, using a liberal masking threshold of 0.2. 181 

Preprocessing. All analyses were carried out using Matlab and SPM12. Functional images were first 182 

corrected for differences in acquisition time (slice time correction), then corrected for head 183 

movement and movement-related magnetic field distortions using the ‘realign and unwarp’ 184 

algorithm implemented in SPM12. Structural images were then coregistered to the mean functional 185 

image before being segmented into grey matter, white matter, and CSF. Deformation fields from the 186 

segmentation procedure were used for MNI normalization (used for visualization only, see Figure 2A 187 

– all analyses were done in native space). 188 

Univariate analyses. For the first-level general linear model, all runs were concatenated and the 189 

high-pass filter (128s) and autoregressive model AR(1) + w were adapted to account for run 190 

concatenation. Regressors for our conditions of interest (OR, OF, SR, and SF for the encoding and 191 

retrieval phase, respectively) were modeled using a canonical hemodynamic response function (HRF) 192 

with a variable duration of each trial’s RT, assuming that memory-related processing of the stimulus 193 

is concluded at the time of the response. These regressors only included trials with matching 194 

memory responses during the fMRI task and post-fMRI recall. Non-matching trials (e.g. ‘recall’ 195 

response during the scan, but failed explicit recall during the post-scan) entered separate regressors 196 

of no interest. Additionally, the first-level model included non-convolved nuisance regressors for 197 
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each volume of the transition and resting periods, and run constants. The resulting beta estimates 198 

from the retrieval phase were averaged across each participant’s ROIs before entering a group-level 199 

repeated-measures ANOVA with the factors region, content, and recall success. In case of sphericity 200 

violations, the degrees of freedom were adjusted using Greenhouse-Geisser correction. 201 

Perception-retrieval overlap (PRO). We asked whether, within each MTL cortex ROI (PRC, PHC), 202 

successful recall of a particular content is predicted, across voxels, by content tuning during 203 

perception. In that case, within PRC, there should be a positive correlation such that voxels that 204 

show stronger tuning to objects compared to scenes during perception should also be more engaged 205 

during successful compared to unsuccessful object recall. Similarly, within PHC, there should be a 206 

positive correlation such that voxels that show stronger tuning to scenes compared to objects during 207 

perception should be more engaged during successful compared to unsuccessful scene recall. This 208 

should be reflected in an across-voxel correlation of the effect sizes of the respective perception and 209 

recall contrasts, which we tested in the following way: We computed, for each participant, four t 210 

contrast images: (i-ii) the between-content perception contrasts from the encoding phase (objects > 211 

scenes [O > S], computed as (OR + OF) > (SR + SF), and scenes > objects (S > O), computed as (SR + 212 

SF) > (OR + OF)), irrespective of subsequent memory outcome); (iii) the within-content recall 213 

contrast for objects from the retrieval phase (OR > OF); (iv), the within-content recall contrast for 214 

scenes from the retrieval phase (SR > SF). T values across voxels were then vectorized for each 215 

participant and ROI. The perception-retrieval overlap for objects (PRO-O) was defined as the Pearson 216 

correlation coefficient between the object perception contrast t values (O > S) and the object recall 217 

contrast t values (OR > OF). Likewise, the perception-retrieval overlap for scenes (PRO-S) was 218 

defined as the Pearson correlation coefficient between the scenes perception contrast (S > O) and 219 

the scene recall contrast (SR > SF). Note that we only included voxels with positive values in the 220 

perception contrast (O > S for PRO-O, S > O for PRO-S) in this analysis to ensure that correlations are 221 

carried by voxels tuned to objects rather than scenes for PRO-O, and to scenes rather than objects 222 

for PRO-S. To ensure that these correlations would capture local rather than cross-hemispheric 223 
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topographical relationships, the correlation coefficients were computed in left and right ROIs 224 

separately, then Fisher z-transformed and averaged. The resulting values were submitted to a two-225 

way repeated measures ANOVA with the factors region (PRC, PHC) and correlation type (PRO-O, 226 

PRO-S), and followed up with two-sample and one-sample t-tests. 227 

One possible concern is that PRO might be biased by temporal autocorrelations, which are greater 228 

within a run than between runs. Note though that the task consists of four functional runs, with two 229 

object- and two scene-only runs in alternating order. Each run contains an encoding and retrieval 230 

phase. Thus, in PRO, we correlate a contrast containing data from all four runs (O vs. S from all 231 

encoding phases) with contrasts containing data from only two runs  (PRO-O: OR > OF; PRO-S: SR > 232 

