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ABSTRACT: In this work, our prime objective is to study non-locality and long-range effect
of two-body correlation using quantum entanglement from the various information-theoretic
measure in the static patch of De Sitter space using a two-body Open Quantum System
(0QS). The OQS is described by two entangled atoms which are surrounded by a thermal
bath, which is modelled by a massless probe scalar field. Firstly, we partially trace over
the bath field and construct the Gorini Kossakowski Sudarshan Lindblad (GSKL) master
equation, which describes the time evolution of the reduced subsystem density matrix. This
GSKL master equation is characterized by two components, these are-Spin chain interaction
Hamiltonian and the Lindbladian. To fix the form of both of them, using Schwinger-Keldysh
formalism we compute the Wightman functions for probe massless scalar field. Using this
result along with the large time equilibrium behaviour we obtain the analytical solution
for reduced density matrix. Further using this solution we compute Von-Neumann entropy,
Re/nyi entropy, logarithmic negativity, entanglement of formation, concurrence and quantum
discord in a static patch of De Sitter space. Finally, we have studied the violation of Bell-
CHSH inequality, which is the key ingredient to study non-locality in primordial cosmology.
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1 Introduction

The theory of closed quantum systems is a very popular topic and has already been firmly
established. But in practical situations no quantum system can be ideally treated as closed
and its interactions with the surroundings cannot be neglected, hence it becomes essential
to develop a theoretical framework to treat these non adiabatic interactions and develop a
proper understanding of the quantum mechanical system. The knowledge of complete time
evolutionary dynamics of a quantum mechanical system requires incorporation of the details
of the thermal environment, which paves the way towards the study of Open Quantum
System [1] (OQS), where the physical system weakly interacts with the environment.In
general these interactions with the environment significantly controls the time evolution
of the quantum mechanical system and induces the phenomenon of quantum dissipation.
The dynamics of the reduced subsystem of OQS cannot be described using the unitary
time evolution operators after integrating out the bath degrees of freedom from the theory.
Correct time evolution of the system requires solving the effective master equation, which
describes the non-unitary time evolution of the reduced density matrix of the system.

To deal with the subsystem in the context of OQS the entire combination of the system
and its surroundings (thermal bath) is together treated as a closed quantum system and
hence the evolution equations can be assumed to follow the unitary transformation rules.
The prime assumption used in the present context is that the entire system environment
combination forms a large closed quantum system. Therefore, its time evolution is governed
by a unitary transformation generated by a global Hamiltonian which is made up of subsys-
tem Hamiltonian, bath Hamiltonian and interaction Hamiltonian. Moreover the interaction
between the system and the bath is assumed to depend on only the present moment, it
carries no past memories at all. In short, the interaction is Markovian in nature. The inter-
action between the system and the surroundings is assumed to be weak which justifies the
argument that the only effective change that can be seen over time occurs in the context of
OQS. This assumption is generally useful in treating the evolution of the system when the
OQS has sufficient time to relax to the equilibrium before being perturbed in presence of
interaction between the system and thermal environment. However, in a special situation
where the system has very fast or frequent perturbation in presence of system- thermal bath
coupling, one needs to consider Non Markovian approximation. In this treatment addition-
ally it has been assumed that the system is completely uncorrelated with the surroundings
at initial time scale, provided the coupling between the subsystem and the environment is
sufficiently weak in nature. The techniques developed in the context of OQS have proven
very powerful in the context of quantum optics, statistical mechanics, information theory,
thermodynamics, cosmology and biology.

On the other hand, quantum entanglement [2| is probably the most fascinating manifes-
tation of quantum theory in which the beauty of quantum mechanics is truly realized. It is
a physical phenomenon that occurs when pairs or groups of particles are generated, interact,
or share spatial proximity in ways such that the quantum state of each particle cannot be
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Figure 1. Penrose diagram representing the static patch of the De Sitter space in which we
have placed a two atomic open quantum system which is interacting with a thermal bath non-
adiabatically. This diagram actually represents the causal patch of an observer sitting at the north
pole, which is represented by r = 0 is static coordinate in De Sitter space. Equivalently this can be
described in global coordinate with 8 = 0. Here the bifurcation Killing horizon for 9, is represented

by r = a where the parameter a = \/% > ( as the cosmological constant A > 0 in De Sitter space.
In this context the bifurcation sphere appears just at the middle of the Penrose diagram and in
global coordinates it is described by ¢ = 0 time slice. However, the other three regions can also be
filled by the static coordinate system, which is just like Schwarzschild black holes.

described independently of the state of the others, even when the particles are separated
by a large distance. Equivalently quantum entanglement of a state which is shared by two
parties is necessary but not sufficient for that state to be non-local. Quantum entanglement
plays a significant role in the context of quantum computation [3], information and tele-
portation theory [4, 5|, quantum error correction |6, 7],etc.There are huge applications of
quantum entanglement in various contexts. In interferometry the process of entanglement
is used to achieve the Heisenberg limit [8]. In multi electron atomic system the electronic
shells always consists of electrons in entangled state. [9]. In the process of photosynthe-
sis,entanglement is seen in the transfer of energy between light harvesting complexes and
photosynthetic reaction centres. [10]. In living organisms like bacteria entanglement has
been observed between the organism and quantized light. [11]. Study of various quantum
information theoretic measures which quantifies the phenomenon of quantum entanglement



from different types of OQS are important topics of research at present [12|. Few of them,
namely Von Neumann entanglement entropy, Re/nyi entropy, quantum discord, concurrence
and entanglement of formation are calculated in this paper to study the explicit role of
quantum entanglement in the reduced subsystem between the two atoms.
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Figure 2. Mnemonic chart for the two atomic (two body) entangled OQS set up.

Many authors have studied the physics of quantum fields in curved spacetime using one
and two atomic system in the context of OQS [13-15]. A single detector system weakly
interacting with a reservoir in quantized conformally coupled scalar field in De-Sitter space
was investigated in the context of OQS in [16]. A similar study was done using two
atoms (detectors) in [13] where the authors have studied the evolution of the subsystem
only under the effect of the Lindbladian operator for different initial states. In that paper
the authors have used only concurrence as the measure to quantify entanglement. In this
work, however we have studied the evolution of the two atomic subsystem taking into
account the contributions from both the prime components of the master equation, the



effective Lamb Shift Hamiltonian and the Lindbladian operator, which provides a complete
solution of the master equation and gives us a proper understanding about the complete
time evolution of the reduced density matrix of the two atomic subsystem. Further using
this result we have computed a number of information theoretic measures to quantify the
quantum entanglement. Additionally, we have studied quantum non-locality by establishing
Bell’s CHSH inequality violation in De Sitter space from the present OQS two atomic set
up.

In fig. (1), we have explicitly shown the Penrose diagram representing the static patch
of the De Sitter space in which we have placed a two atomic open quantum system which
is interacting with a thermal bath non-adiabatically. This diagram represents actually the
causal patch of an observer sitting at the north pole, which is represented by r = 0 is
static coordinate in De Sitter space. Equivalently this can be described in global coordinate
with 8 = 0. Here the bifurcation Killing horizon for 9, is represented by r = a where the

parameter a = \/% > (0 as the cosmological constant A > 0 in De Sitter space.In this

context the bifurcation sphere appears just at the middle of the Penrose diagram and in
global coordinates it is described by ¢ = 0 time slice. However, the other three regions can
also be filled by the static coordinate system, which is just like Schwarzschild black holes.
In fig. (2), we have presented a mnemonic chart of the computational scheme for the present
two atomic OQS set up.

The plan of this paper is as follows. In section 2, we discuss the basics of the OQS.
The objective of this section is to familiarize the reader with the prime components of open
quantum systems. In section 3, we discuss about the non-unitary time evolution of the
reduced subsystem. For OQS, the interactions between the system and its environment
make it so that the dynamics of the system cannot be accurately described using unitary
operators alone. In section 4, we study the construction of the reduced subsystem. Further,
in section 5 and section 6, we show the explicit construction of the two prime components
of Gorini Kossakowski Sudarshan Lindblad (GSKL) master equation namely the effective
Lamb Shift part of the Hamiltonian and the quantum dissipator operator or the Lindbla-
dian. In section 7, we provide a short introduction on the Bloch sphere representation of
the reduced density matrix and explicitly show that it can be expressed in terms of identity
matrix and the three Pauli matrices. We also provide a clear mathematical explanation to
account for the difference between pure and mixed states in this context. In section 8, we
explicitly calculate the analytical solution of the Gorini Kossakowski Sudarshan Lindblad
(GSKL) master equation [17, 18| for the case of two entangled atoms which mimics the role
of Unruh-De-Witt detectors, which are conformally coupled to a probe massless scalar field
which is placed in the thermal bath. We further use the late time equilibrium behaviour
as a boundary condition to obtain the analytical solution of the all time dependent compo-
nents of the reduced density matrix of the two atomic subsystem from the GSKL master
equation. In section 9-13, we explicitly calculate various entanglement measures used in
the context of quantum information theory now-a-days. To name some we calculate Von
Neumann entanglement entropy [19], Re'nyi entanglement entropy [20], Logarithmic Neg-
ativity [21], Concurrence [22], Entanglement of formation [23] and Quantum discord [24].
Finally in section 14, we study the concept of non-locality from the violation of Bell-CHSH
inequality [25] in De-Sitter space for the two atomic entangled subsystem in the context of

0Qs.




2 Modelling two atomic Open Quantum System (OQS)

An OQS is defined to be the one which interacts with the surroundings or environment,
which is called thermal bath. These interactions are responsible for changing the dynamics
of the system and finally give rise to quantum dissipation i.e. the information contained
in the system is lost to its environment. In reality such system doesn’t exists which is
completely isolated from its surroundings and hence it becomes a necessary step to develop
a theoretical framework to treat these interactions and gain a proper insight of the system.

We are acquainted with the dynamics of closed quantum systems (CQS), i.e. with
quantum systems that do not suffer from any unwanted interactions with the environment.
Although interesting conclusions can be drawn in principle in such idealised physical sys-
tems, these observations are tempered by the fact that in real world there are no perfectly
closed systems, except perhaps the universe as a whole. Real systems suffer from unwanted
interactions with the outside world. We need to develop a theoretical framework in order to
have a proper understanding of the dynamics of such quantum mechanical systems. To give
an example [12] one can consider a swinging pendulum like that found in mechanical clocks
to be an ideal CQS. In this context, the pendulum interacts only very slightly with the
rest of the world-its environment-mainly through friction. However, to properly describe
the full correct dynamics of the pendulum and to give the answer to the question "why it
eventually ceases to move one must take into account the damping effects of air friction and
imperfections in the suspension mechanism of the pendulum?" one needs to study OQS.
This is perfectly correct approach to study the dynamics of interacting quantum system as
we know no quantum systems are ever perfectly closed in a ideal sense. An OQS is nothing
more than one which has interactions with some environment with system, whose dynamics
we wish to neglect usually, or average over the time scale.

It is well known fact that time-dependent Schridinger’s Equation describes the time
evolution of a quantum state in the context of a CQS. So if our CQS is in some pure
state |¢(t)) € H at time ¢, where H denotes the Hilbert space of the system, then the time
evolution of the state (between two consecutive measurements) is described by the following
time evolution equation:

0 :
50 (t) = —t HO)[Y(t), (2.1)

where H (t) is the Hamiltonian operator of the CQS. Here we fix, & = 1 in natural units. On
the other hand, in the case of mixed states it is useful to introduce the concept of density
matrix p(t) using which the time evolution of the density operator can be described by the
following equation:

dp(t) _

—g = —HH), pt)], (22)
which sometimes is known as Quantum Liouville Von Neumann equation for the CQS. In
this context, the time evolution operator is an unitary operator. In general, the solution to
the Quantum Liouville Von Neumann equation can be written as:

plt) = Ut o) = frexp{—z' / H(), p(t’ndt’}p(to), (2.3)

where U(t, 1) is the unitary operator and 7 arises from the evolution as a Dyson expansion,
when the Hamiltonian H is time-dependent.



The mathematical formalism of quantum operations is the key tool for the description of
the dynamics of the OQS. It can be used to describe not only nearly closed systems which are
weakly coupled to their environments, but also systems which are strongly coupled to their
environments, and closed systems that are opened suddenly and subject to measurement.
In the present context, two atomic OQS is described by the following global Hamiltonian:

HTotal(T) - HSystem(T) ® IBath + ZSystem ® HBath(T) + HInt (T)a (24)

where, Hgystem(7) represents the two atomic system Hamiltonian, Hpatn(7) describes the
thermal bath Hamiltonian,which is described by massless probe scalar field [27] which is
minimally coupled to gravity in static De Sitter background. Hiy,(7) signifies the interaction
between the thermal bath and the system under consideration in OQS. In static patch of
De Sitter space the background space time metric is described by the following infinitesimal
line element:

r2 2\ 1
ds? = (1 — —) dt® — (1 — 7“_2) dr® — r*(df? + sin®? 0d¢?) where o = \/i > 0. (2.5)
a? @ A

Instead of using the time variable as t in the present context we have introduced a new
rescaled time variable 7, which is defined as:

k 2
T=4got=—1 :\/1—r—2t where k= +Va?—1r2>0. (2.6)
a a

In our two atomic OQS set up the system, bath and the interaction Hamiltonian are de-
scribed by the following expressions [27]:

2
HSystem - %)Z o% , (27)
a=1
o 2 (
HBath(T):/ dr/ d@/ dé [H (1,7,0,9)
(Op®(7,7,0,0)) + @‘I’S(;#W
rsm@ 2 (9,8(7,7,6,)) + ( 0 ) , (2.8)

=

Hing (7 Z x%) = uZ(n ) O(1, 1%, 0%, p%). (2.9)

a=1

It is important to note that, w represents the renormalized energy level for two atoms, given

by:

[K(ll)(—wo) — ,C(ll) (WQ)] Atom 1
w=wy+1ix (2.10)

(K@D (—wp) — K (wo)] Atom 2.

Here K**(fwy) for o € {1, 2} are Hilbert transformations of Wightman function computed
from the probe massless scalar field, which we have defined explicitly in later section of this



paper. Also, wy represents the natural frequency of the two identical atoms, which we have
fixed [30-34] at !:

' 1
wozé(n+§) VneZ and /{::\/042—7“2>0704:\/%>0 as A >0, (2.12)

for rest of the computation performed in this paper. In this context, the atoms are char-
acterised by the label o € [1,2] and Vi € [1,2,3] are the Pauli spin matrices. The bath
Hamiltonian for the probe massless scalar field have been expressed in the static patch of
De Sitter space. Under this assumption of background space time, the massless probe scalar
field is minimally coupled to the gravity in this context. Additionally, it is important to men-
tion here that the interaction is controlled by the interaction strength or coupling parameter
w1 through which the bath degrees of freedom is coupled to the two atomic subsystem. We
also consider the weak coupling parameter which will give rise to zero quantum correlation
between the atomic subsystem and the thermal bath content i.e. massless probe scalar field
at initial time scale. For the description of the OQS we will use the traditional approach of
solving the GSKL Master Fquation which describes the non-unitary time evolution of the
reduced density matrix of the subsystem.

3 Non unitary time evolution of the reduced subsystem

The prime objective in this section is to describe the time evolution of an OQS with a GSKL
master equation which properly describes non-unitary behaviour and can be obtained by
performing partial trace over the bath content i.e. the massless probe scalar field placed at
the static patch of the De Sitter background space time.

We assume that the two atomic system and reservoir are initially uncorrelated, i.e.

pTotal(O) = pSystem(O) & pBath(O) + pCorrelation(O) . (31)
—_——
=0

However, it is expected that as time evolves the quantum correlations [35] generated due
to the non-negligible interaction between the two atomic subsystem and the thermal bath
degree of freedom i.e.

pTotal(T) - pSystem<7—) & pBath(T) + pCorrelation<7—) . (32)
~—_—————
#0

Here the exact mathematical form of the quantum correlation part of the total density
matrix can only be obtained by solving the GSKL master equation.

'We fix the natural frequency of the two identical atoms by imposing an additional condition:

; 1
coth(rkwy) =0 = wg = % (n + 2) VneZ. (2.11)

We impose this condition to simplify the mathematical form of GSKL matrix which will fix the Quantum
dissipator or Lindbladian operator.



We define a dynamical map V(7) to describe the transformation (or time evolution) of
the reduced two atomic subsystem at 7 = 0 to some 7 > 0 as:

psystem(T) = V(T)psystem(0) = Trbatn [U(T,0)(psystem (0) ® ppae (0))U'(7,0)],  (3.3)

where U(7,0) is the unitary operator which gives the evolution of the total OQS, and is
given by:

pTotal(T) = U(Ta O)Texp{—z'/ [HTotal(T/)v pTotal(T/)]dT/}pTotal(O)a (34)
0

If it is allowed to vary, it leads to one-parameter family of dynamical maps with V(0)

being the identity map. The map V() represents a convex-linear, completely positive and

trace-preserving quantum operation. Considering Markovian type of behaviour which is

formalized with the help of semigroup property:[36]

V(n)V(12) = V(11 + 1), 71,72 > 0. (3.5)

The time reversal invariance in the dynamics is broken due to the semi group property and
provides a suitable starting point for obtaining irreversible dynamics from the Quantum
Liouville equation. When the quantum dynamical semigroup V(t) is contracting in nature,
we are sure to find a linear map G, which acts as the generator of the semigroup:

V() := exp(GT), (3.6)

This finally leads to the following time-evolution equation for the reduced two atomic sub-
system, given by:

d

EpSystem(T) = gpSystem<T>7 (37)
which is the Quantum Markovian Master equation. The construction of the most general
form of the linear map generator G leads to the GSKL master equation, which can be written
as: p

EpSystem@—) - _i[Heﬂ'(T>a pSystem(T)] + E[pSystem<7—)]a (38)

where L[psystem(7)] is the quantum dissipator or the Lindbladian operator, which is in
general defined as :

1
Llpsystem(T)] = 5 Y Ya[2Dapsystem(T) D}, = {DL Da, psystem (7). (3.9)

where {X, YV} = XY + YX denotes an anti-commutator, D, are the part of the Lindblad
operators which plays a significant role in the context of OQS and Heg is the effective
subsystem Hamiltonian which is constructed after integrating over bath degrees of freedom,
representing the coherent part of the dynamics. The term ~, is the Fourier transform of
the homogeneous bath correlation functions, which in the present context turn out to be
the two atomic Wightman function of the probe massless scalar field. We stress here that
the physical assumptions underlying the GSKL form of the Master equation are the:

2The explicit mathematical form of the quantum dissipator or the Lindbladian operator for the two atomic
OQS is written in the later section of this paper. This can be fixed by computing the GSKL matrix elements
of the Lindbladian operator. These elements are actually the Fourier transform of the two atomic two point
Wightman functions which can be computed using Schwinger Keldysh technique in the present context. For
details see Appendix F and Appendix G.



1. Born (Coupling between system and bath is weak),
2. Markov (No past memories) and

3. Rotating Wave Approximation (fast system dynamics compared to the relaxation
time).

4 Reduced sub system construction

4.1 Density Matrix construction

Let us consider a two component system comprising of subsystems A and B, where the
subsystem A, our topic of interest is made up of two entangled atoms and the subsystem
B forms the thermal bath characterised the massless scalar field. We are interested in the
dynamics of A, so we have to somehow eliminate the contributions of the bath degrees of
freedom in the evolution equation of the density matrix. This process is generally carried
out by an mathematical operation named Partial trace.

We assume that the total system (subsystem A+Bath B) evolves according to the
Schrodinger equation and that is described by the density matrix prota(7). The Hilbert
spaces of the individual components of the system is given by:

HA:Span{|i)A} W i:O,"' ,dA—l (41)

7-lB :Span{|]>B} v .]207 adB_l (42)
where d4 and dp represent the dimension of Hilbert space of subsystem A and the bath
B respectively. Generally, the dimension of the bath is considered to be infinite and the
subsystem is considered to be finite dimensional.

The corresponding Hilbert space of the total system will just be written as the tensor
product of the individual spaces and is given by:

H = Ha®Hp =span{|i)a @ |5)5}. (4.3)

The associated density matrix can be written as:

PTotal = Z Qa‘\pa><\pa‘ = an (Z Ca;ij”)A & ‘]>B> (Z CZ;W’WA ® |V>B) ) (44>

where |, ) represents a particular quantum state and g, represents the probability weight of

the system being in that particular quantum state. In the above representation the quantum

state |W,) is expanded in the basis which spans the Hilbert space H of the entire system.
Therefore the total density matrix in the combined Hilbert space can be written as:

p = i (1) alul) @ (1) alw]), (4.5)

v
where
_ *
> Nijuwr = D da Y CaijCuu (4.6)
iy a i,J

— 10 —



4.2 Partial Trace operation

To eliminate the contributions of the bath and to construct the reduced density matrix that
describes only the subsystem of interest A the operation of taking partial trace on the total
density matrix is carried out which basically averages or integrate out the contributions of
the components of the bath B from the combined total density matrix.

Partial trace operation is defined as a linear operator that maps from the total Hilbert
space to the Hilbert space of A, i.e. H — H 4. Mathematically it is represented by:

Trgath B (Ma @ N) = MaTr(Ng) = Ma ) (ING[) =D (IMa @ Nalj).  (4.7)
j i
The last expression in the above equation basically represents a partial matrix element,
where the matrix element is taken over the second factor (belonging to the second Hilbert
space) and the resultant factor is an operator acting on the Hilbert space H 4.
Thus taking the partial trace operation on the total density matrix we can construct the
density matrix of the subsystem A as given by[37, 38] *:

PA = PSystem = ITBath B|OTotall- (4.8)

It can very easily be proved that the density matrix of the subsystem A constructed by the
above operation satisfies the basic properties of the density matrix which are unit trace and
positivity. The density matrix constructed in this way is called the reduced density matrix
of the subsystem.

