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Given sufficient predictive accuracy, machine learning (ML) can accelerate the discovery 

of novel materials by allowing to rapidly screen compounds at orders of magnitude lower 

computational cost than first-principles electronic-structure approaches.1-7 In practice, 

however, the accuracy of ML models is often insufficient to draw reliable conclusions 

about materials for specific applications.7 Therefore, different ML representations for 

materials are actively developed to provide accurate predictions over diverse materials 

classes and properties.8-20 A critical obstacle for this effort is that the complex choices 

involved in designing an ML model are currently made based on the overly simplistic 

metric of the average model test error with respect to the entire materials class. We show 

that this treatment of models as a black box that produces a single error statistic can 

render models as generally insufficient for certain screening tasks while they actually 

predict the target property accurately in specific sub-domains of the considered materials. 

For that, we present an informed diagnostic tool based on subgroup discovery (SGD)21-23 

that detects domains of applicability (DA) of ML models within a materials class. These 

domains are given as a combination of simple conditions on the unit cell structure (e.g., 

on the lattice vectors, lattice angles, and bond distances) under which the model error is 

substantially lower than its global average in the complete materials class. We 

demonstrate this procedure by discriminating the performance of several state-of-the-art 

ML models for predicting the formation energy of transparent conducting oxides – an 

important open problem in materials design for which a large data-analytics competition 

was recently hosted by Kaggle.24 We analyze three state-of-the-art models that all 

combine kernel ridge regression with various representations including the winning 

model of the competition, adapted from natural language processing (n-gram method),24 

smooth overlap of atomic positions (SOAP),13-14 and the many-body tensor representation 

(MBTR).12 The accuracies of these models are practically indistinguishable when 

considering the average test error alone. Importantly, they all appear unsatisfactory for 

screening applications as they fail to reliably identify the ground state polymorph 

structure for many of the examined systems. However, when applying the proposed DA 

method, the models show notably distinct performances and different domains of 

applicability. That is, they all require different characteristics of the unit cell to perform 

well. Each of the models performs substantially better within their domain of 



applicability than what is indicated by their undifferentiated average error over the whole 

domain. However, the MBTR-based model stands out with an almost 2-fold reduction in 

the average error and a 5-fold reduction in the fraction of errors above the required 

accuracy to identify the ground state polymorph (i.e., from 12.8 to 2.6 percent). Thus, we 

demonstrate that the MBTR-based model is in fact feasible for screening materials that 

lie within its domain of applicability. This illustrates how the proposed method can be 

used to guide the development of ML representations through the identification of their 

systematic strengths and weaknesses. We expect this form of analysis to advance ML 

methods for materials as well as ML methods for science more broadly. 

 

To formally introduce the method for DA identification, we recall some notions of ML 

for materials. In order to apply smooth function approximation techniques like Ridge 

Regression, the materials of interest are represented as vectors in a vector space 𝑋 

according to some chosen representation. The more complex state-of-the-art 

representations evaluated in this work are defined further below. A first simple example 

is to use features {𝜑!,… ,𝜑!} of the isolated atoms that constitute the material (e.g., 

𝜑!(𝑍) may be the “electronegativity of the species with atomic number 𝑍”, see Table 1) 

and then to lift these to representation coordinates 𝑥! for compounds {(𝑍! , 𝜇!)}!!!!  defined 

as 

 𝑥! = 𝜇!𝜑!(𝑍!)
!

!!!
 Eq. 1 

where 𝜇! corresponds to the mixture coefficient for atomic number 𝑍!. Moreover, let 𝑦 be 

a numeric material property according to which screening should be performed (in this 

work, we focus on formation energy, which is relevant for performing a ground state 

search). A predictive ML model is then a function 𝑓:𝑋 → ℝ aiming to minimize the 

expected error (also called prediction risk)  

 𝑒 𝑓 = 𝑙(𝑓 𝒙 ,𝑦)𝑑𝑃(𝒙,𝑦)
! ×ℝ

 Eq. 2 

measured by some non-negative loss function 𝑙  that quantifies the cost incurred by 

predicting the actual property value 𝑦 with 𝑓 𝒙 . Examples for loss functions are the 



squared error (𝑙(𝑦!,𝑦) = 𝑦! − 𝑦 !), the absolute error (𝑙(𝑦!,𝑦) = 𝑦′− 𝑦 ), and, for 

non-zero properties, the relative error (𝑙(𝑦!,𝑦) = 𝑦! − 𝑦 /|𝑦|). Here 𝑃 denotes some 

fixed probability distribution that captures how candidate materials are assumed to be 

sampled from the material class (this concept, while commonly assumed in ML, is an 

unnecessary restriction for high-throughput screening as we discuss in more detail 

below). Since the true prediction risk is impossible to compute directly without perfect 

knowledge of the investigated materials class, models are evaluated by the test error (or 

empirical risk) 

 𝑒 𝑓 = 𝑒!(𝑓)/𝑚
!

