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We introduce a massively parallel replica-exchange grand-canonical sampling algorithm to simu-
late materials at realistic conditions, in particular surfaces and clusters in reactive atmospheres. Its
purpose is to determine in an automated fashion equilibrium phase diagrams for a given potential-
energy surface (PES) and for any observable sampled in the grand-canonical ensemble. The approach
enables an unbiased sampling of the phase space and is embarrassingly parallel. It is demonstrated
for a model of Lennard-Jones system describing a surface in contact with a gas phase. Further-
more, the algorithm is applied to SiM clusters (M = 2, 4) in contact with an H2 atmosphere, with
all interactions described at the ab initio level, i.e., via density-functional theory, with the PBE
gradient-corrected exchange-correlation functional. We identify the most thermodynamically stable
phases at finite T, p(H2) conditions.

I. INTRODUCTION

A prerequisite for analyzing and understanding the
electronic properties and the function of surfaces is the
detailed knowledge of the surface composition and atom-
istic geometry under realistic conditions. The structure
of a surface at thermodynamic equilibrium with its en-
vironment is in fact a configurational statistical average
over adsorption, desorption, and diffusion processes.

A temperature-pressure phase diagram describes the
composition and structure of a system at thermal equi-
librium and is an essential tool for understanding mate-
rial properties. The ab initio atomistic thermodynamics
(aiAT) approach1–5 has been very successful in predicting
phase diagrams for surfaces6,7 and gas-phase clusters8–10

at realistic T, p conditions. The key assumption is, how-
ever, that all relevant local minima of the potential en-
ergy surface (PES) of a given system are enumerated,
a (strong) limitation in case of unexpected surface stoi-
chiometries or geometries. Such limitation can only be
overcome by an unbiased sampling of configurational and
compositional space. A further assumption in most work
has been that the vibrational contributions to the change
of the free energy are largely canceled and can be ne-
glected. We will see below that this is not always justi-
fied.

In this paper, we introduce a Replica-Exchange (RE)
Grand-Canonical (GC) Monte-Carlo (MC)/Molecular-
Dynamics (MD) algorithm, that enables the efficient
calculation of complete temperature-pressure phase di-
agrams of surfaces, nanoparticles, or clusters in contact
with reactive gas atmospheres. The RE and GC steps
of the algorithm are formulated in the Metropolis MC
framework, while the canonical sampling of configura-
tions (diffusion) is supported via both MC and MD. In
the case of surface in contact with a gas phase reservoir,
the gas molecules can physi-/chemisorb on the surface,
while adsorbed molecules or single atoms can desorb from
the surface to the gas phase. At thermodynamic equilib-
rium , the number of desorbed molecules/atoms balances
the adsorbed one, so that on average a constant number
of molecules/atoms is present on the surface. We specifi-

cally target thermodynamically open systems in the GC
ensemble, aiming at describing (nano)structured surfaces
in a reactive atmosphere at realistic T , p condition, so
that the surfaces can exchange particles with the gas
reservoir. The initial idea of RE11–14 is to allow for an ef-
ficent sampling of the configurational space by shuttling
configurations from regions of low T to regions of high T .
Later, de Pablo et al.15,16 extended the concept to other
intensive thermodynamic variables, such as the chemical
potential (µ) in order to simulate the phase equilibria of
Lennard-Jones (LJ) systems. This allows systems with
different number of particles (the conjugate variable of µ)
to be shuttled across different values of µ, thus enhancing
the sampling, following the same spirit of the tempera-
ture replicas in traditional RE. By combining advantages
of both GC and RE, our massively parallel algorithm re-
quires no prior knowledge of the phase diagram and takes
only the potential energy function together with the de-
sired µ and T ranges as inputs. The partition function
is estimated using the output of the simulation, thus cal-
culating thermodynamic observables is straightforward.

The structure of this paper is as follows. In Sec. II the
method and implementation of our REGC algorithm will
be discussed in details. In section III we show two appli-
cations of the REGC method. The first, in sectionIII A,
proof-of-concept application is the determination of the
p-T phase diagram of a system composed of a LJ (frozen)
surface in contact with a LJ gas phase. Next, in section
III B, we address the calculation of the phase diagram of
the Si2 dimer and Si4 cluster in a reactive atmosphere
of H2 molecules by performing REGC with aiMD us-
ing Perdew-Burke-Ernzerhof (PBE)17 xc approximation.
During the last several decades, silicon hydrides have at-
tracted a lot of attention because of their potential ap-
plications in semiconductors, optoelectronics, and surface
growth processes.18–21 The binary clusters of silicon and
hydrogen play key roles in the chemical vapor deposi-
tion of thin films, and photoluminescence of porous sil-
icon. However, most of the previous research on silicon
hydrides focused on the search of global minima struc-
tures, but the decisive issue of stability and metastabil-
ity of silicon hydrides at realistic conditions (exchange of
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atoms with an environment) has not been addressed so
far. The purpose of this application is to investigate the
phase diagrams of silicon hydrides in reactive hydrogen
atmosphere. In the outlook section (IV), the capabili-
ties and current limitations of our REGC method will be
discussed.