SF). Consequently, both PRO-O and PRO-S correlate a contrast spanning all four runs with a contrast 233 

spanning two runs, making the overall temporal distance between contrasts equal. Moreover, 234 

whereas any bias arising from temporal autocorrelation would have similar impact across brain 235 

regions, we expect opposing patterns of PRO-O and PRO-S in PRC and PHC. 236 

Control analysis 1: Specificity. In the above analysis, we correlate, across voxels of each ROI, the 237 

object perception contrast with the object recall contrast for PRO-O, and the scene perception 238 

contrast with the scene recall contrast for PRO-S. Importantly, we use only voxels with positive 239 

values in the perception contrast, i.e. object-selective voxels for PRO-O and scene-selective voxels 240 

for PRO-S. We expect positive values for PRO-O but not PRO-S in PRC, and for PRO-S but not PRO-O 241 

in PHC. However, one might argue that such results lack specificity: The object perception contrast in 242 

PRC may not only correlate with object recall (PRO-O), but also with scene recall. Similarly, the scene 243 

perception contrast in PHC may not only correlate with scene recall (PRO-S), but also object recall. 244 

This would indicate a non-specific relationship between perception and recall such that stronger 245 

content tuning during perception would predict stronger recall effects for either content. To control 246 

for this, we additionally computed the correlation between the object perception contrast (O > S, 247 

positive voxels only) and the scene recall contrast (SR > SF) for PRC, and the correlation between the 248 
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scene perception contrast (S > O, positive voxels only) and the object recall contrast (OR > OF) for 249 

PHC. 250 

Control analysis 2: Signal-to-noise ratio. Another possible concern might arise regarding the possible 251 

impact of differences in signal-to-noise ratio across voxels. Since the analysis is based on t contrasts 252 

between conditions, rather than estimates of activation in single conditions, we consider it unlikely 253 

that SNR gradients across voxels bias these results. Nevertheless, we additionally computed PRO as 254 

described above, but using partial Pearson correlations that included the temporal SNR of each voxel 255 

as a control variable. Temporal SNR was computed as the mean value of the preprocessed, 256 

unfiltered functional time series, divided by its standard deviation (separately per run, then 257 

averaged across runs).  258 

3 Results 259 

3.1 Behavioral results 260 

We queried successful recall of objects and scenes at two time-points: During the fMRI task, 261 

participants merely responded ‘recall’ or ‘forgotten’ in response to each word cue (subjective recall). 262 

During a post-scan explicit word-cued recall task, participants typed in descriptions of the associated 263 

image, which were then scored by the authors (objective recall). Subjective responses during the 264 

fMRI task did not significantly differ by content (t(17)=0.685, p=.502), with nearly 50% ‘recall’ and 265 

‘forgotten’ responses for both objects and scenes (mean [SEM] % subjective ‘recall’ responses: 266 

objects: 51.2 [1.8], scenes 52.6 [2.6]). Likewise, objective recall rates during the post-test did not 267 

significantly differ by content (t(17)=0.043, p=.966, mean [SEM] % objective recall: objects: 38.2 [2.8], 268 

scenes: 38.3 [3.1]). To test whether subjective ‘recall’ responses in the scanner were more likely to 269 

be followed by objective recall during the post-test, we calculated the proportions of successful 270 

objective recall separately for subjective ‘recall’ and ‘forgotten’ responses, and submitted these to a 271 

two-way repeated measures ANOVA with the factors content (objects, scenes) and subjective 272 



 

 13 

response (‘recall’, ‘forgotten’). This analysis yielded a significant effect of subjective response 273 

(F(1,17)=280.661, p<.001; no effect of content or interaction, ps≥.682); compared to subjective 274 

‘forgotten’ responses, subjective ‘recall’ responses in the scanner were more likely to be followed by 275 

objective recall during the post-test for both objects (mean [SEM] % objective recall: 67.1 [4.3] after 276 

subjective ‘recall’ vs. 9.0 [1.6] after subjective ‘forgotten’) and scenes (66.5 [4.8] vs. 8.2 [2.2]). Note 277 

that only trials with consistent subjective and objective memory responses entered fMRI analysis 278 