!!!
 Eq. 3 

 

defined as the average of the individual errors (losses) 𝑒! 𝑓 = 𝑙(𝑓 𝒙! ,𝑦!) on some test 

set of m reference data points 𝒙! ,𝑦! !!!
! . The samples in this test set are drawn 

independently and identically distributed according to 𝑃 and are also independent of the 

model – which means in practice that it is a random subset of all available reference data 

that has been withheld from the ML algorithm. In order to reduce the variance of this 

estimate, a common strategy is cross-validation, where this process is repeated multiple 

times based on partitioning the data into a number of non-overlapping “folds” and then to 

use each of these folds as test sets and the remaining data as a training set to fit the 

model. 

 

This test error properly estimates the model performance globally over the whole 

representation space 𝑋 (weighted by the distribution 𝑃 used to generate the test points). 

This is an appropriate evaluation metric for selecting a model that is required to work 

well on average for arbitrary new input materials that are sampled according to the same 

distribution 𝑃. This is, however, not the condition of high-throughput screening. Here, 

rather than being presented with random inputs, we can decide which candidate materials 

to screen next. This observation leads to the central idea enabled by the domain of 

applicability analysis proposed in this work: if the employed model is particularly 

applicable in a specific sub-domain of the materials class, and if that sub-domain has a 



simple and interpretable shape that permits to generate new materials from it, then we can 

directly focus the screening there. 

 

Figure 1. Workflow for the domain of applicability (DA) identification and validation for 
an ML model. The DA is described by a selector (𝜎!) that is comprised of logical 
conjunctions of a representation space (here symbolized by a single-dimension x for 
simplicity but may be multidimensional). The selector is identified by applying subgroup 
discovery (SGD) to the individual ML-model errors for subset of test set (DA 
identification set). An unbiased estimate of the model performance within the DA is 
obtained on the remaining samples of the test set that were left out of the DA 
identification (DA validation set).  
 

Such simply described domains of applicability (DA) can be identified by the descriptive 

data mining technique of SGD.21-23, 25 This technique finds selectors in the form of logical 

conjunctions, i.e., Boolean functions (𝜎:𝑋 → {true,false}) of the form: 

𝜎 𝒙 ≡ 𝜋! 𝒙 ∧ 𝜋! 𝒙 ∧…∧ 𝜋!(𝒙) 

where “∧” denotes the “and”-operation and each proposition 𝜋! is a simple inequality 

constraint on one of the coordinates, i.e., 𝜋! 𝒙 ≡ 𝑥! ≤ 𝑣 for some constant 𝑣. Thus, 

these selectors describe intersections of axis-parallel half-spaces resulting in simple 

convex regions ( 𝒙 ∈ 𝑋: 𝜎 𝒙 = true ) in 𝑋. This allows to systematically reason about 

the described sub-domains (e.g., it is easy to determine their differences and overlap) and 

also to sample novel points from them. To specifically obtain regions where a given 

model has a decreased error, SGD algorithms26 can be configured to yield a selector with 

maximum impact on the model error. The impact is defined as the product of selector 



coverage, i.e., the probability of the event 𝜎 𝒙 = true, and the selector effect on the 

model error, i.e., the model error minus the model error given that the features satisfy the 

selector. Just as for the model fitting itself, we can only estimate these quantities based on 

empirical data. For that purpose, it is sensible to also split the test data into two parts: a 

DA identification set for optimizing the empirical impact and a DA validation set for 

obtaining an unbiased performance estimate of the identified DA (see Figure 1 for an 

illustration of the overall workflow). For ease of notation we assume the DA 

identification set consists of the first 𝑘 points of the test set. We end up with the 

following objective function for the SGD algorithm: 

impact 𝜎 =
𝑠
𝑘

!"#$%&'$

1
𝑘 𝑙!(𝑓)

!