II. METHOD AND IMPLEMENTATION

The sampling of complex systems, e.g., thermody-
namically open systems, composed of many atoms ar-
ranged in molecules, clusters, condensed phases, etc., re-
mains a challenge. The main factors that limit sampling
efficiency is (i) that systems’ configurations get easily
trapped — especially at low temperatures — in local
minima and (ii) the inherently long characteristic re-
laxation times in complex many-molecules systems (e.g.,
atoms’ diffusion that require collective motions involv-
ing several degrees of freedom). During the last decades,
many powerful methods have been developed to deal with
the first difficulty, e.g., J-walking22,23, multicanonical
sampling24,25, nested sampling26, simple tempering12,27,
1/k sampling28, expanded ensembles29, , and parallel
tempering11,14. While these methods are effective in
overcoming kinetic barriers, they do little to accelerate
the slow relaxation at low temperatures.
Open ensembles, described at equilibrium by the grand-
canonical-ensemble formalism, provide an effective mean
to overcome slow-relaxation problems: atoms can get
in and out of a system, effectively generating thermo-
dynamically possible defects, along unphysical pathways
(e.g., atoms’ insertion or removal), thereby circumventing
diffusional bottlenecks by disentangling degrees of free-
dom. We took advantage of both the replica-exchange
and grand-canonical-ensemble concepts to design an al-
gorithm that alleviate both kinetic trapping and slow
phase space diffusion. In Sec. II A, we describe our
replica-exchange grand-canonical algorithm. Later, in
Sec. II B we describe how to use the results from replica-
exchange grand-canonical simulations to calculate phase
diagrams and free energy surfaces.

A. Replica-Exchange Grand-Canonical Monte
Carlo / Molecular Dynamics

Our Replica-Exchange Grand-Canonical Monte Carlo
or Molecular-Dynamics approach is outlined in Fig. 1. In
a REGCMC or REGCMD simulation, S replicas of the
original system of interest are considered, each evolving
in a different thermodynamical states (Ti , µi, where i
is the index of the replica). During the simulation, first
the system has a probability x0 (0 ≤ x0 ≤ 1) to at-
tempt exchanging a particle with the reservoir and prob-
ability (1− x0) to perform a replica-exchange move (see
below). After the particle/replica-exchange attempt, S
parallel molecular dynamics or Monte Carlo runs follow,

to diffuse the system in the canonical ensemble. i.e., at
temperature Ti, with fixed number of particles N and
volume V of the system (NV T ensemble). Then, the
procedure is iterated until convergence of defined quanti-
ties is achieved. See further for the convergence criterion
we adopted.

FIG. 1. The flow chart of Replica-Exchange Grand-Canonical
Monte Carlo/Molecular Dynamics algorithm. Here rand is
a (pseudo) random number generated uniformly distributed
between 0 and 1.

1. Grand-Canonical Monte Carlo

The particle insertion/removal step is handled by ap-
plying the formalism of the grand-canonical ensemble,
where the subsystem of our interest (e.g., a surface or a
cluster in contact with a gas phase), defined in a volume
(V ), is in equilibrium with a reservoir at given temper-
ature (T ), and chemical potential (µ) of one species (or
more species, each with its own chemical potential). In
practice, the reservoir is modeled as an ideal gas and µ
depends on T and the pressure p, as will be specified in
the application cases. The number of atoms or molecules
in the subsystem is a fluctuating variable, determined by
specifying the chemical potential and temperature of the
reservoir of (ideal) gas-phase atoms or molecules. The
probability density of a grand-canonical ensemble of iden-
tical particles is:30

Nµ,V,T (R;N) ∝
e(βµN)V N

Λ3NN !
e[−βE(R;N)] (1)

where β = 1/kBT , Λ = h/
√

2πmkBT is the thermal
wavelength of a particle of mass m, and E(R) is the
potential energy of a configuration R of the N -particle
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system. The GCMC algorithm consists of the following
MC moves: 1) insertion of a gas atom/molecule into the
system at a random position, 2) removal of a randomly
selected gas atom/molecule from the system, 3) displace-
ment of a gas atom to a new random position in the
system to sample the potential energy surface (PES). In
our algorithm, the displacement (diffusion) is taken care
of separately (see section II A 3) and can be done via
either Monte Carlo or MD. Here, we consider the inser-
tion and removal moves, where microscopic reversibility
(also called ‘detailed balance’, a sufficient condition for
an MC scheme to converge the evaluation of observable
properties in the desired ensemble30) is ensured by hav-
ing equal number of insertion and removal attempts, for
all particles described by the given chemical potential. In
practice, we first randomly select if a particle will be in-
serted or removed, i.e., by generating a (pseudo)random
number ygc1 uniformly distributed between 0 and 1 and
performing a removal if ygc1 < 0.5.

For a removal, a particle (an atom or a molecule) is
selected at random (by generating a new random number
ygc2 and selecting particle i if (i−1)/N ≤ ygc2 < i/N). In
order to fulfill detailed balance, a possible (and common)
choice for accepting the removal of the selected particle
is with probability30:

P(N→N−1) = min
[
1,

Λ3N

V
e−β[µ+EN−1−EN ]

]
(2)

where N is the number of atoms (or molecules) for which
a reservoir at given temperature T and chemical poten-
tial µ is defined, and which are in the system before the
attempted removal. EN is the energy of the system of N
particles, EN−1 is the energy of the same system, with-
out the selected particle, and and V is the system volume,
which is fixed during the simulation. According to this
formula, if the change in energy due to the particle re-
moval is similar in value to µ, there is a high probability
that the removal is accepted.

For the insertion, first a location is randomly chosen,
uniformly in the simulation volume (in a rectangular cell,
by driving three independent uniformly distributed ran-
dom numbers, one for each Cartesian coordinate). Then,
a particle is positioned in the selected location and its
insertion is accepted with probability30:

P(N→N+1) = min
[
1,

V

Λ3(N + 1)
e−β[µ−EN+1−EN ]

]
(3)

The probability of accepting an insertion can be low in
dense systems as random locations will have high prob-
ability to end up too close to already-present particles,
henceforth yielding large EN+1−EN and consequent re-
jection of the insertion. Since we are modeling adsorp-
tion on surfaces or clusters in contact with a gas phase,
we have a relatively rarefied system, especially if the con-
sidered volume of particle insertion (and removal) does
not include the subsurface (see further).