5 Effective Hamiltonian Construction

For our system, the effective Hamiltonian can be expressed as

Hegr = Hgystem + Hiamb Shift

2 .2 3
w 7
§ a _« E : § : aff a _« a _«
= 5 n .o — 5 Hij (ni .0; )(nj 0y ) (51)
a=1 apf=11ij=1
ﬂ—/ ~ J
Two Atomic System Lamb Shift=Heisenberg spin chain

where the first term in the effective Hamiltonian, physically represents the Hamiltonian of
the two atomic system whereas the second term is known as the Lamb Shift Hamiltonian|14,
43|, which characterizes the atomic Lamb Shift that occurs due to the interaction between

3In the present context, the reduced density matrix of the subsystem is described by the tensor product
of density matrices of two atoms. Here each of the atomic density matrices can be represented by the Bloch
vector representation. However after taking the tensor product the reduced subsystem density matrix
can’t be expressed in terms of the Bloch sphere. In that case the entangled reduced density matrix of the
subsystem is parametrised by three time dependent parameters ao;(7) , aio(7) and a;;(7) where i,j =1,2,3
or i,j = +,—,3, which we actually fix by solving the GSKL master equation. But this can only be done
once we fix the effective Hamiltonian and the Lindbladian operator by determining the Lamb Shift matrix
and the GSKL matriz from the Fourier and Hilbert transform of the Wightman function computed from
massless scalar field (bath) placed in the static De Sitter gravitational background. For more details see
the rest of the sections of this paper along with Appendix F, Appendix G and Appendix H.
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the massless free probe scalar field with the two atomic system under consideration in the
background of static De Sitter space. It actually measures a shift in the energy levels due
to this interaction.

Here n® and n” represent the normal unit vectors of the two atoms under consideration
in the present OQS set up. The angles between the normal unit vectors and Pauli spin
matrices are characterized by the three Fuler Angles «,f and . However, we consider here
that these Fuler angles for two atoms are different to get more general result.

Therefore the Lamb Shift Hamiltonian can be re-expressed in terms of Fuler angles as:

i (e [e% [e% [e% «
Hiyamb shift = ~3 Z ZHijﬁ(ni 0;%)(n;%.0;%)

.2 3
=5 20 S a5 st eos o] o) ©2)

aBf=11ij=1

In this present context, we define the following sets of Pauli operators for the two atoms
using tensor product:

= 0; X go (Atoml) (53)
=09 ® 0; (Atom?2) (5.4)

g

SN S

g

In our case, we have changed the basis for representing the effective Hamiltonian from
the 01,09,05 to the o ,0_,03 basis which along with the identity matrix forms a complete
basis for the space of 2x2 matrices. The change of basis basically reduces the number of
differential equations that is obtained from the GSKL master equation and makes them
simpler to solve.

In the transformed basis o, and o_ are defined as: follows:

1 0 1

o, = 5(01 +i0y) = , (5.5)
0 0
1 0 0

o_ = 5(01 —i09) = . (5.6)
1 0

Therefore the operators o} ,and ¢! for Atom 1 is defined as:

1 0 o)
o, = (0L ®09) = (5.7)
0 0
0 0
ol = (0_®0g) = (5.8)
go 0

- 12 —



Similarly, the operators Ji,and 0% for Atom 2 is defined in a similar way as:

) oy 0
0l =(00®04) = (5.9)
0 o4
o_ 0
0> =(0p®0.) = (5.10)
0 o_

Now we transform the Hamiltonian in the new basis which is equivalent to diagonalising
the n{*o;” term, and basically reduces it to the o3 model. Hence the terms of Hgystem in the
diagonalized basis respectively becomes:

/

Atom 1: H; = gn}U} = gnl (0; ®0g) = %03 ® o (5.11)
/
Atom 2: H, = gnfaf = gnz (00 ® 0;) = %00 ® o3 (5.12)

where w' is the modified frequency. When the term n;o; is diagonalized in the new basis, a
factor of y/n3 4+ nyn_ arises, which can be incorporated in the frequency as the modification
factor. Thus the frequency gets modified by this process and is given by:

W =wy/n3+nn_. (5.13)

Here, n3, n, and n_ are the normal unit vectors of the two atoms in the new basis defined
as:

1

ny = 5(711 +ing) = E(COS ay + i cos ay) (5.14)
1 1
n_ = §(n1 —ing) = é(cos Q1 — 1COS ) (5.15)

Similarly the Hyampb snise term reduces to the following form:
;23
Hramb shitt = —5 > > HF (o) (o)) (5.16)
a,f=1ij=1

Again in the new diagonalized basis (already mentioned earlier) the above mentioned Lamb
Shift Hamiltonian part reduces to the following simplified form:

Hyamb snitt = — Z Z Haﬁ (5.17)

a,f=11,j=+
In this context, the effective Hamiltonian matrix elements, HU/B , Is given by:
Haﬁ AQB(S —iB° Ezjk(SSj — Aaﬁégiagj (518)
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where A% and B*? for the two atomic system are defined as :

A = %K%o) K ()] = A2 /_OO w [

4m w 4 wo w — Wy

zwA T e—iwA T
= / dw/ dATGP (AT) [ + } , (5.19)
47r2

w + wo w — Wy

Baﬂ:%mﬁ(wo)—wﬁ(—wonz“ [ | )

G (w) gaﬁ(—w)]

47m w + wy w — Wy

ﬁ zwA T e—iwA T
= 47” / dw/ dATG AT)|: - 1,(5.20)

w + wo w — Wy

where K is basically the Hilbert Transform of the Wightman function (two point cor-
relator) computed from the probe massless scalar field placed at the bath and is given by
the following expression:

P [ aB(4 P [ 1 ee .
K9 (o) = — / g g ) P / dw / dATeEATGOR(AT)  (5.21)
™ —c0 —o00

w £ wy ™ J_ wEwy

where P is the principal value of the integral. Here G*? is the Fourier transform of the of
the Wightman function in the frequency (w) space and can be expressed as:

G (hu) = / dAT E9AT GOB(AT), (5.22)

where wy is the energy difference between the ground and excited states of the atoms and
G is the forward two atomic Wightman Function which is defined as *

G (AT =7 —7) = (®(24, T)P (15, 7). (5.23)

In the above equations p the coupling parameter, represents the interaction strength between
the system and the external thermal bath (i.e the gravitationally coupled scalar) field degrees
of freedom. The structure of the elements of the coefficient matrix Hfjﬁ can be computed
in terms of the Wightman function of the external free probe massless scalar field in static
De-Sitter background, which finally fix the structure of the effective Hamiltonian in the
present scenario.

6 Quantum Dissipator or Lindbladian Construction

The concept of fluctuation and dissipation in the context of OQS is introduced into the
system by the additional contribution of the Lindbladian operator in the time evolution

4For more details on the computation of the two atiomic Wightman function of the probe massless scalar
field in the static De Sitter background geometry, its Fourier transform and its Hilbert transform see the
Appendix F, Appendix G and Appendix H.
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equation of the reduced subsytem density matrix. The second term in the Gorini Kos-
sakowski Sudarshan Lindblad Master (GSKL) equation is actually characterised as the Lind-
bladian or Quantum Dissipator which in our present context can be written as:

3 2

1 @ « «
Llpsystem ()] = 2 Z Z Cz‘jﬁ [2(7%6 ' U?)PSystem(T) (ng - o)

i,j=1 a,f=1
—{ng - 00) (] - o), psystem(7) }] 1(6.1)

where pgystem 1S the reduced subsystem density matrix of the two entangled atomic system
obtained after partially tracing over the external bath scalar field degrees of freedom. The
coefficient matrix C’fjﬁ is known as the Gorini Kossakowski Sudarshan Lindblad (GSKL)
matrix, which is constructed under the weak coupling limiting approximation on the cou-
pling parameter ;1 as appeared in the interaction Hamiltonian. In the context of OQS, the
Lindbladian captures the effect of dissipation.

In the transformed basis in which the (n-o term reduces to the o3 model, the Lindbladian
can be re-expressed as:

3 2
1 (&3 (0% «
'C[pSystem(T)] = 5 Z Cijﬁ [QUfpSystem(T)Uz‘ - {Ui Ug@>pSystem(7_)}] . (62)
ij=*+ a,B=1
The matrix GSKL matrix C’f‘jﬁ is given by the following expression:
C;;-B = flo‘ﬁ&j - iéaﬁeijkégk - Aa653k53j (63)

where the quantities A*® and B? for the two atomic system is defined as:

AafB N’_2 afB afB( _ N’_2 > af o AT — o AT
AP = 1 (G (wo) + G*(—wo)] = 1 G (A1) [e +e ] (6.4)

paf __ /LQ af af _ Mz OO af Wwo AT —iwo AT

[e9]

The components of Cf]‘»ﬂ matrix are given in the Appendix G.

7 Bloch Sphere representation of density matrix

In this section we discuss about the Bloch sphere representation of density matrix. We
know that a qubit is a quantum state in a two dimensional Hilbert space H = C? and is
spanned by, {|0),|1)}, which forms a complete orthonormal basis for the two dimensional
Hilbert space. The density operator for any state in this space can be represented by a 2x2
matrix of the following general form:
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However the unit trace and hermiticity condition of the density matrix reduces the matrix
which is characterised by only two variables. The first condition of unit trace gives,

d=1-a, (7.2)
and the hermiticity condition reduces to the condition
c="b". (7.3)

This parametrizes the density matrix by the complex number b and the real number a.
Thus the matrix finally takes the form

Now using the positivity condition one can further write:
lp—=M|=0 = X —(Trp)A+|p|=0. (7.5)

To consider only the contribution from the non negative eigenvalues we further use the
normalization condition as given by:

Tr(p) = 1. (7.6)

Using this constraint condition we can determine the two possible solutions for the eigen
values:

1
e =5 (11— 4]p) > 0. (7.7)

This parametrization requires only three variables and thus it can be embedded in three
space time dimensions. Thus it is useful to represent the reduced subsystem density matrix
in a more useful basis. Recalling that the Pauli matrices together with the identity matrix
forms a complete set of orthonormal basis for the space of 2x2 matrices, any qubit density
matrix can therefore be written in terms of the identity matrix and the Pauli matrices and
is represented by the following expression °:

p(1) = % (I + Zvi(T)O'i> = % [I 4+ v(T)- 0] (7.8)

where v is called the Bloch vector. The above representation of the density matrix ensures
unit trace or the appearance of positive eigen values. In this context, the positivity criteria
can be explicitly observed by the following expression:

1
ol = (1= IvIP) (7.9)
which gives the following eigenvalues:

1 1
Ao = S (1% V/VIP) = (1% [Iv]]) > 0. (7.10)
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Bloch Sphere Representation of Density Matrix

10) :
Az Pole states:
Y pole
oy — Loy 4
li+) = ﬁ(l0)+ 1))

. 1 .
li—) = 7§(|0> — 1))

X pole

1

xT [+) = EUO) + (1))
1

=) = ﬁﬂo) — 1))

1)

0) - [1)

(a) Bloch sphere representation of density matrix.

\
%~
-

% -
-
~—
4

(b) Bloch sphere representation of a quantum (c) Bloch sphere representation of a quantum
state pointing in any arbitrary direction. state in terms of linear combination of two states
pointed along particular direction.

Figure 3. Bloch sphere representation of an arbitrary quantum state and density matrix.
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Here ||v|| represents the norm of the Bloch vector, v. To find a condition on the
lengths of the Bloch vectors to yield finally pure or mixed states we need to actually calculate
p? which is given by the following expression:

2(r) = i 1+ 2v(r) -0+ (v(r)-0)?] . (7.11)

Now further taking the trace of the square of the density matrix, yields:

Tr [2(r)] = % (14 [o]?) > 0. (7.12)
From the above equation it is clear that unit Bloch vector will makes the trace of the square
of the density matrix is equal to unity which is the condition for getting a pure state from
this calculation. Bloch vectors of length less than unity will yield mized states from this
calculation.

Figure 3(a), represents a Bloch sphere, which is basically a geometric collection of all
Bloch vectors which describes valid qubit density operators. It means that the sphere is of
radius unity. Any vector touching the surface of the sphere represents a pure state and any
vector lying in the interior of the sphere represents a mixed state. It is also shown in the
figure that the Z-pole is written in terms of the basis vectors Z == {]0),|1)} which forms
a complete basis for the two dimensional Hilbert space. Any vector lying on the X-pole
and the Y pole can be expressed in terms of the X = {|+),|—)} and Y = {]i+), |i—)} basis
vectors, which are clearly written in the figure 3(a).

In figure 3(b), we have depicted schematically a quantum mechanical state pointing
in any arbitrary direction in terms of the Bloch sphere. In figure 3(c), we have actually
expressed two different quantum states as a linear combination of two other state vectors
pointed along particular direction.

8 Time evolution of the reduced subsystem density matrix

The density matrices for Atom 1 and Atom 2 are given by following expressions in the
Bloch sphere representation:

Atom 1:  py(r) = = (1 + Zai(f)m) _ % [ +a(r) o] (8.1)

Atom 2 : p2(T) = % ([ + ij(T)Uj) = % [I+b(r)-0]. (8.2)

5In the context of two atomic OQS density matrix of the each atom can be represented by this expression.
However, instead of choosing the o;Vi = 1,2,3 we actually choose the transformed basis, o;Vj = 4, —, 3.
This is very useful in the present computation as it reduces the number as well as the complicated structures
of all the coupled differential equations arising from the GSKL master equation.
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Since the two atoms are initially not entangled, the density matrix for the system can be
written as the direct product of the two individual density matrices i.e.

pSystem(T> =M <T> ® p2(T)

00®00—|—Zb 00®0J+Zaz JZ®00—I—Zaz T)o; ®oj| . (8.3)

Jj=1 3,j=1

a;(7) = ao(7) vV oi=1,2,3, (8.4)
b;i(T) = ag;(7) vV j=12.3, (8.5)
ai(T)b; (1) = a;(r) VY 1,5 =1,2,3. (8.6)

Using these definitions the density matrix pgystem(7) for the reduced subsystem can be
re-expressed as:

og & 0o + ZCLOZ'(T)<O'O (%9 O'i) + Z aio(T)(O'i X O'(]) + Z CLOZ'(T)<O'Z' X O'j)

1
PSystem (7—> = Z
=1 =1 4,7=1

(8.7)
In the new transformed basis i.e in terms of o, o_ and o3 basis psystem(7) can be written
as:

+ ) (M) om@00)+ D amn(7)(i®05)| . (8.8)

In this new basis the reduced subsystem density matrix, in terms of the Bloch vectors can
be explicitly written as:

1 + aps + asg + ass 0 0 g+
") 1 0 1 —aps + azp — ass ay_ 0
PSystem\T) = —
' ! 0 a4 1+ ap3 — azp — ass 0
a__ 0 0 1 — ag3 — asg + ass

where the Hermiticity and Tr(psystem (7)) = 1 property of the density matrix has been used
to find the matrix elements explicitly.
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8.1 Large Scale time dependent solution

Solving the master equation in the new basis i.e. o, o_ and o3 basis in the large time limit
(1 = 00) we get the following solution for the components of the density matrix as given
by:

aoz(00) = agp(00) = —tanh(rkw), (8.10)
ass(00) = tanh?(7kw), (8.11)
a4+4(00) = a__(o0) =0, (8.12)
at—(00) = a_t(o0) =0, (8.13)

where all other Bloch vector components are zero.

We can get the large time reduced density matrix from the above solution, which can
be expressed as

1
psystem(oo) = Z [O'[) X oNy) + (log(OO)(O’o X 0'3) + ago(oo)((fg X 00) + Cl33(00)(0’3 X 0'3)}
1 + 2ag3(00) + ags(oo) 0 0 0
1 0 1 — ass(00) 0 0
=1 .(8.14)
0 0 1-— CL33(OO) 0
0 0 0 1— 2&03(00) + CL33(OO)
The large time behaviour basically demonstrates the equilibrium behaviour of the system.
Hence the solution of the Bloch vectors obtained in the large time scale is applicable in
any basis.These solutions can therefore be used as the boundary conditions for obtaining
the finite time solution of the density matrix. Writing the density matrix in terms of the
solutions of the Bloch vectors as,
(1 — tanh(mkw))? 0 0 0
1 0 1 — tanh?(rkw) 0 0
pSystem(OO) = Z (815)
0 0 1 — tanh?(rkw) 0
0 0 0 (1 + tanh(rkw))?

On the other hand, from quantum statistical mechanics one can compute the expression for
the density matrix at finite temperature and large time limit, which is given by the following
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expression:

e*,BHSystem
pSystem(OO) = Tr((gfﬂHsystem)
(1 — tanh (%w))2 0 0 0
0 1 — tanh? (2« 0 0
_ i (%) .(8.16)
0 0 1 — tanh? (%M) 0
0 0 0 (1+tanh(%w))2

Comparing Eq (8.57) and Eq (8.16), we obtain the following result:

1 1 1 3
r= 8 T omk 2mv/a? —r?’ where o= \/; -0 (817)

which physically represents the equilibrium temperature of the thermal bath at large time
scale.

In ref. [27] we have explicitly shown that the temperature of the thermal bath can be
computed in terms of the Gibbons Hawking temperature and Unruh temperature, which can
be expressed as:

1 r2 /3
T = \/TéH + TIQJnruh = % 1+ m, where a = K > 0. (818)
Here Gibbons Hawking and Unruh temperature is defined in the present context as:
Tom = — (8.19)
GH ™ ora’ '
a r
TUnruh = — = Tgp—=. 8.20
vara = 5 = Tan——— (5.20)

Here a is the acceleration, which is defined as:
1
a=21Tgg—F———= = ———. (8.21)
o

Now, we know that in static patch of the De Sitter space|28, 29| the curvature is determined
by the following expression for the Ricci scalar:

12 /3
R= 2> 0, where a= N 0. (8.22)

Consequently, the equilibrium temperature of the thermal bath can be re-expressed in terms
of the curvature of the static patch of the De Sitter space as:

1
. _ _ . 8.23
B2tk oo (1) —r2 21 /12 — Rr? (8.23)
R
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Similarly, the Gibbons Hawking and Unruh temperature can be re-expressed in terms of the
curvature of the static patch of the De Sitter space as:

VR
Ton = = (8.24)
a \/ET’

Tomeah = — = ToH—————.

In this context, one can consider the following limiting situations:

(8.25)

1. Flat space limit:
Flat space limit is characterised by the following condition:

R—-0,—a—o00,— Teu,Tunrun 7 0,—=T1T - 0,—k > 00 =k >> L.
(8.26)
Here L represents the Euclidean distance between the two atoms. In this case, we will
get back the result obtained in the Minkowski flat space inertial case where k >> L.

2. Zero acceleration limit:
The zero acceleration limit is characterised by the following condition:

In this case, we will get back the result obtained in the limiting case where k << L.

8.2 Arbitrary time dependent solution

To obtain the finite time solution of the Bloch vector components we use the o, o_ and o3
basis. Substituting the components of the density matrix in the GSKL master equation in
this new basis, we obtain the following sets of evolution equations for the Bloch vectors:

. 1 1, - .
a03(7) = (A + A (s —a ) + (A = AP)(ary —a )

+ %(B” + B*1)(ay_ +a_,) + 4iB> (8.28)

dos(r) = (A% 4 A0y —a_ )+ 5(A7 + A (a0 —a )
i
2
ari (1) = (A2 + A% (ags + asy) + ias, (B + B?) 4 2wa,y + 24%%a,_ +24%a_

+ 242 (ags — agy — 2as3) + 2AY2 (—ags + aso — 2ass) (8.30)
ay_ (1) = i(—=B + B®)(asy — ags) + ia1a(B'" — B*) + 2iB*' (a3 — aso + 2ass)

— 2iB"(ag3 — aso + 2as3) + 2A%a__ +24%a,,  (8.31)
a_ (1) = i(B* — B®)(ags — aso) + iag (—B'" + B*) — 2iB* (ag3 + aso + 2as3)

— 2iB"(—ag3 — asp + 2as3) + 2A"a, . +24%a__ (8.32)
a__ (1) = (A2 + A?Y)(—ags — aso) + ia__(B™ + B?) 4+ 2wa__ +2A%a_, +2A%a, _

+ 242 (ags — agy — 2as3) + 2AY2(—ags + asy — 2ass) (8.33)

as3(1) = —(A? + AMYayy — (A% + A)a__ 4 4iB"ags + 4iB%as (8.34)

+ (B2 + B")(a;_ +a_,)+ 4iB" (8.29)
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In this paper, the above evolution equations have been solved in the limit 27xw > 1,along
with an additional condition on the natural frequency of the two identical atoms i.e restrict-
ing w, to take values such that coth(mkw,)=0.The first condition ensures that the factor
(1 — e 2™)~" appearing in A*? and B*? term of the GKSL matrix Ciajﬁ reduces to unity.
Similarly, in the above limit, the spectroscopic integrals representing the components H}j1

and H;? of the coefficient matrix becomes zero. For more details see Appendix .

For the explicit functional form of A*? and B*® and the integral representation of A;
and B, please refer to the Appendix G.1 and C.2. In the above mentioned limit, the

evolution equations of the Bloch vectors reduces to the following sets of equations:

ao3(T) = 4By + Ajayy + Bsay + Bsa_y — Aja__
aso(7) = 4By + Aja,y + Beay— + Bya_y — Aja__
a4 (1) = 4A1003 + 4A1a30 + 2wayy
ay (1) = Daags — Doagy — 4Bsas
a_ (1) = Daags — Daagg — 4Bsags — 4Baasg

(7)

(

Al(a}) — %(AH +A21)
Dy(w) = i(B*? — B*")
By(w) = iB" = iB%
B (w) = iB" = iB?

8.3 Solution of the evolution equations

The following sets of equations are the finite time dependent solution of the Bloch vector

components:

— O 1@ fi(w) +C fz(w)TM C fa(w)TM
as(7) = G Ty YO I e By T B 1 By
_cehtor_ W) o per W) o g B@)
azo(T) 1€ (B, + By) + Cae 1B, + By) + Cze 1(B1 + By)

_ 2wT Ji(w)T —2f1(CU)A1 (f12<LU> + 12B22)
a44(7) = Cye™" + Che ((—2w + [1)(B; + B,) + 4A,(B; + Bs)

| )T < —2fo(w) Ay (f3(w) + 12B§)
(—2w+ fo)(Bi + Ba) ~ 441(By + Bs)
1 efsl)r ( —2f3(w)A (f3(w) +12B3)
(2w + f3)(B1+ Ba) ~ 4Ai(B; + Bo)

B
ay (1) = —C5 - <—Bl fBg') (CLelt 7 4 CoeP T+ G )

2B
a_+(7-) = Cs — (&T%) (C’lefl(w)T + Czefz(w)r + C3ef3(w)7')
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2A fi(w)r J2(w)T
CL__<T> — 04620.)7' . 1 (lel(w)e CQfQ((U)@ +
Bl + B2 —2w + fl —2w + f2
f3(w)T
—2w + f3
ass(1) = (06 + Olefl(w)T + C2ef2(w)7 + C’sefa(w)q—) (8.52)

where C; Vi = 1,6 are arbitrary constants which can be determined from the boundary
conditions i.e the equilibrium behaviour of the Bloch vector components already obtained
in the previous section.