!!!
−
1
𝑠 𝑙! 𝑓

!∈! !
!""!#$ !" !"#! !""#"

 

where 𝑠 denotes the number of points in the DA identification set selected by 𝜎 and 

𝐼 𝜎 = 𝑖: 1 ≤ 𝑖 ≤ 𝑘,𝜎 𝑥! = true  denotes the set of selected indices itself. In this 

work, we use the relative error as SGD target variable, which causes the applicability 

domain identification to be more sensitive to errors for small property values whereas it is 

more lenient for errors of large property values. This is a sensible behavior whenever we 

use the model to identify ground state structures. 

 

The effect term of the objective function ensures that the model is estimated to be more 

accurate in the described region than in the global representation space. Thus, selectors 

with a large effect value describe domains of (increased1) applicability as desired. In 

addition, promoting large, i.e., general, DAs through the coverage term is important as 

those have a higher chance to a) contain data points of interest and b) to have an accurate 

effect estimate, i.e., the empirical error reduction measured by the effect term is likely to 

generalize to other points in the DA that are not contained in the DA identification set. 

Thus, the coverage term has a similar role as a regularization term in common objective 

                                                
1 The effect term captures a reduction in error relative to the global error. This calibrates 
the objective function, but it only guarantees that a positive objective value corresponds 
to an “increased” applicability as opposed to categorical applicability in terms of any 
absolute error constraint. Hence, the method detects the best DA possible out of all 
candidates, but in extreme cases no (notable) improvement over the global domain might 
be possible. 



functions for model fitting. Technically, the data points withheld in the DA validation set 

mimic novel independent sample points that can be used to evaluate both: the coverage of 

the DA as well as the reduction in model error. As an extension of this, one can also 

repeat the domain of applicability optimization/validation on several splits (cross-

validation) in order to reduce the variance of the coverage and model error estimates and, 

moreover, to assess the stability of the DA selector elements. 

 

To illustrate the concept of applicability domains, let us consider a simple synthetic 

example (Figure 2) with a two-dimensional representation consisting of independent 

features 𝑥! and 𝑥! that are each distributed according to a normal distribution with mean 

0 and variance 2 (N(0,2)) and a target property 𝑦 that is a 3rd degree polynomial in 𝑥! 

with an additive noise component that scales exponentially in 𝑥!: 

𝑦 ~ 𝑥!! −  𝑥! +  N(0, exp(𝑥!/2)). 

That is, the 𝑦 values are almost determined by the 3rd degree polynomial for low 𝑥! 

values but are almost completely random for high 𝑥! values. Discovering applicable 

domains reveals how different models cope differently with this setting even if they have 

a comparable average error. To show this, let us examine the error distributions obtained 

from three different kernelized regression models of the form 

𝑓 ⋅ = 𝜈!𝑘(𝑥!! ,⋅)
!

!!!
 

with parameter vector 𝝂 that are fitted around a training (or fitting [F]) set 𝒙!! ,𝑦!! !!!
!  

with three different choices for the kernel function 𝑘. We observe: 

- When using the linear (lin) kernel (𝑘 𝑥, 𝑥! = 𝑥, 𝑥! ), the resulting linear model 

is globally incapable to trace the variation of the 3rd order polynomial except for a 

small stripe around the 𝑥!-axis where it can be approximated well by a linear 

function. Consequently, there is a very high error globally that is substantially 

reduced in the applicability domain described by 𝜎!"#(𝑥!, 𝑥!) ≡ −0.3 ≤ 𝑥! ≤ 0.3. 

- When using the Gaussian kernel 𝑘 𝑥, 𝑥! = exp − 𝑥 − 𝑥! !/(2𝜀!) , the 

resulting radial basis function model is able to represent the target property well 

locally unless (a) the noise component is too large and (b) the variation of the 

target property is too high relative to the number of training points. The second 



restriction is because the radial basis functions (rbf) have non-negligible values 

only within a small region around the training examples. Consequently, the 

discovered DA is not only restricted in 𝑥! -direction but also excludes high 

absolute 𝑥!-values: 𝜎!"# ≡ −3.3 ≤ 𝑥! ≤ 3.1 ∧  𝑥! ≤ 0.1. 