2. Replica Exchange in the Grand-Canonical ensemble

We define an extended ensemble that is the collection
of S = L × M replica of a given system, arranged in
L values of temperature and M values of the chemical
potential, as illustrated in Fig. 2a. In this paper, we
consider only one species that exchange particles with
the reservoir, hence, one chemical potential. The parti-
tion function of this extended ensemble is the product of
the partition functions of the individual (µm, V, Tl) en-
sembles, where l = 1, 2, . . . , L and m = 1, 2, . . . ,M :

Qextended =

L∏
l=1

M∏
m=1

eβlµmNl,mV Nl,m

ΛlNl,m!

∫
dR e−βlE(R;Nl,m)

(4)
In the following, we label the temperature indifferently

by Tl or βl = 1/kBTl. The key observation is that taken
one configuration along the evolution of a replica at given
(µm, V, Tl), statistical mechanics allows us to write a well
defined probability that the same configuration belongs
to the another state (µo, V, Tk). We now randomly select
a pair of replicas. The replica at state (µm, V, Tl) is in
configuration Ri (e.g., represented by the 3×Nl,m matrix
of coordinates) and the replica at state (µo, V, Tk) is in
configuration Rj . We then aim at defining a rule for
accepting the swap of the configurations between the two
replicas, in order to satisfy the detailed balance in the
extended ensemble. To the purpose, one has to impose
the following equality:

N(βl,µm,Ri)N(βk,µo,Rj)

×P[(βl,µm,Ri),(βk,µo,Rj)→(βl,µm,Rj),(βk,µo,Ri)]

= N(βl,µm,Rj)N(βk,µo,Ri)

×P[(βl,µm,Rj),(βk,µo,Ri)→(βl,µm,Ri),(βk,µo,Rj)] (5)

where N is the probability density in the grand-
canonical ensemble (Eq. 1), and P is the probability
to swap configurations. Our choice of P that satisfies the
detailed balance is:

P[(βl,µm,Ri)(βk,µo,Rj)→(βl,µm,Rj)(βk,µo,Ri)]

= min
[
1, (

βl
βk

)
3
2 (Nl,m−Nk,o)×

e[−(βl−βk)(E(Rj)−E(Ri)+(βlµm−βkµo)(Nl.m−Nk,o)]
]
(6)

A similar swap-acceptance probability has been pro-
posed in Refs. 15 and 16, but we include a factor
( βl

βk
)

3
2 (Nl,m−Nk,o) that is probably neglected in those pa-

pers. Furthermore, our scheme adopts a two-dimensional
grid of values of temperatures and chemical potentials,
while in Refs. 15 and 16 the values of T and µ are con-
strained to be along a phase boundary of the studied
system (vapor-fluid coexistence for the LJ system), there-
fore being a uni-modal scheme, i.e., one-dimensional in
practice.
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It is clear from Eq. 6 that swap trial moves are more
likely to be accepted the larger the overlap between the
energy distributions of the two replicas. A large over-
lap of energy distribution is verified if the values of the
thermodynamic variables (µ, T ) defining the two replicas
are not too dissimilar. In traditional one-dimensional
RE, swap moves are attempted only between neighbor
replicas. In that case, each replica has two neighbors (or
one, for the largest an smallest values of the chosen repli-
cated thermodynamic variable, typically T ). In our two-
dimensional scheme (Fig. 2), each replica has between 3
and 8 neighbors, thus enhancing the possibility for config-
urations to “diffuse” across replicas. We adopted a “col-
lective” scheme for the attempted swaps that involves the
definition of four different types of neighboring swaps, as
illustrated in Fig. 2. At each RE move, one type of swaps
is selected at random (each with probability 1/4). This
choice has the advantage to involve all replicas (when
the number of T -replicas and µ-replicas is even) in one
attempted swap. An alternative scheme could be to se-
lect randomly one replica and independently one neigh-
bor to perform the attempted swap, then to repeat until
no replica has an unselected neighbor. We are exploring
this scheme for higher-dimensional settings (e.g., T and
more than one µ for more than one type of particles that
are exchanged with the reservoir).

3. Atoms’ displacement

At each cycle of our REGC scheme, after the RE or
GC move has been performed, the atoms in each replica
perform in parallel a sampling of the canonical (fixed N ,
fixed V , fixed T ) ensemble. This is achieved with the
standard Metropolis MC or with MD.

According to MC, one atom-displacement step requires
to select at random one atom and assigning to it a ran-
dom displacement, typically uniformly distribute in a
cube or sphere of size comparable with the typical inter-
atomic distances at equilibrium. The move is accepted
with probability30:

P(r→r+∆r) = min
[
1, e−β[E(r+∆r,rN−1)−E(r,rN−1)]

]
(7)

where r is the position before the random displace-
ment ∆r of the selected atom and [E(r + ∆r, rN−1) −
E(rN , rN−1)] is the potential-energy difference between
the system with one atom displaced and all the other
N − 1 atoms kept in place, and the system before dis-
placement. In MC schemes, one cycle is the application
of the attempted displacement N times, so that on aver-
age each atom is attempted to be displacement once.

According to MD, the forces among atoms are cal-
culated and the Newton equation is numerically inte-
grated in order to obtain one displacement step for all
atoms30. This scheme samples the constant energy, con-
stant V , constant N ensemble (microcanonical). In order
to sample the canonical ensemble, the velocities of the

atoms need to be modified in order to obey the Maxwell-
Boltzmann distribution at the desired T . This is achieved
via numerical thermostats30.

The choice between the two schemes, MC or MD,
for the canonical sampling step of our REGCMC or
REGCMD algorithm is dictated only by convenience.
In both case our choice is to perform few (about 10)
MD steps or MC cycles between two applications of the
REMC step, in order to take full advantage of the en-
hanced sampling allowed by the REGC accepted moves.

