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Abstract

The goal of this bachelor thesis is to investigate the laser scattering in a pair producing

plasma with consideration of the radiation reaction. This is done for different

parameters of a0 and density as well as for different polarisations.



Zusammenfassung

Ziel dieser Bachelorarbeit ist es, die Laser-Streuung in einem Paar erzeugendem

Plasma unter Berücksichtigung der Strahlungsrückwirkung zu untersuchen. Es wurden

unterschiedliche Parameter a0 und Dichten, sowie unterschiedliche Polarisationen

berücksichtigt.
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1 INTRODUCTION

1 Introduction

In recent years, there has been tremendous progress in the goal towards producing

ultra-intense laser pulse system. This quest for increasing higher laser intensities got

further boost with the Extreme Light Infrastructure (ELI) project, where first tests

produced an ultra-short laser pulse of 10 PW [1]. This opens up a whole new regime

of laser-plasma interaction which is to be investigated. This is not only exiting for the

point of view of fundamental research in physics, but it will also have a huge impact

on medical physics, laser fusion, particle accelerators and astrophysics[2, 3, 4]. From

the fundamental physics point of view, at such intensities the radiation reaction and

quantum electrodynamics (QED) effects (like for example pair production) become

significant. Investigating the radiation reaction force and pair-production from laser-

plasma interaction has recently becomes a major area of research and not only it

provides a fundamental test for the validity of QED, but it also it can lead to several

new applications as mentioned before.

One of the topics that has recently gained attention is the electromagnetic cascade

induced in the collision of two ultra-intense (Il=1024W/cm2) laser pulses of linear

polarisations. In this set-up, two linear polarized laser pulse collide to form a

standing wave in the interaction region. Once an electron is injected into the focus

of the interaction region of two laser pulse, this electron can gain energy and emit

high-energy (GeV) photons. The interaction of these GeV photons with the laser

pulse can produce a copious number of electron-positron pairs via the Breit-Wheeler

process. This whole scenario is usually described as electromagnetic cascade and

it has been extensively investigated in different settings [5, 6]. Usually in these

works, the effect of the pair-plasma on the laser pulse is only discussed in terms

of the energy-depletion of the laser pulse into high-energy photons and pairs. The
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1 INTRODUCTION

generated plasma can also cause a scattering of the laser pulse hindering the pair-

production and electromagnetic cascades. This scattering is truly a manifestation

of the plasma back-reaction on the laser pulse and it has not been studied in the

literature so-far.

Fig. 1: Laser intensity development over time. ELI will address the ultra-relativistic
regime with a0 , 100 < a0 < 104 . [7]

The purpose of this thesis is to systematically study the laser pulse scattering due to

pair-production in an electron-ion plasma. Though, this configuration is not exactly

the same as in electromagnetic cascades but it is closer to it and represents a first-step

in this direction. The first part of the thesis focuses on the theoretical calculations of

the dispersion relation and the instability growth rate in an electron-ion plasma. The

instability arises because of the non-uniform rate of pair-production across the laser

wavefront. This can happen either due to fluctuations on the laser wavefront and

due to stochastic nature of the quantum radiation reaction force and pair-production,

which is usually incorporated in PIC codes via a Monte Carlo method. The last part

of this thesis is about simulations using a Particle-in-Cell (PIC) code. We employ

laser pulse with different intensities, spatiotemporal profiles and polarisations at

different plasma densities.
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2 THEORETICAL PRELUDE

2 Theoretical prelude

First, we briefly discuss the radiation reaction force and pair-production by Breit-

Wheeler process in a laser field. Afterwards we proceed for calculating the scattering

of the laser pulse in a pair-producing plasma.

2.1 Radiation Reaction

The equation of motion for an electron in an external electromagnetic field considering

the Lorentz Force is given by:

mu̇α = −eFαβuβ, (2.1)

wherem is the mass of an electron, e the charge of an electron, uα = γ(1, ~v) is the four

velocity of the charge, γ−1 =
√

1− v2

c2 , Fαβ = ∂αAβ − ∂βAα is the electromagnetic

tensor and Aα is the magnetic vector potential. At high laser intensities the equation

of motion gets modified by an additional term, which describes the radiation reaction.The

radiation reaction force, or also known as Abraham–Lorentz force, is a recoil force

on an accelerating charged particle. This force is caused by the particle himself.

If the particle is accelerated, a momentum is transferred to the field, and thus

from momentum balance, a reaction force must act on the charged particle. The

radiation carries away energy, and therefore acts as a frictional force, changing the

equation of motion. This force can be described by the Lorentz-Abraham-Dirac

(LAD) equation.

mu̇α = −eFαβuβ +mτ0[üα + u̇2uα], (2.2)

where τ0 = 2e2

3mc3 is a constant. [8, 9]
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2 THEORETICAL PRELUDE

The problem with this equation is that even for no external field, the acceleration

does not vanish. This fact causes an unphysical solution.

Later other models have been introduced depending on the field strength and the

particle energy. Since the radiation loss, depending on the regimes, can occur

smoothly or in brutal steps, with diffusive and stochastic consequences. When

quantum electrodynamics (QED) effect are negligible (classical regime), the radiation

reaction can be treated as a continuous friction force acting on the particles. For this

situation the Landau-Lifshitz equation can be applied. The equation is corresponding

to the LAD up to first order of τ0 and has no problem of unphysical properties[9].

mu̇α =− eFαβuβ − eτ0

{
∂Fαβ

∂xγ
uβu

γ − e

m

[
FαβFβγu

γ − F βγFγδu
δuβu

α
]}

= 2e3γ

3mec3

{(
∂

∂t
+ (v · ∇)

)
E + 1

c

[
v ×

(
∂

∂t
+ (v · ∇)

)
B

]}

+ 2e4

2m2
ec

4

{
E ×B + 1

c
B × (B × v) + 1

c
E(v · E)

}

− 2e4γ2

3m2
ec

5v

{(
E + 1

c
v ×B

)2
− 1
c2 (v · E)2

}
.