In the above sets of equations fi(w), fo(w), f3(w) can explicitly be written as:

filw) = —2w(A1(w))* + (A1 (w))? — 24wB3 + A (w)(—16AF(w) + 12B3(w)) (8.53)
fa(w) = —20(Ag(w))? + (A2(w))” — 24wB3 + Ag(w) (1647 (w) + 12B3(w)) (8.54)
f3(w) = —2w(A3(w))* + (A1(w))? — 24wB3 + As(w)(—16AT(w) + 12B5(w)) (8.55)

where Aj(w) is real and As(w), As(w) are complex whose explicit forms are written in
Appendix J.

The very basic assumption underlying the derivation of the solution of the evolution
equations, is that the two atoms mimicking the role of the Unruh De-Witt detectors are
identical. This assumption plays a very significant role which can be understood from the
density matrices of the individual atoms.

The density matrices of the individual atoms are written below:

1 1 + CL30(7’) 0
Atom 1 : p(m) =35 (8.56)
0 1-— asp (7')
1 1+ CL03(T) 0
Atom 2 : pa(T) = 5 (8.57)

0 1-&03(7’)

A look at Eq. 8.46 and Eq. 8.47, shows that both the solutions are identical which indi-
cates that the density matrix of the individual atoms are equal as it should be to justify the
assumption of having identical atoms. If the two atoms are considered to be non-identical
then these two atomic density matrices would not have been equal and have different struc-
ture.

8.4 General solution

In this section the arbitrary constants are determined using the equilibrium behaviour as the
boundary conditions which are already mentioned in equation 8.10. From the appearance
it might seem that the function /) diverges as 7 tends to infinity but it can be explicitly
shown that the function fj(w)(l = 1,2,3) < 0, taking into account the leading order term in
A, which is a decaying function. Hence the function, e”)7 tends to a finite value, which we

— 24 —



denote by f;(w)7’. Hence the physically acceptable solutions which satisfies the boundary
conditions are given by the following simplified expressions:

aos(1) = — |:gl(w)€_|f1(w)|(T—T')% +g2(w)e—|f2(w)<7_7f)%
- g3(W)e_|f3(w)|(T—T’)%:| (8.58)
aso(1) = — [gl(w)eafl(w)ur-m% + p(w)e”! fz(w)(f_ff)%
+ g3 (w)elfsw)(”')%} (8.59)
sty S
+¢ha@elhwouw>(_(zuﬂfiﬁ?é?+l%> ﬁajgjiii%)

2| f3(w)] A f3(w) +12B;3
(2w + | fs])(Br + Ba) | 4A,(By + BQ)>(8'6O)

B ) /
a4-(7) = —g5(w) - <ﬁ) (gl((A)>6_|f1(w)|(7'—7') + go(w)e @IT=T)
1 2
+ 93(w)6_‘f3(W)|(7'—7’,)|) (861)
28 , /
G/—-i-(’r) = 95(W) — (ﬁ) <gl(w)6_|f1(w)‘(7—7’) +g2(w)€—|f2(UJ)‘(T—T)
1 2
+ gy(w)e BT (8.62)
() 24 {gl(W)lfl(W)lefl(“)'(”/) | 92(w)] fo(w) e
a__\17) = —
BI+BQ 2w+|f1| 2w+|f2|
g3<o.j)‘f3(w)’6_|f3(w)|(7'—7")

+

T L

as3(7) = gs(w) + g1 (w)e—lfl(w)l(f—f’) + gQ(w)e—lfz(w)\(T—T’) + gg(w)e—lfza(W)\(T—T’) (8.64)

where the explicit functional forms of g;(w) Vi = 1,---,6 are given in Appendix J and
the constant C} is zero which is consistent with the given boundary condition. Using these
solution the variation of the Bloch vector components with respect to various parameters
are plotted in fig. 4, fig. 5, fig. 6 and fig. 7.

Using these solution our next objective is to compute various entanglement measures
from the present OQS set up. The various entanglement measures which are most commonly
used nowadays in the context of quantum information theory are listed in the figure 8.4.
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Time dependence of the co-efficient ags(t)
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Figure 4. Dependence of the Bloch vector components on Time is shown here
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Frequency dependence of the co-efficient ag3(w)
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Figure 5. Dependence of the Bloch vector components on frequency is shown here.
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Euclidean distance dependence of the co-efficient ag3(L)

Euclidean distance dependence of the co-efficient az3(L)
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shown here.
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k dependence of the co-efficient ag3 (k)
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Figure 7. Dependence of the Bloch vector components on k is shown here
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Figure 8. Chart showing various entanglement measures used in the context of quantum informa-
tion theory.

9 Von Neumann Entanglement Entropy

In the context of quantum statistical mechanics and quantum information theory Von Neu-
mann entropy plays the role of extended version of classical Gibbs entropy. It actually
measures the amount of quantum entanglement for a subsystem or reduced system of a
bipartite quantum system.

In the present context, for the two atomic subsystem, which we have obtained after
partially tracing over the bath degrees of freedom the Von Neumann entanglement entropy
is defined in terms of the reduced density matrix (psystem) as:

S(pSystem) = —Tr [pSystem In (pSystem)] . (91)

For the OQS under consideration, the Von Neumann entanglement entropy satisfies the
following criteria, which are very useful to know about the underlying physics of the OQS
under consideration:

1. It is expected from our present OQS set up that the measure of Von Neumann en-
tanglement entropy is non zero because our subsystem, which we have obtained by
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partially tracing over bath degrees of freedom, is described by mixed states. We know
from quantum statistical mechanics that for a mixed state, the Von Neumann measure
of entanglement entropy is non zero, which is true for our set up as well. Conversely,
if the subsystem can be characterised by pure quantum mechanical states ,in such a
situation the entanglement measure is zero. Since in our set up we are dealing with
pure quantum mechanical states as we have assumed no correlation initially, we get
zero entanglement measure from our computation. But during time evolution of the
subsystem it becomes more correlated and consequently pure state transforms to a
mixed state, for which we get a saturation but non-zero value of the Von Neumann
entanglement entropy.

. In the context of OQS, one can construct a unitary operator U such that the Von
Neumann measure of entanglement entropy is invariant under a unitary similarity
transformation on the subsystem reduced density matrix, which technically implies:

PSystem — Z/[pSystemZ/{Jr = p/System‘ (92)

Consequently the Von Neumann measure of entanglement entropy transforms under
the above mentioned unitary similarity transformation as:

S(p/System) = _Tr(p,System In p,System) (93)
= —Tr (L{psystemL{T In (upSystemuT) )
—TT(PSystem In PSystem)

S(pSystem)

. In our prescribed OQS setup the reduced subsystem density matrix can be written
in terms of the tensor products of two atoms. Consequently, the Von Neumann en-
tanglement measure for the reduced subsystem can be expressed as a sum of the con-
tributions from the two independent and identical atoms. Technically this statement
can be expressed as:

PSystem = P1 ® P2 (94)

where p; and py are the density matrix for Atom 1 and Atom 2 respectively. Con-
sequently, for our set up one can explicitly show that:

S(psystem) = S(p1 ® p2) = S(p1) + S(p2) (9.5)

. In quantum information theory, Von Neumann entanglement measure is treated as
the quantum generalized version of Shannon entropy. In classical measurement, the
Shannon entropy is treated as a natural measure of our ignorance about the properties
of a subsystem under consideration, whose physical existence is actually independent
of measurement on that system. In general, one can use the concept of Borel functional
calculus to compute a non polynomial function such as In(pgystem), Which is explicitly
appearing in the expression for the Von Neumann entanglement measure. Now, if the
non- negative reduced density operator pgystem acts on a finite dimensional Hilbert
space, which has eigenvalues \;Vi = 1...n (Here n represents the finite dimension of
the Hilbert space), in that case In(psysiem) can be expressed as an operator which has
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the same eigenvectors but the eigenvalues will be modified as, In(\;)Vi = 1..n. In
this situation, the generalization of Quantum Shannon entropy or the Von Neumann
entanglement measure can be written as:

S(pSystem) =-Tr [pSystem In (pSystem>] = Z )\z ln()‘Z) (96)

This idea can be extended for the infinite dimensional Hilbert space as well. In that
case, the reduced density matrix for the subsystem can be expressed in terms of
spectral resolution, which is defined as:

PSystem — / A dP)\, (97)
0

where dP) represents the Haar measure of the eigen values. Consequently, the Von
Neumann entanglement measure for an infinite dimensional Hilbert space can be ex-
pressed in terms of spectral resolution as:

S(pSystem) - _Tr(pSystem In IOSystem> = _/ Aln A dP)\ (98)
0

5. Additionally, it is important to note that, for mixed states the Von Neumann entan-
glement measure computed from the reduced density matrix for the subsystem is not
the only reasonable measure of quantum entanglement. For this reason, in this paper
we study the role of other quantum entanglement measures, which are commonly used
in the context of quantum information theory. For more technical details see the next
subsections.

9.1 Bloch sphere representation of Von Neumann Entropy

In terms of Bloch vectors it can be explicitly shown that the Von Neumann Entropy takes
the following simplified form:

1

=1

[8In2 — (a— B)In(a — B) — (a+ B) In(a + B)
—(m=y)In(n—7v) — 0 +v)In(n+~)], (9.9)

where in the above expression the symbols «, [, 7, n have been used to represent the
following terms:

a=1-—ass(7) (9.10)
n =1+ as(7) (9.11)
B = \Jady(r) = 2an(rasn(7) + a&(7) + a_s(T)ar—(7) (912)
7= /() + 2aun(T)an(r) + @y (r) +a_—(T)as(7) (913)
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9.2 Von Neumann entropy from OQS of two entangled atoms

In the context of two entangled atoms relevant to our OQS it can be seen from the solution of
the Bloch vector components that ags(7) and asy(7) has the same form i.e. ag3(7) = aso(7).
So in that case the Von Neumann entropy can be written as:

S = i [8 In 2—(@—5)1n(a—§> —(Oz~l—g)ln<a—|—§>
— (=) In(n—7) = (n+7) In(n+7)], (9.14)

where we have introduced two new functions, B and 7, which are defined as:

6 = /BTWO atom — CL_+(T)(I+_ (T), (915)
7 = YTwo atom = \/46133(7) +a__(1)ay, (7). (9.16)

Here all of these time dependent coefficients ag3(7), a_1(7) , ay_(7), a__(7), ay4(7) and
as3(7) have explicitly been computed for the two atomic OQS in the previous section.

To physically analyse this result we have plotted the behaviour of the Von Neumann
entropy from the present two atomic OQS set up with respect to different useful parameters
present in the theory.

In Fig. 9(a), we have explicitly shown the behaviour of Von-Neumann entropy of our
two atomic OQS set up in De Sitter space with respect to rescaled time T by keeping all
other parameters fixed. Here T is defined as the time difference, T' = 7 — 7', which is very
useful for further analysis. Here 7 is the usual time scale and 7 is the time scale where the
equilibrium boundary condition is imposed. We have normalized the entropy with the result
obtained from 7' = 10* i.e. we always compute S(T")/S(T = 10*). We consider both small
and large time scale limiting situations to understand the underlying physics. It is clearly
observed that initially the value of entropy is almost zero implying that our two atomic OQS
set up do not show any signature of quantum entanglement. This is consistent with our
assumption that initially there is no correlation and the quantum states being represented
by pure states only. As time goes on, the sub-system gets more and more entangled due to
more correlation and at a late time scale, it almost saturates to unity after normalization,
which is the maximum value of the entropy for our system. The late time scale behaviour is
also consistent with the prediction from the present system i.e. as time goes on the system
is represented by mixed quantum states due to getting more quantum correlation.

In Fig. 9(b), we have explicitly shown the behaviour of Von-Neumann entropy of our
two atomic OQS set up in De Sitter space with respect to frequency |w| by keeping all
other parameters fixed. We have normalized the entropy with the result obtained from
lw| =5 x 1072 i.e. we always compute S(w)/S(w =5 x 1072). We consider both small and
large frequency scale limiting situations for our analysis. It is clearly observed that initially
for a finite frequency scale, the value of entropy is almost constant showing entanglement
due to the appearance of mixed quantum states. As frequency is further increased the value
of entropy decreases implying reduction in entanglement and when it gets close to |wp| the
value of entropy is almost zero indicating that the joint density matrix of our subsystem
becomes separable as in that case it is described by pure quantum mechanical states.

In Fig. 9(c), we have explicitly shown the behaviour of Von-Neumann entropy of our
two atomic OQS set up in De Sitter space with respect to Euclidean distance L by keeping
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Figure 9. Normalized Von Neumann Entanglement entropy variation with various parameters is

shown here.

all other parameters fixed. We have normalized the entropy with the result obtained from
L = 10" i.e. we always compute S(L)/S(L = 10%). We consider both small and large
length scale limiting situations for our analysis. It is clearly observed that initially there are
some fluctuations with increase in entropy for small length scale. However, the maximum
value of the fluctuation implies the maximum value of the entangled entropy one can obtain
once we want to analyse the behaviour with respect to the Euclidean distance L. This is
because at small L value the quantum states are dominated by pure states and there is no
corresponding quantum correlation. But as the distance between the two atoms increases,
the subsystem gets entangled to a maximum value close to 1. With further increase in
distance, there is no change in entropy implying that the correlation between the atoms in
our OQS set up is maximum and the corresponding quantum state is dominated by mostly

— 34 —



mixed states.

Further in Fig. 9(d), we have explicitly shown the behaviour of Von-Neumann entropy
of our two atomic OQS set up in De Sitter space with respect to the parameter x by keeping
all other parameters fixed. We have normalized the entropy with the result obtained from
k le. we always compute S(k)/S(k = 1). We consider both small and large x scale
limiting situations. We know that the curvature of static patch of the De Sitter space can
be expressed in terms of the parameter x as:

12 12 12
R=—=———-=~— for k=va?2-—rixa>>r, (9.17)

oa? k2412 K2

l

which implies we actually have considered both flat and static De Sitter space by varying
the parameter . It is clearly observed that initially there are fluctuations in entanglement
entropy with increase in the value of k. However, the maximum value the fluctuation implies
the maximum value of the entangled entropy one can obtain once we want to analyse the
behaviour with respect to the parameter . This is because at small k or non-zero effect of
curvature value the quantum states are dominated by mixed states and the corresponding
quantum correlation is non zero. With further increase in the value of the parameter x,
the entanglement entropy remains constant and very very small implying almost getting no
quantum correlation and described by the pure quantum states for the large values of x,
which corresponds to the flat space time situation.

10 Re'nyi Entropy

Re'nyi entropy is a generalisation of various information theoretic measure which quantify
randomness of a quantum mechanical system. The Re'nyi entropy can be expressed in terms
of Hartley function as:

SQ(pSystem) = In Tr[(pSystem)q] = Hq(pSystem)7 q Z 07 q 7& 1 (101)

where ¢ is known as the Re/nyi Index.
In general, the Hartley function of order ¢ satisfy the following characteristics:

1. If we consider the limiting situation at ¢ — 1, then Hartley function or the corre-
sponding Re'nyi entropy can be written in terms of the Von Neumann entanglement
as given by:

lim Sq (pSystem) = (111_13} ,Hq (pSystem> = lim In Tr[(pSystem)q]

q—1 =11 — q
= _Tr(pSystem In pSystem) = S(pSystem)- (102)

2. For ¢ = 0 the Re'nyi entropy can be interpreted as the Hartley entropy of the quantum
system as:

So(psystem) = In Tr[(I)] = Ho(psystem), (10.3)

3. For ¢ = 2 the Re'nyi entropy can be interpreted as the Collision entropy of the
quantum system as:

Sa(psystem) = — In (Tr[(Pystem)]) = Ha(psystem); (10.4)
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4. If we consider the limiting situation ¢ — oo, the Re'nyi entropy can be interpreted as
the Minimum entropy of the quantum system which is expressed as:

qlggo Sq(psystem) = qlgf}o 4

In Tr[(psystem)?] = thglo Hq(psystem) (10.5)
5. If all the Hartley functions are individually computed for all positive Re/nyi indices
then it can be shown that the following inequality holds:

HO (pSystem) > Hl(pSystem) > HQ (pSystem) > Hoo(pSystem) (106)

Re/nyi entropy is a more general concept which contains the total spectrum of the
reduced density matrix of the subsystem under consideration. However, using this concept
the underlying connection between the fundamental aspects of quantum field theory and
bulk holographic space time have not been understood well. It is a very well known fact that,
in the context of quantum field theory, the Re'nyi entropy can be computed by considering
the Euclidean time scale instead of using Lorentzian time, which can be obtained by Wick
rotation and inserting a conical type of defect around the entangling surface ¥ = 0A. In
such a physical situation, the Re/nyi entropy can be explicitly expressed in terms of the
Euclidean partition function, Z, of the geometry under consideration during entanglement
with a conical excess of the order of 27(q — 1) across the entangling surface ¥ = 0.A:

1
Sy = - InZ, —qlnZzy]. (10.7)

Here ¢ is the Re/nyi index, which physically represents the number of replicas considered in
the present context. To interpret this result more clearly here one can consider a specific
example, where the thermal partition function is computed on 7—[? = S x HP~! which is
described by the following metric:

dsig = dr? + du® 4 sinh*udQ%_,, with 7 ~ 7+ 2mq. (10.8)

Here we have considered the compatification around Euclidean time 7. In this situation,
the partition function can be written as:

Zy="Tr (e ™) | (10.9)

where H, is the Hamiltonian that can generate the translation along S* and is identified as
the Modular Hamiltonian in the present context. In particular, we get the following result
for the Re/nyi entropy from this computation:

S, = 1_iq [In (Tr (e2H7)) — qln (Tr (e 27))] | (10.10)

where H, can be computed from the following expression:

H, = d’ 'tz /=g T, (10.11)

HD-1
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Here T, is the stress tensor at the boundary. Then it can be shown that around ¢ = 1 one
can expand the Re'nyi entropy s, as given by the following expression:

O e, o

(n+1) connected correlations

= (-1
Sq:<HT>1+11121+27TZ( )
n=1

which means that derivatives of S, with respect to the Re'nyi index ¢ can generate all
connected correlation functions of the Modular Hamiltonian H, in this case. However com-
putation of the Modular Hamiltonian H, for our problem is very complicated and also we
don’t have proper understanding on that in OQS set up.

On the other hand, insertion of conical singularity introduces UV divergence, which one
can regulate by introducing a lattice cut-off €5 and finally get back a finite result which is
far from the singularity. After introducing the cut-off one can compute the following general
result from the quantum field theory, as given by:

Cp— Cp—
Sq = DD2_(ZQ) + DD4_(4Q> + -+ Ceven(q) In€a + coq) + -+, (10.13)

N €A

where the logarithmic term is only appearing in the even dimensions. Here by considering
the analogy with the entanglement entropy one can interpret in the even dimensions, the
universal contribution in the Re'nyi entropy is the Inea containing term, which is charac-
terized by the coefficient ceven(q). On the other hand, in the odd dimensions the universal
contribution in the expression for the Re’ nyi entropy is given by the constant cy(q).

But in practical purposes for a given quantum field theory it is very difficult to compute
all of these coefficients appearing in the above expression. However, using the concept of
Re'nyi perturbation theory one can consider deformation in the reduced density matrix,
which can be applicable to any general quantum field theory prescription. This can be
shown explicitly that computations of correlation functions of the deformed quantum field
theory operators in the canonical space time can serve our purpose. See ref. [40]| for more
details on this issue.

10.1 Bloch sphere representation of Re'nyi Entropy

In terms of the components of the Bloch vectors the Re'nyi entropy can be represented as:

Sq(psystem) = In[47((a = B)1+ (a+ B)1 + (n =)'+ (n+7))7]  (10.14)

where the symbols used has already been defined in the earlier section.

10.2 Reé'nyi entropy from OQS of two entangled atoms

In case of our two atomic OQS set up the expression for the Re'nyi entropy reduces to the
following simplified form:

1
l—q
where the symbols used has already been defined in the previous section. It can be very

easily verified that in this context relevant to our OQS the Re'nyi entropy reduces to the
Von Neumann entropy in the limit q — 1.

Sy (Psystem) = In [4—q ((a _ B’)q n (a + B’)q S —A) "+ (g + '7“)‘1)] ,(10.15)
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Figure 10. Renyi Entropy (q —1) variation with various parameters are shown here.

In Fig. 10(a), we have explicitly shown the behaviour of Re'nyi entropy (q —1) of our
two atomic OQS set up in De Sitter space with respect to rescaled time 7T, which is already
defined in the earlier section. We have normalized the entropy with the result obtained
from 7' = 10* i.e. here we have analysed S, ,1(T)/S,-1(T = 10%) which is nothing but the
normalised Von Neumann entropy computed from our system. This also verifies the fact
that the result obtained for the Re’ nyi entropy from our two atomic OQS set up is perfectly
correct as in the ¢ — 1 limit it is able to produce the result obtained for Von Neumann
entropy in the previous section. We consider both small and large time scale limiting
situations.It is clearly observed that initially the value of entropy is almost zero implying
that our two atomic OQS set up do not show any signature of quantum entanglement. As
time goes on,the sub-system gets more and more entangled and at a late time scale, it
saturates to unity, which is the maximum value of the measure.
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In Fig. 10(b), we have explicitly shown the behaviour of Re'nyi entropy (q —1) of our
two atomic OQS set up in the static patch of De Sitter space with respect to frequency w.
We have normalized the entropy with the result obtained from w = 5 x 1072, It is clearly
observed that initially for a finite frequency scale,the value of entropy is almost constant
showing entanglement. As frequency is further increased the value of entropy decreases
implying reduction in entanglement and when it gets close to wy the value of entropy is
almost zero indicating that the joint density matrix of our subsystem becomes separable.