(i.e. in the fMRI analysis, ‘R’ (‘recalled’) corresponds to a subjective ‘recall’ response during the fMRI 279 

task as well as accurate objective recall during the post-test; ‘F’ (‘forgotten’) corresponds to a 280 

subjective ‘forgotten’ response during the fMRI task as well as failed objective recall during the post-281 

test). A repeated-measures ANOVA on the numbers of trials that entered fMRI analysis with the 282 

factors content (objects, scenes) and trial type (R, F) showed a significant effect of trial type 283 

(F(1,17)=6.473, p=.021), with more ‘F’ than ‘R’ trials (mean [SEM] number of trials: OR: 19.8 [1.5]. OF: 284 

25.9 [1.3], SR: 20.1 [1.7], SF: 25.2 [1.6]; no effect of content or interaction, ps≥.668). All participants 285 

in the final sample contributed at least 8 trials per regressor of interest (OR, OF, SR, SF). 286 

3.2 Content-independent vs. content-sensitive retrieval processing in MTL 287 

subregions 288 

Univariate analyses were carried out within bilateral single-participant ROIs of HC, PRC, and PHC 289 

(Figure 2A). To characterize each MTL ROI with regard to its overall content-independent or content-290 

sensitive response profile during retrieval, single-participant beta values for the regressors of 291 

interest (OR, OF, SR, SF) from the retrieval phase were averaged across all voxels for each 292 

individual’s ROI. ROI averages were then submitted to a repeated-measures three-way ANOVA with 293 

the factors region (HC, PRC, PHC), content (objects, scenes), and recall success (recalled, forgotten). 294 

This yielded a significant three-way interaction of region, content, and recall success 295 

(F(1.46,24.80)=10.014, p=.002), as well as significant two-way interactions of region with content 296 

(F(1.42,24.10)=13.544, p<.001) and region with recall success (F(1.81,30.79)=6.305, p=.006). 297 
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Subsequent analyses were carried out separately for each ROI, using two-way repeated-measures 298

ANOVAs (including the factors content and recall success; Figure 2B-D). We expected content-299

independent recall in the HC, reflected in a main effect of successful recall. Conversely, we expected 300

content-sensitive recall in the PRC and PHC, reflected in interaction effects of content and recall, 301

with a preference for object recall in the PRC and scene recall in the PHC. 302

 303

Figure 2. MTL ROIs and univariate retrieval results. A. To illustrate ROI localization, manually delineated ROIs 304

for each participant’s HC, PRC, and PHC were MNI-normalized, averaged across participants and projected on 305

the mean normalized T1 (averaged ROI threshold > 0.5). B-D. Retrieval-phase beta values were averaged 306

within each participant’s individual ROIs and submitted to group analyses. HC (B) showed a main effect of 307

successful recall, while PRC (C) and PHC (D) additionally showed interaction effects, indicating preference for 308

object recall (PRC) and scene recall (PHC), respectively. O: object, S: scene, R: recalled, F: forgotten. Error bars 309

denote SEM. *p<.05 (two-tailed) for pairwise t-tests. 310
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HC showed a significant main effect of successful recall (F(1,17)=24.509, p<.001), but no effect of 311 

content nor a recall success x content interaction (p≥.496). By contrast, PRC showed a significant 312 

main effect of successful recall (F(1,17)=18.137, p=.001), as well as a recall x content interaction 313 

(F(1,17)=4.579, p=.047) due to a stronger recall effect for objects relative to scenes. There was no main 314 

effect of content in PRC (p=.173). Finally, PHC showed a significant main effect of content 315 

(F(1,17)=16.804, p=.001), recall success (F(1,17)=27.329, p<.001), and a significant recall success x 316 

content interaction (F(1,17)=7.723, p=.013) due to a stronger recall effect for scenes relative to 317 

objects. To further characterize each ROI’s response profile, we computed post-hoc paired t-tests to 318 

assess object recall effects (OR vs. OF) and scene recall effects (SR vs. SF) in each ROI. All single 319 

comparisons were significant (ts(17)≥2.667, ps≤.016). Critically, however, as indicated by the above 320 

interaction effects, the object recall effect was greater than the scene recall effect in PRC, and vice 321 

versa in PHC. Taken together, the ROI results show content-independent recall-related activity in HC 322 

versus a preference for object recall activity in PRC and for scene recall activity in PHC. 323 

