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Although machine learning (ML) models promise to substantially accelerate the discovery of

novel materials, their performance is often still insufficient to draw reliable conclusions.

Improved ML models are therefore actively researched, but their design is currently guided

mainly by monitoring the average model test error. This can render different models indis-

tinguishable although their performance differs substantially across materials, or it can make

a model appear generally insufficient while it actually works well in specific sub-domains.

Here, we present a method, based on subgroup discovery, for detecting domains of applic-

ability (DA) of models within a materials class. The utility of this approach is demonstrated

by analyzing three state-of-the-art ML models for predicting the formation energy of

transparent conducting oxides. We find that, despite having a mutually indistinguishable and

unsatisfactory average error, the models have DAs with distinctive features and notably

improved performance.
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G iven sufficient predictive accuracy, machine learning (ML)
can accelerate the discovery of novel materials by allowing
to rapidly screen compounds at orders of magnitude lower

computational cost than first-principles electronic-structure
approaches1–7. In practice, however, the accuracy of ML models is
often insufficient to draw reliable conclusions about materials for
specific applications7. Therefore, different ML representations for
materials are actively developed to provide accurate predictions
over diverse materials classes and properties8–20. A critical
obstacle for this effort is that the complex choices involved in
designing ML models are currently made based on the overly
simplistic metric of the average model test error with respect to the
entire materials class. This treatment of models as a black box that
produces a single error statistic can render different models
indistinguishable although their performance actually differs
substantially across materials. Moreover, models may appear
generally insufficient for certain screening tasks while they actually
predict the target property accurately in specific subdomains. For
example, for a large public ML challenge for predicting the for-
mation energies of transparent conducting oxides (TCOs)21, three
approaches have a nearly indistinguishable performance: the
competition winning model adapted from natural language pro-
cessing (n-gram method)21, smooth overlap of atomic positions
(SOAP)13,14, and the many-body tensor representation (MBTR)12.
Importantly, as shown below, they all appear unsatisfactory for
screening applications as they fail to reliably identify the ground
state polymorph structure for many of the examined systems.

Here we present an informed diagnostic tool based on subgroup
discovery (SGD)22–24 that detects domains of applicability (DA) of
ML models within a materials class. These domains are given as a
combination of simple conditions on the unit-cell structure (e.g.,
on the lattice vectors, lattice angles, and bond distances) under
which the model error is substantially lower than its global average
in the complete materials class. Thus, in contrast to methods that
provide uncertainty estimates for individual data points (such
as probabilistic models or ensemble methods), the presented
approach provides logical descriptions of contiguous regions with
an overall low estimated uncertainty. These descriptions allow (a)
to understand and subsequently address systematic shortcomings
of the investigated ML model and (b) to focus sampling of can-
didate materials on regions of low expected model uncertainty. We
demonstrate this procedure by analyzing the three state-of-the-art
ML models for the above mentioned TCO challenge. Despite
having a globally indistinguishable and unsatisfactory average
error, the models have domains of applicability (DAs) with notably
improved performance and distinctive features. That is, they all
perform well for different characteristics of the unit cell. In terms
of error improvement, the MBTR-based model stands out with a
ca. twofold reduction in the average error and ca. 7.5-fold reduc-
tion in the fraction of errors above the required accuracy to
identify the ground state polymorph (i.e., from 12.8 to 1.7%). Thus,
we demonstrate that the MBTR-based model is in fact feasible for
screening materials that lie within its DA while it is highly unre-
liable outside of it. This illustrates how the proposed method can
be used to guide the development of ML representations through
the identification of their systematic strengths and weaknesses. We
expect this form of analysis to advance ML methods for materials
as well as ML methods for science more broadly.

Results
Domain of applicability identification via subgroup discovery.
To formally introduce the method for DA identification, we recall
some notions of ML for materials. In order to apply smooth
function approximation techniques like ridge regression, the
materials of interest are represented as vectors in a vector space X

according to some chosen representation. The more complex
state-of-the-art representations evaluated in this work are defined
further below. A first simple example is to use features ϕ1, …, ϕn
of the isolated atoms that constitute the material (e.g., ϕi(Z) may
be the “electronegativity of the species with atomic number Z”
(see Supplementary Table 4) and then to lift these to repre-
sentation coordinates xi for compounds ðZj; μjÞkj¼1

defined as

xi ¼
Xk
j¼1

μjϕiðZjÞ ð1Þ

where μj corresponds to the mixture coefficient for atomic
number Zj. Moreover, let y be a numeric material property
according to which screening should be performed (in this work,
we focus on formation energy, which is relevant for performing a
ground state search).