In Fig. 10(c), we have explicitly shown the behaviour of Renyi entropy (q —1) of our
two atomic OQS set up in the static patch of De Sitter space with respect to Euclidean
distance between two atoms L. We have normalized the entropy with the result obtained
from L=5000. 1t is clearly observed that initially there is some fluctuation with increase in
entropy for small length scale. But as the distance between the two atoms increases, the
subsystem gets entangled to a maximum value.

Further in Fig. 10(d), we have explicitly shown the behaviour of Renyi entropy (q —1)
of our two atomic OQS set up in the static patch of De Sitter space with respect to the
parameter . We have normalized the entropy with the result obtained from x = 5 x 10*. It
is clearly observed that initially there are fluctuations in entropy with increase in k. With
further increase in k, the entropy remains constant to negligibly small value implying zero
quantum entanglement.

In Fig. 11(a), we have explicitly shown the behaviour of Collision entropy of our two
atomic OQS set up in the static patch of De Sitter space with respect to the rescaled time
scale T. We have normalized the entropy with the result obtained from 7=100000. 1t is
clearly observed that initially the value of entropy is almost zero implying that our two
atomic OQS set up do not show any signature of quantum entanglement. As time goes on,
the sub-system gets more and more entangled and at a late time scale, it saturates to unity,
which is the maximum value of the measure.

In Fig. 11(b), we have explicitly shown the behaviour of Collision entropy of our two
atomic OQS set up in the static patch of De Sitter space with respect to the frequency w.
We have normalized the entropy with the result obtained from w = 5 x 1072, It is clearly
observed that initially for a finite frequency scale, the value of entropy is almost constant
showing quantum entanglement. As frequency is further increased the value of entropy
decreases implying reduction in entanglement and when it gets close to wy the value of
entropy is almost zero indicating that the joint density matrix of our subsystem becomes
separable.

In Fig. 11(c), we have explicitly shown the behaviour of Collision entropy of our two
atomic OQS set up in the static patch of De Sitter space with respect to the Euclidean
distance between two atoms L. We have normalized the entropy with the result obtained
from L = 10*. It is clearly observed that initially there is some fluctuation with increase in
entropy for small length scale. But as the distance between the two atoms increases, the
subsystem gets entangled to a maximum value. With further increase in distance, there is
no change in entropy implying that the quantum correlation between the atoms in our OQS
set up is maximum.

Finally in Fig. 11(d), we have explicitly shown the behaviour of Collision entropy of
our two atomic OQS set up in the static patch of De Sitter space with respect to k. We
have normalized the entropy with the result obtained from x = 1. It is clearly observed that
initially there are fluctuations in entropy with increase in k. With further increase in x, the
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Variation of S4(Renyi index,q=2) with Time Variation of S4(Renyi index,q=2) with frequenc
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Figure 11. Collision entropy variation with various parameters are shown here.

entropy remains constant to negligibly small value implying zero quantum entanglement.

In Fig. 12(a), we have explicitly shown the behaviour of Min Entanglement entropy of
our two atomic OQS set up in the static patch of De Sitter space with respect to the rescaled
time scale 7. We have normalized the entropy with the result obtained from 7' = 10*. We
consider both small and large time scale limiting situations.It is clearly observed that initially
the value of entropy is almost zero implying that our two atomic OQS setup do not show
any signature of quantum entanglement. As time goes on,the sub-system gets more and
more entangled and at a late time scale, it saturates to unity.

In Fig. 12(b), we have explicitly shown the behaviour of Min Entanglement entropy of
our two atomic OQS set up in the static patch of De Sitter space with respect to frequency
w. We have normalized the entropy with the result obtained from w = 5 x 1072. It is clearly
observed that initially for a finite frequency scale, the value of entropy is almost constant
showing entanglement. As frequency is further increased the value of entropy decreases
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Variation of S4(Renyi index->o) with Time Variation of Sq(Renyi index->w) with frequency

1! 1 1.00 - ]
0.010, ] 0901 ]
0.001, ] ! ]

10_4 I ] 0.80 - 4

Sq(Renyi Entropy)
Sq(Renyi Entropy)

10 50 100 500 1000 5000 10 108 105 102
T(Time) |w|(Frequency)
(a) Min entropy vs Time profile. (b) Min entropy vs |Frequency| profile.
Variation of Sq(Renyi index->o) with L Variation of S4(Renyi index->o) with k

Lor 1 1.00/

09/ -
s | 2
E » 0 0.95}
S o8 42
b w
5 S, 0.90
£ o7 £
g 2

[ ~

0 >

osl 0.85

1 10 100 1000 104 1 104 108 1012 1016 1020 1024 1028
L(Euclidean Distance) K

(¢) Min Entanglement entropy vs Euclidean distance (d) Min Entanglement entropy vs & profile.
profile.

Figure 12. Min entropy variation with various parameters are shown here.

implying reduction in entanglement and when it gets close to wy the value of entropy is
almost zero indicating that the joint density matrix of our subsystem becomes separable.

In Fig. 12(c), we have explicitly shown the behaviour of Min Entanglement entropy
of our two atomic OQS set up in the static patch of De Sitter space with respect to the
Euclidean distance between two atoms L. We have normalized the entropy with the result
obtained from L = 5 x 103. It is clearly observed that initially there is some fluctuation
with increase in entropy for small length scale. But as the distance between the two atoms
increases, the subsystem gets entangled to a maximum value.

Further In Fig. 12(d),we have explicitly shown the behaviour of Min Entanglement
entropy of our two atomic OQS set up in the static patch of De Sitter space with respect to
k. We have normalized the entropy with the result obtained from x = 5 x 10*. It is clearly
observed that initially there are fluctuations in entropy with increase in x. With further
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increase in k, the entropy remains negligibly small implying no quantum entanglement.

Variation of S5 with Renyi Index(a)
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Figure 13. Renyi Entropy variation with Renyi Index is shown here.

11 Logarithmic Negativity

Let us start with Peres-Horodeski criterion which is the necessary condition for the joint
density matrix of two quantum mechanical system A and B, to be separable. This is
sometimes called Positive Partial Transpose (PPT) criterion. This is mainly used to decide
the separability of mixed states, where Schmidt decomposition does not apply. Using this
criteria one can define Logarithmic Negativity which is an entanglement measure as:

En(psystem) = In[[p"*]], (11.1)

where, ||p%|| is the trace norm and is defined as:
[loall = Tx (\/ (pﬁ)T(/ﬂ)) =D =D N+ D N =2) [N+ 1=2N+1.(11.2)
7 Ai>0 Ai<0 <0
Then the Logarithmic Negativity can be recast as:

EN(pSystem) = IH(QN + 1) (113)

If we fix N = 0 then it represents no entanglement in the quantum system. For this non
entangled case one can write the system density matrix as:

PSystem — Z )\1,0;4 & pZB = pTA, (114)

where we define the sub system density matrix as:

Pl =1i)eqlil ¥V ¢=A,B with X >0. (11.5)
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For N # 0 which represents the non entangled case the system density matrix can be
expressed as:

PSystem = Z Cijur ([7) 44 (J]) @ (k) aa(l]) = Z Cijri(|g) aa(t]) @ (Jk)aa(l]). (11.6)

i,7,k,l i,7,k,l

So from this computation if we get negative eigen values for a quantum mechanical system
then we can say that the corresponding quantum states are entangled.

11.1 Bloch sphere representation of Logarithmic negativity

In terms of Bloch vectors it can be explicitly shown that the logarithmic negativity can be
written as:

17 1
Evlp) = |1 {24 20° a4 G- a4 n- )+t

N e R o ) e s )

17 ]
+ﬁ {2 + 2(’72 — a__a—i—-l-) + —(77 — Oé)(4 +n— a) + a2_+ + a%’__

2

A0 =) T (0~ PG —aars + (s a)}
17

1
+m {2 + 2(62 — a,+a+7) + 5(77 — @)(—4 + n— a) -+ CLQ__ + G?H-

VAT =) F (@~ EF —asar T Fa )}

17 1
+ m {2 + 2(52 —_ CL7+CL+—) + 5(?7 — Oé)(—4—i—7] — a) —+ CLZ,, + ai+

1/2
+V @3 —a) + (e —ay ))(A(B? —ayar + (e + a++)2))} }(11'7)
where the symbols «, 3, v, n have already been defined earlier.
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11.2 Logarithmic negativity from OQS of two entangled atoms

Ex(p) =In [100 {2+ 8agy) + ass(4 + 2ass) +a’ | + a7 _

1/2
_\/ (4 + 10ags + (a_y — ay_)2)(16a2s) + (a_s + a+)2)}

100 {2+8 ags) + ass(4 + 2ass) + a* n —l—onr

1/2
+ \/(4 + 10as3 + (a—y — ay—)?)(16a2; + (a_4 + a+_)2))}
{2 —+ CL33( 4 —+ 2@33) + a%f + ai+

@+ G+ (e — @ P (o Far )

{2 + ag3(—4 + 2a33) +a>_ +a’,

100

100
/(4 +6ags + (e — a1)?) (452 — a—pas- + (o + a++)2))}1/2] (11.8)

In Fig. 14(a), we have depicted the behaviour of Logarithmic Negativity of our two
atomic OQS set up in the static patch of De Sitter space with respect to the rescaled time
T. We have normalized the plot with the result obtained from 7 = 10* It is clearly
observed that initially the value of logarithmic negativity is almost zero implying that the
joint density matrix of our subsystem is separable and hence do not show any signature of
quantum entanglement. As time goes on, the sub-system gets more and more entangled and
at a very late time scale, it almost saturates to unity and show maximum entanglement.

In Fig. 14(b), we have depicted the behaviour of Logarithmic Negativity of our two
atomic OQS set up in the static patch of De Sitter space with respect to frequency w. We
have normalized the plot with the result obtained from w = 5 x 1072, It is clearly observed
that initially for a finite frequency scale, the value of log negativity is almost constant show-
ing entanglement. As frequency is further increased the value decreases implying reduction
in entanglement and when it gets close to wy the value of log negativity is almost zero
indicating that the joint density matrix of our subsystem becomes separable.

In Fig. 14(c), we have explicitly shown the behaviour of Logarithmic Negativity of our
two atomic OQS set up in the static patch of De Sitter space with respect to the Euclidean
distance L. We have normalized the values with the result obtained from L = 10%. It is
clearly observed that initially there is some fluctuation with increase in log negativity for
small length scale. But as the distance between the two atoms increase, the value almost
remains constant and thus the subsystem gets entangled. With further increase in distance,
there is no change implying that the quantum entanglement is maximum.

Finally, in Fig. 14(d), we have explicitly shown the behaviour of Logarithmic Negativity
of our two atomic OQS set up in the static patch of De Sitter space with respect to the
parameter k. We have normalized the values with the result obtained from v = 1. We
consider both small and large x scale limiting situations. It is clearly observed that initially
there are fluctuations in log negativity with increase in x. With further increase in s, the
value remains negligibly small implying no quantum entanglement.
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Variation of Logarithmic Negativity with Time

Variation of Logarithmic Negativity with Frequency
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Figure 14. Log Negativity variation with various parameters are shown here.

12 Entanglement of formation and Concurrence

Both of the measures studied in this section are used to quantify the resources needed
to create a given entangled state. Each of them are used as a entanglement measure for
bipartite quantum state in quantum information theory. The entanglement of formation for
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pure and mixed states takes the following form:

—Tr(palnps) = —Tr(pplnpg)  for pure state

Ef(p) =
inf (Z ijf(CI)j)) for mixed state
J

(12.1)

For mixed states the infimum is taken over all possible decompositions of the density
matrix p into pure states. The quantities used in the above equation are defined below:

pa =Trgp, pp="Trap, psystem = |P)(P| for pure state (12.2)
Ep(®;) = —Te(®;in®;),  psystem = Y _p;|®;)(®;|  for mixed state (12.3)
J

Relation between entanglement of formation and Concurrence can be written as:

1 + 1— CQ(ps s em)
Ef(pSystem) = g(O(pSystem)) =h ( \/ 9 yst (124)
Where h(x) is known as the Binary Entropy function which is defined as:
h(z) = —zlnzx — (1 —z)In(1 — x) (12.5)

Concurrence which is also an entanglement measure is studied here in the context of two
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Figure 15. Variation of the binary entropy function h(z) with x is shown here.

— 46 —



entangled atoms from the perspective of OQS. For X type states it is defined analytically

by the following expression:
C(pSystem) = max[O, >\1 - >\2 - )\3 - )\4]

where the \;’s are the square roots of the eigenvalues of the matrix:

\/\/ PSystem ﬁSystem V/ PSystem for Hermitian

\/ PSystem ﬁsystem for Non Hermitian

R

where psystem is the spin flip (Werner type) quantum states [44] given by °:

Psystem = (02 ® 02)p" (02 ® 02)
=[((o- —04)®(0- —04)p*(0- —04) ® (06— — 04))]

and pgystem in the above expression indicates complex conjugate of psystem-
The eigenvalues \’s follow the following sequence:

)\1 > )\2 > >\3 > /\4
and satisfy the following condition:

AM—A—A3— N >0

12.1 Bloch sphere representation of Concurrence

(12.6)

(12.7)

(12.9)
(12.10)

(12.11)

(12.12)

In terms of Bloch vectors,the eigenvalues (\;V i=1,4 ) of the matrix p mentioned in equation

12.9 can be explicitly written as:

1
1

/\221 M+ 2N
1 —
1

)\4:4_1 Uu-+2y

(12.13)
(12.14)
(12.15)

(12.16)

6Werner State: A Werner state is a d x d dimensional bipartite quantum state density matrix that is
invariant under all unitary operators of the form (U ® U). That is, it is a bipartite quantum state that

satisfies the following condition:
pap = U U)papUT 0 U,)

where for all unitary operators U acting on d-dimensional Hilbert space.
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Entanglement of formation vs concurrence
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Figure 16. Relation between the entanglement of formation and concurrence is shown here.

where we define M, N, U and V as:

M =1 — a2, + 2ap3a30 — a3g — 2as3 + asg +a_ a,_
N =a_ja4- — ajza_iai— + 200303004 Q4 — Q00—+ Q4
—2a330_ 4 Gy + Q350 ay
U =1—ad, — 2ap3a30 — a3y + 2az3 + a3, +a__a,
V = a__a44 — afga__aiy — 200303000y — G300 _(yy

2
+ 2a33a__a44 +azza__aqq

12.2 Concurrence from OQS of two entangled atoms

(12.17)

(12.18)
(12.19)

(12.20)

For the case of two entangled atoms relevant to our system the solutions of the Bloch vector
components agy and ap3 obtained are identical. Thus the eigenvalues A;, A2, A3 and \4 are

given by the following expressions:

Alzim
Y= [V IF
As—i\/m
M= VAT

(12.21)
(12.22)
(12.23)

(12.24)



where we define §, X', F and U as:

S=1-2a3+a3;+a_a;_, (12.25)
X =1—4daj, +2a33 +a3; +a__a,,, (12.26)
F = \/a_+a+_ —2as3a_y a4 +alza_jaq_, (12.27)
U= \/a,,a++ —4dadsa__a,y +2az3a__ay, +a*33a__a, . (12.28)

Therefore, using equation 12.6 the concurrence for two entangled atoms relevant to our
system can be calculated as:

C(psystem) = max {o, %1 (\/5 TOF VS 2F VX — U - VX + 2u)} . (12.29)

In Fig. 17(a), we have explicitly shown the behaviour of Concurrence of our two atomic
OQS set up in the static patch of De Sitter space with respect to rescaled time scale T'. We
have normalized the plot with the result obtained from 7" = 10000. It is clearly observed that
initially the value of concurrence is almost zero implying that the joint density matrix our
two atomic OQS set up is separable and shows no signature of quantum entanglement. As
time goes on, the sub-system gets more and more entangled and at a late time scale, it almost
saturates to unity which is obviously the maximum normalized value of the corresponding
entangled measure.

In Fig. 17(b), we have plotted the behaviour of Concurrence of our two atomic OQS
set up in the static patch of De Sitter space with respect to the frequency scale w. We have
normalized the values with the result obtained from w = 5 x 1072, It is clearly observed that
initially for a finite frequency scale, the value of concurrence is almost constant showing the
signature of quantum entanglement. As frequency is further increased the value decreases
implying reduction in the amount of quantum entanglement and when it gets close to wg the
value of concurrence is almost 0 indicating that the joint density matrix of our subsystem
becomes separable.

In Fig. 17(c),we have plotted the behaviour of Concurrence of our two atomic OQS set
up in the static patch of De Sitter space with respect to the Euclidean distance scale L. We
have normalized the values with the result obtained from L = 10%. It is clearly observed
that initially there is some fluctuation with increase in concurrence for small length scale L.
But as the Euclidean distance between the two atoms increase, the subsystem gets quantum
mechanically entangled. With further increase in the Euclidean distance, there is no change
in value implying that the entanglement between the atoms in our OQS set up is maximum.

Finally, in Fig.17(d), we have depicted the behaviour of Concurrence of our two atomic
OQS set up in the static patch of De Sitter space with respect to the parameter x which
is basically proportional to the inverse of the curvature of the background space time. We
have normalized the values with the result obtained from x = 1. It is clearly observed that
initially there are fluctuations in concurrence with increase in k. With further increase in
Kk, the value remains constant implying approximately zero quantum entanglement.
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Variation of Concurrence(C(p)) with Time Variation of Concurrence(C(p)) with frequency(|w|)
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Figure 17. Variation of Concurrence with various parameters is shown here.

12.3 Entanglement of formation from OQS of two entangled atoms

The explicit expression for the entanglement of formation in the context of two entangled
atoms relevant to our system the entanglement of formation is given by the following ex-
pression:

Eslp) = 3 (-1~ VI~ CF) o 5 (14 VI )

- (1 +% (—1 /1o C(p))) log [1 +% (—1 /1= C’(p))] (12.30)

The following section shows various plots of entanglement of formation calculated from
concurrence from our model.
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Figure 18. Variation of Entanglement of formation with various parameters is shown here.

In Fig. 18(a), we have explicitly shown the behaviour of Entanglement of formation
of our two atomic OQS set up in the static patch of De Sitter space with respect to the
time scale T', which we have defined earlier. We have normalized the values with the result
obtained from 7" = 10000. It is clearly observed that initially the value of entanglement
of formation is almost zero implying that our two atomic OQS set up do not show any
signature of quantum entanglement at initial time scale. As time goes on, the sub-system
gets more and more entangled and at a late time scale, it almost saturates to unity.

In Fig. 18(b), we have plotted the behaviour of Entanglement of formation of our two
atomic OQS set up in the static patch of De Sitter space with respect to the frequency w.
We have normalized the values with the result obtained from w = 5 x 1072, It is clearly
observed that initially for a finite frequency scale, the value of entanglement of formation is
almost constant. As frequency is further increased the value decreases implying reduction in
entanglement and when it gets close to wy the value of entanglement of formation is almost
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zero indicating that the joint density matrix of our subsystem becomes separable.

In Fig. 18(c), we have plotted the behaviour of Entanglement of formation of our two
atomic OQS set up in the static patch of De Sitter space with respect to the Euclidean
distance L. We have normalized the plot with the result obtained from L = 10* to explore
the underlying physics. It is clearly observed that initially there is some fluctuation with
increase in entanglement of formation for small length scale. But as the distance between
the two atoms increase, the subsystem gets entangled to a maximum value. With further
increase in distance, there is no change in the value implying that the quantum correla-
tion between the atoms in our OQS set up is non-local due to the existence of non-zero
entanglement.

Finally in Fig. 18(d), we have explicitly shown the behaviour of Entanglement of
formation of our two atomic OQS set up in the static patch De Sitter space with respect to
parameter x whicgh is inversely proportional to the curvature of the background space time.
We have normalized the plot with the result obtained from x = 1. It is clearly observed
that initially there are fluctuations in entanglement of formation with increase in k. With
further increase in k, the value remains constant with very small value implying negligibly
small quantum correlation.

13 Quantum Discord

It is a measure of non classical correlations between two subsystems of a quantum system.
It includes correlations that are due to quantum physical effects, but do not necessarily
involve the concept of quantum entanglement. Sometimes it is also identified as measure of
quantumness of correlation functions. If the two quantum states are separable then it does
not imply the quantum correlations.It is defined as

Da(psystem) = L(psystem) = Maxia T (g o) (13.1)
where mutual information Z(pgystem) is defined as:

I(PSystem) = S(pA) + S(PB) - S(PSystem)v (13'2)

where S(pa), S(pp) and S(psystem) represent the Von Neumann entropy of system A
(Atom 1), B(Atom 2) and the combined system respectively.

On the other hand, the part of the correlation that can be attributed to the classical
correlation, which is represented by, H?’]ﬁ;x(psystem), is defined as:

naTia (psystem) = S(pp) — IS (p5[117) (13.3)

Now we know that for any two qubit state the density matrix is given by the following
expression:

3 3
1
p= 1_1 <Ia®[b+2(aigi®[b+1a®bi0'i) + Z T‘ijai ®O’j> . (134)

i=1 i,j=1

Then the geometric measure of quantum discord is evaluated as:

D(p) = 3(llall +ITI = A (135)
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where a is the column vector, which is defined as:
a=(ay + as + az)". (13.6)

Also, the trace norm square is defined as:
lal2 = 3" a (13.7)

Here T = (t;;) is a matrix which one can compute for a specific quantum system and A,
is the largest eigenvalue of the matrix (aa’ + TT"). Here the superscript ¢ denotes the
transpose of the vectors or matrices.