FIG. 2. The 2D schematic of of Replica-Exchange Grand-
Canonical method.

4. Implementation

Due to the inherently parallel nature of replica ex-
change, the REGC method is particularly suitable to im-
plement on super computers in parallel. MD or MC sim-
ulation of each replica at different T are performed simul-
taneously and independently for the same time steps/MC
moves. The whole computation resources are propotional
to the number of replicas S, e.g., if each replica requires
q cores, in total, S × q cores are assigned to this REGC
simulation.

B. Calculating Phase Diagrams

After a REGC simulation, we obtain Ωl,m equilibrium
samples from each of the S = L × M thermodynamic
states (µm, V, Tl) within the grand-canonical ensemble.
For each sample, a wide range of observable values can be
collected, starting from the potential energy, the number
of particles, and going to properties that are not related
to the sampling rules. For instance, structural quantities
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like the radial distribution function or electronic prop-
erties such as the HOMO-LUMO gap of the system. In
order to construct a phase diagram for the studied sys-
tem, one has first to define which phases are of interest.
For instance, we can define as one phase all samples with
the same number of particles N . The task is then to eval-
uate the free energy fi(µ, T ) of phase i, as function of µ
and T , and for each value of (µ, T ) the most stable phase
is the one with lowest free energy. From textbook sta-
tistical mechanics, the free energy is related to the prob-
ability pi to find the sampled system in a certain phase
(i.e., having a certain value of an observable quantity) as
follows:

fi(µ, T ) = −kBT ln pi(µ, T )

= −kBT ln

∫
Γ
dRχi(R) q(R;µ, β)∫

Γ
dR q(R;µ, β)

(8)

where R denotes the configuration of the system, χi is the
indicator function for the state i — e.g., equal to 1 when
N is a given N∗ and 0 otherwise —, and q(R;µ, β) is
the density function for the specific statistical ensemble.
The integrals are over the whole configuration space Γ.

The normalization term at the denominator of Eq. 8 is
known as the partition function, c(µ, β). Once q(R;µ, β)
is defined for the sampled ensemble (see further), the
nontrivial task is to estimate c(µ, β), in order to evaluate
the free energy and find its minimum.

To efficiently estimate the partition function from our
REGC sampling, we adopted the multistate Bennett
acceptance ratio (MBAR)31 approach, as implemented
in the pymbar code (https://github.com/choderalab/
pymbar). The MBAR method starts from defining the re-
duced potential function for the grand-canonical ensem-
ble U(R;µ, β) for state (µ, β)31:

U(R;µ, β) = β
[
E(R)− µN(R)

]
(9)

where N(R) is the number of particles for the considered
configuration. We note that there is a sign mistake in
front of µN for the corresponding formula in the original
MBAR paper32. The grand-canonical density function is
then q(R;µ, β) = exp[−U(R;µ, β)].
The MBAR approach provides the lowest-variance esti-
mator for c(µ, β), first by determining its value over the
set of actually sampled states, via the set of coupled non-
linear equations31:

ĉl,m =

L∑
l=1

M∑
m=1

Ωl,m∑
i=1

q(Ri,l,m;µm, βl)∑L
l=1

∑M
m=1 Ωl,mĉ

−1
l,mq(Ri,l,m;µm, βl)

(10)
where the index i runs over all the samples in one state.
Crucially, all samples enter the estimator for ĉl,m, at state
(l,m), irrespective of the state they were sampled in.
Once the set of equations for the L×M ĉl,m’s is solved,
c(µ, β) can be estimated for any new state (µ, β) via the
same formula, with the observation that the ĉl,m’s at the
denominator are now known.

Next, Eq. 8 can be evaluated. Following the example
where the phase i is identified by the number of particles
in the system, the values of N that minimizes fi(µ, β) is
the stable phase at the particular value of (µ, β). Graph-
ically, one can assign a color to each value of N and, for
each (µi, βj) on a grid, the color is assigned to a pixel of
size (δµ, δβ) centered at (µi, βj) (see Fig. 3).

In order to obtain a more familiar (p, T ) phase dia-
gram from the evaluated (µ, β), we use the relationship
µ(p, T ) = kBT ln(p/p0), where p0 is chosen such that
−kBT ln(p0) summarizes all the pressure-independent
components of µ, i.e., translational, rotational, etc. de-
grees of freedom.6,33,34

We now turn our attention to evaluating the ensemble-
averaged value of some property, at a given state point
(µ, β). To give a concrete example for which we actually
give results in section III A 2, let’s consider the radial
distribution function g(r), i.e., the probability to find a
particle at a given distance r from any selected particles,
averaged over all particles and samples. Here, we are in
particular interested in the average (or expected) value of
a property like g(r) when the system is in a given phase,
e.g., has a certain number of particles N . The ensemble
average value of g(r) at a given r and given state point
µ, β), and phase i is:

〈g(r)〉µ,β,i =

∫
Γ
dRχi(R) g(r;R) q(R;µ, β)∫

Γ
dR q(R;µ, β)

(11)

where the function g(r;R) at any given r depends on
the whole configuration R. In the MBAR formalism, the
integrals are estimated over the sampled points via:

〈g(r)〉µ,β,i =

Ωi∑
n=1

g(r;Rn) c−1
µ,β q(Rn;µ, β)∑

l,m Ωl,m,ic
−1
µm,βl

q(Rl,m,i;µm, βl)

(12)
where Ωi is the number of samples in phase i and there-
fore the sum over n runs over all samples belonging to
phase i. Similarly, Ωl,m,i is the number of samples in
phase i in each sampled state point (m, l). In prac-
tice, g(r) is discretized into a histogram, in which bin
k counts how many particles are found between distance
rk1 and rk (see section section III A 2 for more details).
One should note that the average value of each bin in the
histogram is evaluated independently by MBAR.