- In contrast, when using the non-local 3rd degree polynomial (ply) kernel 

𝑘 𝑥, 𝑥! = 𝑥, 𝑥! + 1 !, data sparsity does not prevent an accurate modelling of 

the target property along the 𝑥! -axis. However, this non-locality is 

counterproductive along the 𝑥!-axis where overfitting of the noise component has 

a global influence that results in higher prediction errors for the almost 

deterministic data points with low 𝑥!-values. This is reflected in the identified 

applicability domain 𝜎!"#(𝑥!, 𝑥!) ≡  −3.5 ≤ 𝑥! ≤ 0.1 , which contains no 

restriction in 𝑥! -direction, but excludes both high and low 𝑥! -values. This 

highlights an important structural difference between the rbf and the polynomial 

model that is not reflected in their similar average errors. 

 
 
 



 
 

Figure 2. Domains of applicability (DA) and distributions of individual absolute errors 
for three different models approximating the same distribution of two independent 
features 𝑥!~N(0,2)  and 𝑥!~N 0,2 , and the target 
property 𝑦~ 𝑥!! −  𝑥!  +  N(0, exp(𝑥!/2)), where N(𝜇, 𝜀!) denotes a normal distribution 
with mean 𝜇 and standard deviation 𝑠. Test points are plotted in 3d plots against the 
prediction surface of the models (color corresponds to absolute error) where the DA is 
highlighted in gray. The distributions of individual errors for the DA (gray) and globally 
(black) are shown. Note that the global error distribution of the linear model has a 
considerable long tail, which is capped in the image. 
 



 

In the illustrative example above, all evaluated models share the same simple 

representation. However, in practice different models are typically fitted with different 

and more complicated representations. For instance, for the study on formation energies 

of transparent semiconductors below, we compare models based on the n-gram,27 

SOAP,13-14 and MBTR12 representations. These representations use different descriptions 

of the local atomic geometry, leading to high-dimensional non-linear transforms of the 

material configurations (e.g., 1400, 681, and 472 dimensions for MBTR, SOAP, and n-

gram representations). A domain of applicability described directly in terms of these 

complex representations cannot easily be mapped back to intuitive conditions on the unit 

cell of a given material. This not only hinders interpreting the DA but also to construct 

novel materials from it. Finally, using different representations to describe applicability 

domains of different models makes it impossible to assess their overlap and differences. 

Therefore, we define a single neutral representation comprised of features that are 

specifically intended for the description of insightful sub-domains. A first natural group 

of features pertains directly to the shape of the unit cell such as the sorted lattice vectors 

and angles, the number of atoms in unit cell, and the unit-cell volume. (see Figure S2 for 

an illustration of the structural features of the unit cell). Additionally, when we are 

interested in a fixed compositional space, we can add features describing the composition 

(e.g., "percentage of Al cations") as well as structural features describing the bonding 

environments (e.g., "average nearest neighbor distance between Al and O"). See Table 1 

for a summary of all features used.  



Table 1: Features used for discovery of DA selectors.  

Feature type Feature label Feature definition (units) 

Unit cell 

a, b, c 
Lattice-vector lengths sorted from 

largest (a) to smallest  (c) (Å) 

α angle between b and c (°) 

β angle between a and c (°) 

γ angle between a and b (°) 

𝑉
𝑉!"#$

 
volume of unit cell divided by atomic 

volumes derived from covalent radii  

N number of atoms 

Composition %Al, %Ga, %In 
number of cations divided by total 

number of cations  

Computed bulk 

properties 
𝐸! PBE band gap energy  

Structural 
 average nearest-neighbor distance 

between Al, Ga, In, and oxygen (Å) 
𝑅{!",!",!",!}!{!",!",!",!} 

 

Equipped with the concept of applicability domains, we can now examine the ML models 

for the prediction of stable alloys with potential application as transparent conducting 

oxides (TCOs). Materials that are both transparent to visible light and electrically 

conductive are important for a variety of technological devices such as photovoltaic cells, 

light-emitting diodes for flat-panel displays, transistors, sensors, touch screens, and 

lasers.28-38 However, only a small number of TCOs have been realized because typically 

the properties that maximize transparency are detrimental to conductivity and vice versa. 