(2.3)

2.2 Pair generation

In this ultra-relativistic regime of laser-plasma interaction, not only the radiation

reaction force but also also pair production is important. For pair production high

energy photons are needed. The actual pair production process is the Breit-Wheeler

process:

γ + nω → e− + e+

where γ is a photon, ω the energy and e−/e+ an electron/positron.
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2 THEORETICAL PRELUDE

Fig. 2: Feynman diagrams of both processes

The nonlinear Breit-Wheeler effect occures when a high-energy photon decays into

a pair of electron-positron while interacting with a strong electromagnetic field. In

case of Breit-Wheeler the photon must first travel some distance before it produces a

pair (in average a few laser wavelengths). There is also a two step process, Trident,

which can be mentioned in case of pair production:

e− → 2e− + e+

First part is a nonlinear Compton scattering after which we have an electron and

a photon. The second part is a nonlinear Breit-Wheeler process, where a photon

decays into an electron-positron pair. In case of low laser intensity the Trident

process dominates, but for higher intensity the Breit-Wheeler process becomes the

dominant one.[10]
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3 Laser scattering calculation

The instability of the laser pulse in a tenuous gas jet target were studied by different

groups [11, 12]. The physical mechanism is as follows: due to uneven rate of

ionization across the laser wavefront, there is a plasma density modulation which

can scatter the laser. On scattering the density modulations get stronger causing

further scattering and thus establishing a feedback loop. The instability vanishes as

soon as the ionization is complete. Since the pair production is a stochastic event,

uneven pair-production across the laser front can also cause the laser scattering.

This can have consequences for the electromagnetic cascade proposed to be studied

experimentally once ELI lasers are operational. To describe the radiation reaction

we choose the Landau-Lifshitz equation since we consider to be in the classical

electrodynamics regime, i.e quantum effects are negligible (spin, photon recoil), and

further more λc << λ and E << Ecr [8] apply. Where λc is the Compton wavelength

and Ecr the critical field of the quantum electrodynamics.

3.1 Equation of motion

We begin with a circular polarised laser pulse propagating in ẑ direction in an

electron-ion plasma. This laser is strong enough to cause pair-production which

we include in the form of a rate equation. The most common method to describe a

plasma is using the two fluid model.

Our considered plasma consists of ions and electrons. Since we assume that there

is no ionization or recombination between the electrons and ions and we assume

a collisionless plasma (collisions can be neglected since the mean free path between

particles is larger than the wavelength of the oscillations in the plasma), the continuity
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3 LASER SCATTERING CALCULATION

equation must be fulfilled for the phase space distribution function f(x, v, t):

df

dt
= ∂f

∂t
+ ∂

∂x
· (ẋf) + ∂

∂v
· (v̇f) = 0. (3.1)

With additionally the equation of motion:

ẋ = v,

v̇ = q

m

(
E + v ×B

c

)
.

(3.2)

This leads to the Vlasov equation:

∂f

∂t
+ v · ∂f

∂x
+ q

m

(
E + v

c
×B

)
∂f

∂v
= 0, (3.3)

with the magnetic field B, the electric field E as well as the charge q and the mass

m of the particle.

For our case, we modify the Vlasov equation by considering additionally the radiation

reaction and taking the phase space distribution p(x, t).

v̇ = q

m

(
E + v ×B

c

)
+ 2e4

3m2c5γ
2v

[(
E + 1

c
v ×B

)2
−
(
v

c
E
)2
]
. (3.4)

Here only the leading order term of the radiation reaction 2.3 is included. The other

terms of the radiation reaction are smaller by 1/γ << 1 and thus can be ignored.

This leads to an equation of motion of

dp

dt
+ v · ∇p = −e · (E + v ×B)− 2e4

3m2c5γ
2v

[(
E + 1

c
v ×B

)2
−
(
v

c
E
)2
]
. (3.5)

We can rewrite this in potential form using E = −1
c
∂A
∂t
−∇φ and B = ∇×A for an

pulse of the form
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3 LASER SCATTERING CALCULATION

A = 1
2A⊥(x⊥, z, t)eik0z−iw0t + cc., (3.6)

with slow varying amplitude

∣∣∣∣∂A⊥∂t
∣∣∣∣ << |w0A⊥|,

∣∣∣∣∂A⊥∂z
∣∣∣∣ << |k0A⊥|. (3.7)

If we further more consider the transverse variation to be weak compared to the laser

wavelength, i.e. k⊥ << k0, than the equation of motion can be rewritten as:

dp

dt
+ v · ∇p =e

c

∂A

∂t
+ e∇φ− e

c
(v × (∇× A))

− 2e4w2
0

3m2c7γ
2v

[(
A+ v

c
× (êz × A)

)2
−
(
v

c
A
)2
]
.

(3.8)

Initially we can ignore the radiation reaction term (second row) and solve for p⊥.

Without the radiation reaction force the perpendicular component of the moment

could be written as

p⊥ = e

c
A. (3.9)

A purely transverse circular polarised light in plasmas is only possible when we

ignore the z-component of motion, i.e. purely transverse circular polarised light

doesn’t induce motion in z direction. Now we simplify the radiation reaction term

using the above expression for the transverse momentum. The radiation reaction

term then becomes:

2e4w2
0

3m2c7γ
2v

[(
A+ v

c
× (êz × A)

)2
−
(
v

c
A
)2
]

= 2e4w2
0

3m2c7γ
2 p⊥
mγ

[((
v

c
· A
)
êz −

(
v

c
· êz

)
A+ A

)2
−
(
v

c
A
)2
]

= 2e4w2
0

3m2c7γ|A|
2p⊥.