III. RESULTS

A. Lennard-Jones surface

As first example, we applied our REGC algorithm to
a two-species Lennard-Jones (LJ) system, consisting of a
fcc(111) frozen surface of species A, in contact with a gas
phase of species-B particles. Details on the interactions
between BB and AB LJ particles are given in the Ap-
pendix, here we mention that we chose them so that AB

https://github.com/choderalab/pymbar
https://github.com/choderalab/pymbar
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interactions are much stronger than BB (being the A par-
ticles forzen, there is no interaction defined among them).

The equilibrium distances deql
ij are mismatched such that

deql
AB > deql

BB , and both are shorter than the fixed AA first-
neighbor distances. Other choices are possible, but here
we focus on only one choice, in order to show in depth
the type of a posteriori analysis an REGC run allows
for. The sub-system labeled as A18 is a 2-layer slab with
a 3 × 3 lateral supercell (i.e., 18 A atoms), periodically
replicated in the x and y direction, while the z direction
is aligned with the [111] direction of the slab. The gas
particle B is only allowed to insert in the “surface” zone.
We defined the “surface” zone as a slab of height 48.0
Å above (i.e., in the positive z direction), starting from
the z position of the topmost atoms of A18. At the same
time, particles B are inserted at all x and y coordinates,
uniformly. Insertion and deletion attempts have been
performed with equal probabilities. Ten sequential MC
moves are performed after each particle/replica exchange
attempt. In the calculations, 160 replicas are defined i.e.,
10 temperatures ranging from 200 to 650 K, with an in-
terval of 50 K, and 16 chemical potentials ranging from
-2.4 to -0.9 eV, with an interval of 0.1 eV. The range
of chemical potentials is selected such that the lowest
value of µ is comparable to and slightly lower than the
adsorption energy of one B particle on A18, in order to
assure that the sampling includes states where zero or
few particles are adsorbed (in order to have the pristine
surface appearing in the phase diagram). The highest
value of µ is ideally always close to zero, in order to scan
up to the condensation of B particles and formation of a
bulk B phase. The range of temperature was chosen to
be slightly lower than the solid/liquid/gas triple point of
the B particles and ranging to few times (here, four) its
critical temperature35. In practice, pre-knowledge of the
studied system can be applied in order to frame a suit-
able (µ, T ) window containing phases of interest. The
spacing between T and µ values is more difficult to esti-
mate a priori. During the simulation, one has to check
that the acceptance ratio of RE attempted moves is not
too low, in order to ensure a proper diffusion of replicas
in the (µ, T ) window. For instance, the present choice
ensured an acceptance ratio of about 25%. Configura-
tion swaps were attempted every 100 REGC steps, and
x0 was set equal to 0.99; a total of 1.2×105 REGC steps
were performed to reach convergence, that is, there was
no change in the density of reduced-energy states ρ(U),
with increasing simulation steps. The density ρ(U) is
sampled by binning the sampled configurations accord-
ing to their value of U .

1. Phase diagram

The phase diagram shown in Fig. 3(a) is constructed
by using MBAR and shows the (pB, T ) regions where
different number of adsorbed B particles are in ther-
modynamic equilibrium with their gas phase. The B

FIG. 3. Phase diagrams of a LJ gas-phase (particles B) in
contact with a frozen fcc(111) LJ frozen surface calculated
via by MBAR from the REGCMC sampling (panel a) and
aiAT (panel b) at (pB, T ) conditions corresponding to a range
from zero adsorbed particles (all in gas phase, region labeled
as “pristine”, referred to the surface) to the deposition of the
LJ B particles into a bulk solid. The red line is the melting
line for the LJ B particles, the sublimation line is blue, and
the vaporization line is cyan. The cyan, green and pink stars
correspond to the “corner” states for the REGCMC sampling:
(650 K, -0.9 eV), (650 K, -2.4 eV) and (200 K, -0.9 eV), re-
spectively. The fourth corner, (200 K, -2.4 eV) falls outside
the (p, T ) window shown in the plot. The blue circle indicates
(600 K, 8.89 × 10−2 atm) and (200 K, 2.03 × 10−17atm) is ex-
actly the pink star, corresponding to two states in Fig. 6c and
Fig. 6b, respectively.

reservoir is assumed to be an ideal gas, so the chemi-
cal potential of the reference state is defined as µ0

id.gas ≡
kBT ln(Λ3). The relationship between pressure pid.gas
in the reservoir and the chemical potential µ is βµ ≡
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βµ0
id.gas + ln(βpid.gas), that is p0 = (kBT )

5
2 ( 2πm

h2 )
3
2 . The

whole output data of REGCMC is sub-sampled every
100 REGC steps, that is, recording data after every at-
tempted replica exchange, to remove correlations in the
sampled quantities.