13.1 Bloch sphere representation of Quantum Discord

The matrix 7" relevant to our system is given by:

a4y A4 0

a_y a__ 0 (13.8)

whereas the column vector a is given by:

0
a=1 0 (13.9)
aso
The norm of any matrix 7" is given by:
[|M|| = /Tr(MTM) (13.10)

Using the above definition, the square of the norm of the matrix 7" and the column vector
a relevant to the system studied is given by:

IT||? = a3 +a>_ +a>, +a’_+ai, (13.11)
la|[* = a3 (13.12)

The matrix (aa‘ + TT") for our case is given by:

ai, + ai+ a__ay + a_ + Ay 0
T=la a +a +ay @ +a2, 0 (13.13)
0 0 a3s + a3
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whose eigenvalues can be evaluated as

A\ = a3z + ags (13.14)
Ay = %(P - Q) (13.15)
Az = %(P + Q) (13.16)

where P and Q is defined as:
P=ad_+d,+ad_+ad,, (13.17)
Q= \/(—a2__ —at, —a?_—a?,)?—4(a* d}_ —2a__a_ja;_apy +a*_ad%)). (13.18)

13.2 Quantum Discord from OQS of two entangled atoms

It has already been mentioned in the earlier sections that the solution of the Bloch vector
components azy and agz are identical.

Thus the quantum discord for the two entangled atoms relevant to our system calculated
using equation 13.5 is therefore given by the following expression:

1
D(p) = ~ [a(2)3 + a§3 + Q] — Inax a(2)3 + a§37 -V Q- Q +VQ? — }

4
(13.19)
where the symbols Q and W are defined by the following expressions:
Q=a_ +a+—i—a+ +a? (13.20)
W =a’,a>_ —2a__a_ja;_asy +a’_da’.. (13.21)

For a given set of parameters the maximum eigenvalue is calculated and the following set
of plots is obtained by varying various parameters appearing in our model.

In Fig. 19(a), we have explicitly shown the behaviour of quantum discord of our two
atomic OQS set up in static patch of De Sitter space with respect to rescaled time 7. We
have normalized the values with the result obtained from 7" = 10000 for properly interpret
the obtained result from our model. We consider both small and large time scale limiting
situations in this context. It is clearly observed that initially the value of quantum discord
is almost zero implying that our two atomic OQS set up do not show any signature of
quantum correlations at initial time scale. As time goes on, the sub-system gets more and
more quantum mechanically correlated and at a very late time scale, it almost saturates to
unity, which implies the maximum measure one can obtain from our model to get quantum
correlation. Now as we have passed the test for Von Neumann entropy for our model i.e.
that this measure is non-zero then one can surely say that non-zero value of quantum discord
and Von Neumann entropy together imply the existence of quantum entanglement in the
context of our present model of discussion.

In Fig. 19(b), we have explicitly shown the behaviour of quantum discord of our two
atomic OQS set up in static patch of De Sitter space with respect to frequency w by keeping
all other parameters of the model are fixed. We have normalized the values with the result
obtained from w = 5 x 1072 to physically interpret the obtained result from this model more
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Variation of D,(Quantum Discord) with Time Variation of D,(Quantum Discord) with w
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Figure 19. Variation of the geometric measure of Quantum discord with various parameters is
shown here.

correctly and comprehensive manner. For better understanding the underlying physics we
consider both small and large frequency scale limiting situations. It is clearly observed
that initially for a finite frequency scale, the value of quantum discord is almost constant
showing maximum measure of quantum correlations obtained from quantum discord. From
this figure it is easily observed that, as frequency is further increased the obtained measure
of quantum discord decreases for our system implying reduction in quantum correlations
and when it gets close to wy the value of quantum discord is almost approximately zero
indicating no quantum correlation in our system.

In Fig. 19(c), we have shown the behaviour of quantum discord of our two atomic OQS
set up in the static patch of De Sitter space with respect to the Euclidean distance L. Again

— 55 —



like previous plots we have normalized the values with the result obtained from L = 10*
to explain the underlying physics from this system. We consider both small and large
length scale limiting situations. It is clearly observed that initially there is some fluctuation
with increase in quantum discord for small length scale. But as the Euclidean distance
between the two atoms increase, the subsystem becomes quantum correlated to a maximum
saturated value. With further increase in Euclidean distance between the two atoms, there
is no change in value implying that the quantum correlation between the atoms in our OQS
set up is reaches its maximum value.

Last but not the least, in Fig. 19(d), we have shown the behaviour of quantum discord
of our two atomic OQS set up in the static patch of De Sitter space with respect to the
parameter x, which is basically proportional to the curvature scalar or the Ricci scalar of
the static patch of De Sitter space. Like previous plots here also we have normalized the
obtained value of quantum discord with the result obtained from x = 10*. Similarly like
previously mentioned all the plots we consider both small and large values of the k scale
limiting situations to interpret the obtained result from our OQS set up . It is clearly
observed that initially there are fluctuations in quantum spectrum discord with increase in
the parameter x.With further increase in the value of x, the value remains constant implying
no change in quantum correlations which reaches its accessible stable very small value. This
further implies that the effect of quantum correlation is extremely small for the large value
of the parameter .

14 Non Locality from Bell CHSH inequality in De Sitter space

14.1 Non-locality in Quantum Mechanics

In this section, we describe the concept of non-locality which has wide applications in the
context of Quantum Mechanics. A physical theory is said to be non-local if observers can
produce instantaneous effects over systems which are far from each other. Non-local theories
depend on two basic effects: local uncertainty relations and steering of physical states at
a distance. In quantum mechanics, the former one dominates the other in a well-known
class of non-local games known as XOR games. In fig.(20(a)) and fig. (20(b)), we have
depicted the schematic process of the non-locality and steering and presented both of them
as very special aspects of quantum mechanics compared to the quantum entanglement and
quantum discord.

In particular, optimal quantum strategies for XOR games are completely determined
by the uncertainty principle alone. This breakthrough result has yielded the fundamental
open question whether optimal quantum strategies are always restricted by local uncertainty
principles, with entanglement-based steering playing no role. In ref. [45-49], the authors
provide a negative answer to the question, showing that both steering and uncertainty re-
lations play a fundamental role in determining optimal quantum strategies for non-local
games. This particular theoretical findings are confirmed by an experimental implementa-
tion with entangled photons.

Quantum non-locality, precisely the lack of a local realistic description of nature, can be
understood as the advantage that a set of parties have when executing common tasks (Bell’s
Inequalities) and using resources from quantum mechanics instead of classical mechanics. It
has been recently proven that the optimal strategies for any non-local task are a consequence
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(a) Schematic diagram showing Bell’s non-locality compared to quantum entanglement and
quantum discord.

Alice Bob
The Bloch sphere representation of the measurement situation

when Alice tries to steer Bob’s photon state ¥ to the least uncertain
state. It is achieved only when V||m, where m = (1 —p)fi+pfig.

(b) Bloch sphere representation of steering process from Alice to Bob.

Figure 20. Schematic diagram representing Bell’s CHSH non-locality in the static patch of De
Sitter space with Open Quantum System.

of two effects: the ability of parties to steer quantum states at a distance and the strength of
local uncertainty relations. Quite surprisingly, the complete dominance of the uncertainty
relation in determining the optimal strategy has been observed for a large class of non-local
tasks.

Also in ref. [45-49] the authors have addressed a fundamental question whether the
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two foundational pillars of quantum mechanics, namely its non-local correlations and local
uncertainty principle, are always in such inextricable quantitative correspondence with each
other. This work particularly provide - both theoretically and experimentally - an answer
to this very significant question. Here explicitly a non-local task is shown, for which the
full dominance of the uncertainty relation in determining the optimal quantum strategy
would lead to the violation of the Einstein rule of no superluminal signaling. It has been
proved that this task has the so called self-testing property (a unique quantum state and
measurements up to unitaries are necessary for its optimal violation) which allows us to test
the claim experimentally. The corresponding quantum optical experiment performed using
entangled quantum photons rules out the uncertainty relation supremacy in determining
the optimal quantum strategy for the task.

The respective discussions regarding non-locality in Quantum Mechanics are appended
below point-wise:

1. Non-locality provides a description of the apparent ability of objects to instantaneously
know about each other’s state, even when separated by large distances (potentially
even billions of light years), almost as if the universe at large instantaneously arranges
its particles in anticipation of future events.

2. Non-locality suggests that the universe is in fact profoundly different from our ha-
bitual understanding of it, and that the "separate" parts of the universe are actually
potentially connected in an intimate and immediate way. In fact, Einstein was so
upset by the conclusions on non-locality at one point that he declared that the whole
of quantum theory must be wrong, and he never accepted the idea of non-locality up
till his dying day.

3. Quantum non-locality is often portrayed as being equivalent to entanglement.Though
for a pure bipartite quantum state to produce non local correlations entanglement is
necessary, the existence of some entangled (mixed) states, which do not produce such
correlations and some non-entangled (namely, separable) states that do produce some
type of non-local behavior, can be shown. For the former, a well-known example is
constituted by a subset of Werner states that are entangled but whose correlations can
always be described using local hidden variables. On the other hand,reasonably simple
examples of Bell inequalities have been found for which the quantum state giving the
largest violation is never a maximally entangled state, showing that entanglement is,
in some sense, not even proportional to non-locality.

4. In short, entanglement of a two-party state is necessary but not sufficient for that state
to be nonlocal. It is important to recognise that entanglement is more commonly
viewed as an algebraic concept , noted for being aprecedent to nonlocality as well
as quantum teleportation and superdense coding, whereas nonlocality is interpreted
according to experimental statistics and is much more involved with the foundations
and interpretations of quantum mechanics.
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14.2 Bell’s CHSH inequality violation in De-Sitter Space

To establish the concept of non-locality in De Sitter space let us start with a quantum
mechanical Bell CHSH operator, which can be defined in the following form:

Bepsn = [(a-0) @ {(b+b).0} +(a"- 0) @ {(b—b') - 0}] (14.1)

where a, b, a’ and b’ are real unit vectors which play significant role to establish non-locality
in the present context.
Now the Bell CHSH inequality states that

|{(Bcasn)| < 2 (14.2)

To establish the non-locality we necessarily have to violate CHSH inequality in De Sitter,
which is of course not a trivial task to do. The main problem in De Sitter space to gener-
ate the effect of long range quantum correlation at late time scale from a non-local Bell’s
inequality violating set up. However, in ref. [45-49] we and other authors have explicitly
shown that in case of axion one can construct such a Bell’s inequality violating set up,
where the axion effective potential is generated from string theory. In the present set up
instead of choosing axion as a Bell’s inequality violating candidate to establish non-locality
in quantum mechanics we establish this in a more general and model independent way. We
use the density matrix formalism from quantum statistical mechanics where the general
density matrix for a quantum system can be parametrized as:

3
1
p=1 I@T+a-0@I+1®bo+ Y cjo; @0y (14.3)
k=1

where a, b and cj;, all are in general time dependent quantities which can be explicitly
obtained by solving the GSKL master equation in presence of the effective Hamiltonian and
the quantum dissipator Lindbladian operator . Here, the vectors a and b are given by the
following general representation in terms of the elements of the density matrix:
a = (0,0,p11 + pa2 — P33 — pas) (14.4)
b = (0,0, p11 + ps3 — p22 — paa) (14.5)

and the c¢j;, matrix takes the form

2p23 — 2(p14) 2(p14)1 0

—_

Cjk = Z 2(p14>] 2p23 — 2(,014) 0 (146)

0 0 P11+ Paa — P22 — P33

In the context of OQS described by the two entangled atoms the vectors a and b are given
by following simplified form:
a = (0, O, CL30) (147)
b = (07 07 (103), (148)

"For local hidden variable (LHV) description of correlation CHSH inequality holds.Violation of CHSH
inequality indicates existence of non-locality.
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and the coefficient matrix c;;, can be written as:

2a+, — Ay —a__ Z'(CI/*, — a++) 0
1
Gk = 4 ila__ —asy) 20 +ayy +a__ 0 (14.9)
0 0 as33

Now, Bell CHSH inequality is violated in OQS if and only if when the sum of the two largest
eigenvalues of the following matrix satisfy the following constraint condition:

cch>1 (14.10)
where the eigenvalues are:
1\ 2
/\1 =4 <p11 + P44 — 5) = a§3 (14.11)
1
Ao = 4| pua| £ p23)? = Jla—I £ a, ) (14.12)
For the initial separable state py = [00)(00|, we cannot expect these eigenvalues to ex-

ceed unity after evolution because only non-zero component of the initial state is pyy = 1.
However, the Bell CHSH inequality provides only a necessary condition for the LHV (local
hidden variable)description and does not guarantee existence of a LHV. For this reason we
need to pass each detector through a local filter, which transforms the matrix ¢ and p in
the following form.

d = (fa® fB) c (fa® fB) (14.13)
P = (fa® f) p (fa® [B) (14.14)

where the two local filters f4 and fp are described by the following square matrix:

fa=fp= (14.15)

acts as the local filter. The matrices p’ and ¢’ can be represented as

P11 0 0 772014

1 0 7%p22 mPp22 0
Coput n%(p22 + p3s) + 0 pas

/

: (14.16)

0 n’pas nPpszs O

”pi 0 0 n'pas
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p23 — (P1a)r (p14)r 0

2772
/o
¢ = p1r+ 12(paz + pss) + 1 pas (p14)r p23 + (p1a)r 0 - (14.17)
—n?(p22-+p33)+n*
0 O pP11—N 02227]2033 U

The eigenvalues of the new matrix /()" are appended below:

2

\ = P (p22 + p3s3) + 1 pas
p11 + 102 (p22 + ps3) + 0 paa
(1 =2*) + (1 = n")(ags + az) + (1 +7°)? (14.18)
(14 202) + (1 = ) (ags + aso) + (1 —n?)? '
;o 21 (P23 + |/)14\)
23 pi+ 02 (paz + p33) + 0 paa
2772(a+— + |CL__|) (1419)

- (1 + 2772) + (1 — 774)(CL03 + CL30> + (1 — 7’]2)2'

In Fig. 21(a),we have explicitly shown the behaviour of the two functions appearing in
either sides of Bell Inequality of our two atomic OQS setup in de Sitter space with respect to
T(Time).We have normalized the values with the result obtained from 7' = 103.We consider
both small and large time scale limiting situations.It is clearly observed that for all values
of T(time) scale, if we restrict the other parameters of the theory within a fixed range then
always we achieve that the function represented by green colour is always greater than that
of red colour.This establishes Bell-CHSH inequality violation and non-locality in De Sitter
space with the present two atomic open quantum set up.

In Fig. 21(b),we have explicitly shown the behaviour of the two functions appearing
in either sides of Bell Inequality of our two atomic OQS setup in de Sitter space with
respect to |w|(Frequency).We have normalized the values with the result obtained from
lw| = 5 x 1072.We consider both small and large frequency scale limiting situations.It is
clearly observed that for all values of |w|(Frequency), if we restrict the other parameters of
the theory within a fixed range then always we achieve that the function represented by
green colour is always greater than that of red colour.This establishes Bell-CHSH inequality
violation and non-locality in De Sitter space with the present two atomic open quantum set
up.

In Fig. 21(c),we have explicitly shown the behaviour of the two functions appearing
in either sides of Bell Inequality of our two atomic OQS setup in de Sitter space with
respect to L(Euclidean Distance).We have normalized the values with the result obtained
from L = 10'2.We consider both small and large length scale limiting situations.It is clearly
observed that for all values of L(Euclidean Distance), if we restrict the other parameters
of the theory within a fixed range then always we achieve that the function represented by
green colour is always greater than that of red colour.This establishes Bell-CHSH inequality
violation and non-locality in De Sitter space with the present two atomic open quantum set
up.

In Fig. 21(d),we have explicitly shown the behaviour of the two functions appearing in
either sides of Bell Inequality of our two atomic OQS setup in de Sitter space with respect
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Figure 21. Verification of the Violation of the Bell-CHSH inequality with various parameters is
shown here

to k.We have normalized the values with the result obtained from x = 1.We consider both
small and large x scale limiting situations.It is clearly observed that for all values of x, if
we restrict the other parameters of the theory within a fixed range then always we achieve
that the function represented by green colour is always greater than that of red colour.This
establishes Bell-CHSH inequality violation and non-locality in De Sitter space with the

present two atomic open quantum set up.

Now, to implement the violation of the Bell-CHSH inequality in De Sitter now we have
follow the following number of steps:

1. Step 1:

After passing through the local filter in the new basis we have to satisfy the following
necessary constraint condition:

() > 1.
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2. Step 2:
The above condition directly implies the following inequality:

2
05yt — ot o (14.21)

paa(p2z + p33) Pa4
where each of the quantities are appearing previously in the density matrix after
passing through local filter.

3. Step 3:
The above inequality further can be rewritten in the following simplified form:

(P23 + |p1a])* > 4pripas(pas + pss)’ (14.22)

4. Step 4:
For real parameter 7 if we substitute the entries of the local filter transformed density
matrix in terms of the time dependent Bloch coefficients in the (+, —, 3) transformed
basis is given by the following inequality:

(a4 +la——[)* > (1 — ag)*[(1 + az3)* — (aos + azo)?]. (14.23)

5. Step 5:
Now here our job is to explicitly verify this inequality for our open quantum sys-
tem described by two entangled atoms. To serve this purpose we plot the following
functions:

Ji(t) = (ap—(t) + la——()])*, (14.24)
Jo(t) = (1 = ag3(t))?[(1 + ags(t))® — (aos(t) + az0(t))?], (14.25)

separately. In the plot we represent J;(t) and J5(t) with green and red color. We
have found out from our analysis that for all values of the time scale if we restrict the
other parameters of the theory within a fixed range then always we achieve:

Ti(t) > F(t) Yt (14.26)

This actually establishes Bell-CHSH inequality violation and non-locality in De Sitter
space with the present two atomic open quantum set up.

In 14.2 a comparative study of different entanglement measure is done for our two atomic
OQS setup.Various entanglement measures calculated in this context,are compared tak-
ing into account various parameters like rescaled time, Frequency, Fuclidean distance,Inverse
curvature. The best entanglement measure is found after studying the entanglement with
respect to the respective parameter in the entire chosen range and then the conclusion is
given.

In 14.2 a comparative study of the one atomic and two atomic systems are done and the
main highlighting differences have been noted.The reduced subsystem density matrix shows
entanglement between the two atoms constituting the system whereas the one atomic sub-
system in not entangled.It is also noted that for the case of one atomic case the equilibrium
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Parameters

Best entanglement measure

Remarks

Rescaled time (7)

Collision Entropy (H>)

The long range
correlation at
late time scale can

be best understood.

Frequency (|w|)

Min entropy (Heo)

In the chosen frequency
range it has the
maximum amplitude
showing maximum

entanglement.

Euclidean distance (L)

Except Log negativity (Ey)

others are appropriate

In the large length scale
it shows fluctuations
unlike other

entanglement measures.

Inverse curvature (k)

Collision entropy (Hsz),
Min entropy (Heo)

and Logarithmic negativity (Fy)

In the chosen &
range it has the
maximum normalized
amplitude showing
maximum

entanglement.

Table 1. A comparative study of various entanglement measures for our two atomic OQS setup
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Parameters

One atomic system

Two atomic system

Reduced subsystem

density matrix

Not entangled

Entangled

1
Equilibrium tempe- T=Tcu = o T = \/TéH + T%muh
T
1
rature of bath =
2rva? —r?
Inverse curvature x k=a k=vVa?—r2#a
Nature of One body Many body

Wightman function

Wightman function

/ /

G(r—7)=(2(1)2(7))

Wightman function

’

GOéB(T -T ) = <(I)(T7 :L‘a)fb(T/,xﬁ»

Quantum
states

v)

Ground (|G) = |g)),

Excited (|E) = |e)).

Ground (|G) = |g1) ® |g2)),
Excited (|E) = |e1) ® |ea)),
Symmetric (|S) = %(|61> ® 192),

+191) ® le2))),
1

V2
—|g1) @ [e2))).

Anti-symmetric (JA) = (le1) ® |g2)-

Position of atom

The bath correlation function
does not depend on the

position of the atom.

The bath correlation
function depends on the

position of the atoms.

Difference in

entanglement measures

Can be observed with
very less magnitude,

due to interaction with bath.

Observed in larger proportions
due to entanglement between
the two atoms besides

interaction with the bath.

Lamb shift

dFELs = (V|Hypg|P)

At w » w, (Bethe cut-off)

no Lamb shift observed.

At w » w. (Bethe cut-off)

a finite Lamb shift is observed

Table 2. Comparative study of one atomic and two atomic OQS setup.
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temperature of the bath is exactly equal to the Gibbons Hawking temperature whereas for
the two atomic case the equilibrium temperature is written in terms of Gibbons Hawking
and Unruh temperature. Due to this difference in temperature the curvature of the back-
ground spacetime appears to be different for the two cases. The Wightman function has only
one component (Gy;) for the one atomic case as the correlation function is independent of
the position of the atom whereas for the two atomic case the Wightman function has four
components given by G11,G12,G2; and Gag corresponding to the dependence of the bath
correlation functions on the positions of the atoms. Entanglement measure observed (if any)
in case of one atomic system is mainly due to its interactions with the bath whereas for
the two atomic case significant amount of entanglement measures are observed due to their
mutual entanglement besides interaction with the bath.