3.3 Perception-retrieval overlap (PRO) 324 

The preceding analysis established a preference for object recall in PRC and a preference for scene 325 

recall in PHC. Next, we assessed whether successful recall in these ROIs preferentially recruited 326 

voxels that were also diagnostic of object vs. scene perception during encoding. Note that this 327 

approach goes beyond a simple overlap of contrasts (as in a conjunction analysis): Rather than 328 

asking whether two contrasts exceed threshold in the same voxels, we ask whether there is a 329 

positive relationship between two contrasts such that voxels with a greater effect size in one 330 

contrast tend to show a greater effect size in the other (see Figure 3A for illustrative participant-level 331 

data). To this end, for each participant and ROI, we computed PRO-O (the correlation between the 332 

object perception contrast [O > S] from the encoding phase and the object recall contrast [OR > OF] 333 

from the retrieval phase), and PRO-S (the correlation between the scene perception contrast [S > O] 334 

from the encoding phase and the scene recall contrast [SR > SF] from the retrieval phase; see 335 
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Methods for details). Note that PRO-O and PRO-S only included voxels tuned to either objects or 336 

scenes, as only voxels with positive values in the perception contrasts entered the correlation. We 337 

expected that PRC would show evidence for PRO-O: Voxels that are more tuned to objects over 338 

scenes during perception would be preferentially recruited during successful compared to 339 

unsuccessful object recall. In PHC, we expected evidence for PRO-S: Voxels that are more tuned to 340 

scenes over objects during perception would be preferentially recruited during successful compared 341 

to unsuccessful scene recall. We did not expect evidence for PRO-S in PRC or evidence for PRO-O in 342 

PHC. 343 

Before assessing the correlation between perception and retrieval contrasts, we confirmed PRC and 344 

PHC showed overall content tuning during perception. First, we tested whether the perception 345 

contrast yielded significant differences between objects and scenes when averaged across all voxels 346 

of each ROI. Second, we tested whether a majority of voxels in each ROI would show content tuning. 347 

Averaged across voxels, activation during object perception differed significantly from scene 348 

perception for both PRC (objects > scenes, t17=7.367, p<.001) and PHC (scenes > objects, t17=7.640, 349 

p<.001). As expected, HC showed no significant content tuning (t17=1.470, p=.160, numerically 350 

scenes > objects). Furthermore, the majority of PRC voxels showed object tuning, i.e. positive values 351 

in the O > S perception contrast (mean proportion: 63.70% [SEM: 1.60%]; one-sample t-test against 352 

50%: t17=8.59, p<.001), whereas the majority of PHC voxels showed scene tuning, i.e. positive values 353 

in the S > O perception contrast (69.93% [2.04%], t17=9.78, p<.001). In the HC, the numerical majority 354 

of voxels were positive in the S > O contrast (S>O: 51.20% [1.16%]; t17=1.03, p=.315). 355 

Results from the PRO analysis are summarized in Figure 3B. First, to confirm differences between 356 

PRC and PHC, we submitted the Fisher z-transformed correlation coefficients to a two-way repeated-357 

measures ANOVA with the factors region (PRC, PHC) and content (PRO-O, PRO-S). This confirmed a 358 

significant interaction between region and content (F1,17=21.866, p<.001). 359 
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In PRC, correlation coefficients between  the object perception contrast at encoding and the object 360

recall contrast were significantly above zero (PRO-O, t17=4.910, p<.001), while correlation 361

coefficients between the scene perception contrast at encoding and the scene recall contrast were 362

not (PRO-S, t17=0.500, p=.623). Furthermore, PRO-O trended to be greater than PRO-S (t17=2.073, 363

p=.054). In contrast, in PHC, correlation coefficients between the scene perception contrast at 364

encoding and the scene recall contrast were significantly above zero (PRO-S, t17=6.832, p<.001), 365

while correlation coefficients between  the object perception contrast at encoding and the object 366

recall contrast were not (PRO-O, t17=0.008, p=.994). PRO-S was significantly greater than PRO-O 367

(t17=5.124, p<.001). 368

 369

Figure 3. Perception-retrieval overlap (PRO). A. Illustrative data from two single participants’ ROIs. T values 370

from the objects > scenes perception contrast (x axes, positive voxels only) are plotted against t values from 371

the object recall contrast (PRO-O, left column), while t values from the scenes > objects perception contrast 372