A predictive ML model is then a function f : X ! R aiming to
minimize the expected error (also called prediction risk)

eðf Þ ¼
Z
X ´R

lðf ðxÞ; yÞdPðx; yÞ ð2Þ

measured by some non-negative loss function l that quantifies the
cost incurred by predicting the actual property value y with f(x).
Examples for loss functions are the squared error
(lðy0; yÞ ¼ ðy0 � yÞ2), the absolute error (lðy0; yÞ ¼ jy0 � yj), and,
for non-zero properties, the relative error (lðy0; yÞ ¼ jy0 � yj=jyj).
Here P denotes some fixed probability distribution that captures
how candidate materials are assumed to be sampled from the
materials class (this concept, while commonly assumed in ML, is
an unnecessary restriction for high-throughput screening as we
discuss in more detail below). Since the true prediction risk is
impossible to compute directly without perfect knowledge of the
investigated materials class, models are evaluated by the test error
(or empirical risk)

êðf Þ ¼
Xm
i¼1

eiðf Þ=m ð3Þ

defined as the average of the individual errors (losses) ei(f)= l(f
(xi), yi) on some test set of m reference data points ðxi; yiÞmi¼1. The
samples in this test set are drawn independently and identically
distributed according to P and are also independent of the model—
which means in practice that it is a random subset of all available
reference data that has been withheld from the ML algorithm. In
order to reduce the variance of this estimate, a common strategy is
cross-validation, where this process is repeated multiple times
based on partitioning the data into a number of non-overlapping
“folds” and then to use each of these folds as test sets and the
remaining data as a training set to fit the model.

This test error properly estimates the model performance
globally over the whole representation space X (weighted by the
distribution P used to generate the test points). This is an
appropriate evaluation metric for selecting a model that is
required to work well on average for arbitrary new input
materials that are sampled according to the same distribution P.
This is, however, not the condition of high-throughput screening.
Here, rather than being presented with random inputs, we can
decide which candidate materials to screen next. This observation
leads to the central idea enabled by the DA analysis proposed in
this work: if the employed model is particularly applicable in a
specific subdomain of the materials class, and if that subdomain
has a simple and interpretable shape that permits to generate new
materials from it, then we can directly focus the screening there.

Such simply described DA can be identified by the descriptive
data mining technique of subgroup discovery (SGD)22–24. This
technique finds selectors in the form of logical conjunctions, i.e.,
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Boolean functions (σ: X → {true, false}) of the form:

σðxÞ � π1ðxÞ ^ π2ðxÞ ^ ¼ ^ πpðxÞ
where “∧” denotes the “and” operation and each proposition πi is
a simple inequality constraint on one of the coordinates, i.e.,
πi(x)≡ xj ≤ v for some constant v. Thus, these selectors describe
intersections of axis-parallel half-spaces resulting in simple convex
regions ({x∈ X: σ(x)= true}) in X. This allows to systematically
reason about the described subdomains (e.g., it is easy to
determine their differences and overlap) and also to sample novel
points from them. To specifically obtain regions where a given
model has a decreased error, standard SGD algorithms25,26 can be
configured to yield a selector with maximum impact on the model
error. The impact is defined as the product of selector coverage,
i.e., the probability of the event σ(x)= true, and the selector effect
on the model error, i.e., the model error minus the model error
given that the features satisfy the selector.

An illustrative example. Before describing the details of DA
identification and its integration into the ML process, let us
illustrate the concept and its utility via a synthetic example (see
Fig. 1). We consider a simple two-dimensional representation
consisting of independent features x1 and x2 that are each dis-
tributed according to a normal distribution with mean 0 and
variance 2 (N(0, 2)) and a target property y that is a third-degree
polynomial in x1 with an additive noise component that scales
exponentially in x2:

y � x31 � x1 þ Nð0; expðx2=2ÞÞ:
That is, the y values are almost determined by the third-degree
polynomial for low x2 values but are almost completely random

for high x2 values. Discovering applicable domains reveals how
different models cope differently with this setting even if they
have a comparable average error. To show this, let us examine the
error distributions obtained from three different kernelized
regression models of the form

f ð�Þ ¼
Xn
i¼1

νikðxFi ; �Þ

with parameter vector ν that are fitted around a training, or fitting
(F), set ðxFi ; yFi Þni¼1 with three different choices for the kernel
function k. We observe:

● When using the linear (lin) kernel (kðx; x0Þ ¼ hx; x0i), the
resulting linear model is globally incapable to trace the
variation of the third-order polynomial except for a small
stripe on the x1-axis where it can be approximated well by a
linear function. Consequently, there is a very high error
globally that is substantially reduced in the DA described by
σlin(x1, x2)≡−0.3 ≤ x1 ≤ 0.3.

● When using the Gaussian kernel kðx; x0Þ ¼ exp k x � x0k2=
2ϵ2), the resulting radial basis function (rbf) model is able to
represent the target property well locally unless (a) the noise
component is too large and (b) the variation of the target
property is too high relative to the number of training points.
The second restriction is because the rbfs have non-negligible
values only within a small region around the training
examples. Consequently, the discovered DA is not only
restricted in x2-direction but also excludes high absolute x1-
values: σrbf ≡−3.3 ≤ x11 ≤ 3.1 ∧ x2 ≤ 0.1.