(3.10)
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Using 3.9 γ can be written as

γ = (1 + e2A2/m2c4)1/2. (3.11)

Now we can solve the equation of motion perturbatively using the simplified expression

for the radiation reaction force. Which results to:

∂

∂t

(
p⊥ −

e

c
A
)

= − 2e4w2
0

3m2c7γ|A|
2p⊥, (3.12)

this can be solved to

p⊥ = − 2e4w2
0

3m2c7γ|A|
2
∫ t

0

e

c
A dt+ e

c
A = e

c
A+ 2e4w2

0
3m2c7γ|A|

2 e

c

A

iw0
= e

c
A(1− iαγ|A|2),

(3.13)

where α = 2e4w0/3m3c7. As we can see, the radiation reaction yields to an additional

term which has a relative minus sign, signaling the frictional nature.

3.2 Wave equation

For further analysis we must take into account the wave equation for the electromagnetic

vector potential. Starting with the Maxwell equation

∇×B = 4π
c
J − 1

c

∂E

∂t
. (3.14)

We substitute for E and B the potential form and choosing the Lorenz gauge:

1
c2
∂2A

∂t2
−∇2A = 4π

c
J − 1

c

∂

∂t
∇φ. (3.15)

Considering the Poisson equation∇2φ = −4πρ and the equation of charge conservation

9



3 LASER SCATTERING CALCULATION

∂ρ
∂t

+∇J = 0 where ρ is the charge density, we will get:

∇
(
∂

∂t
∇φ− 4πJ

)
= 0. (3.16)

To get rid of the ∇φ the current density J can be separated in a transverse part

Jt and a longitudinal part Jl. Since ∇Jt = 0 we obtain ∂
∂t
∇φ = 4πJl with Jt =

−neev⊥ = −ne e2

mcγ
A(1− iαγ|A|2) (if we restrict ourselves to A · ∇ne = 0) and where

the electron density is ne = n0 + 2nep

∇2A− 1
c2
∂2A

∂t2
= 4πne2

mγc2

(
1− iαγ|A|2

)(
1 + 2nep

n0

)
A, (3.17)

where n0 is the equilibrium plasma electron density and nep is the density of the pair

particles. The factor of two is due to the pair production.

∂n

∂t
= R(n0 + 2nep). (3.18)

Here R is the rate of pair production due to either of the previous mentioned pair

production processes. This equation is suited for both processes since the spacial

growth of the instability should be larger than the distance a photon needs to create

a pair.

For the instability analysis it is more convenient to change to the laser frame coordinates

ξ = ct − z, η = z. The variable ξ measures the distance back from the head of the

pulse, as the pulse propagates in the positive z direction. This changes the derivation

according to:
∂

∂t
= ∂

∂ξ

∂ξ

∂t
+ ∂

∂η

∂η

∂t
= c

∂

∂ξ
, (3.19)

∂

∂z
= ∂

∂ξ

∂ξ

∂z
+ ∂

∂η

∂η

∂z
= ∂

∂η
− ∂

∂ξ
, (3.20)
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∂2

∂t2
= c2 ∂

2

∂ξ2 , (3.21)

∂2

∂z2 = ∂

∂z

(
∂

∂z

)
=
(
∂

∂η
− ∂

∂ξ

)(
∂

∂η
− ∂

∂ξ

)

= ∂2

∂η2 − 2 ∂
∂ξ

∂

∂η
+ ∂2

∂ξ2 .

(3.22)

In the new coordinates A becomes A = 1
2A⊥e

ikoξ + cc. and the derivatives change

to

∂A

∂ξ
= 1

2

[
∂A⊥
∂ξ
− ik0A⊥

]
e−ik0ξ, (3.23)

∂2A

∂ξ2 = 1
2
∂

∂ξ

[
∂A⊥
∂ξ
− ik0A⊥

]
e−ik0ξ

= 1
2

[
∂2A⊥
∂ξ2 − 2ik0

∂A⊥
∂ξ
− k2

0A⊥

]
e−ik0ξ.

(3.24)

This changes the wave equation 3.17 to:

∇2
⊥A⊥ + ∂2A⊥

∂η2 − 2 ∂
∂ξ

∂A⊥
∂η

+ ∂2A⊥
∂ξ2 −

∂2A⊥
∂ξ2 = 4πne2

mγc2

(
1− iαγ|A|2

)(
1 + 2nep

n0

)
A⊥,

(3.25)

∇2
⊥A⊥+ ∂2A⊥

∂η2 +2 ∂
∂η

[
ik0 −

∂

∂ξ

]
A⊥ = 4πne2

mγc2

(
1− iαγ|A|2

)(
1 + 2nep

n0

)
A⊥. (3.26)

With A⊥ slowly varying in η this leads to:

∇2A⊥ + 2 ∂
∂η

[
ik0 −

∂

∂ξ

]
A⊥ = 4πne2

mγc2

(
1− iαγ|A|2

) (
1 + 2nep

n0

)
A⊥, (3.27)

∇2
⊥A⊥ + 2 ∂

∂η

[
ik0 −

∂

∂ξ

]
A⊥ =

w2
p

γc2

(
1− iαγ |A⊥|

2

2

)(
1 + 2nep

n0

)
A⊥. (3.28)
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Due to the new coordinates the rate equation changes to:

c
∂nep
∂ξ

= R(n0 + 2nep). (3.29)

The laser scattering leads to a vector potential of :

A⊥ = A0 + δA+e
ik⊥x⊥ + δA∗−e

−ik⊥x⊥ , (3.30)

with δA+/− being an up-/downshifted perturbation. The density perturbation takes

the form
nep
n0

= np0 + δn+e
ik⊥x⊥ + δn∗−e

−ik⊥x⊥ . (3.31)

To deduce the new rate of pair production linearize it to:

R
(
|A0 + δA+e

ik⊥x⊥ + δA∗−e
−ik⊥x⊥|

)
= R (|A0|) + ∂R

∂|A0|
A∗0δA+ + A∗0δA−

2|A0|
eik⊥x⊥ + cc.,

(3.32)

with w2
p = 4πn0e

2/m. To further investigate 3.28 we must calculate all the involved

terms. Resulting to:

|A⊥|2 = |A0|2 + (A∗0δA+ + A0δA−)eik⊥x⊥ + (A0δA
∗
+ + A∗0δA

∗
−)e−ik⊥x⊥ , (3.33)

1
γ

= 1
γ0
− e2

4m2c4γ3
0

[(A∗0δA+ + A0δA−)eik⊥x⊥ ]− e2

4m2c4γ3
0

[(A0δA
∗
+ + A∗0δA

∗
−)e−ik⊥x⊥ ],

(3.34)

where γ0 = (1 + a2
0/2)1/2 and ao = eAo/mc

2

A⊥
γ

= A0

γ0
+
[
δA+

γ0
− a2

0
4γ3

0
(δA+ + δA−)

]
eik⊥x⊥+

[
δA∗−
γ0
− a2

0
4γ3

0
(δA∗+ + δA∗−)

]
e−ik⊥x⊥+cc.,

(3.35)
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3 LASER SCATTERING CALCULATION

|A⊥|2A⊥ =|A0|2A0 + [|A0|2(δA+ + δA−) + |A0|2δA+]eik⊥x⊥

+ [|A0|2(δA∗+ + δA∗−) + |A0|2δA∗−]e−ik⊥x⊥ + cc.
(3.36)

The now explicitly calculated part can be inserted in 3.28 and then separate in terms

with the same phase. This can be done since the exponential function builds a basis.

If we take a look at the equilibrium part it results to:

∇2
⊥A0 + 2 ∂

∂η

[
ik0 −

∂

∂ξ

]
A0 =

w2
p

γ0c2 (1 + 2np0)(1− iψa2
0γ0)A0, (3.37)

since we neglected the time and space dependence of the equilibrium density distribution

3.37, the equilibrium field undergoes a small wave number shift due to the plasma

[11]. Upon linearising A0 as Â0e
iδkη the wave number shift δk becomes

δk = −
k2
p∆

2k0
(1− iψa2

0γ0), (3.38)

where k2
p = w2

p/γ0c
2, ∆ = (1 + 2np0), α = 2ψe2/m2c4, ψ = rew0/3c and re = e2/mc2.

Collecting the terms involving e±ik⊥x⊥ results to:

[
∇2
⊥ + 2 ∂

∂η

(
ik0 −

∂

∂ξ

)]
δA+e

±ik⊥x⊥ =
w2
p

c2 ∆
[
δA+

γ0
− a2

0
4γ3

0
(δA+ + δA−)

]
e±ik⊥x⊥

+ k2
pδn+

(
1− iψa2

0γ0
)
A0e

±ik⊥x⊥ − iψa2
0
w2
p

c2 ∆ [δA+ + (δA+ + δA−)] e±ik⊥x⊥ ,

(3.39)[
∇2
⊥ − k2

p∆
(
1− iψa2

0γ0
)

+ 2 ∂
∂η

(
ik0 −

∂

∂ξ

)]
δA+e

±ik⊥x⊥ =

−
(
1− 4iψγ3

0

) w2
p

c2 ∆ a2
0

4γ3
0

(δA+ + δA−) e±ik⊥x⊥ + k2
pδn+

(
1− iψa2

0γ0
)
A0e

±ik⊥x⊥ .

(3.40)
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3.3 Calculation of the dispersion relation and growth rate

To further calculate the dispersion relation the density perturbation is needed. Similar

instabilities derivations can also be found in the book from Kruer [13] and Gibbon

[14]. This can be deduced using the density perturbation 3.31 and upon assuming

δn+ ∼ e−kξξ+i(kη±δk)η which then results to:

c
∂nep
∂ξ

= R(n0 + 2nep), (3.41)

c
∂δn+

∂ξ
= R0δn+ + ∆ ∂R

∂|A0|
A∗0δA+ + A∗0δA−

2|A0|
, (3.42)

δn+ = − ∆
R0 + ikξc

∂R

∂|A0|
A∗0δA+ + A∗0δA−

2|A0|
. (3.43)

Here we see that the perturbed electron density is coupled to the perturbed laser

field through the dependence of the pair production rate on the equilibrium field.

Using this expression and writing δA± as δÂ±e−ikξξ+i(kη±δk)η corresponds to

[k2
⊥+2kη(kξ+k0)]δA+ =

[
k2
p∆|a0|

2(R0 + ikξc)
∂R

∂|A0|
(1− iψa2

0γ0) +
w2
p∆a2

0

4γ3
0c

2 (1 + 4ψγ3
0)
]

(δA++δA−).

(3.44)

For δA− it results to

[k2
⊥+2kη(kξ+k0)]δA− =

[
k2
p∆|a0|

2(R0 + ikξc)
∂R

∂|A0|
(1 + iψa2

0γ0) +
w2
p∆a2

0

4γ3
0c

2 (1− 4ψγ3
0)
]

(δA++δA−).