15 Conclusion

To summarize, in this work, we have addressed the following issues to study the quantum
entanglement phenomenon from two entangled atomic OQS set up:

e To begin with we have started our discussion with two entangled atomic OQS set
up. In this framework the two entangled atoms mimic the role of Unruh-De-Witt
detectors, conformally coupled to a thermal bath which is modelled by a massless
scalar field in this specific problem. Apart from that, within this OQS set up, a non
adiabatic Resonant Casimir Polder interaction(RCPI) takes place between the Unruh-
De-Witt detectors and the thermal bath. Most importantly this interaction is effected
by the background De-Sitter space time in which the probe massless scalar field is
fluctuating.

e Since we are only interested in the dynamics of the reduced two entangled atomic
subsystem, we partially trace over the probe massless scalar field or thermal bath de-
grees of freedom. Consequently without solving the total(system+bath-+interaction)
quantum liouville equation for the total density matrix, we actually solve the Gorini-
Kossakowski-Sudarshan-Lindblad equation (Master equation) to explicitly know about
the time evolution of the reduced subsystem density matrix. However, solving GSKL
master equation with proper initial condition is an extremely complicated task, as
it involves two non trivial components in the equation of motion. These are the
effective hamiltonian and Quantum dissipator or lindbladian operator. Due to the
complicated structure of both of them it is obvious that the analytical solution of the
GSKL master equation is not possible for all type of OQS setup. In our two atomic
entangled OQS setup we represent the density matrix corresponding to each of the
atom through bloch sphere representation. However, the reduced subsystem density
matrix, which can be constructed by taking the tensor product of two atomic density
matrices, cannot be parametrized by a bloch sphere. Instead of that we found the
reduced subsystem density matrix is actually parametrized by three time dependent
coefficients ag;(7), aio(7) and a;;(7) Vi, j = 1,2, 3. this implies that solving GSKL mas-
ter equation for the present OQS set up is actually determining the time dependent
behaviour of the above mentioned coefficients, which are appearing in the expressions
for the reduced subsystem density matrix. We found that this leads to huge number
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of coupled differential equations of all these time dependent coefficients, which are
not analytically solvable for given appropriate initial condition. To solve this problem
next we transformed the basis from {1,2,3} to {+,—,3}. In this new basis we get
simplified form of the linear differential equation which are less in number compared
to the previous case. Also using the large time equilibrium behaviour of the reduced
density matrix, which plays the role of initial condition in our problem, we have found
the explicit analytical solution of a;; V i,j==3.

e Using the analytical density matrix of the reduced subsystem we further computed
various measure of quantum entanglement i.e Von Neumann entropy, Re'nyi entropy,
Logarithmic negativity, Quantum discord, Entanglement of formation and Concur-
rence, which are commonly used in the context of Quantum information theory these
days. From the time dependent behaviour of all the measure of quantum entanglement
we have found out almost the similar behaviour which states that for initial time ¢t = 0,
the measure of quantum entanglement is 0 and as time goes on the subsystem gets
more entangled and after a certain time it increases very slowly i.e it almost saturates.
Apart from these as we have obtained the similar feature both in the case of Von
Neumann entropy and in the case of Quantum discord, this imply existence of long
range quantum correlation at the late time scale,satisfying the necessary and sufficient
condition for quantum entanglement. Similarly we have obtained the time dependent
feature of logarithmic negativity, entanglement of formation and concurrence which
strongly imply that at initial time ¢ = 0 our two atomic OQS setup do not show any
signature of quantum entanglement as in all the cases the quantum measure is zero.
As time goes on we have found out all of these measures significantly increase and at
very late time scale it almost saturates. This is obviously a significant finding of our
two atomic entangled OQS setup from which one can extract the existence of long
range quantum correlation in late time scale, which is a very common topic of study
in the context of quantum information theory.

e Last but not the least we have studied Bell-CHSH inequality ® violation from our
present setup in De-Sitter space. Though these kind of violation of Bell-CHSH in-
equality in de-Sitter space is not very trivial, with axion we and other authors have
constructed cosmological setup in which this violation can be established. Most im-
portantly, without introducing any axion in a more model independent way we have
established the violation of Bell-CHSH inequality in De-sitter space, which is the nec-
essary ingredient to study the non local effect in correlations in quantum mechanics.

The future prospect of this work is as follows.

e In this work we have restricted our subsystem which is made up of two entangled
atoms. One can further generalize the same problem with arbitrary even or odd
number of atoms within the framework of OQS.

e In this work we did our computation in the background static De-Sitter metric. How-
ever this framework can be implemented in any curved spacetime metric. One can
even carry forward the calculations in other patches of De-Sitter space like the global

8Bell CHSH inequality in quantum mechanics is the most generalized version of the bell’s inequality.
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and inflationary (planer) patch. It is expected to get significant modifications in the
cosmological correlation functions. Within the framework of OQS and particularly
for inflationary patch [50, 51] of the De-Sitter space, one can exactly compare these
results with the known cosmological correlation functions computed within the frame-
work of closed quantum system. Such comparative analysis between the obtained
cosmological correlation functions obtained from OQS and CQS will help us to know
about the correct quantum mechanical picture of early universe cosmology. Addition-
ally, by comparing this result with the data obtained from the observational probe for
the early universe cosmology one may further rule out one of the possible quantum
pictures mentioned here.

e In this paper we have computed the signature of Quantum entanglement from various
Quantum information theoretic measure. However we have not done the calculation for
all possible measure. For more completeness and also to conclude about the existence
of long range quantum correlations at the late time scale one can further compute
squashed entangled entropy [53], entanglement of distillation [54], relative entropy
[55] etc. Additionally, one can also compute fisher information from the present OQS
set up to know about the difference between the results obtained in the classical and
quantum limiting situations.

e Very recently the phenomena of quantum teleportation has been observed with qutrit
states [58, 59| for the first time, which is obviously a outstanding finding in the context
of quantum information theory. The authors have succeeded in teleporting three-
dimensional quantum states for the first time. High-dimensional teleportation could
play an important role in future quantum computers. In this direction our future plan
is to study such possibilities from the present OQS set up in De Sitter space.
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A Geometry of Static Patch of De Sitter space time

In this section we are going to discuss about the geometry of De Sitter space time and
particularly about the static patch which we have used for background space time for our
computation in this paper.

For this purpose let us consider a (D + 1) dimensional De Sitter space time which is
represented by the following equation:

— s = (02 + ()P4 4+ (PP =0 ¥V AB=0,1,---,(D+1), (A1)

where « is a dimensionful parameter, which has the dimension of length.

Now we consider the situation where this (D + 1) dimensional De Sitter space is em-
bedded in (D + 2) dimensional Minkowski space time which is represented by the following
infinitesimal line element:

dst oy = nap dztdzP. (A.2)

It is a very well known fact that the symmetry group of De Sitter space is SO(1, D+ 1),
which has (D +1)(D+2) number of parameters. In this paper we particularly consider the
situation for D = 3. However, for generality we have provided the details for any arbitrary
(D + 1) dimensional De Sitter space.

Now we know that:

6.8
2 _ n v 2 2 _ 77#5771//82 ? W .V
2 = N2’ ot = dzp, = PRV dztdz". (A.3)
Further, excluding the contribution from the zp,; coordinate from the expression for the
(D + 2) dimensional Minkowski infinitesimal line element we get the following result for the

new line element:
ds® = n,,dz"dz" — dzl%Jrl = g dz'dz", (A.4)

where g, is the induced metric on the hyperboloid, which is defined as:

0 K Y
NusNvkZ™ 2 Y w | FF
y = y— ————————— — = + s Ab
In (m Nya27 22 + az) g (77 a? ) (A.5)

— 69 —



which satisfy the following constraint condition always:

0 oK V.3
v Mo’ 2 v, 22

vg7 = (1, — I E +
Jpwd (W N2 + a? g a?

o 77,/5 _ 77@7]1,,@7]”5252” T]uyz”zﬁ _ nm;nwz‘sz“ 2V 2P
" Nya2722 4+ a2 a? 2722 + a2 a?
_ 5B 04277@55252“ — nm,z”zﬁ(m,\z“’zA + a2) _ numwz(sz“z”zﬁ
a a?(nya2722 + a?) a?(nyp2722 + a?)
_ 5B aznu(;z‘szﬁ — nuynv,\z”zﬁz'yz)‘ — a277m,z”zﬁ _ nugnwz‘sz”z”zﬁ
. a?(nypz72* 4+ a?) a?(nypz722 4+ a?)
_ 5 N 2" 20202 = sz 27 272"
# a?(ny2722 + a?)
= 4. (A.6)

Here we have used the fact that for Minkowski flat space time:
Nun”’ = 65. (A.7)

Now one can compute the Riemann tensor, Ricci tensor and Ricci scalar or curvature scalar
in maximally symmetric (D + 1) dimensional space in presence of cosmological constant A,
which are given by the following expressions:

2A
Ruvap = m (Guagvs — Gusva) (A.8)
2A
— A.
R,u,l/ (D _ 1>g,UJ/7 ( 9)
~ 2A(D+1)
R = R (A.10)

where in De Sitter space time cosmological constant A > 0. Here the number of Killing
vectors are basically (D + 1)(D + 2) which is exactly same as the number of parameters
appearing in SO(1, D + 1) De Sitter isommetry group.

On the other hand, using the previously mentioned definition of the induced metric g,
one can also compute the Ricci scalar or curvature scalar, which are given by the following
expression:

D(D +1)
a2

R= . (A.11)

Now comparing Eq (A.11) and Eq (A.10), we get the following expression for the cosmo-
logical constant A in terms of the parameter a:

D(D—1)
A=———. A2
2002 ( )
Since in this paper we are interested in D = 3, then we get:
12 3
R=— =4A>0, A=—>0. (A.13)
! a
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Now we introduce radial coordinate r which is defined through the following equation:

D () =02 (A.14)

i=1
Using Eq (A.14), the equation for the hyperboloid can be described by the following equa-
tion:
—(20)2 + (21)2 I (ZD+1)2 = a2
= () + P =a? —r? =k >0. (A.15)

Now we can consider the following sets of transformation equations which satisfy the above
mentioned equation for the hyperboloid:

2Y = ksinh <£) : (A.16)

a
d=rwt, V i=1,---,D, (A.17)

t
2Pt = K cosh (a) , (A.18)

where the parameter x is defined as:
k=Va2—1r2>0=r<a. (A.19)
Here, » = « is the horizon in the present context.

It is important to note that, w’ satisfies the following equation:
D+1
i\ 2

d (W) =1, (A.20)

i=1
which is the equation for D dimensional unit sphere. Now, we introduce D angular coordi-
nates, 0;V i = 1,---, D, which are connected to w'V i = 1,--- , D + 1 by the following sets
of transformation equations:

w! = cos by,
w? = sin 6, cos by,

wP = sin6; cosby - -sinfp_, cosbp,

WPt =sin#; cosy---sinfp_;sinbp. (A.21)

This will give rise to the following line element describing the static patch of De Sitter space
in arbitrary (D + 1) dimensional space time, given by:

D(D—1)

2 r? 2 A 223092
dspy, = |1—— |dt"=|1—- — dr®—r*dQ},_, where a = oA

o? o?

> 0. (A.22)

Here dQ% _, represents the line element for unit (D — 1) dimensional sphere, which is given
by the following expression:

dQ2D71 = (d@l)z + DZ_I <ﬁ SiIl2 8k> (d&z)z (AZB)

1=2 \k=1
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B Solution for the bath field equation for probe massless scalar
field in Static Patch of De Sitter Space

In this context, our prime objective is to solve the bath field equation for probe massless
scalar field in (D + 1) dimensional static patch of De Sitter Space. It is important to
note that, in this paper we have restricted our analysis to the situation where the probe
scalar field is minimally coupled to gravity. However, one can generalise this calculation for
massive and conformally coupled scalar field with gravity. After deriving the result once we
put the conformal or sometimes called, the non-minimal coupling parameter equal to zero
and the mass equal to zero then we will get back the required result expected in (D + 1)
dimensional static patch of De Sitter Space.

B.1 Finding un-normalized total solution for probe scalar field

Let us start with the following (D +1) dimensional action, which is characterised by a scalar
field conformally coupled with the gravity, given by the following expression:

Solimé] = [ 4°%a Vg [SR0%0) + ¢ (0,0(0) (0,0() - "8 (B

where ¢ is the conformal or non-minimal coupling parameter which couples the scalar field
with the background gravity and me is the mass of the scalar field under consideration.
Now after deriving the result once we substitute £ = 0 and m = 0 then we will get back the
required result in (D + 1) space time which is used in this paper.

Now after taking the variation of the above mentioned action with respect to the scalar
field ®(z) we get the following field equation describes the thermal bath in any arbitrary
(D + 1) dimensional space time:

(Opi1 +m3 +ER) ®(x) =0, (B.2)

which is also known as the Klein-Gordon equation. In (D + 1) dimensional space time the
D' Alembertian operator (Opyq) is defined as:

1
O = —0, (V— 0,) . B.3

Now in the case of (D + 1) dimensional static patch of De Sitter space the above mentioned
D Alembertian operator takes the following mathematical structure:

1 1 2 1
Ot = [@ (m@ ~ (’”Dl (1 - %) ‘9?) - ﬁL?m] . (B

o

where L% _, is the Laplacian operator described in (D — 1) dimensional sphere.
The most general solution of Eq (B.2) is given by the following expression:

r

q)($) = ®<t7 r; 917 e 79D—1 = V) =R < > Y(D_l)(mk; V) e_th_ (B5)

(67

Here Y P~V (my; V) represents the spherical harmonics in (D — 1) dimensional sphere which
satisfy the following eigen value equation:

L3 YP V(e V) = (1 + D —2)YP Y (my; V). (B.6)
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Here m, =1,m;Vio =1,2,--- , D — 2 are the quantum numbers associated with the system,
if we want to interpret this solution quantum mechanically.

Now, just considering the radial part of the solution and substituting back in the classical
field equation we get the following differential equation:

E@g (Z (1-2 )83R(Z))+{ [z = —mga®— DD+ 1) R(Z) =0,
(B.7)
where we have introduced a new rescaled radial coordinate, Z, which is defined as:
z=l_ sinu, where 0 <u < g (B.8)
Q@

For more convenience, one can further re-express the above equation in terms the newly
defined variable u as:

1

sin? 'y cosu

Oy (sin” ' u cosu 9,R(uw))

N { a’w? l(L—I—l2)—2) — ma? —D(D—i—l)f} R(u) =0. (B.9)

cos? u sin” u

The general solution of this equation can be written as:
R(u) = C1 RY(u) + Cy R (u), (B.10)

where C] and C5 are two arbitrary constants which can be fixed by choosing appropriate
boundary conditions. On the other hand, R.Vi = 1,2 are the two linearly independent
solutions which can be expressed as:

(B.11)

[ — ' l—n—1i D
Rll(u):tanlucos"uF( ntaw noaw E;—taDQU)

2 ’ 2 ’

RY(u) = cot™™P 2 cos™ u

[ D —1 l D+ D
xF(l— +n+2 zaw’l_ +n+2 +2aw;2—l—§;—tan2u>, (B.12)

where F(z,y;z;w) represents the hypergeometric function and also we have used the fol-
lowing fact:

D\? D2 D
(n+§) :T—méCYQ—D(D“‘l)g::Vé:} n=mng = (_Ei’/@)- (Blg)

Here vg is known as the mass parameter of the scalar field ®. For massless and minimally
coupled scalar field with gravity we get:

D 3
ve = for D=3 we get vg = 2 (B.14)

which is applicable to our present model of OQS.
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Here further using the fundamental properties of the hypergeometric function one can

explicitly show that:

D D
n=n,=n_=——+Up=—— — Usp. (B.15)
2 2
So we will go with the signature appearing in n_. Consequently, the two linearly independent

solutions takes the following simplified form:

RY(u) = tan' u cos(E+e) 4

1+2 +iow [+ 5 +ve—i D
><F<+2+2V¢ ZOM? ; 2% Zaw§l+—;—tan2“ ’ (B.16)

2
RL(u) = cot P2y cos~(FHve)ny

I+2 —ve—i I+2 —ve+i D
xF(l— g YoM ITa T w‘w-z—l—?—taﬁu). (B.17)

2 ’ 2 ’
B.2 Finding un-normalized regular solution for probe scalar field

Further, to understand the physical implications of these obtained solution one needs to

simplify its mathematical form. To serve this purpose we introduce another variable X,

which is defined as: =
X =tanu = ——. B.18
— (B.18)
Using this newly defined variable the previously mentioned linearly independent solutions
can be further recast as:

(D+2vg)

RUX) =X 1+ %) 7
XF(Z—I—%—I—V@—Fiawl—i—%—i—V@—iaw' D )

[+ = -
2 ! 2 SRNCE

(D+2vg)

RY(X) = X~ FP=2(1 4 x%) 3

I+ 2 —vg—i [+ 2 - ‘ D
xF(l— + 2”‘1’ Wty ;¢+Zaw;2—l—§;—x2 . (B.20)

(B.19)

Here one can observe the following characteristics in these two solutions:

1. Here we have:
lim RL(X) — oo, (B.21)
X—=0

which implies that the second solution is divergent in the limit X — 0. So we will not
consider this particular solution as we are interested in only regular solution in this
context.

2. To simplify the mathematical form of the hypergeometric function one can apply the
following transformation rule:

1 w

F(x,y;z;w):mF(m,z—y;z;w_1>. (B.22)
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Hence one can write down the following regular solution of the classical field equation as
given by:

dy(t, 7, V) = C1R} <£> VPV (m: V) et where o = w,my, (B.23)

e

where C is the arbitrary integration constant which we will fix at the later half of this
discussion. Also it is important to note that these modes are characterised by both, w and
mg =1,m;Vi=1,2,--- , D — 2 in this context. Here we have applied the above mentioned
transformation rule to simplify the radial solution as given by:

iow

RU(Z)=Z'(1-2%"
XF<Z+§+V¢+7Jawl+%+V¢—iaw_ D ) (B.24)

[+ =: 22
2 ’ 2 g

Now we will see the behaviour of this solution, particular the radial part, in the vicinity
of the De Sitter horizon, which is represented by Z — 1 or equivalently X — oo. To
implement this fact first we write down the expression for the hypergeometric function by
applying the following linear transformation rule, as given by:

F(x,y;z;—w):%wx F(x,l—z+x;1—y+x;$>
Mww gl —r iyt
M-y " (y’l tyl-zty; w) . (B.25)

Then considering the asymptotic behaviour at z — oo we get the following simplified result:
I'y—2)w?* D(x—yw? }
Pyl(z—=z) T@l(z-y))

Using this fact the radial part of the solution can be further expressed in the following
simplified form:

F(z,y;z;—w) =T(2) { (B.26)

_iow ioaw

¥ A (w)(1 - 29, (B.27)

RI(Z) = Aw)(1 — 2?)
where A(w) and its complex conjugate A*(w) are defined by the following expression:
I (1+2)T(iaw)

r (l—l—%-wcp-&-iaw) r <l+§—u<p+iaw> ’

Alw) = (B.28)

2 2
I (1 + 2) T (iow)

F* l+%+u¢—|—iaw F* l+%—u¢+iaw ’
2 2

A (w) =

(B.29)

B.3 Finding the normalization constant for the regular solution for probe scalar
field
Next, our job is to fix the arbitrary integration constant C'; using the following normalization
condition:
1

T(w) = / 4 Do) (1) = (B.30)
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To evaluate C; we start with the left side of the integral which we explicitly write in static
coordinate patch of the De Sitter space, given by:

T(w) = / 0P By ()", ()
a D—1
=ttt [ iy R (2R (3) [ 00 ) (P Vmisv))
r=0 v J

i

(.

~~

Radial Integral

=|C1* Ja T, (B.31)

~
Angular Integral

where the integral J; and J5 are given by the following expressions:
G = [0 YOI ) (YO ) = N, (B3

and

-2 / du 1_1 R, (VA)RY, (Vi) (B.33)

Now, here it is important to note that, if we consider the limiting situation w — w’, then we
see that near the upper limit the integral 75 is divergent. Also, we see that the dominant
contribution of this integral is appearing in the vicinity of the limiting region w — w’. For
this reason one can write down the following asymptotic expansion of the product of the
two conjugate radial solutions as appearing in the numerator of the integral J; i.e.

’ /
ia(wtw ) ia(w—w )

Rl (Vu) RY, (Vi) = A@)AW)(1—u)"" 2 + A A (W)(1—u)™" >
A AW - )T

’
ia(wtw )

+ A (WA (W)L =) 2 . (B.34)
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This asymptotic expansion is very useful to evaluate the integral J5. The detailed steps are
given below for better understanding:

ol 1 uz! z N
Jo =~ /u:o du gy T (Vi) Ry (V)

’ ’
ia(wtw ) io(w—w )

+ Aw) A" (W) (1 —u)~

_ % / ;du (f_; {A(w)A(w/)(l—u)_

+ A* (W) AW (1 — u)

za(w w )

LA W) AW (1 — ) }

’
ia(w—w )

OéD 1 1a(w+w , _
7/ dln(]_ — u) {A(W)A(w )e 2In(1— u) _|_ A( )A*(w )6 2In(1—u)
=0

Q

+ A* (W)A( )612015:(11 wu) + A*( )A* (w/)egllg]u(lf_wu; }

’
iza(w—w )

aD o0 ’ ”‘1(“’7“" N _—
=5 | d {A@)A@ Je~ + A(w)A*(w e
2=0

FA @A) T 4 A )A*(w’)e”“(é*“')}
=% Lawaen - s () s awarea - s (A7)

A (WA (1 + )5 (M) + A (W) A (W) (1 + )3 (M)}

2 2
~ A ()

D 47 ’
= ——IA( 0w —w) (B.35)
Then the previously mentioned Z(w) can be computed as:
aP 47 / 1 /
Z(w) = [CLPN (myy) - — Ao (w —w) = 5=d(w —w), (B.36)

then the normalization constant can be evaluated as:
1-D 1-D

¢ = = !
2\/7TCL)N<mk:) ‘A(w)’ F(l+%)F(iaw)

2 WWN(mk) F(l+%+y¢+iaw)r(l—‘—%—uq)-‘riaw)
2 2

(B.37)

where we have neglected additional phase factor.

B.4 Finding normalized regular solution for probe scalar field

Finally, the regular solution for the scalar field can be written as:

lﬂRWﬂYDﬂmmvw”“

Q)F(iaw)
2
2 ’ﬂ'CUN mk; l+ +l/q>+104w F(l+%—u¢+iaw)

O, (t,r, V) =

where o =w,my, (B.38)

2
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where the explicit form of the radial solution R} (g) is already derived earlier and the mass
parameter v is defined as:

D? D(D -1
Vo = \/— —mia?—D(D+1)¢§ where o= % >0 as A>0.(B.39)
By fixing me = 0 = £ and D = 3 we will get the value of the mass parameter vy = %
applicable to our problem discussed in this paper. Also, in D = 3 the solution can be recast
as:

RL (L) Vi (6, 6) et
20[\/@ ( )F(zaw)

( l+d+zaw )F( l+12aw )

(I)lm(t7 T, 07 Qb)

where [ =0,---,00; m=—1,---,+l,

(B.40)
where the radial solution in D = 3 can be written as:

" <a> - {F (M) T (M=) e T (l+342riaw) e 1+
(B.A1)

Also the angular part of the solution, the spherical harmonics Y}, (0, ¢) is defined in the
present context as:

- BT

Further, summing over all [ and m we get the following complete solution for the massless
minimally coupled scalar field with gravity:

Py (cos 0) €' (B.42)

[e.o]

+1
<I>(t,r,9,¢) = Z Z (I)lm(tar>97¢)

=0 m=—1
o) +1

B Yim ¢) —twt
N 206\/%2 Z l+2)F(law)

=0 m=-1 F(l+3+zaw)r(l+7,aw)

iow

I (14 2) Dliow) r?\ 2
X {F (G3tiaw T (Loiaw) (1 + @)

2

LT (1 +3) I (iow) (HT_Q)} (B.43)

I* (l+3-;—zocw) * (l—l—zaw) 052

This classical solution of the field equation for the probe massless scalar field is very useful
once we want to quantize the bath modes in the static patch of De Sitter space. In the next
Appendix we discuss this in detail.