(positive voxels only) are plotted against the scene recall contrast (PRO-S, right column). Data points indicate 373

single voxels. In these example data, PRC voxels with greater effect sizes for object perception tended to show 374

greater effect sizes for successful object recall (upper left scatterplot). Similarly, PHC voxels with greater effect 375

sizes for scene perception tended to show greater effect sizes for successful scene recall (lower right 376

scatterplot). Note that these within-participant scatterplots are for visualization only. B. Group averages of 377

Fisher z-transformed correlation coefficients for PRO-O and PRO-S for PRC and PHC. Across PRC voxels, object 378
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tuning predicted object recall (PRO-O), but scene tuning did not predict scene recall (PRO-S). Across PHC 379 

voxels, scene tuning predicted scene recall, but object tuning did not predict object recall. * p<.05, (*) p<.1 380 

(two-tailed) for one-sample and paired t-tests, n.s.: not significant. Error bars denote SEM. 381 

To test whether these findings are restricted to MTL cortical regions, we repeated the above analysis 382 

in HC. PRO-S, but not PRO-O, differed significantly from 0 (mean [SEM] PRO-O: 0.017 [0.030], t17= 383 

0.565, p=.580, PRO-S: 0.059 [0.025], t17=2.330, p=.032). Furthermore, PRO-O and PRO-S did not 384 

differ from each other (t17=0.823, p=.422). 385 

Our findings of PRO-O in PRC and PRO-S in PHC show that content tuning during perception in these 386 

ROIs predicts successful recall of that same content. To test the specificity of these findings, we 387 

repeated the analysis, this time testing whether content tuning would additionally predict recall of 388 

the non-preferred content. This would imply a non-specific relationship between content tuning 389 

during perception and recall. Hence, in PRC, we correlated the object perception contrast (O > S, 390 

positive voxels only) with the scene recall contrast. Correlation coefficients did not differ significantly 391 

from 0 (mean [SEM]: 0.031 [0.031], t17=1.011, p=.323), and were significantly smaller than PRO-O 392 

(t17=3.536, p=.003). In PHC, we correlated the scene perception contrast (S > O, positive voxels only) 393 

with the object recall contrast. Correlation coefficients were significantly greater than 0 (mean 394 

[SEM]: 0.120 [0.043], t17=2.789, p=.013). Importantly, they were also significantly smaller than PRO-S 395 

(t17=5.007, p<.001). In sum, across PRC voxels, object tuning during perception predicted object 396 

recall (PRO-O) but not scene recall, and there was no relationship between scene tuning and scene 397 

recall. In contrast, across PHC voxels, scene tuning during perception predicted scene recall (PRO-S) 398 

to a greater extent than object recall, and there was no relationship between object tuning and 399 

object recall. 400 

As a second control analysis, we computed PRO-O and PRO-S for PRC and PHC using partial Pearson 401 

correlations with each voxel’s temporal SNR as a control variable (see Methods). The statistical 402 
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pattern was nearly identical for both the ANOVA and follow-up t tests, with the exception of the 403 

paired t test between PRO-O and PRO-S in PRC, which was now significant (t17=2.486, p=.024). 404 

3.4 Multiple comparisons correction 405 

Throughout our univariate (3.2) and PRO analyses (3.3), a number of paired and one-sample t-tests 406 

were used to further characterize the result patterns. Applying Holm-Bonferroni correction to all 407 

groups of t-tests in our main analyses, the following results emerge: For the univariate analysis, all 408 

paired t-tests remain significant (n=6 tests [OR vs. OF and SR vs. SF in all three ROIs], see Figure 2 B-D 409 

and Results 3.2). For PRO, the significance pattern of the one-sample t-tests against 0 remains 410 

identical (n=4 tests [PRO-S and PRO-O in PRC and PHC], Figure 3B and Results 3.3). Similarly, for PRO, 411 

the significance pattern of the paired t-tests remains identical (n=2 tests [PRO-O vs. PRO-S in PRC 412 

and PHC], Figure 3B and Text 3.3), with a significant difference between PRO-O and PRO-S in PHC, 413 

and a trend difference in PRC. 414 

4 Discussion 415 

Investigating cued recall of objects and scenes in the human MTL, we observed a triple dissociation 416 

across MTL subregions: While HC was engaged during successful recall of both content types, PRC 417 

preferentially tracked successful object recall and PHC preferentially tracked successful scene recall. 418 

Moreover, we demonstrate an across-voxel mapping of content-sensitive recall effects in PRC and 419 