(3.45)

With this we’ve got D+δA+ = R+(δA+ + δA−) and D−δA− = R−(δA+ + δA−)

yielding to the dispersion relation

(
R+

D+
+ R−
D−

)
= 1, (3.46)
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3 LASER SCATTERING CALCULATION

where

D± = k2
⊥ + 2kη(kξ ± k0), (3.47)

R± =
[

k2
p∆|a0|

2(R0 + ikξc)
∂R

∂|A0|
(1∓ iψa2

0γ0) +
w2
p∆a2

0

4γ3
0c

2 (1± 4iψγ3
0

]
. (3.48)

In case of pair production the frequency gets upshifted, therefore we only retains the

upshifted components of the dispersion relation. For this case it results to

k2
⊥ + 2kη(kξ + k0) = σ1

R0 + ikξc
(1− iψa2

0γ0) + σ2(1 + 4iψγ3
0). (3.49)

The pole of this dispersion relation (D+ = 0 and since kξ << k0) is kη = −k⊥/2k0

this leads to

Du
+ = βGk0 + kη − βGkξ −

σ1

2k0

(1− iψa2
0γ0)

R0 + ikξc
− σ2

2k0
(1 + 4iψγ3

0), (3.50)

where

βG = k2
⊥/2k2

0, σ1 =
k2
p∆a0

2
∂R

∂|A0|
, σ2 =

a2
0k

2
p∆

4γ3
0
, (3.51)

since Du
+ = 0

kη = βG(kξ − k0) + σ1

2k0

(1− iψa2
0γ0)

R0 + ikξc
+ σ2

2k0
(1 + 4iψγ3

0). (3.52)

We substitute k̂η = kη − βξkξ in the dispersion relation and differentiating it with

respect to kξ while keeping k̂eta constant. Which gives

(βξ − βG) = −σ1ic

2k0

(1− iψa2
0γ0)

(R0 + ikξc)2 , (3.53)

kξ = iR0

c
±
√

σ1

2k0c(βξ − βG)

[
1 + i√

2
+ 1− i

2
√

2
ψa2

0γ0

]
, (3.54)
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3 LASER SCATTERING CALCULATION

here ψa2
0γ0 << 1 (IL ∼ 1023W/cm2) is assumed. The complex growth of the

perturbation is

Γ = (kη − βξkξ)η + iδkη. (3.55)

With the involved terms written as

(kη − βξkξ) =− iR0

c
(βξ − βG)− βGk0 + σ2

2k0
(1 + 4iψγ3

0)

∓ 2
√
σ1(βξ − βG)

2k0c

[
1 + i√

2
+ (1− i)

2
√

2
ψa2

0γ0

]
.

(3.56)

This results to

Γ =
[
R0

c
(βξ − βG)− iβGk0 + iσ2

2k0
− 2σ2ψγ

3
0

k0
±
√
σ1

k0
(βξ − βG)

(
(1− i)− (1 + i)

2 ψa2
0γ0

)]
η

−
ik2
p∆

2k0
η −

k2
p∆

2k0
ψa2

0γ0η,

(3.57)

leading to the final expression of

Γ =R0

c

(
ξ − k2

⊥
2k2

0
η

)
− ik2

⊥
2k0

η +
ia2

0k
2
p∆

4γ2
0

η −
a2

0k
2
p∆ψγ0

2k0
η

±

√√√√k2
p∆a0

2k0

∂R

∂|A0|
(ξη − k2

⊥
2k2

0
η2)

[
(1− i)− (1 + i)

2 ψa2
0γ0

]
−
ik2
p∆

2k0
η −

k2
p∆

2k0
ψa2

0γ0η.

(3.58)

For long-term asymptote, ξ � (k2
⊥/2k2

0)η. From this equation we can clearly see that

the growth rate of the instability depends both on the rate of the pair-production

R0 and the variation of rate of pair-production across the laser wavefront, |∂R/∂A0|.

Moreover, though a finite k⊥ can provide a seed for the scattering, a larger value

of k⊥ reduces the growth rate. Thus, for a laser pulse of Gaussian profile, although

the rate of pair-production can strongly vary across its wavefront, the scattering is

weaker due to a larger k⊥ in the early phase of the instability development. Also the
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4 PIC SIMULATIONS OF THE LASER SCATTERING

first term in the expression is independent of the plasma density confirming that pair-

production alone causes the scattering. However, the term with |∂R/∂A0| depends

on the plasma density. Thus, there is an optimum range where the scattering is

maximum. Even though these calculations are valid only for the circularly polarised

laser pulse, we expect the results to be qualitatively similar in the linear polarisation

pulse case too.

4 PIC Simulations of the laser scattering

The code we used for the simulations is SMILEI [15], which is an open-source code

for plasma simulations. It is written in C++ but the input file can be done in python.

A short introduction to PIC algorithm can be found in Appendix A. We consider a

scenario where an electron-ion plasma target is irradiated with a laser pulse. The

ratio between the mass of the ion mi and electron me is set to be mi/me = 1836

corresponding to the ratio between a proton and an electron and the ion is charged

Zi = 1. The target starts after 6 µm of vacuum and is 50 µm long. The value of the

plasma densities are chosen in such a way that plasma is relativistically transparent

to the laser pulse. The input values can be found summarized in table 1.
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4 PIC SIMULATIONS OF THE LASER SCATTERING

simulation parameters value
mass ratio mi/me 1836
charge ion Zi 1
Particles per cell 16
Lx × Ly[µm2] 128 × 8
∆x ×∆y[nm2] 20×10
Tsim[µm/c] 380
dt[nm/c] 6.6
λ0[µm] 1
length vacuum [µm] 6
length target [µm] 50
photon threshold for RR 2
radiation reaction model Monte Carlo

Tab. 1: constant simulation parameters

The above-mentioned values are kept constant for all simulations. The changes

between the simulations occur in the density and the laser pulse.