● In contrast, when using the non-local third-degree poly-
nomial (poly) kernel kðx; x0Þ ¼ ðhx; x0i þ 1Þ3, data sparsity

a

c

b

Fig. 1 Domains of applicability of three 2d-models of a noisy third-degree polynomial. Three different models, linear (top), radial basis function (rbf,
center), and polynomial (poly, bottom), are shown approximating the same distribution of two independent features x1 ~N(0, 2) and x2 ~N(0, 2), and the
target property y � x31 � x1 þ Nð0; expðx2=2ÞÞ, where N(μ, ϵ2) denotes a normal distribution with mean μ and standard deviation ϵ. Test points are plotted in
3d plots against the prediction surface of the models (color corresponds to absolute error) where the DA is highlighted in gray. The distributions of individual
errors for the DA (gray) and globally (black) are shown in the 2d plots of each panel with the mean error (solid) and the 95th percentile (95 perc./dashed)
marked by vertical lines. Note that the global error distribution of the linear model has a considerably long tail, which is capped in the image.
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does not prevent an accurate modeling of the target property
along the x1-axis. However, this non-locality is counter-
productive along the x2-axis where overfitting of the noise
component has a global influence that results in higher
prediction errors for the almost deterministic data points with
low x2-values. This is reflected in the identified DA
σpoly(x1, x2)≡−3.5 ≤ x2 ≤ 0.1, which contains no restriction
in x1-direction, but excludes both high and low x2-values.
This highlights an important structural difference between the
rbf and the polynomial model that is not reflected in their
similar average errors.

DA representation and objective function. In the illustrative
example above, all evaluated models share the same simple
representation. However, in practice different models are typically
fitted with different and more complicated representations. For
instance, for the study on formation energies of transparent
oxides below, we compare models based on the n-gram, SOAP,
and MBTR representations. These representations use different
descriptions of the local atomic geometry, leading to high-
dimensional non-linear transforms of the material configurations
(e.g., 1400, 681, and 472 dimensions for MBTR, SOAP, and n-
gram representations). A DA described directly in terms of these
complex representations cannot easily be mapped back to intui-
tive conditions on the unit cell of a given material. This not only
hinders interpreting the DA but also to construct novel materials
from it. Finally, using different representations to describe DAs of
different models makes it impossible to assess their overlap and
differences. Therefore, we define a single representation com-
prised of features that are specifically intended for the description
of insightful subdomains. A first natural group of features per-
tains directly to the shape of the unit cell such as the sorted lattice
vectors and angles, the number of atoms in the unit cell, and the
unit-cell volume. In addition, when we are interested in a fixed
compositional space, we can add features describing the com-
position (e.g., “percentage of Al cations”) as well as structural
features describing the bonding environments (e.g., “average
nearest-neighbor distance between Al and O”, which we define
using the effective coordination number27). The description of
DAs in these simple terms of the unit-cell structure and com-
position allows to easily interpret, compare, and sample from
them (e.g., for focused screening). However, we note that the
representation space inputted into subgroup discovery can be
adapted for various purposes depending on the focus of the
investigation. See Table 1 for a summary of all features used.

The DA optimization and validation can be performed as a by-
product from the labels and ML predictions of the test set.
However, just as for the ML-model fitting itself, we can only
estimate these quantities based on empirical data. For that
purpose, it is sensible to also split the test data into two parts: a
DA identification set for optimizing the empirical impact and a

DA validation set for obtaining an unbiased performance
estimate of the identified DA (see Fig. 2 for an illustration of
the overall workflow). Technically, the data points withheld in the
DA validation set mimic novel independent sample points that
can be used to evaluate both the coverage of the DA, as well as,
the reduction in model error. As an extension of this, one can also
repeat the DA optimization/validation on several splits (cross-
validation) to reduce the variance of the coverage and model error
estimates and, moreover, to assess the stability of the DA selector
elements.

For ease of notation we assume the DA identification set
consists of the first k points of the test set. We end up with the
following objective function for the SGD algorithm:

impactðσÞ ¼ s
k

� �
|{z}
coverage

1
k

Xk
i¼1

liðf Þ �
1
s

X
i2IðσÞ

liðf Þ
0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
effect on test error

ð4Þ

where s denotes the number of points in the DA identification set
selected by σ and I(σ)= {i: 1 ≤ i ≤ k, σ(xi) = true} denotes the set
of selected indices itself. Here, we focus on DA identification
based on the relative error lðy0; yÞ ¼ jy0 � yj=jyj, as it is less
correlated with the target values than the absolute error. Thus,
this choice promotes DAs that contain a representative distribu-
tion of target values and, by extension, more distinct and thus
more characteristic DAs for the different models (see Supple-
mentary Note 2 for a discussion of the DAs resulting from using
the absolute error).