PHC to content-tuning during the preceding encoding phase, suggesting that successful recall tends 420 

to draw on the same voxels that represent percepts with high specificity. 421 

Before proceeding with the discussion, some notes on terminology: We refer to the object vs. scene 422 

contrasts as “tuning” responses to emphasize the fact that PRO is based on differential responses 423 

(one category over the other). As our stimuli are categorical, we do not mean this to imply that these 424 

voxels respond in a graded fashion to a more or less optimal value of a continuous variable (e.g.) 425 

(Priebe, 2016).  Furthermore, our results are agnostic to the debate whether MTL processing 426 
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contributes to perception, or whether it necessarily serves a mnemonic function (Bussey and 427 

Saksida, 2007; Baxter, 2009; Suzuki, 2009, 2010; Graham et al., 2010; Squire and Wixted, 2011). We 428 

refer to the observed content tuning in the MTL cortex as perception as it results from sensory 429 

processing of objects and scenes, but we note that it may ultimately serve to encode 430 

representations into memory. In fact, as our perceptual contrast comes from the encoding phase of 431 

the experiment (albeit averaging successful and unsuccessful memory encoding), it may contain 432 

domain-specific encoding activity (Staresina et al., 2011) in addition to perceptual activity. In future 433 

work, an objects/scenes contrast from an independent localizer may reduce the amount of 434 

concurrent encoding activity, however it does not resolve the aforementioned question whether 435 

MTL processing can be purely perceptual.  436 

The present study provides strong evidence for an MTL memory model emphasizing an interplay of 437 

both content-sensitive and -independent modules: According to this view, PRC and PHC show 438 

differential involvement in object and scene processing, respectively, based on their anatomical 439 

connectivity profiles with the ventral and dorsal visual streams. HC links both circuits through direct 440 

and indirect (via entorhinal cortex) connections to PRC and PHC, implying a content-independent 441 

role of HC in memory (Suzuki and Amaral, 1994a, 1994b; Lavenex and Amaral, 2000; Davachi, 2006; 442 

Eichenbaum et al., 2007; van Strien et al., 2009; Wixted and Squire, 2011; Ranganath and Ritchey, 443 

2012). Our findings of content-independent recall effects in HC, accompanied by preferential object 444 

recall in PRC and preferential scene recall in PHC, are in line with this view. Importantly, these 445 

connections are bidirectional (Suzuki and Amaral, 1994a, 1994b; Lavenex and Amaral, 2000; 446 

Eichenbaum et al., 2007), enabling information transfer from visual cortex via PRC/PHC to HC during 447 

perception and encoding, and vice versa during retrieval (Staresina et al., 2013b). This parallelism of 448 

MTL connectivity may underlie the phenomenon of cortical reinstatement - the reactivation of the 449 

same sensory cortical regions during recall that were already active during perception (Eichenbaum 450 

et al., 2007; Danker and Anderson, 2010). Our findings extend this concept: Even within content-451 

sensitive cortical regions, voxels that are particularly tuned to one content type over the other 452 
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during perception tend to be differentially reactivated when that content is successfully recalled. 453 

Importantly, such cortical reinstatement may underlie the psychological phenomenon of ‘re-living’ 454 

episodic memories during vivid recall (Eichenbaum et al., 2007; Danker and Anderson, 2010; Kuhl et 455 

al., 2011; Kuhl and Chun, 2014). 456 

Our results constitute an important update to an existing body of work investigating content-457 

sensitive recall. Previous studies have investigated cortical reinstatement by comparing cued 458 

retrieval of object-related and spatial information. However, most did not focus on differences 459 

between MTL cortices (Khader et al., 2005, 2007; Kuhl et al., 2011; Gordon et al., 2014; Kuhl and 460 

Chun, 2014; Morcom, 2014; Skinner et al., 2014; Bowen and Kensinger, 2017; Lee et al., 2018). 461 

Those that did  demonstrate that recall success is accompanied by domain-specific activity in MTL, 462 

largely in line with our present findings. Staresina et al. (2012) showed that PHC reinstates scene 463 

information, while PRC reinstates low-level visual information (color) during successful, but not 464 

unsuccessful recall. Similarly, Staresina et al. (2013b) demonstrated content-sensitive recall 465 

responses in PHC and PRC during successful, but not unsuccessful retrieval of object-scene 466 

associations, driven by content-independent HC signals. One study presented evidence that, during 467 

object-cued recall of famous faces and places, PRC and PHC reinstate perceptual activity from an 468 

independent localizer task in a category-specific manner, with face reinstatement in PRC, and place 469 

reinstatement in PHC (Mack and Preston, 2016). While that study only included correct memory 470 

trials, making it difficult to directly link the observed category reinstatement in PRC and PHC to 471 

successful vs. unsuccessful recall, the authors could demonstrate that item-specific reinstatement in 472 