The MBAR@REGC phase diagram is compared to the
aiAT@REGC phase diagram (Fig. 3(b)), which is cal-
culated via the following steps: (i) For each observed
number NB of adsorbed (B) particles in the REGCMC
sampling, the lowest energy configuration is selected. We
note that identifying phases (the phase is identified by
NB) via grand-canonical sampling is not the usual strat-
egy for aiAT. Typically phases are enumerated on the
basis of pre-knowledge and local minimization (at fixed
number of adsorbed particles. In other words, the aiAT
study presented in this paragraph is already richer than
usual due to the unbiased structure sampling. (ii) The
formation Gibbs free energy for each of these phases is
calculated via:

∆GfNB
(T, pB) = FNB

− FA18
−NBµ(T, pB) (13)

Here, the free energy of FNB
of the system A18BNB

and
FA18

of the pristine A18 slab is approximated by the LJ
energies of the two systems, i.e., all the vibrational con-
tributions to the free energy are assumed to cancel out.
This is often a justified assumption for systems studies
via aiAT6. As we will see, it is not a good approxima-
tion for this LJ system, at least at larger NB. (iii) As
for MBAR@REGC, at each (Ti, µj) on a grid the phase
with the lowest ∆Gf determines the color of the pixel of
size (δT, δµ) centered at (Ti, µj). This aiAT@REGC ap-
proach, used here only for comparing to MBAR@REGC
in order single out the role of the vibrational contribution
to free energy, including anharmonic effects, is similar to
the method recently proposed in Ref. 36. There, the con-
figurations are sampled by means of an approximated GC
scheme at one temperature only and without replica ex-
change for either temperature or chemical potential. The
effect of the reservoir to the free energy is taken care of
by an expression similar to Eq. 13.
By comparing the two panels of Fig. 3, we note that up
to NB = 18, the two phase diagrams almost coincide,
especially at lower temperatures (in the Suppl. Material,
we show a zoom-in of the region between 60 and 350 K).
There are, however, significant differences at larger NB:
There are many more phases in Fig. 3)(a) that are miss-
ing in Fig. 3)(b) for NB > 18 and the region of stability
of larger coverages is shifted to higher temperatures and
lower pressures. This can be understood as due to in-
creasingly larger vibrational contributions, especially in
the direction z, perpendicular to the slab, while at low
coverage the free energy is indeed essentially given by
the LJ energy. We come back to this in the next section,
after analyzing the structural properties of the different
phases.
The analysis of the phase diagram Fig. 3)(b) reveals
that for many values of number of adsorbed B particles,
NB, there is a region of stability in the phase diagram,

however, for some specific values of NB larger stability
areas are found. Besides NB = 0(the pristine surface),
we recognize NB = 18 as the first complete mono-layer,
NB = 45 as the addition of a second complete mono-
layer, plus a third phase, NB = 59 with a thicker second
monolayer (see further). We also identify a large-coverage
phase, NB = 85 which can be described by the forma-
tion of a “third” layer around 1.9 Å, but in this case
the particle distribution does not go completely to zero
between second and third layer as it does between first
and second, as shown in Fig. 4. The diagram extends
till the melting (red), vaporization (cyan), and sublima-
tion (blue) line for bulk B particles. The phase tran-
sition curves are derived from the published equations
of state for the LJ system.37–43 We underline that the
phase diagram outside the (p, T ) region sampled directly
via the REGC run is not extrapolated. It is obtained as
for all the diagram by Boltzmann re-sampling the config-
urations actually visited, using the measured (reduced)
potential energies.

FIG. 4. Axial distribution function of adsorbed particles for
each NB composition generated in REGC sampling. The
curves are displaced by 20 units and each dash line is a zero
reference line for the curve with the same color.

2. Structural properties

The REGC sampling allows for much deeper analysis
than the evaluation of the phase diagram. For instance,
the structural properties of the adsorbed phases can be
characterized in a statistical way. The axial distribution
function ρ(z) was calculated by dividing the cell into slabs
of width 0.12 Å, parallel to the surface, and collecting a
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FIG. 5. Lateral radial distribution functions gxy(r) for (a)
first monolayer, and (b) second monolayer (I), respectively.
The blue and pink balls in the insets indicate A and B parti-
cles, respectively.

histogram of the number of particles in each slab along
the REGC sampling. As shown in Fig. 4, the adsor-
bate has a clear layered structure up to the second layer.
For larger NB, i.e., NB > 59, there are more and more
particles adsorbed in the range 1.2≤ z≤ 1.8 Å, though
another noticeable peak around 1.9 Å occurs. As intu-
itively predictable, the first layer consists of 18 B parti-
cles located in all the hollow sites of the 3 × 3 surface.
When the second full monolayer NB = 45 is stable, the
B particles occupy the 27 bridge sites of the A9 surface
layer.

To better characterize the structure of the adsorbate
layers, in Figs. 5a–b and Figs. 6a–c we show the
gxy(r), i.e., the radial distribution functions (RDF) in
the xy-plane for the different adsorbate layers (i.e., for B-
particles in a slab z0±δz0 as specified in each panel). The
structures shown in Fig. 6b–c are obtained via MBAR by
evaluating Eq. 12. We observe that the first monolayer
and second monolayer (I) NB = 45 have a gxy(r) char-
acteristic of the solid phase with well-defined peaks and
long-range order, whereas for the second monolayer (II)
NB = 59, the gxy(r) is more disordered. In the relaxed
structure of A9B59 (Fig. 6a), B particles occupy approx-
imately both hollow and bridge sites, relative to the top
A9 layer and form a ring-like structure around the pro-
jection of the A particles. At (200 K, 2.03× 10−17 atm),
the average radial distribution function 〈gxy(r)〉 of this

FIG. 6. Lateral radial distribution function gxy(r) for (a) re-
laxed second monolayer (II) A9B59, average distribution func-
tion < gxy(r) > at (200 K, 2.03×10−17 atm) state (b), and at
(600 K, 8.89 × 10−2 atm) (c) for the same composition. The
blue and pink balls in the insets indicate A and B particles,
respectively.