C Quantization of bath modes for probe massless scalar field in
Static Patch of De Sitter Space

In this Appendix our prime objective is to quantize the bath modes for probe massless scalar
field in the static patch of De Sitter space-time considering configuration space. Now, using
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the classical solution in D = 3 for the massless probe scalar field derived in the previous
section in the static patch of De Sitter Space, one can promote this as a quantum field by
the following equation:

) +1

O(t,1,0,0) = 3 D [am®in(t. 7, 0,0) + al,, @}, (1,7,6,0)] (C.1)

=0 m=-—I

where the quantum states are defined through the following relation:
an|¥)y =0,  where [ =0,---,00;, m=—l-+ +I. (C.2)

Here, the field ®,,,(t,7,0, ¢) is defined as:

1 Yi(8,¢) eiet { (14 3) T(iaw) ) (1+ r2) 2

CDlm(t) T, 97 ¢) =

2aiy/TTW (1431 (iow) r (l+3-2m'aw) T (H—iaw
PR ()

2

o’

I (143) (o) (Hrz)@w}'

I* (l+3—giaw) T+ (l—&-i;cw)
Quantization of this quantum field demands the following equal time commutation relations:

[(t.7.0.6). Mat..0,6)| = L5 —)6(cost — cos8)5(6— 6),  (C.4)

T2
[@(t,r,@,qﬁ),<i>(t,7“I79/,¢/)_ — 0, (C.5)
[pr(t,T,Q,(b),ﬂq)(t,r/,@/,gb/)- — 0. (C.6)

Here ﬂ(l)(t, 1,0, ¢) is the canonically conjugate momentum of the quantum field Cﬁ(t, r,0,0),
which in the static patch of De Sitter space can be computed as:

o) +1

ﬂ@ (t, T, 97 ¢) = Z Z |:almHlm,<I> (ta r, 07 ¢) + aszHZKm,np(t; T 97 ¢):| ) (07)

=0 m=—1
where I1;,,, o(t, 7,6, ¢) can be expressed as:

7"2

-1
Wpo(t,r,0,¢) = r’sind (1 — —2) Dy (t, 7,0, 0), (C.8)
a

which in the limit o — oo exactly matches with the result obtained on a sphere. Here the
symbol,* is defined as, X = §yX = §,X.

Further, substituting this result back in the expression for the canonically conjugate
quantum momentum operator of the scalar field we get:

2\ —1 o© +I ) )
Ie(t,r,0,¢) = r’sind (1 — 12) > [almcblm(t,r,@, o)+ al ®F (t,r,0, ¢)] :
«
=0 m=-I
(C.9)
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where Cblm(t, r,0,¢) can be computed as:

(blm(t7 r, 07 ¢) - _2w¢lm(ta r, 07 ¢)
1o Yia(0,9) e { I (1+3) T(iaw) <1+r2>2
)

= 2 T F(lJr%)F(iaw) r (l+342riaw) T (l+;aw
(e ()

LT+ 3) o) (Hﬁ)} (C.10)

I* (l+3—57,aw) T* (l+zo¢w) o

This will finally give rise to the following commutation relation which can be written
previously mentioned creation and annihilation operators as:

[almv a;’m’] = 6[['5mm'7 [a;m’ a;r’m’] = 5ll/ 6mm'7 [alm7 Ay ! ] - 5ll 5mm : (Cll)

Now, using the classical solution in D = 3 for the massless probe scalar field derived in the
previous section in the static patch of De Sitter Space, one can promote this as a quantum
field by the following equation in Fourier space as:

O, k,) = /d% ’“”(I)(M“H(b)

2\ 1 . ) i,
dr d6’ dgb r? sin 0 (1 — %) g~ ikrasin™! (&) cos6 O(t,7,0,0)
27 2 -1 ) 1/
dr d9/ d¢ r*sin 6 (1 - T_2> g thrasin™! (§) cosd
o'

> Z [a,mcplm (t,7,0,0) +al, @ (t,r,0 ¢)] (C.12)

=0 m=-I

Here we have written the three part of the metric in the static coordinate patch of De Sitter
space as given by the following expression:

2\ —1
ds; = <1 - %> dr? + r?(d6? + sin? 0d¢*) where o = \/% >0
2

—-1/2 R R
(1 - T-) dr & +7(df 0+ sin 0 do ¢)

o

= dr.dr, (C.13)

where the infinitesimal change in the radial coordinate vector can be expressed as:

—1/2 A R
e (1_7"_) dr &+ 1(d0 6 + sin 0 dg §)

=d <a sin™* (g)) f 4 asin™? (2) dr

=d <a sin~! <Z> f‘) , (C.14)

(07
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which after integration on both the sides gives the following simplified expression for the
radial coordinate vector describing the three part of the static coordinate patch of De Sitter

space:
r

r=asin"! <—) r. (C.15)

a
It is important to note that for this derivation we have identified the infinitesimal change
in the radial unit vector by the following expression:

r 1 (
a sin™! (g)
Now, to check the physical consistency of the derived result we further take the limit  — oo,
in which we get the following expression:

()=t ()5 675 G

.
=t {@ + 0+ ] (G17)

for which in the the limit o« — oo we get, r = r 1.

di = d6 0+ sin 6 do ). (C.16)

D Bath Hamiltonian for probe massless scalar field in Static Patch
of De Sitter Space

D.1 Constructing classical bath Hamiltonian

The bath is described by a massless probe scalar field, which is given by the following action:
1
SBath = §/d4x\/—g g (0,9(x)) (0,P(x)) = /dt &z L(g",g,0,®), (D.1)

where L£(g"", g,0,®) is the Lagrangian density in presence of background gravity, which can
be explicitly written as:

L(5",9,0,8(2)) = 5177 6" (0,2(2)) (0,9(x)) (D2)

Here the scalar field is embedded in static patch of the De Sitter space which is described
by the following infinitesimal line element:

2 2\ —1
3
ds? = (1 - E) dt® — <1 — %) dr* — r*(d6* + sin® 0d¢®) where o =/ 1 0. (D.3)

Here r = « represents the horizon where we have space like singularity in the metric of
static De Sitter space time.

The canonically conjugate momentum for this massless probe scalar field is given by
the following expression:
9L(g"", 9, 0u®(x))

0(0o®(x))
_ 0L 9.0,9(x))

0P(z)

= V=g ¢"®() (D4)

g(x) =

— &1 —



and in static patch of De Sitter space we get:
2

-1
Mg (t,r,0,¢) = r’sinf (1 - %) d(t, 7,0, 0). (D.5)
Here we have used the fact that:
2\ —1
V—g=r’sinf and ¢% = <1 — r_) . (D.6)
From Eq (D.4), one can further write:
- H@ (tu T, 8) ¢) T2
O(t,r,0,0)=——""T"(1—— D.7
(1.r.0,0) = 200 (T (0.7

which we will use further to compute the expression for the bath Hamiltonian density.
Further, using Legendre transformation the Hamiltonian density in the static patch of
the De Sitter space can be written as:

7-[Bath - Hq;(l‘)@(l’) - ‘C(gm/aga au(b(l'))
= Mo(t, .0, 6) (1 — 7“_2) — L(g",g9,0,9(x)). (D.8)

r2sin 6 «Q

Now, in the static patch of the De Sitter space the Lagrangian density can be explicitly
written as:

L(5",9,0,0()) = 5V 9" (0,8(x)) (2, 8(x))

_ %72 sin 0 {M <1 - r_2> - (1 - ;—22) (0,D(t,7,0,9))*

r4sin® 0 o?

1
- OO0 — o (0u0(t,r0,0)

=P (- 5) - (- ) e 07

r2sinf a? o’

—sinf(9p®(L, 7,0, ¢))* — ﬁ((%@(t, 7,0, ¢))2} . (D.9)

Using Eq (D.9), we get the following simplified expression for the Hamiltonian density in
the static patch of De Sitter space:

_ H%{)(tﬂﬂu 07 ¢) TQ 1 T2 2 . 2
HBath = Torsing <1 — —2) + 3 { (1 — —) r*sin0(0,®(t,r, 0, ¢))

Q@ a?
1
+sin0(9y®(t, 7,0, ¢))* + m(%@(t, r,0, ¢))2} . (D.10)
in
Now the 3D spatial volume element in the static patch of the De Sitter space is given by

the following expression:

7“2

-1
d*r = r*sinf (1 - —2) dr df de¢. (D.11)
a
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Hence using this 3D spatial volume element the Hamiltonian of the bath in the static patch
of the De Sitter space is given by the following expression:

Hpath = /d39€ HBath

21 7’2 —1
/dr/dﬁ/ d¢ r?sin b (1——2)
«
H2 t T, 0 qb 7“2 1 7’2 .
X |i—27,2 sing ) (1 — g) -+ 5 { (1 — ?) 7’2 sm@(@r@(t, 7’,9, ¢))2

+ sin 0(0p®(t, 7,0, ¢))* + (%‘I)(t r,6,9))? H

:/Oadr /Oﬂde /Ozﬂdqa [w

(0p®(7,7,0,8))?
2 . 29 (69®(77T797¢>>2+T
{1 (9:0(r,1,0,6))* + ( o )
042

In this description, r = «, which is the upper limit of the radial integral physically represents
the horizon in static patch of De Sitter space.

Here it is important to note that, if we further take the a — oo limit then we get the
following result:

HBath_/ dr/ a9 /Zﬂdgé[ ”Mﬁ)

DR 0.0+ (@00 + CEERB g

2 sin® 6

which represents the Hamiltonian of a sphere with radius R.

sin 6

.(D.12)

D.2 Constructing quantized bath Hamiltonian

In this subsection our prime objective is to express the classical Hamiltonian derived in the
previous section. Here we start with the following expression for the quantum Hamiltonian
written for bath in the background of static patch of De Sitter space as given by:

~ a ™ 2 ﬂg 0
Hpath = / dr / do / do (7,7 0,0)
0 0 0

2 (8(;5&(7—)7.701(1)))2

2 ) (Op®(7,7,0,0))* + ===

" S;n 2 (0,9(7,1,0,9))* + ( 2 : )
012

To write the Hamiltonian in terms the creation and annihilation operators we write down
the quantized solution for the scalar field as:

.(D.14)

0o +1
b(t,r,0,0) = > > [am®un(t, .0, 0) + al, @7, (t,7.6,0)] (D.15)

=0 m=—1
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where the quantum states are defined through the following relation:
a|¥)y =0,  where 1 =0,---,00;, m=—l- +I. (D.16)

Here, the field @, (¢, 7,0, ¢) is defined as:

1 Yim(0, ¢) e= r (l + %) [(iaw) r2\ 2
0] , . 1+ —
m(t,7,0,¢) = 207w | (14+2)0(iaw) I (Higiew) 1 (Haw) i
F(l+3<§iaw)r(l+;aw)

I* (l+3—gzaw) T* (l+zo¢w) Oé2

. F*([+§)F*(iaW) (Hﬁ)} (D.17)

Further, substituting this result back in the expression for the square of the canonically
conjugate quantum momentum operator of the scalar field we get:

22N\ "2 [ o A ' ' 2
HfZ} (ta r, 97 ¢) = T4 Sin2 6 (1 - @) (Z Z [alm©Zm<t7 r, 07 ¢) + a;mCDka(t? r, 07 QS)} > )

=0 m=—1
‘ (D.18)
where ®,,,(t,7,0,¢) can be computed as:

Dy (t,7,0,0) = —iwdp,(t, 7,6, ¢)
_ 1 \ﬁ Vin(0.6) e [ T(I+3)Tlow) (- 12"
C 2ia\w (1421 (iow) T (l+3J2rz‘aw) T (l+iozw) a2

F(l+3-|2—iaw)1—x<l+z'2aw> 2

r* (l + §) ™ (iaw) ﬁ T2
+ I+ (l+3—5iaw) I+ (H—zaw) (1 + ) } : (D.19)

Additionally, (0,®(t,r,6,¢)), (0P(t,7,0,¢)) and (0,P(t,r,0,¢)) can be computed as:

iow -1

r [ Yim(6,0) e [ T (1+3) D(iow) N
aT‘q) t, 707 - 5 - T - 1 —_—
(t,7.6,¢) a? \/; P(1+2) T (iow) I (Hifiow) p (Haw) T
()
r~ (l —|— F* (iaw) r (t52+1)
- F* (l+3+zaw l+law ( a_) } ) (DZO)
1 DY (0, p) et { r (l + ) [(iaw) ( ) 5
r

2000/TTW F(lJr%)l"(iaw) (l+3J2riaw> T (l+1aw
r(Eee ()

86@(1%, T, (9, ¢) =

Q|ﬂ

1—‘* l 1—‘* law
(1+3) T (iow) |+ ) }’ (D.21)

F* ( l+3+zaw l—HowJ
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1 0yYim(0,¢) e | T (I1+3)T(iaw) r?\
) = : . 1+ —
952 (t:7,0,9) 20/Tw | r(143)r(iaw) [ (Hiaw) T (L) ’
F(l+342»iaw)r<l+i2aw)

r* (l + %) I (iaw) r2 -1
. ‘ 1+— .(D.22
T* (l+3—5w¢w) I* (l+7,2aw) < + ) ( )

Consequently, the corresponding quantum operators can be computed as:

[e%S) +1

0,8(t,7.0,6) = 3 " |am0Pum(t,1,0,6) + af, 0,9}, (17,0, 6)]

=0 m=—1

B3 e e ()

1=0 m=—1 NGy 2 2

B I* (l + 3) ™ (iaw) ﬁ —(#52+1)

I+ (l+3+zaw) T* (l+zaw) (1 + 052) }

Yinu(6,6) e I (1 +3) " (iaw) r2\ ~(5 )
{ (1)

F*(l—l—%)l"*(iaw) I+ (l+342»iaw) I* (l+iaw @
F*(W)F*(Préaw)

T (1+2) T (iaw) 7’_2 5
r (l+3+iaw) r <l+iaw) <1 + Oé2> }] ) (D23)

2 2

+al,,

2

00 +1

0pb(t.7,0,0) = 3 D" |amOe®un(t.7,6,0) + al,, 0P, (t.7,6,0)|

=0 m=-I

— . 89 im(0,0) e r (l + 3) [(iaw) r2\ 2
- L e {r T e (i)

F(l+3+zaw)1—\(l+z’2aw) 2

I (14 2) " (jaw) (1 . ﬁ)}

+ I* (l+3+zaw) I* (lHOM) |
+aT (aenm(ej ¢))* eiwt { T* (l + 3) F*(zaw) (1 N T2>_ 2

Im I (l+%)1"*(io¢w) I* (l+3+mw) I* (l+zaw)

T ()
T (14 2) T(iaw) r2\
+ T (l+3+iafz) T (H—iaw) (1 + ?)

2 2
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o

+1
00t 0.0) =3 [alm8¢q>lm(t,r,9,¢) +al 9,5 (t.7,0, ¢)]

=0 m=—1

S| a0 e [ T T (S
2@@ fm F(lJr%)F(iaw) T (l+342riaw) r (lJréaw) a?
o [EEEE)

L {4 5) Miow) (1 ' 12) }

+
I* (l+3—5w¢w) I* (l—i—zaw)

ot O6Yim(8:9)) et | T (14 5) Miow) /) s\
Ilm I (l—i—%)I‘*(iaw) I* (l+3—5iaw) I* (l+zo¢w) a2
F*(l+3-5iaw)r*<l+z%>

I (14 2) Diow P2\
+ - (lfg_gm)) F((Hijw) (1 + 5) H : (D.25)

2

Consequently, the quantized version of the bath Hamiltonian can be expressed in terms of
the creation and annihilation operators as:

HBath_/ dr/ d@/ do

—2 oo +1 2
T . T A%
2T4 sin 9 (1 — @) <Z Z [almq)lm(t7 r, 97 ¢) + almq)lm(t7 r, 97 ¢):|>

=0 m=-—I

24in? +1 )
+ r 51211 0 r? (Z Z [alma @lm(t r, (9 ¢) +alma (I) (t r 0 ¢)i|>

=

2 o 2
—2 <Z Z alm8¢<l>lm(t T, 0 qb) +alm8¢<blm(t T, 0 ¢)i|)

=0 m=—1
2
1 0o
—|— sin20 ;—) (Z Z alm8¢(1>lm(t T, 9 qb) + alm@¢@lm(t r, 0 gb)i|) (D26)
=0 m=-I

Further, considering only the normal ordered contribution we get the following simplified
expression for the bath Hamiltonian, as given by:

fpan) = 3 3 20 o) (D.27)
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where the quantization frequency wy, (t) is defined as:

« ™ 27 2\ —2 . 2
wlm(t):2/0 dr /0 de/o d [r4sin20 <1—%) ‘@lm(t,r,e,q&)‘

7.2

1
+ r%sin? § {7“2 10, Dy (£, 7,0, 0) | + 2 (1 - @) 09D (L, 7,0, )|

42 1—ﬁ 71|a<1> (t,r,0,0)
sin® 6 a? pFimi T 0y
« T 27
:2/ dr/d&/ do
0 0 0

g (1.1 N A (R (1 +3) T(iaw) A
a? 2t T(142)T(iaw) F(l+3—£iaw)r(l+i2aw)
r(Fge)r(tg)

™ (iaw) r2 %
I* (H—zaw) 1 + E

2 .92 o | 7w Yi(0,¢) e iaw) r
—+ r° sin 9 T - - l+3+1aw l+iow 1 + 2
a2\ w| T z+3 F(zaw I ( I (bHow) a
F( l+3+7,o¢w l+zaw

I* (14 2) I (iow) r2\ (51
(l+3+zaw) (l+zaw) 1+ @
2 -1 fzwt 2 fa
1 0o Yim( IM(iaw 2
vo(1-= o : 3 ; ) (147
o2 200/Tw T(143)T(iaw) F + “‘W ( +’2"“") o?
1—\( l+3+1aw l+zaw

g g (0 —)}

r(1+3
(l+3+zaw

’Lozw_l

+
F* (l+3—52aw) 1*\* (l+zaw

sinZ 0 a2 Q0/TTw r(14+3)T(iow) T (l+3+zaw) T (l+zaw

_ . 2 2
F( l+342»7,ow.1 )F( l+22aw )

(I + 3) T (iaw) (1 . ﬁ)—}

+ T+ (l+3+zaw) T+ (l+zaw)

TR (1 - ﬁ) L Yim(6,0) e { [ (1+3) D(iow) ) (1 + T—Z)

which one can explicitly compute for our problem by substituting the classical solution of
the probe scalar field ®y,,(t, 7,6, ¢).
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E Quantum states for many body (two atomic) entangled states

Set of eigenstates (|g1), |e1)) and (|ga), |e2)) of the two body (atomic) system are described
by the following expressions:

A .For atom 1 :
w
H, = ) (of cosa' + o5 cos B! + o5 cos )
w ogcosy! oo (cos at —icos 1)
2 1, 1 1
oo (cosa’ +icos ) — 00 COS 7Y

Ground state =

(cosal —icosBt)

1
lg1) = ﬁ\/ 1+ cos~? 1+ cosy! = Eigenvalue EY) = —%}, (E.1)
1

Excited state =

! 0 _w

1
le)) = E\/1 + cos !

= Eigenvalue E (E.2)

(cosa' +icos )

1 4 cos~!

B.For atom 2 :

w
H, = 5 (o7 cosa' + o5 cos B! + o3 cos )

2 2 2
w | 01 cosa® 4 oq cos 3% + o3 cosy 0

0 01 cos o + g4 cos 32 + o3 cosy?

Ground state =

(cos a? — icos 3?)

1
lg2) = E\/ 1 + cos 2 14 cosn? = Eigenvalue Eg) = _%}’ (E.3)
1

Excited state =

1 w
= Eigenvalue EY = 3

L v/ 1+ cos~?

|e2) = 7 (E4)

(cos @ + i cos 3?)

1 + cosv?

In the collective state representation the ground state (|G)), excited state (|E)), symmetric
state (|S)) and the anti-symmetric state (|A)) of the two-entangled atomic system can be
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expressed by the following expression:

1.Ground state : =

(cosal —icos 1) (cosa?® —icos %)

1+ cosy?! 1+ cos~?
(cosal —icos )

G) = 191) ® lg2) = 2 /(L + cos 1) (L + cos %)

2

2. Excited state : =

1+ cosy?!
(cos a® — i cos 3%)
1+ cos~?

1

1

(cos a? + i cos 5?)

) = le) @ e2) = 5

3.Symmetric state : =

1) = T=ller) @1g2) + o) ® lea)

1
= —+/(1 + cosy1)(1 + cos2)

= SV sy )T+ cos )

4. Antisymmetric state : =

1) = T=ller) @1g2) + loa) © |ea)

= ﬁ\/(l + cos 1) (1 4 cos?)

1 + cos~y?
(cosal +icos ')
1+ cos~y?
(cosal +icos BY) (cosa? + i cos ?)
1+ cos~y?

1+ cosv!

(cosal —icos ) (cosa® —icos3?)

1+ cosv! 1+ cos~y?
1 (cos al — icos 1) (cos a? + i cos B?)
1+ cosy! 1+ cos~?
(cosal +icosB') (cosa? —icos B?) |’
B 1+ cos~! 1+ cos~?
(cosa! +icosB')  (cosa? + icos 3?)
1+ cos~y? 1+ cos~?

(cosa! —icos ') (cosa® —icos3?)