In this thesis following simulations are included:

• planar linear polarised laser puls with a0 = 400 and density of 50nc

• planar linear polarised laser puls with a0 = 400 and density of 100nc

• planar linear polarised laser puls with a0 = 400 and density of 420nc

• planar circular polarised laser puls with a0 = 400 and density of 420nc

• Gaussian linear polarised laser puls with a0 = 420 and density of 550nc

• Gaussian circular polarised laser puls with a0 = 350 and density of 50nc

whereas a0 = eE0/meω0c is the normalized vector potential, nc = meω
2
0/4πe2 the

critical density of the laser pulse and ω0 is the laser frequency.
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In table 2 the parameters of the Gaussian puls can be found.

simulation parameters value
focus [Lx/2, Ly/2]
spacial waist[µm] 4
time fwhm Tsim/3
duration Tsim

Tab. 2: Gaussian profile

4.1 Shock formation

Before we discuss the laser scattering, we can briefly also discuss the shock formation

by different laser pulse polarisations. As mentioned before, we expect the laser

scattering to be qualitatively same for both polarisations. However, there is one

crucial difference between the two polarisation cases. It is the shock formation and

it’s worthwhile to to briefly discuss before moving to the laser scattering. In Fig.3

and 4 we can see the shock formation in case of circular and linear polarised laser

pulses, with and without radiation reaction at different time instances. To evaluate

the shock formation we must take the number density of the plasma and divide it

by the initial density. If this value gets larger than 3 it is considered to be a shock.

The laser penetration in the target in case of RR is less in comparison with and no

RR case. This is due to the energy lost in radiations that causes the laser piston

to move slowly, consequently the shock structure is at earlier position than in no

RR case. With RR the shock seems to have more structure in the front. We can

also see filamentary structures in all the cases. These structures arise due to the

Weibel instability. This can be understood as two streams, the hot-electrons stream,

which is generated at the laser-plasma interface and the cold return plasma stream,

interacting with each other.
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(a) including radiation reaction (b) without radiation reaction

Fig. 3: plasma density (normalized by initial density) at different times for linear
polarisation density 420nc, a0 = 400

In the circular polarised case the shock formation is less pronounced than in the

linear case. The linearly polarised laser has a deeper penetration in the target and

causes stronger heating of the target which helps in launching a shock with larger

width. In the case of circularly polarised light, the heating of the electrons is less

stronger than the linearly polarised case. Consequently, the shock formation occurs

but with a smaller width. This can have an impact on the laser scattering since the

analytical calculations do not take into account the shock formation. It’s expected

that at a fixed density the linearly polarised light can produce more positrons and

consequently can gets scattered strongly.
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(a) including radiation reaction (b) without radiation reaction

Fig. 4: plasma density (normalized by initial density) at different times for circular
polarisation density 420nc, a0 = 400

4.2 Scattering

To further understand the development of the instability, PIC simulations with

different densities and laser pulse are carried out. These simulations evaluate the

dependency of the scattering on pair production and polarisation. To examine the

dependence of k⊥ on the scattering, simulations with a Gaussian pulse in time and

space were also launched. Also, the impact of the polarisations on the scattering was

analysed.

4.2.1 Pair production

In Fig.5 the number of created positrons over the time can be seen. It shows that

in most cases the number of positrons reaches a maximum value and decays after.

The positron production is higher at higher plasma densities. For the Gaussian laser

pulse simulations, one sees less number of positrons generated, hence one can expect

lower scattering.
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(a) all the planar wave cases e.g. for linear polarisation the densities 50,
100, 420 nc all with a0 = 400 and for circular polarisation n0 = 420nc
and a0 = 400

(b) Gaussian laser pulse with n0 = 550nc and a0 = 420 for linear
polarisation and n0 = 50nc and a0 = 350 for circular polarisation

Fig. 5: number of created positrons for the different settings
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4.2.2 Linear laser pulse at low plasma density

To examine the development of the laser scattering, we study the spatial spectra of

the plasma field (Ex) and laser field (Ey) over time. We take Fourier transforms

of the plasma field both over x and y directions. This can be seen in the Figs.6

- 11. These figures were generated by calculating
∫ Lx/y

0
∫ Lx/y

0 Ex/y(x, y)eik·x/ydxdy

and displaying it at different times. The following simulation results clearly shows

the effect of the pair-production on the laser scattering with and without radiation

reaction Figs.7 and 9. Figs. 6 and 7 show the spatial growth for the different fields

in case of linear polarisation with and without radiation reaction force.

Fig. 6: Spatial spectra (Fourier transformed in y direction) of the plasma field for
linear polarisation with and without RR. Both cases have an a0 = 400 and a density
of ne = 50nc.

Fourier transformed of the plasma electric field in y shows the appearance of few

peaks at k0, where k0 is wavevector of the incident laser pulse. One can see that

the plasma longitudinal field Ex has a broad k-spectrum and shows few harmonics

at k0 < 1 and k0 > 1 (corresponding to the plasma wavevector kp > 1) with the

radiation reaction force. While without the radiation reaction force, one sees the
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k-spectrum is limited to k0 < 1. This implies a stronger modulation of the laser

envelope but also the lack of a stronger plasma wakefield generation, in sync with

theoretical assumptions see 3.58. Hence, comparing these two figures one can see

that the radiation reaction force is causing the generation of the plasma wakefield.

One may also see that in the k-spectrum for k0 < 1, shows step like structures in

both cases, and this can be connected with the combined effects of the relativistic

plasma oscillations or the pair-production.

(a) Fourier transformed in x direction (b) Fourier transformed in y direction

Fig. 7: Spatial spectra of the laser field for linear polarisation with and without RR.
Both cases have an a0 = 400 and a density of ne = 50nc.

Fig. 7 shows the Fourier transformed (in x and y directions) laser field. The line k0 =

1 corresponds to the laser wavevector, the other visible line at k0 ≈ 0.5 corresponds

to the scattering of the laser pulse. At later time, this line approaches the k0 = 0

in the case of no RR force while it stays around k0 ≈ 0.25 in the case of radiation

reaction force. This implies a stronger modulation of the laser pulse envelope at

λ = 2λ0 wavelength suggesting the red-shifting of the carrier-envelope frequency.

Fig. 7b shows the Fourier transformed electric field in y-direction. This is most

important result of the thesis and it shows higher scattering due to pair-production
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at k ≤ k0. This qualitatively confirms the theoretical predictions presented in the

Sec. 3. Later on we show a result where we have included the radiation reaction force

but not the pair-production, Figs. 12 - 14.