The effect term of the objective function ensures that the model
is estimated to be more accurate in the described region than in

Table 1 Features used for discovery of domain of applicability (DA) selectors.

Type Label Definition Unit

a, b, c Lattice-vector lengths sorted from largest (a) to smallest (c) Å
α Angle between b and c ∘

Unit cell β Angle between a and c ∘

γ Angle between a and b ∘

V/N Volume of unit cell divided by number of atoms Å3

N Number of atoms –
Composition %Al, %Ga, %In Number of cations divided by total number of cations %
Structural R{Al,Ga,In}-{Al,Ga,In,O} Average nearest-neighbor distance between Al, Ga, In, and O Å

Fig. 2 Workflow for domain of applicability (DA) identification and
validation for an ML model. The DA is described by a selector (σf) that is
comprised of logical conjunctions of a representation space (here
symbolized by a single dimension x for simplicity but may be
multidimensional). The selector is identified by applying subgroup
discovery (SGD) to the individual ML-model errors for subset of test set
(DA identification set). An unbiased estimate of the model performance
within the DA is obtained on the remaining samples of the test set that
were left out of the DA identification (DA validation set).
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the global representation space. Thus, selectors with a large effect
value describe domains of increased applicability as desired (see
also Supplementary Note 4). In addition, promoting large, i.e.,
general, DAs through the coverage term is important as those
have a higher chance to (a) contain data points of interest and (b)
to have an accurate effect estimate, i.e., the empirical error
reduction measured by the effect term is likely to generalize to
other points in the DA that are not contained in the DA
identification set. Thus, the coverage term has a similar role as a
regularization term in common objective functions for model
fitting. With the above objective function, we reduce the bi-
criterial coverage/effect optimization problem to a uni-criterial
impact optimization problem where both individual criteria are
equally weighted and non-compensatory, i.e., due to the multi-
plicative combination, very low values of one criterion cannot be
compensated by very high values in the other. The relative weight
of both criteria can be re-calibrated by introducing a simple
exponential weight parameter (see the Supplementary Methods
section on Coverage/Effect Trade-off for a detailed discussion).

Optimizing the impact function over all conjunctive selectors
that can be formed from a given set of base propositions is an
NP-hard problem. This implies that there is no solver for it
with worst-case polynomial time complexity (unless P = NP).
However, there is a practically efficient branch-and-bound
algorithm that turns out to be very fast in practice if the
dimensionality of the DA representation is not too high—in
particular, substantially faster than the model training process
(see Methods and Supplementary Methods).

Domains of applicability for TCO models. Equipped with the
DA concept, we can now examine the ML models for the pre-
diction of stable alloys with potential application as transparent
conducting oxides (TCOs). Materials that are both transparent to
visible light and electrically conductive are important for a variety
of technological devices such as photovoltaic cells, light-emitting
diodes for flat-panel displays, transistors, sensors, touch screens,
and lasers28–38. However, only a small number of TCOs have
been realized because typically the properties that maximize
transparency are detrimental to conductivity and vice versa.
Because of their promise for technologically relevant applications,
a public data-analytics competition was organized by the Novel
Materials Discovery Center of Excellence (NOMAD39) and hos-
ted by the on-line platform Kaggle using a dataset of 3000
ðAlxGayInzÞ2O3 sesquioxides, spanning six different space
groups. The target property in this examination is the formation
energy, which is a measure of the energetic stability of the specific
elements in a local environment that is defined by the specific
lattice structure.

Our aim is to demonstrate the ability of the proposed DA
analysis to (i) differentiate the performance of models based on
different representations of the local atomic information of each
structure and (ii) to identify subdomains in which they can be

used reliably for high-throughput screening. Specifically, we focus
on the state-of-the-art representations of MBTR, SOAP, and the
n-gram representation (all described in the Methods section). As
an additional benchmark, we also perform DA identification for a
simple representation containing just atomic properties averaged
by the compositions (this corresponds to the simplistic choice of a
representation given in Eq. (1); see Supplementary Table 4 for a
list of atomic properties used in this representation). Since this
representation is oblivious to configurational disorder (i.e., many
distinct structures that are possible at a given composition), it is
expected to perform poorly across all space groups and
concentrations. Formally, there is no unique y-value associated
with each x but rather a distribution P(y∣x). Thus, even the
optimal prediction at each composition of the test set (the median
energy) to predict the test set energies results in a mean absolute
error of 32.6 meV/cation, which is the highest accuracy that can
be obtained using just composition-based properties. Therefore, it
is a candidate for a representation that does not have any useful
DA when compared with its full domain.