PRC and HC (not PHC) predicted variations in subsequent response times for correct responses to a 473 

memory probe. Finally, one study showed a dissociation between PRC vs. PHC for the reinstatement 474 

of an imagery task (person vs. place/object) during successful but not unsuccessful source memory, 475 

but that study did not involve perceptual processing during the imagery task (Liang and Preston, 476 

2017). Importantly, the present study is the first to demonstrate a clear double dissociation between 477 
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PRC and PHC during successful vs. unsuccessful object and scene recall triggered by a content-478 

neutral cue, and to tie it to perceptual content tuning in a direct, voxel-wise manner. 479 

Importantly, we observed preferential, but not exclusive, processing of objects and scenes in PRC 480 

and PHC, respectively. Both regions also show significant recall effects for their less-preferred 481 

content. Furthermore, in PHC, voxels that were tuned to scenes over objects during perception were 482 

also more active during successful object recall, albeit significantly less so than during scene recall. 483 

Previous studies have shown such overlap in content sensitivity in the MTL, with some object 484 

processing in PHC and some scene processing in PRC (Buffalo et al., 2006; Preston et al., 2010; 485 

Hannula et al., 2013; Liang et al., 2013; Martin et al., 2013; Staresina et al., 2013b; Martin et al., 486 

2018). In particular, content sensitivity in the MTL cortex may not be abruptly demarcated, but 487 

follow a gradient (Litman et al., 2009; Liang et al., 2013). We sought to minimize this overlap by 488 

restricting analyses to the anterior two thirds of PRC and posterior two thirds of PHC, excluding the 489 

transition zone of the parahippocampal gyrus (Staresina et al., 2011, 2012, 2013b). Nevertheless, 490 

these two MTL subregions are not anatomically segregated, but show considerable interconnections 491 

(Suzuki and Amaral, 1994a; Lavenex and Amaral, 2000), facilitating cooperation. Furthermore, 492 

naturalistic scene images typically contain discernible objects, and many objects have a 493 

spatial/configurational component. A cardboard box, for example, may have the same general shape 494 

as a building, which has been shown to engage PHC (Epstein and Kanwisher, 1998). Similarly, object 495 

size modulates PHC activity (Cate et al., 2011; Konkle and Oliva, 2012). Thus, the significant (albeit 496 

weaker) responses of PRC and PHC during recall of their less-preferred content could stem from 497 

functional overlap in objects and scene processing, or from ambiguity in the stimuli themselves. 498 

Future studies could elucidate this ambiguity by controlling object and spatial features in these 499 

stimuli, albeit perhaps at the expense of decreasing natural validity. 500 

It is important to note that our perception-retrieval overlap (PRO) differs from existing approaches 501 

that test for pattern similarity between encoding and retrieval (pattern reinstatement). For instance, 502 
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‘encoding-retrieval similarity’ (ERS) has shown that, relative to forgotten trials, successfully 503 

remembered trials are more similar to their respective encoding trials (Staresina et al., 2012; Ritchey 504 

et al., 2013). Similarly, in multivariate pattern analysis (MVPA), a classifier may be trained on 505 

encoding trials to distinguish between voxel patterns associated with different content or tasks, and 506 

then tested on retrieval trials (e.g. Polyn et al., 2005; Johnson et al., 2009; Mack and Preston, 2016; 507 