Fig. 8: Spatial spectra (Fourier transformed in y direction) of the plasma field for
linear polarisation with and without RR. Both cases have an a0 = 400 and a density
of ne = 100nc.

At higher densities, n0 = 100nc shown in Fig.8, we continue to see the same trend

as before. In this case the effect of the radiation reaction is stronger than at density

n0 = 50nc. The k-spectrum of the plasma field in Fig. 8 is visibly broader in case

of radiation reaction than in case of no radiation reaction force. In the case of

radiation reaction force, the plasma longitudinal electric field seem to show a peak

at the backward Raman scattering wavenumber. The step-like structures in this case

are presumably due to the pair-production. Fig. 9 shows again the laser field. Here

also the previous trends can be further seen. The scattering of the laser pulse is again

stronger in the case of pair-production compared to the no radiation reaction force

case. The k-spectrum in the case of radiation reaction force (Fourier transformed in

x) shows peaks both at k0 = 1 and at k0 ≈ 0.5 but this time the line approaches

k0 ≈ 0.25 in both cases. The Fourier transformed (in y direction) laser field shows a
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visibly broader compared to the case of no radiation reaction force.

(a) Fourier transformed in x direction (b) Fourier transformed in y direction

Fig. 9: Spatial spectra of the laser field for linear polarisation with and without RR.
Both cases have an a0 = 400 and a density of ne = 100nc.

4.2.3 Gaussian circular laser pulse at lower density

Here the same circularly Gaussian laser pulse was used, but for a0 = 350 and density

50nc. In this case, the plasma field spectra Fig. 10 shows absence of well-defined

harmonics at different k as in the previous section. The Fourier transformed laser

field shown in Fig. 11a again a secondary structure around k ≈ 0.5 that tends

to lower k values at later times. Although the scattering is stronger than in the

previous Gaussian case, Fig. 18, it is not as strong as in the cases with a0 = 400

and n0 = 420nc as seen in Figs. 14 and 16 or a0 = 400 and n0 = 50nc in Fig. 7.

Which again demonstrates the effect of k⊥. For this case also the difference between

radiation reaction and no radiation reaction is not visibly clear.
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Fig. 10: Spatial spectra (Fourier transformed over y) of the plasma field for a circular
polarised Gaussian laser pulse with and without RR. Both cases have an a0 = 350
and a density of ne = 50nc.

(a) Fourier transformed in x direction (b) Fourier transformed in y direction

Fig. 11: Spatial spectra of the laser field for a circular polarised Gaussian laser puls
with and without RR. Both cases have an a0 = 350 and a density of ne = 50nc.
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4.2.4 Linear laser pulse with RR/PP

The next simulation we considered was a planar linear polarised laser pulse with

a0 = 400 propagating through a plasma with density 420nc. This was conducted to

see the changes on including the radiation reaction force but no pair-production.

The Fourier transformed of the plasma electric field in y Fig.12 shows some

Fig. 12: Spatial spectra (Fourier transformed over y) of the plasma field for linear
polarisation with and without RR and PP. All three cases have an a0 = 400 and a
density of ne = 420nc.

differences. The line around k ≈ 1.75 seems to be stronger in case of radiation

reaction force but without including the pair production. This line is weaker without

accounting for the radiation reaction and pair-production. This line disappears on

accounting for both effects. This can be understood as follows: in the presence

of the radiation reaction this backscattering gets stronger due to the plasma layer

compression (see next figure) by the laser pulse. On accounting for the pair-production,

this layer looses its energy due to quasi-neutrality and energy being diverted to the

pair-production, and hence it gets weakened.

To verify the assumption of the redistribution of the energy, we can take a look
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(a) Electron

(b) Ion

Fig. 13: Energy spectra for time 667.1 fs

at the electron and ion spectra for this cases. This can be seen in Fig.13. For the

electrons there is no difference in the energy spectrum in both cases. In the ion energy

spectra there is a visible change. In the case of pair production, the maximum is

at a lower value than with only radiation reaction. This shift in the energy resulted

from the destruction of the plasma density compression and hence the suppression

of the double layer.

In the spatial spectra of the laser field, Fig.14, we can’t see a visible difference in both

cases. In this case the scattering of the laser pulse occurs at k0 ≈ 0.7 and a second

structure appearing in all three cases at k0 ≈ 1 can be seen. Most of the scattering

in Fig.14b is restricted to k ≤ k0 and no visible change between the different cases
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(a) Fourier transformed in x direction (b) Fourier transformed in y direction

Fig. 14: Spatial spectra of the laser field for linear polarisation with and without RR
and PP. All three cases have an a0 = 400 and a density of ne = 420nc.

can be seen. Thus at higher densities, the effect due to pair-production on the laser

scattering in transverse direction is negligible though in the propagation direction

we do see a quantitative shift towards k ≈ 1 of the secondary structure.

4.2.5 Circular laser pulse

Here a planar circular polarised laser pulse with a0 = 400 and density 420nc was

chosen to make the difference between the polarisation dependence on the laser

scattering apparent.

The plasma field in Fig.15 again shows similar structure as before Fig.12. However,

the line at k ≈ 1 seems to be the strongest. The Fourier transformed laser field Fig.16

shows the scattered line due to secondary structure appears again at approximately

≈ 0.7 as in the linearly polarised case. Fourier transformed (in y-direction) laser

field shows a very minute difference between the cases of no radiation reaction and

pair-production. Although, there is slight broadening of the k-spectrum in the case

of pair-production. This suggest that pair-production indeed has some influence on
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Fig. 15: Spatial spectra (Fourier transformed over y) of the plasma field for circular
polarisation with and without RR. Both cases have an a0 = 400 and a density of
ne = 420nc.

the laser scattering even in high plasma densities case. Overall the scattering in due

to circular polarisation is less than due to linear polarisation, which is to be expected

since for given λ and I the a0 value in the linear case is a factor of
√

2 bigger than

in the circular case.