Because of their promise for technologically relevant applications, a public data-analytics 

competition was organized by the Novel Materials Discovery Centre of Excellence 

(NOMAD39) and hosted by the on-line platform Kaggle using a dataset of 3,000 

(AlxGayInz)2O3 sesquioxides, spanning six different spacegroups.24 We emphasize that the 



target property in the examination below is the formation energy, which is a measure of 

the energetic stability of the specific elements in a local environment that is defined by 

the specific lattice structure. Our aim is to demonstrate the ability of SGD to be used for 

differentiated model assessment to understand how well this physical picture is described 

by various representations that encode the local atomic information of each structure.  

 

Before discussing the performance of the three ML models, we first briefly describe how 

the local atomic information is incorporated in each of the three representations. The 

MBTR representation space 𝑋  can vary depending on the many-body order (e.g., 

interatomic distances for a two-body model, and/or angles for a two- and/or three-body 

model, and/or torsions for up to four-body models).12 The results reported herein are 

calculated using a representation consisting of histograms of broadened pairwise inter-

atomic distances, one for each unique pair of elements in the structure (i.e., for this 

dataset: Al-Al, Al-Ga, Al-In, Al-O, Ga-Ga, Ga-In, Ga-O, In-In, In-O, and O-O). These 

are generated according to: 

𝑔!(𝑟) =
1

2𝜋𝜀!"#$!
exp − 𝑟 − 𝑟!"

!/2𝜀!"#$!

!

𝑤!"#$ 𝑖, 𝑗  

where a normal distribution function is centered at each distance between pairs of atoms 

(e.g., 𝑟!") to ensure smoothness of the representation. The function 𝑤!"#$ 𝑖, 𝑗  dampens 

contributions from atoms separated by large distances and is defined as:  𝑤!"#$ 𝑖, 𝑗 =

exp −𝑟!"!𝜂 , where both 𝜀!"#$!  and 𝜂 are hyperparameters.  

 

The SOAP representation space is constructed by transforming pairwise atomic distances 

as overlapping densities of neighboring atoms and expanding the resulting density in 

terms of radial and spherical harmonics basis functions. The local density is modeled 

through a sum of normal distributions through each of the atomic neighbors j of atom i:  

𝜌!(𝑟) =  
1

2𝜋𝜀!!
exp − 𝑟 − 𝑟!"

!/2𝜀!"#$! 𝑤!"#$ 𝑟
!

 

where j ranges over neighbors within a specific cutoff radius (𝑟!"#) relative to 𝑖, where 

the cutoff function 𝑤!"#$ defined as: 



𝑤!"#$(𝑟) = cos 𝜋𝑟
𝑟!"#

+ 1 /2, 𝑟 ≤ 𝑟!"#

0, 𝑟 > 𝑟!"#
 

The density 𝜌!(𝑟)  is then expanded in terms of spherical harmonics 𝑌!"
!
!

 and 

orthogonal radial functions 𝑔!( 𝑟 ): 

𝜌! 𝑟 =  c!"# 𝑔! 𝑟 𝑌!"
𝑟
𝑟

!"#

. 

The number of coefficients 𝑐!"# is given by the choice of basis set expansion values. 

Rotationally invariant features are then computed from the coefficients of the expansion 

and averaged to create a single per-structure representation, forming the input space X. A 

real-space radial cutoff of 𝑟!"# = 10 Å and 𝜀! = 0.5 Å are used in this work.  
 

The n-gram features are generated using a histogram of contiguous sequences of nodes 

(i.e., atoms) that are connected by edges (i.e., bonds) in a crystalline graph representation. 

An edge between nodes in the crystalline graph occurs if the interatomic distance in the 

3D crystal is less than a pre-specified cut-off distance (𝑟!"#) that is proportional to the 

sum of the ionic radii of the two species. The number of edges of a given node i 

corresponds to its coordination environment (𝐶𝑁!): 

𝐶𝑁! =  1 if  𝑟!" < 𝑟!"# 
0

 

𝑟!"#  was taken to be lattice dependent (details are provided in the supporting 

information).  Here, only the cation coordination environment is considered, which is 

defined entirely by the number of oxygen atoms in the first coordination shell. The n-

gram representation utilizes contiguous sequences of up to four nodes (see Ref. 24 for a 

detailed description of this approach).  