Liang and Preston, 2017). PRO, on the other hand, relies on across-voxel correlations of contrasts, 508 

rather than single conditions or trials. Hence, voxels with low values in the perception contrast may 509 

still be highly activated relative to baseline. Previously, Haxby and colleagues used contrast 510 

correlations (Haxby et al., 2001) to demonstrate that content tuning during perception is stable 511 

between runs. Here, we test contrast correlations between tasks; specifically, whether content 512 

tuning – i.e. the difference between object and scene responses – can predict activity associated 513 

with successful recall of objects (PRO-O) and scenes (PRO-S) across voxels. It is important to note 514 

that, unlike ERS and MVPA, PRO does not reflect pattern reinstatement in the strictest sense, as all 515 

correlations contain a contrast between both content types, whereas reinstatement assumes the 516 

reactivation of only one content type. Thus, PRO could be considered a more constrained form of a 517 

conjunction, or inclusive masking, analysis. These methods test whether two or more contrasts 518 

exceed some threshold in the same voxels - implying topographical overlap of the constituting 519 

contrasts, but, critically, not a positive correlation across voxels. While our results likely reflect an 520 

influence of cortical reinstatement, they illuminate a distinct aspect of it compared to pattern 521 

similarity in the sense of ERS and MVPA: The latter methods demonstrate that distributed patterns 522 

of activity associated with a certain content are reinstated during recall, while our results link 523 

content-sensitive recall effects to voxels that are highly tuned to that content over another. A similar 524 

link has been demonstrated between content tuning and recognition memory for PRC activity 525 

(Martin et al., 2016): In that study, distributed voxel patterns in PRC that were diagnostic of face 526 

recognition also showed face-sensitive perceptual tuning. However, that study did not establish a 527 

positive across-voxel relationship between the magnitudes of the two effects. 528 
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Content-sensitive recall effects have been demonstrated in (not predominantly perceptual) brain 529 

regions outside MTL (e.g.) (Kahn et al., 2004; Johnson et al., 2009; Kuhl et al., 2013; Ritchey et al., 530 

2013; Kuhl and Chun, 2014; Long et al., 2016; Xiao et al., 2017; Favila et al., 2018). What 531 

distinguishes these representations from those observed in MTL? Recent findings indicate that 532 

frontoparietal reinstatement effects may not only be stronger (Long et al., 2016), but represent a 533 

transformed version of the original trace (Xiao et al., 2017) that is less perceptual in nature (Favila et 534 

al., 2018) and more modulated by retrieval goals (Kuhl et al., 2013). In contrast, reinstatement in 535 

ventral/medial temporal lobe has been shown to be more incidental in nature (Kuhl et al., 2013). 536 

These findings underline that multiple systems are involved during successful recall, and while 537 

perception-retrieval overlap appears to be an important pillar of recollection, not all content-538 

sensitive recall effects involve reinstatement of the exact perceptual trace. 539 

Links can also be drawn between our PRO findings to other forms of memory, such as recognition 540 

memory and repetition suppression. In these studies, the stimuli themselves, rather than associative 541 

cues, are presented during retrieval, leading to concurrent perceptual and retrieval processes. 542 

Litman et al. (Litman et al., 2009) showed similar gradients along the anterior-posterior MTL cortex 543 

axis (i) for processing of novel objects and scenes, and (ii) for repetition suppression effects for 544 

objects and scenes (although there appears to be some overlap between object and scene repetition 545 

suppression effects, Berron et al., 2016). Prince et al. (Prince et al., 2009) demonstrated differential 546 

effects of successful face and place recognition within clusters that responded preferentially to faces 547 

and places in general. Finally, Martin et al. (2016) demonstrated a link between face recognition and 548 

face tuning in PRC voxels. 549 

Taken together, our results support an MTL model of episodic memory based on anatomical 550 

connectivity and demonstrate a direct topographical mapping between content-sensitive perception 551 

and recall in the MTL cortex. One remaining question is how mnemonic content is conveyed and 552 

transformed from content-sensitive MTL cortex to content-independent HC. Much of the 553 
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information exchange between PRC/PHC and HC is relayed via the entorhinal cortex and its 554 

anterolateral and posteriormedial subregions (Suzuki and Amaral, 1994b; Maass et al., 2015; 555 

Navarro Schröder et al., 2015), which have similarly been shown to support content-sensitive 556 

processing (Schultz et al., 2012; Reagh and Yassa, 2014; Navarro Schröder et al., 2015; Berron et al., 557 

2018), albeit potentially in a more integrated fashion (Schultz et al., 2015). How entorhinal retrieval 558 

processing relates to content tuning is unclear, though there is evidence for reinstatement of 559 

encoding representations in the entorhinal cortex (Staresina et al., 2013a). Future research may 560 

investigate the relationship between encoding and retrieval in the entorhinal cortex by making use 561 

of advanced high-resolution and ultra-high field approaches, thereby enhancing our understanding 562 

of the human MTL in its entirety. 563 

  564 
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