(a) Fourier transformed in x direction (b) Fourier transformed in y direction

Fig. 16: Spatial spectra of the laser field for circular polarisation with and without
RR. Both cases have an a0 = 400 and a density of ne = 420nc.
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4.2.6 Gaussian linear laser pulse at high density

To examine the effects of a finite k⊥ we chose a Gaussian envelope in time and space

for a linear polarised laser pulse with a0 = 420 propagating through a plasma with

density 550nc. In the plasma field show in Fig.17 one see similar behaviour as before

Fig. 17: Spatial spectra (Fourier transformed over y) of the plasma field for a linear
polarised Gaussian laser pulse with and without RR. Both cases have an a0 = 420
and a density of ne = 550nc.

and the structures at higher k seems to be weaker in the case of pair-production. In

this case, the lines at different k are integer multiples of k0, whereas in the planar

linear case, see Fig.12, the harmonics can be found at slightly lower values. The

Fourier transformed laser field shown in Fig.18 depicts only one stronger line at

k0 = 1, corresponding to the laser pulse. Which means that for this case there

isn’t as a secondary structure formation occurring. The Fourier transformed (in y

direction) laser field field shown in Fig.18b, shows larger scattering for a brief period

of time (between 600 and 800 fs) at smaller k ≈ 0.2 number for pair-production case.

Though the scattering at larger k numbers is almost same. This is also expected

from the theory. The scattering is stronger when the pair-productions is higher but

the finite k⊥ reduces the growth of the perturbation.
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(a) Fourier transformed in x direction (b) Fourier transformed in y direction

Fig. 18: Spatial spectra of the laser field for a linear polarised Gaussian laser puls
with and without RR. Both cases have an a0 = 400 and a density of ne = 550nc.
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5 Conclusion

Based on the simulation results presented before one can see that scattering in

the transverse direction due to pair-production is dominant in low plasma density

regime, Fig.24. At higher plasma density the scattering in transverse direction is

same with and without the radiation reaction and pair-production. This is due to

the fact that pair-production saturate at high plasma densities and consequently

the scattering shows no difference with and without the radiation reaction force and

pair-production. The scattering due to pair-production at lower density is important

since it suggests that there can be a higher scattering of the laser pulse hindering

the development of the electromagnetic cascade induced by two laser pulses. Also,

the results with Gaussian spatial profiles confirm the theoretical prediction that even

though the pair-production is sufficient the laser scattering due to pair-production is

same as without the pair-production case at early time. This is due to the finite k⊥
that reduces the growth rate of the instability and requires longer interaction time

for instability to show its signature, see 3.58.

6 Outlook

The results look promising for studying the scattering in low-plasma density regimes.

One needs to do more simulation in this regime and especially with the circular

polarised laser pulse. PIC simulations in this regime are resource demanding and

due to higher plasma density compression occurring at lower plasma densities, they

take longer time to finish, and this is the reason they have not been included in

the thesis yet. Moreover, we need to repeat these simulations for electron-positron

plasmas to see if it has an impact on the electromagnetic cascade initiated by two

counter-propagating laser pulses.
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A PIC ALGORITHM

Appendices

A PIC algorithm

PIC is a method which was developed in the 1960s. For this technique the distribution

function is represented by many discrete macro particles ("quasi particles") each

carrying a specific charge (qi) and mass (mi). This stands in contrast to the Vlasov

equation 3.3 which takes the distribution as a whole. The density is in case of a PIC

simulation assumed to be:

ρ(x) =
∑

qiS(xi − x)δ(p− pi), (A.1)

where S(xi−x) describes the form of the macro particles. The shape functions used

in SMILEI can be found in Appendix A of [15].

Using the relativistic equation of motion/Lorentz equation

∂ui
∂t

= rs(Ei + ui
γi
×Bi), (A.2)

where rs = qs/ms (for species s) and ui = pi/ms the quasi-particle reduced momentum

as well as the fields

Ei =
∫
dxS(xi − x)E(x), (A.3)

Bi =
∫
dxS(xi − x)B(x), (A.4)

we can calculate the next time-step. To get the next time-step out of the equation

motion the leap frog algorithm is used. The new particle momentum and position is
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then calculated according to :

u
(n+ 1

2 )
i = u

(n− 1
2 )

i + rs∆t
E(n)

i + v
(n+ 1

2 )
i + v

(n− 1
2 )

i

2 ×B(n)
i


x

(n+1)
i = x

(n)
i + u

(n+ 1
2 )

i

γi
∆t,

(A.5)

whereas ∆t is the duration of a time-step and n denotes the time-step. The current

density J is calculated in similar manner by using the charge conservation . With the

help of the Maxwells equations the fields can than be determined. Thus the necessary

components are computed for this time-step and the algorithm starts anew for the

next time-step.

Chapter 3

Particle-In-Cell Codes

All science is either physics or
stamp collecting.

Ernest Rutherford

In this chapter we give an introduction to the general theory behind PIC
simulations and introduction to two different implementations. In section
3.1 the general PIC algorithm is described. Section 3.2 describes the PIC
code implemented by Elster[1][2], while Section 3.3 describes the PIC code
made by Jan Christian Meyer.

3.1 General Theory

The general algorithm for a PIC simulation in [1] is given in Figure 3.1,
and the components of the algorithm as in [1] is described in the following
subsections.

1: Initialize(field, particles)
2: while t < tmax do

3: Calculate particles contribution to field
4: Solve the field
5: Update particle speed
6: Update particle position
7: Write plot files

Figure 3.1: An general algorithm of a PIC simulation

3.1.1 The Field and the Particles

The physical field is represented as a discrete 2D array with Nx ∗ Ny
gridpoints. In the MPI-versions of PIC, each of the n MPI-processes is

19

Fig. 19: PIC loop [16]
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