MBTR, SOAP, and n-gram all display a similar test error (using
the absolute error as the loss function l (see Eq. (3)); the resulting
quantity we refer to as the mean absolute error, MAE) of 14.2,
14.1, and 14.7 meV/cation, respectively. This confirms previously
reported virtually indistinguishable accuracies for MBTR and
SOAP in the prediction of formation energies of alloys40.
However, using the proposed method, key differences can be
observed in the MAEs of their respective DAs (see Table 2 and
Fig. 3 for a summary of all model performances). More
specifically, the ML models built from MBTR, SOAP, and n-
gram have an MAE (standard deviation) over the relevant DA
validation sets of 7.6 (±1.5), 11.7 (±1.8), 10.2 (±0.9) meV/cation,
respectively. All identified DAs for the models utilizing MBTR,
SOAP, and n-gram have a large coverage (i.e., percent of samples
within the DA) with an average (standard deviation) subpopula-
tion contained within the DA validation set of 44% (±6%), 78%
(±3%), and 52% (±5%), respectively.

In contrast, the atomic model is not only the worst model
globally with a test error of 65.5 meV/cation, but, as anticipated,
the DA error is virtually indistinguishable from the global model
error (MAE= 60.2 meV/cation). This model performs worse than
the MAE= 32.6 meV/cation that can be obtained by using the
median energy at each composition of the test set to predict the
test set energies. Therefore, this result illustrates the case of a
weak representation for which no DA with substantial error
reduction can be identified.

Although the reduction of the mean error for the three state-
of-the-art representations is notable, the difference between the
whole materials space and the DAs is even more pronounced
when comparing the tails of the error distributions using the 95th
percentile. For the global models, the average 95th percentile
across all relevant splits is reduced by a factor of 2.9, 1.4, and 1.6
for the DA compared with the global error for MBTR, SOAP, and
n-gram.

Table 2 Summary statistics for DAs for all investigated models.

Global (test set) DA (validation set) DA (identification set)

MAE 95AE R cov MAE 95AE R cov MAE 95AE R
MBTR 14.2 54.1 0.83 44 (6) 7.6 (1.5) 18.8 (2.9) 0.88 (0.03) 44 (1) 7.6 (0.3) 20.7 (0.2) 0.89 (0.01)
SOAP 14.1 51.0 0.84 78 (3) 11.7 (1.8) 36.6 (10.8) 0.85 (0.01) 76 (1) 11.9 (0.4) 37.8 (2.0) 0.85 (0.00)
n-gram 14.7 51.1 0.83 52 (5) 10.2 (0.9) 32.6 (2.6) 0.86 (0.02) 54 (1) 10.3 (0.2) 35.5 (1.0) 0.86 (0.00)
Atomic 65.5 154.5 0.24 85 (1) 60.2 (7.8) 141.6 (28.5) 0.25 (0.09) 85 (0) 63.3 (1.5) 153.9 (5.5) 0.25 (0.02)

Coverage (cov), mean absolute error (MAE), 95th-percentile absolute error (95AE), and coefficient of determination based on absolute error (R) are all estimated via the mean value of the relevant DA
validation sets and DA identification sets. Standard deviations are in parentheses. Global values are computed over whole test set. MAE and 95AE are in units of meV/cation, cov values are in
percentages.
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To put these error values into context, we consider the
reference value of 24.9 meV/cation corresponding to half of
the mean energy difference between the minimum energy and the
second-to-minimum energy polymorph for all concentrations.
The fraction of data points with these errors from the MBTR
model above this reference value is reduced by a factor of 7.5
from 12.8% in the entire test set to 1.7% (averaged over each
relevant split) within the DA. A smaller reduction in the fraction
of errors is observed for the SOAP model (13.3 to 9.0%) and n-
gram model (16.2 to 10.8%). For the MBTR model, the 95th
percentile of the DA errors (18.8 meV/cation) lies below the
reference value.

Since the restriction of features values in the DAs generally
affects the distribution of target values, the observed MAE
improvements might simply be a function of reduced variation in
the property values. This would mean that the DAs are not
actually characteristic for the models as those reduced variations
would be independent of them. However, comparing the
coefficient of determination (R) of the models globally and
within their DA reveals that this is not the case. The R values are
increased from 0.83 to 0.88 (MBTR), 0.84 to 0.85 (SOAP), and
0.83 to 0.86 (n-gram). This means, while there is a reduction in
target dispersion, there is a disproportionate reduction in MAE in
the model-specific predictions. Note that, matching our interest
in absolute error performance, we consider here the R-value
defined as one minus the sum of absolute errors over dispersion
measured as the sum of absolute deviations from the median41.