phase shares some similar peak positions with that of its
lowest-energy isomer. It is clear that the ring structure
formed by B particles can be still found in the average
adsorbate structure though there are a few B particles
diffusing around the projection of the A particles. At
(600 K, 8.89×10−2 atm), more and more B particles dif-
fuse and the ring structure is not as noticeable as before.
Consistently, the 〈gxy(r)〉 shares a few major peaks with
that of its lowest-energy isomer, but they appear more
smeared.
The example of 〈gxy(r)〉 at the two state points was se-
lected in order to demonstrate the power of the REGC
sampling to reveal detailed thermodynamic information
on the simulated system. A crucial observation is that
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FIG. 7. Phase diagrams of Si2 with H2 reactive gas phase calculated by (a) aiAT@REGC (b) MBAR@REGC. MBAR@REGC
phase diagrams of (c) chemisorbed Si2HN and (d) HOMO-LUMO gap of Si2HN . Phase diagrams of Si4 with H2 reactive gas
phase calculated by (e) aiAT@REGC and (f) MBAR@REGC. MBAR@REGC phase diagrams of (g) chemisorbed Si4HN and
(h) HOMO-LUMO gap of Si4HN at PBE0 level. HOMO-LUMO gaps in panels (d) and (h) are in eV.

such information is already contained in the REGC
sampling, no further simulation is needed, only post-
processing statistical analysis of the sampled data points
is required.
Coming back to the differences between aiAT@REGC
and MBAR@REGC phase diagrams (Fig. 3), we ob-
serve, in Fig. 4 that up to the complete first monolayer
(NB = 18), the adsorbed particles have essentially no
freedom to move in the z direction. As soon as the second
monolayer is established, the adsorbed particles display
a broader and broader distribution along the z direction.
The distribution becomes even bimodal for NB ≥ 62.
This enhanced configurational freedom creates a large,
negative, vibrational free energy contribution that sta-
bilizes the higher coverages compared to when only the
energetic contribution is taken into account (as in the
aiAT@REGC phase diagram).

B. Ab initio Si2HN and Si4HNclusters

The REGC algorithm coupled to ab initio MD
was applied to identify the thermodynamically stable
and metastable compositions and structures of SiMHN

(M=2, 4) clusters at realistic temperatures and pressure
of the molecular hydrogen gas.

1. Phase diagram

a. Si2 Twenty replicas of Si2 are selected in contact
with different thermodynamic states, that is, with tem-
peratures of 500, 650, 800, and 950 K and H2 chemical
potentials of -0.2, -0.16, -0.12, -0.08, and -0.05 eV. The
selection of the temperature range is made according to
the experimental deposition temperature of chemical va-
por deposited silicon films44,45, which starts from around
600 K. Ideally, the lowest µH should be around −1.2 eV,
which is the half adsorption energy of H2 on Si2, accord-
ing to our DFT calculations (see details in appendix).
However, in order to focus the sampling on a more in-
teresting region, where more H atoms are adsorbed, we
started from a much higher minimum µH2

. The studied
Si2,4HN systems are confined in a sphere with radius 4

Å, by applying reflecting boundaries. This avoids that H
atoms diffuse at arbitrary distance from the SiM cluster,
without perturbing the statistics as the cutoff distance
is such that the H atoms are not any more interacting
with the Si cluster. Ab initio molecular dynamics is per-
formed for each system after exchanging particle with
the reservoir or swapping with neighboring replicas. For
this REGCMD study, x0 is chosen as 0.9. For compari-
son, we analyzed the stability of Si2HN clusters using ab
initio atomistic thermodynamics (aT) in Fig. 7a. For
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each number of adsorbed hydrogens NH, the lowest DFT
energy isomer is identified among all the configurations
obtained along the REGC ab initio MD sampling. The
Gibbs free energy of each phase is calculated as:

∆Gf (T, pH2
) = FSi2,4HN

− FSi2,4
−NµH(T, pH2

) (14)

Here, FSi2,4HN
and FSi2,4 are the Helmholtz free ener-

gies of the Si2,4HN and the pristine Si2,4 cluster (at their
configurational ground state), respectively. µH2

is the
chemical potential of the hydrogen molecule. FSi2HN

and
FSi2

are calculated using DFT information and are ex-
pressed as the sum of DFT total energy, DFT vibrational
free energy in the quasi-harmonic approximation, as well
as translational, and rotational free-energy contributions.
The dependence of µH2

on T and pH2
is calculated us-

ing the ideal (diatomic) gas approximation with the same
DFT functional as for the clusters.33,34,46 So p0 here is
calculated as follows:

p0 = [(
2πm

h2
)

3
2 (kBT )

5
2 (

8π2IAkBT

h2
)
e

(
kBT

EDFT
)

e
(
hvHH
kBT )−1

] (15)

EDFT is the DFT total energy, m is the mass, IA is the
inertia moments, vHH is the H-H stretching frequency
of 3080 cm−1, and EDFT of -31.74 eV. The (pH2

, T )
phase diagram of Si2HN cluster is also constructed via
the MBAR@REGC method. As shown in Fig. 7b, be-
sides Si2, Si2H2, and Si2H6, which have their wide sta-
bility regions revealed in both phase diagrams, there is
a narrow (T, pH2

) stability domain for Si2H4, which is
only revealed by the MBAR@REGC phase diagram that
includes without approximation all the anharmonic con-
tributions to the free energy. Another difference between
two phase diagrams is that the stable (pH2

, T ) range of
each phase is quite different. The Si2HN phases in Fig.
7b include not only chemically adsorbed H atom, but also
H2 molecule or isolated H atoms. In order to further in-
vestigate the chemisorbed phase stability, we construct
the phase diagram (Fig. 7c) for a new observable: the
number of adsorbed H atoms. A H atom is considered ad-
sorbed on the Si cluster when the distance to the closest
Si is smaller than 1.7 Å.

b. Si4 Twenty thermodynamic states for the Si4HN

system are selected, with temperature of 560, 685, 810,
and 935 K, and chemical potentials of -0.3, -0.2, -0.17,
-0.14, and -0.11 eV. The lowest value of µH is selected
as a bit larger than the half adsorption energy (-0.6 eV)
of H2 on Si4. The other settings are the same as in Si2
simulation. As for the Si2HN case, we construct both
the aiAT@REGC and MBAR@REGC phase diagram, for
comparison, plus the MBAR@REGC phase diagram for
the adsorbed H atoms. In Fig 7e and 7f, the results indi-
cate that two stable Si4H4 and Si4H6 are missing in aT
phase diagram. Si4H4 and Si4H6 have considerable larger
stable range in chemisorbed phase diagram shown in Fig
7g than in both physi- and chemisorbed one. Besides, the
stable (pH2

, T ) range of each phase transitions are quite
different in phase diagrams calculated by two method.