 

As an additional benchmark, we also perform DA identification for a simple 

representation containing just atomic properties averaged by the compositions (this 

corresponds to the simplistic choice of a representation given in Eq. 1; see Table S1 for a 

list of atomic properties used in this representation). Since this representation is oblivious 

to configurational disorder (i.e., many distinct structures that are possible at a given 



composition), it is expected to perform poorly across all space groups and concentrations. 

Formally, there is no unique 𝑦-value associated with each 𝒙 but rather a distribution 

𝑃(𝑦|𝒙). Thus, even the optimal prediction at each composition of the test set (the median 

energy) to predict the test set energies results in a mean absolute error of 32.6 

meV/cation, which is the highest accuracy that can be obtained using just composition-

based properties. Therefore, it is a candidate for a representation that does not have any 

useful DA when compared to its full domain. 

 

All representations are combined with kernel ridge regression using the rbf kernel. That 

is, ML models 𝑓𝝂 𝒙 = 𝜈! exp − 𝒙− 𝒙!!
!/(2𝜀!)!

!!!  with parameter vector 𝝂 are 

found by minimizing the objective 

𝑓𝝂 𝒙!! − 𝑦!! !
!

!!!
+ 𝜆 𝜶  

using a training set 𝒙!! ,𝑦!! !!!
!  of 𝑛 = 2400  points. The values for the two 

hyperparameters 𝜀  and 𝜆  are determined through a grid search with 5-fold cross-

validation. In addition to the training set, we have a hold-out test set 𝒙! ,𝑦! !!!
!  of 

𝑚 = 600 points. As described above, we partition the test set again into 6 folds of 100 

points each such that we can evaluate the average DA performance over 6 different DA 

validation sets (in each case with the remaining 500 points of the test set as DA 

identification set). On top of that, we compare the identified DA selectors across the six 

individual experiments to assess their stability. SGD is performed with non-redundant 

branch-and-bound search with tight optimistic estimators and pre-discretization of cut-off 

values by 5-means clustering as described in Ref. 26. 

 

MBTR, SOAP, and n-gram all display a similar test error (using the absolute error as the 

loss function l [see Eq. 3]; the resulting quantity we refer to as the mean absolute error, 

MAE) of 14.2 meV/cation, 13.6 meV/cation, and 15.0 meV/cation, respectively. This 

confirms previously reported virtually indistinguishable accuracies for MBTR and SOAP 

in the prediction of formation energies of alloys.40 However, using the proposed method, 

key differences can be observed in the MAEs of their respective applicability domains. 

More specifically, the ML models built from MBTR, SOAP, and n-gram have an 𝑒 



averaged (standard deviation) over the six splits of the 100-sample DA validation set of 

7.61 (±0.93) meV/cation, 11.24 (±2.87) meV/cation, 10.38 (±2.09) meV/cation, 

respectively. All identified DAs for the models utilizing MBTR, SOAP, and n-gram have 

a large coverage (i.e., percent of samples within in the DA) with an average (standard 

deviation) subpopulation contained within the DA validation set 0.44 (±0.03), 0.76 

(±0.03), and 0.54 (±0.04), respectively. 

 

In contrast, the atomic model is not only the worst model globally with a test error of 

31.2 meV/cation, but, as anticipated, the DA error is virtually indistinguishable from the 

global model error (MAE = 29.9 meV/cation). This model performs slightly better than 

the MAE = 32.6 meV/cation that can be obtained by using the median energy at each 

composition of the test set to predict the test set energies. Therefore, this result illustrates 

the case of a weak representation for which no domain of applicability with substantial 

error reduction can be identified. 

 

Although the reduction of the mean error for the three state-of-the-art representations is 

notable, the difference between the whole materials space and the DAs is even more 

pronounced when comparing the tails of the global error distributions using the 95 

percentile. For the global models the average 95 percentile across all splits is reduced by 

a factor of 2.8, 1.3, and 1.5 for the DA compared with the global error for MBTR, SOAP, 

and n-gram (see Table S2 and Figure 3 for a summary of all model performances).  

 

To put these error values into context, we consider the reference value of 24.9 

meV/cation corresponding to half of the mean energy difference between the minimum 

energy and the second-to-minimum energy polymorph for all concentrations. The 

fraction of data points with these errors from the MBTR model above this reference value 

is reduced by a factor of 5 from 12.8% in the entire test set to 2.7% (averaged over each 

split) within the domain of applicability. A smaller reduction in the fraction of errors is 

observed for the SOAP model (13.8% in the entire test set to 9.6%) and n-gram model 

(16.7% vs. 11.5% in the global vs. test set). For the MBTR model, the 95-percentile of 

the DA errors (20.7 meV/cation) lies below the reference value.  