The identified selectors are mostly stable, i.e., appearing in four
out of six splits for MBTR and SOAP and five of six for n-gram.
Interestingly, the variables that comprise the selectors of the DA
are qualitatively different for each of these models. Selectors for
MBTR include the number of atoms (N), the angle between the
two longest lattice vectors in the unit cell (γ), and the average
bond distance between aluminum and oxygen within the first
coordination shell (that is defined by the effective coordination
number), RAl–O:

σMBTR � N ≥ 50 atoms ^ γ ≤ 98:83� ^ RAl�O ≤ 2:06 Å:

For SOAP, selectors include features exclusively based on the
unit-cell shape such as the ratio of the longest (a) and shortest (c)
lattice vectors, and lattice-vector angles (β and γ):

σSOAP � a
c
≤ 3:87 ^ γ< 90:35� ^ β≥ 88:68�

The selector of the n-gram model includes both features
describing the unit-cell shape [medium lattice vector (b) and
angle (γ)] and structural motifs [interatomic bond distances
between Al–O (RAl–O) and Ga–O (RGa–O) within the first
coordination shell]:

σn-gram � b≥ 5:59 Å ^ γ < 90:35�^
RAl�O ≤ 2:06 Å ^ RGa�O ≤ 2:07 Å

It is worth noting that applying these DA selectors to the
training set results in a similar reduction in error between the
global and local populations and sample coverages (i.e., local
population size) to what was observed for the test set: The
training MAEs are reduced by factors of 1.87, 1.18, and 1.43 and
the training DA coverages are 44%, 76%, and 54% for MBTR,
SOAP, and n-gram models, respectively.

The qualitative differences observed in the DA selectors for
these three models can be quantified by examining the over-
lapping samples in the DAs using the Jaccard similarity, which is
the ratio of the number of overlapping samples over the total
number of samples in both DAs. We find Jaccard similarities of
0.61 for n-gram vs. SOAP, 0.66 for n-gram vs. MBTR, 0.57 for
SOAP vs. MBTR (computed over the whole test set). In other
words, the discovered DA selectors are not only syntactically
different, but, despite some overlap, they do indeed describe
substantially different sub-populations of the investigated
materials class.

We close this results section by an investigation of the effect of
the individual DA selector elements of the SOAP-based model
(details for MBTR and n-gram based models are provided in
Supplementary Figs. 1 and 2). The inclusion of the attributes γ <
90.35∘ and β ≥ 88.68∘ excludes 18.3% and 1.8% samples that have
irregular unit cells based on the relatively large γ and small β
values compared with the rest of the data points (see Fig. 4 for the
distribution of the selected a/c, γ, and β values for the SOAP-
based model). The inclusion of the term a/c ≤ 3.87, which
describes 86.2% of the test set, is attributed to the fact that SOAP
employs a real-space radial cut-off value rcut= 10 Å in construct-
ing the local atomic density for all samples (see above for a
description of this representation). The algorithm threshold
choice of a/c ≤ 3.87 separates two modes of a relatively dense
region of points (see Fig. 4 left panel); however, for structures
with asymmetric unit cell, the spherical radius could lead to
inaccurate depiction of the local atomic environment, therefore,
we repeat the procedure for two additional rcut values of 20 and
30 Å. Compared with the selector identified for rcut= 10 Å, a
largely consistent selector is observed when the cut-off value is
changed to a value of rcut= 20 Å:

σSOAP;rcut¼20Å � a
c
≤ 3:89 ^ γ≤ 90:35�

However, increasing rcut to a value of 30 Å—which exceeds the
largest unit-cell vector length (a) of ca. 24 Å in the structures
contained within this dataset—results in the selector:

σSOAP;rcut¼30Å � c≥ 4:05 Å ^ γ≤ 90:35�

The absence of the a/c term for the SOAP representation
utilizing a rcut= 30 Å indicates that the choice of a cut-off value
less than the length of the unit cell directly impacts the model
performance for the larger unit cells within this dataset, and thus,
directly affects the selector chosen by SGD.

Discussion
The presented approach identified DAs for each investigated
model with notably improved predictive accuracy and a large

Fig. 3 DA versus global ML-model performance. Comparison of absolute
error distributions for entire test set (global/gray) and for DA validation
sets (DA/blue) using violin plots that extend to the 98th percentile.
Boxplots inside violin plots indicate 25th, 50th, and 75th percentiles
(boxes) of the absolute errors, as well as 5th and 95th percentiles
(whiskers). Horizontal line indicates reference error level of half of the
mean energy difference between the minimum energy and the second-to-
minimum energy polymorph (mean over all considered concentrations).
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coverage of the underlying materials class (44–78%). In parti-
cular, the MBTR model displays a subdomain with a 95th-
percentile error that is about a factor of 3 smaller than its global
95th-percentile error. Besides these quantitative assessments, the
discovered DAs enable a qualitative comparison of the three
investigated representations of materials by analyzing their
defining logical formulas. These show notable differences that can
be attributed to variation in the physics captured by the models.
For example, the appearance of the number of atoms in the
selector for MBTR indicates preferred fitting of specific unit-cell
sizes due to the dependence on an unnormalized histogram in the
representation. For SOAP, the selectors include features exclu-
sively based on the unit-cell shape, which is attributed to the
choice of a cut-off radius in the construction of the local atomic
environment. In order to be applicable to a wider domain,
improved versions of these representations need to address those
systematic shortcomings—a conclusion which is illustrative of
how the method of DA identification can guide the improvement
of material representations and ML methods in general.