FIG. 8. Structures of Si2HN and Si4HN , found by the REGC
sampling, that have a region of thermodynamic stability in
the phase diagrams of Fig. 7.

2. Structural and electronic properties of silicon hydrides

In Fig. 8, we show the structures of each thermody-
namically stable cluster size appearing in the phase di-
agrams. All previously reported structures are found in
our REGC ab initio MD simulations and illustrated in
Fig. S2. Besides, we identified many other isomers at
each composition, via the REGC ab initio MD sampling,
as shown in Fig. S2.

The HOMO-LUMO gap Eg is also chosen as further
observable for the evaluation of phase diagrams for Si2HN

Fig. 7d and Si4HN Fig. 7h. Eg is evaluated as the dif-
ference between the vertical electron affinity (VEA) and
vertical ionization potential (VIP). The VEA (VIP) is
evaluated —via the PBE0 hybrid47 xc functional, with
the Tkatchenko-Scheffler48 pairwise vdW correction— as
the energy difference between the neutral cluster and its
monovalent anion (cation), at fixed geometry of the neu-
tral species . It has been clearly shown Fig. 7d and 7h
that the HOMO-LUMO gap increases with increasingNH

for both Si2HN and Si4HN , as the VEA decreases with
increasing NH (Fig. S1b and S1e) while VIP increases
(Fig. S1c and S1f). This electronic-structure phase dia-
gram can be used to provide guidance to synthesize the
material with desired electronic properties, by tuning the
environmental conditions, i.e, the temperature and pres-
sure of reactive gas phase.

IV. CONCLUSION AND OUTLOOK

In summary, we have developed a massively paral-
lel Replica-Exchange Grand-Canonical Monte Carlo/ab
initio Molecular-Dynamics (REGCMC/MD) algorithm
to perform simulations on surfaces/nanoclusters in con-
tact with reactive (T, p) gas and demonstrated how it
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can be used, in combination with the multistate-Bennet-
acceptance-ratio (MBAR) reweighting approach to de-
termine (T, p) phase diagrams. This massively parallel
algorithm requires no prior knowledge of the phase di-
agram and takes only the potential energy function to-
gether with the desired µ and T ranges as inputs. The
particle insertion/removal Monte Carlo move, which im-
plements the GC sampling, together with the exchange of
configurations among thermodynamic states introduced
by RE, allows for an efficient sampling of the configu-
rational space. The approach is appled to an a model
surface described by the Lennard-Jones empirical force-
fields and small Si clusters in reactive H2 atmosphere
described at the ab initio DFT level. Besides free-energy
(T, p) phase diagrams, the combination of the REGC
sampling and a posteriori analysis via MBAR allows for
the determination of phase diagrams for any (atom po-
sition dependent) observables, therefore indicating how
to tune the environmental condition (T and p) to get
a material with desired properties. It can therefore be
applied to a wide range of practical issues, e.g., dopant
profiles, surface segregation, crystal growth and more.

Such as an undertaking has its limitation in the cost of
ab initio molecular dynamics needed for the REGC sam-
pling. However, its embarrassingly parallel nature makes
our approach “towards exascale” friendly, and can be re-
garded as a very efficient and internally consistent high-
throughput approach. An obvious and indeed currently
investigated generalization of the method is to consider
more than one reactive gas in the so-called “constrained
equilibrium”6,7(different species do not react in the gas
phase, but only at the surface). In order to avoid a di-
mensional explosion, an algorithm with an adaptive µi
grid is under development.
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Letters 298, 66 (1998).

24 B. A. Berg and T. Neuhaus, Physics Letters B 267, 249
(1991).

25 B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992).
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VI. APPENDIX

a. Force-field calculations The interaction between
particles in the surface and gas phase was taken to be
a Lennard-Jones 12-6 potentials φ(r) = 4ε[(σ/r)12 −
(σ/r)6]. The parameters εAB , and εBB are 0.66 and 0.01
eV, respectively. The σAA, σAB , and σBB are 2.5, 1.91
and 1.2 Å. The length of the lattice vectors of this 2D
hexagonal supercell is 11.489 Å.

b. First-principles calculations All DFT calcula-
tions were performed with the all-electron, full-potential
electronic-structure code package FHI-aims49. We
used the Perdew-Burke-Ernzerhof (PBE)17 exchange-
correlation functional, with a tail correction for the
van der Waals interactions (vdW), computed using the
Tkatchenko-Scheffler scheme48. A “tier 1” basis for
both Si and H with “light” numerical settings were em-
ployed. All AIMD (Born–Oppenheimer) trajectories be-
tween REGC attempted moves (0.02 ps each) are per-
formed in the NV T ensemble. The equations of motion
were integrated with a time step of 1 fs using the velocity-
Verlet algorithm50. The stochastic velocity rescaling
thermostat was adopted, with a decay-time parameter
τ = 0.02 ps, to sample the canonical ensemble51. The
reflecting conditions to confine the system in a sphere of
radius 4 Å are imposed via PLUMED52 interfaced with
FHI-aims, by applying a repulsive polynomial potential
of order 4.
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