 

The error and coverage estimates are not only consistent across the 

identification/validation splits but the same selector is identified across all of the splits. 

This is true in terms of both the referenced variables and the threshold values in the 

inequality constraints. The repeated selection of the same selector elements suggests that 

the identified variables describe some inherent structural strength/weaknesses of the 

investigated representations (note, however, that the exact numeric threshold value is also 

stabilized due to the clustering-based pre-discretization step performed by the SGD 

algorithm).  

Interestingly, the variables that comprise the selectors of the domain of applicability are 

qualitatively different for each of these models. Selectors for MBTR include the number 

of atoms (𝑁), the angle between the two longest lattice vectors in the unit cell (𝛾), and the 

average bond distance between Aluminum and Oxygen within the first coordination shell 

(that is defined by the effective coordination number), 𝑅!"!!:  

 𝜎MBTR ≡  𝑁 ≥ 50 atoms ∧ 𝛾 ≤ 90.35° ∧ 𝑅!"!!  ≤ 2.06 Å . 

For SOAP, selectors include features exclusively based on the unit cell shape such as the 

ratio of the longest (a) and shortest (c) lattice vectors, and lattice vector angles (𝛽 and 𝛾): 

𝜎SOAP ≡  !
!
≤ 3.89 ∧ 𝛾 < 90.35° ∧  𝛽 ≥ 88.68°. 

The selector of the n-gram model includes both features describing the unit cell shape 

[medium lattice vector (b) and angle (𝛾 )] and structural motifs [interatomic bond 

distances between Al-O (𝑅!"!!) and Ga-O (𝑅!"!!) within the first coordination shell]: 

𝜎!!"#$ ≡  𝑏 ≥ 5.59 Å ∧ 𝛾 < 90.35° ∧ 𝑅!"!!  ≤ 2.06 Å ∧ 𝑅!"!!  ≤ 2.07 Å. 

It is worth noting that applying these DA selectors to the training set results in a similar 

reduction in error between the global and local populations and sample coverages (i.e., 

local population size) to what was observed for the test set: The training MAEs are 

reduced by factors of  1.67, 1.33 and 1.37 and the training DA coverages are 0.44, 0.76 

and 0.54 for MBTR, SOAP, and n-gram models, respectively.  



The qualitative differences observed in the selectors of the applicability domain for these 

three models can be quantified by examining the overlapping samples in the applicability 

domains using the Jaccard similarity, which is the ratio of the number of overlapping 

samples over the total number of samples in both DAs. We find Jaccard similarities of 

0.60 for n-gram vs. SOAP, 0.67 for n-gram vs. MBTR, 0.58 for SOAP vs. MBTR (Figure 

S1). In other words, the discovered DA selectors are not only syntactically different, but, 

despite some overlap, they do indeed describe substantially different sub-populations of 

the investigated materials class. 

 

 
Figure 3. A comparison of the distribution of the absolute errors for the domain of 
applicability (DA) and the entire test set (global). Boxplots are included for each training 
and test set distribution to indicate the 25%, 50%, and 75% percentiles of the absolute 
errors. The violin plots only extend to the 98% percentile of the absolute errors, the box 
plots extend to the 95% percentile for the distribution contained in the violin plots. 
Horizontal line indicates reference error level of half of the mean energy difference 
between the minimum energy and the second-to-minimum energy polymorph (mean over 
all considered concentrations). 

 

  



To further understand why the DAs of the three models are so different, we examine the 

distribution of each term of the selector for the SOAP representation because it has been 

used previously in several high-throughput screening applications. The inclusion of the 

attributes 𝛾 < 90.35°  and 𝛽 ≥ 88.68°  excludes 8.6% and 1.8% samples that have 

irregular unit cells based on the relatively large 𝛽 and small 𝛾 values compared with the 

rest of the data points (see Figure 4 for the distribution of the three selectors).  In contrast 

to these two selectors, !
!
≤ 3.89 corresponds to a subgroup of 86% the test set samples. 