A further potential application of the proposed approach is to
form ensembles of different local models, each of which is only
contributing to the overall predictions for data points inside its
DA. The general approach of forming ensembles of local models
is an emergent idea to cope with heterogeneous materials
classes42,43. So far these efforts have focused on a priori parti-
tioning of the training set into sub-populations identified by
automated clustering methods or prior knowledge, followed by
fitting local models using the same regression technique for all
subpopulations. In contrast, the DA approach can be used to
incorporate the relative model advantages and disadvantages into
the partitioning of the materials class.

In this context, it is an intuitive expectation that an improved
model can be obtained by fitting only training data from within
the discovered DA. However, this is not true in general: points
outside of the DA, while having a higher error on average, can
still contribute positively to the prediction inside the DA. For
instance, refitting to a training set trimmed according to the DA
selectors of the three model types investigated here leads to a
change in test MAE of −1.5 (MBTR), −1.0 (SOAP), and +0.1 (n-
gram) meV/cation. That is, we see an improvement for the MBTR
and SOAP models but a slight decline in model performance for
the n-gram model. Note that, only the DA validation set can be
used to obtain an unbiased error estimate of a refitted model
because it contains the only data that is independent of the overall
fitting and refitting process. The statistical considerations related
to model refitting are an interesting subject for future investiga-
tions and a better understanding could lead to an iterative

refitting scheme where DAs are refined until convergence. Such a
scheme could also contain an active learning component where
additional data points are sampled from within the identified
subdomains.

Methods
MBTR. The MBTR representation space X can vary depending on the employed
many-body order (e.g., interatomic distances for a two-body model, and/or angles
for a two- and/or three-body model, and/or torsions for up to four-body models12).
The results reported herein are calculated using a representation consisting of
broadened histograms of element counts (one-body terms) and pairwise inverse
interatomic distances (two-body terms), one for each unique pair of elements in the
structure (i.e., for this dataset: Al–Al, Al–Ga, Al–In, Al–O, Ga–Ga, Ga–In, Ga–O,
In–In, In–O, and O–O). These are generated according to:

gið1=rÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πϵ2atom
p X

j

exp �ð1=r � 1=jri � rjjÞ2
2ϵ2atom

 !
wMBTRði; jÞ

where a normal distribution function is centered at each inverse distance between
pairs of atoms (1/ri,j) to ensure smoothness of the representation. The function
wMBTRði; jÞ dampens contributions from atoms separated by large distances and is
defined as wMBTRði; jÞ ¼ ð1=ri;jÞ2. The MBTR representation was generated using
QMMLpack12,44.

SOAP. The SOAP representation space is constructed by transforming pairwise
atomic distances as overlapping densities of neighboring atoms and expanding the
resulting density in terms of radial and spherical harmonics basis functions. The
local density is modeled through a sum of gaussian distributions on each of the
atomic neighbors j of atom i:

ρiðrÞ ¼
X
j

exp �ðr � ri;jÞ2
2ϵ2b

 !
wSOAPðrÞ

where j ranges over neighbors within a specific cut-off radius (rcut) relative to i,
where the cut-off function wSOAP is defined as:

wSOAPðrÞ ¼
1 ; for r ≤ rcut � d

cos π r�rcutþd
d

� �
þ 1

� �
=2 ; for rcut � d < r ≤ rcut

0 ; otherwise

8><
>:

The density ρi(r) is then expanded in terms of spherical harmonics Yk,m(r/∣r∣) and
orthogonal radial functions gn(∣r∣):

ρiðrÞ ¼
X
n;k;m

cn;k;mgnðjrjÞYk;m
r
jrj
� �

:

The number of coefficients cn,k,m is given by the choice of basis set expansion
values. Rotationally invariant features are then computed from the coefficients of
the expansion and averaged to create a single per-structure representation, forming
the input space X. A real-space radial cutoff of rcut= 10 Å and ϵb= 0.5 Å are used
in this work. The SOAP representation was computed with the QUIPPY package
available at https://libatoms.github.io/QUIP/index.html.

n-gram. The n-gram features are generated using a histogram of contiguous
sequences of nodes (i.e., atoms) that are connected by edges (i.e., bonds) in a
crystalline graph representation. An edge between nodes in the crystalline graph

a b c

Fig. 4 Effect of individual DA selector conditions for SOAP-based model. The distributions of the three features referenced in the selector σSOAP≡ a/c≤
3.87 ∧ γ < 90.35∘ ∧ β ≥ 88.68∘, i.e., a/c (a), γ (b), and β (c), are shown with subpopulation selected by condition in blue, subpopulation deselected in gray,
and threshold by red line.
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occurs if the interatomic distance in the 3D crystal is less than a pre-specified cut-
off distance (rcut) that is proportional to the sum of the ionic radii of the two
species. The number of edges of a given node i corresponds to its coordination
environment (CNi):