The inclusion of the  !
!
 is attributed to the fact that SOAP employs a real-space radial 

cutoff value 𝑟!"# = 10 Å in constructing the local atomic density for all samples (see 

above for a description of this representation). The algorithm threshold choice of 
!
!
≤ 3.89  separates two modes of a relatively dense region of points (see Figure 4 top 

panel); However, for structures with asymmetric unit cell, the spherical radius could lead 

to inaccurate depiction of the local atomic environment, therefore, we repeat the 

procedure for two additional 𝑟cut values of 20 Å and 30 Å. Compared with the selector 

identified for 𝑟cut = 10 Å, a largely consistent selector is observed when the cut-off value 

is changed to a value of 𝑟cut = 20 Å:  

𝜎SOAP, !cut = 20 Å ≡   
𝑎
𝑐 ≤ 3.89 ∧  𝛾 ≤ 90.35°. 

However, increasing 𝑟cut to a value of 30 Å – which exceeds the largest unit cell vector 

length (a) of 24 Å in the structures contained within this dataset  – results in the selector:  

𝜎SOAP, !cut = 30 Å ≡   𝑐 ≥ 4.05 Å ∧  𝛾 ≤ 90.35°. 

The absence of the !
!
 term for the SOAP representation utilizing a 𝑟cut  = 30 Å indicates 

that the choice of a cut off value less than the length of the unit cell directly impacts the 

model performance for the larger unit cells within this dataset, and thus, directly affects 

the selector chosen by SGD. 

 



Finally, we note that it is an intuitive expectation that an improved model can be obtained 

by re-running the ML algorithm using only training data from within the discovered 

domain of applicability. However, this is not true in general: points outside of the DA, 

while having a higher error on average, can still contribute positively to the prediction 

inside the DA. For instance, refitting to a training set trimmed according to the DA 

selectors of the three model types investigated here leads to a change in test MAE of -1.5 

(MBTR), -1.0 (SOAP), and +0.1 (n-gram) meV/cation. That is, we see an improvement 

for the MBTR and SOAP models when fitting to the reduced domain (with reduced 

training data), but a slight decline in model performance for the n-gram model. Note that, 

technically, only the DA validation set can be used to obtain an unbiased error estimate of 

a refitted model because this contains the only data that is independent of the refitted 

model. All other data, including the part of the test set that served as DA identification 

set, were involved in the overall process that yielded the refitted model. The statistical 

considerations related to model refitting are an interesting subject for future 

investigations and a better understanding could lead to an iterative refitting scheme where 

DAs are refined until convergence. Such a scheme could also contain an active learning 

component where additional data points are sampled from within the identified 

subdomains. 

 

 



   

Figure 4.  Distribution of features for the three selectors defining the domain of 
applicability of the SOAP-based model (𝜎SOAP ≡  !

!
≤ 3.89 ∧ 𝛾 < 90.35° ∧  𝛽 ≥ 88.68°).  

  



CONCLUSION 

We demonstrate a new approach to identify domains of applicability of machine learning 

models for materials properties, in which models achieve a substantially lower error than 

on the whole materials class. This approach is based on applying subgroup discovery to 

the individual errors of the model predictions in a model test set. Applying this idea to 

state-of-the art models of TCO formation energies (using kernel ridge regression 

combined with predictions from SOAP, n-gram, and MBTR) identifies distinct DAs for 

each model with notably improved accuracies and a large coverage of the underlying 

materials class (44% - 76%). In particular, the MBTR model displays a subdomain with a 

95 percentile error that is about a factor of two smaller than its global 95 percentile error. 

Besides these quantitative assessments, the discovered DAs enable a qualitative 

comparison of the three investigated material representations by investigating their 

defining logical formulas. These DA selectors show notable differences that can be 

attributed to significant variation in the physics being captured by the models. For 

example, the appearance of a number of atoms in the selector for MBTR indicates 

heterogeneity in the error distribution based on the unit cell size because of the 

implementation of an unnormalized histogram in the representation. For SOAP, the 

selectors include features exclusively based on the unit cell shape, which is attributed to 

the choice of a cutoff radius in the construction of the local atomic environment. In order 

to be applicable on a wider domain, improved versions of these representations need to 

address those systematic shortcomings – a conclusion which is illustrative of how the 

method of DA identification can guide the improvement of materials representations and 

ML methods in general.  
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