CNi ¼
X
j

ri;j1ðri;j < rcutÞ:

The parameter rcut was taken to be lattice dependent as used in ref. 21. Here, only
the cation coordination environment is considered, which is defined entirely by the
number of oxygen atoms in the first coordination shell. The n-gram representation
utilizes contiguous sequences of up to four nodes (see ref. 21 for a detailed
description of this approach). An implementation of the n-gram model used here is
available at https://analytics-toolkit.nomad-coe.eu/home/.

Machine learning models. All representations were combined with kernel ridge
regression using the rbf kernel as implemented in scikit-learn, version 0.21.3
(https://pypi.org/project/scikit-learn/0.23.1/). That is, ML models f νðxÞ ¼Pn

i¼1 νi expð�k xF � xFi k2=ð2ϵ2ÞÞ with parameter vector ν are found by mini-
mizing the objective Xn

i¼1

ðfνðxFi Þ � yFi Þ2 þ λνTKν

using a training set ðxFi ; yFi Þni¼1 of n= 2400 points. Here, K refers to the n ´ n kernel
matrix with entries corresponding to the application of the rbf kernel to all pairs of
training points, i.e., K ij ¼ expð�k xF � xFi k2=ð2ϵ2ÞÞ for 1 ≤ i; j≤ n. The values for
the two hyperparameters ϵ and λ are determined through a grid search within an
inner loop of fivefold cross-validation where, in each iteration, the training set is
split into a parameter tuning and a parameter validation set.

Domain of applicability analysis. Each single run of DA identification and eva-
luation was performed by applying SGD using 500 random data points of the TCO
test set (DA identification set) and then determining DA performance on the
remaining 100 data points of the test set (DA validation set). For each ML model, a
single DA selector was then determined by (i) performing six runs using sixfold
cross-validation (i.e., the test set was randomly partitioned into 6 non-overlapping
folds of 100 data points, and each fold was used as DA validation set once) and (ii)
choosing the selector that resulted from a majority of runs. For step (ii), selectors
were considered equivalent if they only differed in threshold values in some
inequality conditions and these differences did not result in a different selection of
data points on the whole test set. The selectors were identified using a DA iden-
tification set, but the DA performance was then assessed as the mean value of the
performance measures on the relevant DA validation sets. For an increased
robustness of results, the above process was carried out three times for each model
and the median performance over those repetitions was reported. The DA majority
DA selectors themselves did not vary across those repetitions.

Subgroup discovery. The subgroup discovery target variable for DA identification
was the relative (main text results) and absolute (results in Supplementary Infor-
mation) model residuals, respectively. The basic propositions for the potential
subgroup selectors were formed by first applying the feature map from Table 1 and
then finding thresholds for inequality constraints via 5-means clustering45. Con-
junctive selectors were optimized with respect to the impact objective function as
given in Eq. (4) using branch-and-bound search with equivalence-aware non-
redundant branching46 and tight (selection-unaware) bounding25,26. That is,
selectors are found using (1) a branching operator that generates exactly one
selector for any set of selectors describing the same subset of data points, and (2) a
bounding function that provides an upper bound to the best attainable speciali-
zation of a given selector by assuming that all subsets of its extension can be exactly
described by some refined selector. All computations were run using the subgroup
discovery implementation in realKD 0.7.2. More details on selector optimi-
zation and a refined objective function are discussed in the Supplementary
Information.

Data availability
All datasets involved in this research are available via the first author’s GitHub account at
https://github.com/csutton7/ML_domain_of_applicability. The dataset used in this
analysis was originally produced for the NOMAD 2018 Kaggle competition (https://www.
kaggle.com/c/nomad2018-predict-transparent-conductors). The output of all materials
computations are available in the NOMAD Repository (https://doi.org/10.17172/
NOMAD/2019.06.14-1). The curated competition dataset including the test data is
also available at https://github.com/csutton7/nomad_2018_kaggle_dataset. A web-app
allowing to reproduce the results of the Kaggle competition can be found at https://
analytics-toolkit.nomad-coe.eu/tutorial-kaggle-competition.

Code availability
The SGD implementation is publicly available through the open source Java library
realKD 0.7.2 available at https://bitbucket.org/realKD/realkd/. Python scripts for all

computations involved in this research are available via the first authors GitHub account
at https://github.com/csutton7/ML_domain_of_applicability. All are provided under the
MIT open source software license. See http://analytics-toolkit.nomad-coe.eu/
ML_domain_of_applicability for an interactive tutorial that allows to reproduce the
results of the DA analysis.
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