1+ cos~y? B 1 + cos~y?
m (cosal —icosBY) (cosa? + icos 3?)
1+ cos~y? 1+ cos~?
(cos al +icos B') (cos a® —icos 3?)
o 1+ cosv! 1 + cos~y?
(cosal +icos ') (cosa? +icos 3?)
1+ cos~? B 1+ cos~y?
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Out of all these states the entangled ground state (|G)) is very useful to define the two
point many body (two atomic) correlation function, which are described by the Wightman
function described by the following equation:

!

Gop(T — 1) = (G|®(T, z)0(7, 2%)|G)
(G|®(1,2Y)®(7 , 22)|G) = Gyy(r — 7)) a=1,=1
(Glo(7,2°)0(7, 2")|G) = Gra(r — 7') a=1[8=2

<G|¢)(T,ZL‘2)©(7,,JZ2)|G> :Ggl(T—T,) a=283=1.

(G|D(r,2°)B(7,2%)|G) = Goa(r —7)  a=2,8=2
\

On the other hand, all of these entangled quantum states contribute to the computation
of the Lamb shift from the Heisenberg spin chain interaction considered in the effective
Hamiltonian of the OQS considered in the present context. Technically, by taking o' =
Bt =7/2,9' =0 and o® = 2 = 7/2,~* = 0 this is quantified as:

;

0 |¥) =1G)
0 |¥) = |E)
dFLs = (V|Hys|V) = < (E.9)
Q(L, k,wy) |T) = 15).
—Q(L, k,wp) |U) = |A).

\

where we define the a new function Q(L, k,wy) as:

M (L

——— cos | 2wpk sinh <—>) : (E.10)
4 2 < 2k

Ly\/1+ (%)

F Many body (two atomic) Wightman function for probe massless
scalar field in Static Patch of De Sitter Space

In this section we compute the two atomic Wightman correlation function for a massless
probe scalar field in static De Sitter spacer characterised by the following infinitesimal line
element:

2 2\ 1
ds® = (1 — r_) dt* — (1 - T—) dr? — r?(df? + sin® 0d¢*) where a = \/% > 0. (F.1)

o? a?

To compute the expression for the each of the entries of the two body Wightman func-
tion of the probe scalar field present in the external thermal bath we use the four dimensional
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static De Sitter geometry of our space-time. In this set of coordinate system in four dimen-
sion, the Klein-Gordon field equation for the massless conformally coupled external probe
scalar field for the non-adiabatic environment can be expressed as:

1 0 st 0 1 9 B
cosh? (t) ot (COSh (a) E) WL ] O(t,x,0,0) =0 (F.2)

(07

where L2 is the Laplacian differential operator in the three dimensions characterised by the
coordinate (x, 0, ¢) , which is explicitly defined as:

1 d o) 1 9 %) 1 o2
L= Gy [ax Xy o5 | sinfoz | + ——om F.3
sin? y {8)( (sm X(?x) * sin 0 00 (sm @9) T sin298¢2] , (F.3)
where we introduce a new coordinate y which is related to the radial coordinate r as:
r = sin . (F.4)

The corresponding two body Wightman function between two space-time points for massless
probe scalar field can be expressed as:

Gll(%x/) Glz(:l?,x/)

’

G(z,x) =
GQl(:c,x’) GQQ(x,x’)

(P(xq,7)P(x1,7")) (P(x1,7)P(x2,7"))

(P(x2,7)P(x1,7")) (P(x2,7)P(x2,7"))

) . Tr [pBath(T — 7)®(x1,7)P(x1, T )] Tr [,OBath(T — 7 )P(xq, 7)P(x2, T )} (F.5)

ZBath Tr [pBatn(T — 7 )®(x2, 7)®(x1,7)] Tt [pBatn(T — 7)P(xg, T)P(Xa, )]

where the Partition function for the bath is given by:
ZBath = Tr [pBath(T - 7',)] . (F.6)
Also, the components of the two atomic Wightman function can be expressed as:

G (z,2") = G*(z,2)) = (B(xq, T)P(x1, 7)) = (®(xg, 7)P(x2, 7))
1 1

— F.7
1672k2 sinh? (%—lz — ie) ’ (F.7)
G%(z,2') = G*(z,2") = (®(x1, T)P(x2, 7)) = (®(Xq, T)P(x1,7))
1 1
_ i . (F8
67 k(3 —i0) — g (D))

Here we have introduced few parameters, which are defined as:

k= \/gooax = Va2 —r?, (F.9)
Ar=r—v' = vamtt-t) =k (21)). (F.10)

«
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G Gorini Kossakowski Sudarshan Lindblad (GSKL) (C’L‘;ﬂ ) matrix

In this appendix, we explicitly write down the entries of the Gorini Kossakowski Sudar-
shan Lindblad (GSKL) (Cf‘jﬁ ) matrix which is appearing in the expression for the quantum
dissipator or Lindbladian operator as given by the following expression:

3 2
Llpsystom(] = 5 3 3 O 207 psyusom(ot = {0707, psyutem()}], (G1)

ij=% af=1

where we have written the expression in a transformed basis span by (+, —, 3) for two en-
tangled OQS set up. The components of Cio‘jﬁ matrix are very crucial to solve the time
evolution equation of the reduced subsystem density matrix when we partially trace out the
bath degrees of freedom from our two atomic entangled OQS set up. In general, Gorini Kos-
sakowski Sudarshan Lindblad (GSKL) (C’Z-ajﬂ ) can be expressed as:

CZ-B = Aaﬁ(sij_iéa5€ijk53k_Aa,853i53j v Z,j =+, —,3 and VOé,ﬁ = 1(At0rn 1), 2(Atom 2)

G.2

In terms of explicit components the entries of the C’fj‘-ﬂ matrix can be written as: 2
O = AP (G.3)

CY = —BP (G.4)

CHl=0%=0C3 =0 =057 =0 (G.5)

C* = 1B (G.6)

CF = AP (G.7)

In the next two subsections, we will explicitly compute each of the components of A%8 and
B2 for the two atomic OQS in (+, —,3) transformed basis.

G.1 Calculation of A%?

The general expression of A%? can be written in terms of the Fourier transformed two atomic
Wightman functions as given below:

3 2
A7 = E g7 () + G (—uwn) (G.8)

where G (+wy) is defined as:
G (+w) = /OO dAT X80 GOB(AT), (G.9)

where G*?( A7) is the two point two atomic Wightman function which is explicitly computed
in the previous Appendix.

In this context, all the components of the Fourier transformed Wightman function can
be written as:

1 w
G (£wo) = G%(Fwo) = i%TqEO%WO7 (G.10)
1 w L
12 _ 021 — 4 0 =
g (j:wo) = Q (:l:u.)o) = :|:27r 1 e:FQﬂ-HWOf (ﬂ:a}o, 2) . (Gll)
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Further, using this above mentioned expression for the Fourier transformed two point Wight-
man function the components of the A*? can be written as:

2
A= 42 — [ Wo _ wo
4 [27r(1 —e72mwo) (] — e?mrwo)
2
= MSW coth (Trwy) , (G.12)
~ ~ 2 L w L
A2 — j2 [l il R 0 g =
1 { e 2wo)f (wo’ 2) o1 = many) | 7405
L
= Iu8 coth (mkwy) f (wo, 5) . (G.13)

where we have introduced a new function f (iwg, é) which is defined as:

L 1 L L
f (iwg, 5) =4 - sin (:l:2/iu)0 sinh™* 2—) =f (ZFwO, 5) ) (G.14)
Lwoy/1+ (£) h

Here L characterises the Euclidean distance between the two atoms placed at the coordinates
(r,0,¢) and (r,0', ¢), which is defined as:

L = 2rsin (|A7€|> , (G.15)

where A = 6 — § represents the angular separation.
Now we are interested in the following limit where the following condition is satisfied *:

1
—) where n € Z, (G.16)

coth(mhwy) =0 = Kwy =1 (n + 5

in which we found the following simplified expression for the components of the A%?, as
given by:

Al = A% =, (G.17)
A2 = A = 0. (G.18)

This is really very useful to fix the elements of the GSKL matrix elements and to further
solve the GSKL master equation.

9To simplify the solutions we have considered this assumption. However, the similar kind of feature one
can get in the sub horizon time scale in De Sitter space itself. Particularly in sub horizon scale one can
neglect the contribution for the mode momentum which is appearing in the frequency of the fluctuating
modes and for De Sitter inflationary patch of the metric one can explicitly show that w is imaginary and

controlled by conformal time scale. In our case the parameter kK = 4/ % — 12 > 0 as for De Sitter space the

cosmological constant A > 0. This implies that in our case we get imaginary frequency if we respect this
specific constraint condition and it is physically justifiable.
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G.2 Calculation of B®?

The general expression of B*? can be written in terms of the Fourier transformed two atomic

Wightman functions as given below:

B = 121G ) — G ()]

(G.19)

Further, using the previously expression for the Fourier transformed two point Wightman

function the components of the B*? can be written as:

=

Bl — B2 _

2 wo i )
2m(1 — e~2mwo) 27 (1 — e2mhwo) |
200

)
™

7;,4;|

|7;L\>OO

B2 — g2t _

S

e (L
- S f<w072>

G.3 Calculation of C’f‘jﬁ matrix elements

=0 L wo L
|:27T<1 — e*Qﬂ'nwO)f (UJO; E) + 271'(1 _ e27r/£wo)f (_WO, §>:|

Finally, substituting the explicit forms of A*® and B*? which we have derived in the previous
sub section, we get the following expressions for the entries of the GSKL matrix:

CH =C"% =03 =05 =55 =0 (G.22)
Ol 02 _ ol _ 22 _ Bl _ B2 f°woi (G.23)
—+ = b= =70 = = Ry :
3 3 2 I
2 =% = —C'2 = —C% =B =B “8““ f (wo, 2) (G.24)
i =cClL=C! =0 = Al = 422 = B0 (kW) , (G.25)
T
~ - 2 L
C2 =03 =C? = =AP = A" = %coth (mhwo) f (wo, §> . (G.26)

Further, using the assumption, kwy = ¢ (n + %) where n € Z, we get the following simplified

expressions for the entries of the GSKL matrix:

o = 0% = o = 050 = 03 =0
2
e .75 H
Ol = ¢ = Ol = 02 =B =i = I (n
c? =0? =-C? =-C? =iB?=iB" =
Cl =Cl =0 =02 = AN = A7 <,
CP =01 =02 =C = AR = A" =,

— 04 —

(G.27)
(G.28)

oY (L
87m( +2)f(°’2) (G-29)

(G.30)
(G.31)



where, the parameter

H——TQ \/ R —r2>0, (G.32)
DS

for De Sitter space. Here we use the fact that, the curvature of static De Sitter space is
given by the following expression:

Rps = V48A >0 as A >0 De Sitter. (G.33)

H Effective Hamiltonian (H,gﬂ ) matrix

In this appendix, we explicitly write down the entries of the Effective Hamiltonian (Hff )
matrix which is appearing in the expression for the Lamb Shift part of the Hamiltonian as
given by the following expression:

. 2 3
_ ¢t aB( o oy B B
Hyamb shife = — > Z H (n¢.0%)(nf].0?). (H.1)

where this Hamiltonian is constructed by partially tracing over bath degrees of freedom,
which is in our problem a probe massless scalar field. Technically, the Effective Hamiltonian
(H f‘jﬁ ) matrix represent here the strength of the spin chain interaction mentioned above. The

general expression of H. %5 matrix is given by the following expression:

Hézjﬁ = Aaﬁéij—iBaﬁEijkégk—Aaﬁ(Sgi(ng \ Z,] = +, -, 3 and \V/CY, 5 = 1(At0m 1), Q(Atom 2)
(H.2)
In terms of explicit components the entries of the Hfj‘-ﬁ matrix can be written as:
HY = H*® = A% Va,f=1,2, (H.3)
HY = —iB*® Va,f=1,2, (H.4)
H* =iB* Ya,8=1,2, (H.5)
HY =HY =0 Ya,f=12, (H.6)
Hy =0 Vj=+,—-,3 and Va,f =12 (H.7)

H.1 Calculation of A~?

The general expression of A%? can be written in terms of the Fourier transformed two atomic
Wightman functions as given below:

AP — %Q[Kaﬁ(wo) + K (—wp)] (H.8)

where % (dwy) is defined as:

P o0 :I:ZATw
K8 (£wp) = —/ dw 5 :l:wo = m/ / dAT GO‘B(AT) (H.9)

T ) oo
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where G*?( A7) is the two point two atomic Wightman function which is explicitly computed
in the previous Appendix. Here P represents the principal value of the integral.

In this context, all the components of the Hilbert transformed principal part of the
Wightman function can be expressed as:

11 29 P /°° 1 w

K (£wo) = K (£wp) = 2% | dw G tw) AT (H.10)
12 _ 21 _ P /Oo 1 “ L

K (£w) = K (f£wp) = 2% | dw CET R flw, 5 ) (H.11)

where we have introduced a new function f (w, %) which is defined as:

L 1 L
f (w, 5) ==+ sin (:|:2/<aw sinh ™ 2—) (H.12)
Lwy/1+ (&) "

Further, using this above mentioned expressions for Hilbert transformed principal part of
the Wightman function the components of the A% can be written as:

2p [>® 1 1 w
At = g2 _ H / d
snti ) Y @t wo) | (@ —wo)) (1= e 2m)

2P 00 2
. /dw d (H.13)

4% J_ o (w+ wo)(w —wp)(1 — e=2mw)’

2 o0
12 _ QI_E 1 1 w £
A=A = [(wwo)*(w—wo)] <1—e—2w>f<°"’2

2 0 2
WP w L
= — d — . H.14
w5 ) Y T e — ey (‘”’ 2) (.14

Next, using the approximation 2rkw >> 1, we get the following simplified expressions
for the components of the A% as given by:

2 0 2
1 _ g2 WP od
A=A = Y T (H.15)
P[> w? L
Az g2t M d =). H.1
An%i | n (W + wo)(w — wp) F\w 2 (FL.16)

H.2 Calculation of B*?

The general expression of B*? can be written in terms of the Fourier transformed two atomic
Wightman functions as given below:

B = e ) — K () (H.17)

where K% (dwy) is defined earlier.
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Further, using this above mentioned expressions for Hilbert transformed principal part
of the Wightman function the components of the B*? can be written as:

Bll — B22 _ MQP. * dw 1 _ 1 w
82 | (wHwy) (w—wp)] (1 — e 2mw)
2 0o
pw P wwy
=] @ .18
47 J_o “ (w+ wo)(w — wp) (1 — e=2mrw)’ ( )
Be=p =" [ - w e, E
812 oo (w -+ w(]) (w — w()) (]_ _ 6—27mw) 2
2 o)
w P wwy L
=42 | ¢ =N H.1
Am?i /oo N (w4 wo)(w — wo)(1 — e=2mw) / (w, 2) (H.19)

Next, using the approximation 2rkw >> 1, we get the following simplified expressions
for the components of the A% as given by:

2P 00
Bl=p2-L_ [ e (H.20)
Ar%i | (w4 wo)(w — wp)
po[ ww L
p2_pn_H d 0 = . H.21
w77 ) e w e T\ (F.21)

H.3 Calculation of Hf;ﬁ matrix elements

Finally, substituting the explicit forms of A% and B*? which we have derived in the previous
sub section, we get the following expressions for the entries of the effective Hamiltonian
matrix:

2
P .
Hiljl - Hi2jz = % [(04j — 03:03;)O1 — i€;103,O2] (H.22)
2 _ g0 WP S a5 On — e S H
Hij = Hij = 5 (0 — 03103))O3 — i€iji031Oa] . (H.23)

Therefore, all the various entries of H;B can be written as:

’p
HY, = HZ — g = g2 — A" = A% — h@l (H.24)
HUU g2 gl _ g2 —iBll—iBQQ—MZP@ (H.25)
—+ = = +- = +— = = = qgz 2 :
HZ — g2l 12 2l q12 o g21 NQP@ (H.26)
++ T T M= - T 4n2i 3 '
H2 — g2 o — g2 — g2 _iBl2_ile_u2P6 (H.27)
—+ = = +- = +— = = = gz 4 :
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The function f (w, %) has already been defined in the previous section. Here we introduce
four integral functions ©;Vi = 1, 2, 3, 4, which is defined as:

Integral I:

O,: = /_OO dw (1= =) (0 & wo) (0 — o) (H.28)

Integral 11 :

Oy : = /_OO dw (1= =) (0 + wo) (0 — o) (H.29)

Integral III :

o = | e (w’ 5) (H.30)
Integral IV :
. >~ wWwo £
1 = /_oo w (1 — e 27) (w + wy) (w — wo)f <°"’ 2) : (H.31)

In the next section we explicitly compute the contributions from all of these integrals.

I Calculation of useful integrals

In this section, we explicitly compute the analytical expression for the useful integrals ©,Vi =
1,2,3,4, which are very useful to compute the expressions for the effective Hamiltonian
matrix elements.

1.1 Integral I

In this subsection we explicitly compute the finite contribution from the following integral:

o 2
0, :—/ dw “ . (L.1)

- (1 — e 2™k (w + wp) (W — wp)

In the limiting approximation 2wrxw >> 1, one can further expand the integrand by taking
large xkw approximation as:

w? w?

Viwo,w, k) = (1 — e 2™) (w + wp) (W — wp) Y (w+ wp) (w — wp) = Vo, w).
(1.2)

This implies that, after taking large xkw approximation the integrand of ©; becomes inde-
pendent of the parameter k.
Now, further using this approximation the integral ©; can be further simplified as:

e8] 0 e8]
0, ~ / dw V(wp, w) = / dw V(wo, w) + / dw V(wo,w), (L.3)
0

—00 —0o0
.

J/
-~ ~~

D] (wo) = DQ (w())



where we have written the integrals into two parts,represented by D; (wp) and Do (wy). Now,
here we see that in the 27k >> 1 limit we get:

—0o0

Dl(wo) = / dw V(WO,CL)) = — Am dw V(WmM) = —DQ(WQ) . (14)

Now, here D;(wy) and Ds(wy) gives divergent contributions in the frequency range, —oo <
w < 0and 0 < w < oco. To get the finite regularised contributions from these integrals
we introduce a cut-off regulator w,., by following Bethe regularisation procedure. After
introducing this cut-off we get the following result:

0 o .
DI(WU:WC) - / dw V(WO,W) = / dw V(UJ(),(U) = DQ(WU:WC) — 5 |:wc — wo tanh_l (&):| ‘
0

Wo

—We

Consequently, we get the following regularised expression for the integral ©;, as given by:

©1 = Dy (wo, we) + Da(wo, we) = {wc — wo tanh™* (cw)] ) (1.6)
Wo
Now, if we further use the approximation that the cut-off is small compared to wy i.e.
w, << wp, then we get 1:
Integral I: ©O5 = D;(wp,w.) + Da(wp, we) = {wc — wp <M>] ~ 0l . (L.8)
Wo

1.2 Integral II

In this subsection we explicitly compute the finite contribution from the following integral:

o Wwwo
0, = d . 1.9
2 /_OO v (1 — e 2™k (w + wp) (W — wp) (1.9)

It is important to note that in the limit, 2rkw >> 1, one can further expand the integrand
given by the following approximation as:

Wo W Wy W .
(1 — e=27k) (w4 wp) (W — wo) 2mrw>>1" (w + wp) (W — wp)

M(wo, w, k) :=

= M(WO,(JJ).

(I.10)
This implies that, after taking limit 2rxw >> 1 the integrand of ©, becomes independent
of the parameter k.
Now, further using this approximation the integral ©; can be expressed as:

00 0 o)
0, ~ / dw M(wp,w) = / dw M(wo,w) + / dw M(wo, w), (I.11)
0

—00 —00
N .

-~

= /\/'1 (w[)) = /\/’2 (wo)

10T the limit, w, << wy we can approximate the Taylor series expansion of the following function as:

3
c c 1 c (&
tanh ™! <w> = <w> + = <w> o (OJ) << 1. (L.7)
wo wo 3 \wg wo
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where we have written the integrals into two parts, indicated by N;(wg) and N5 (wg). Now,
in the limit 27rrw >> 1, we get:

0 00
Ni(wp) = / dw M(wp,w) = —/ dw M(wp,w) = =N (wp) . (L.12)
—o0 0

Now, here N;(wy) and N> (wg) gives divergent contributions in the frequency range, —oco <
w < 0and 0 < w < oo. To get the finite contributions from these integrals we introduce
a cut-off regulator w,., by following Bethe regularisation procedure. After introducing this
cut-off we get the following finite contribution:

Ni(wo, we) = /0 dw M(wp,w) = _/Owc dw M(wp,w) = —Na(wp,w.) = ——1In [1 — <—)2] (L.13)

—We

Consequently, we get the following expression for the integral ©,, as given by:

w(} w(ﬁ

Wo wo

2 2
Integral I1 : ©; = U, (wo, w.) + Us(wp, we) = % In [1 — <> ] — % In [1 — () ] =0||

1.3 Integral 111

In this subsection we explicitly compute the finite contribution from the following integral:

o= [ e () (149

where, we define the function f (w, %) given by the following expression:

f <w, g) = ! = sin<2k‘w sinh™* ( 2Lk>> . (1.16)
Lwy/1+ (QLfk)

In the limit 27k >> 1, one can further expand the integrand as:

W f (@ 5) W f (@ 5)

(1 —e 2™ (w+ wp) (W — wp) 2mrw>1 (w+ wp) (W — wp)

Z(wg,w, k) := = Z(wo,w, k).

(L.17)
This implies that, in the limit 27k >> 1 the integrand of ©3 is not independent of the
parameter k.
Now, further using this approximation the integral ©3 can be further simplified as:

[e'e) 0 e °] —~—
O; =~ / dw Z(wo,w, k) = / dw Z(wo,w, k) + / dw Z(wo,w, k),  (1.18)
- 0

o0 —0o0
NG (G
- -~

= 'Rll (wo,k) = RIQ(UJOJQ)

where we have written the integrals into two parts, indicated by R!(wy, k) and R (wo, k).
Now, here in the limit 27k >> 1 we get:

0 0
R (wo, k) = / dw Z(wy,w, k) = / dw Z(wo,w, k) = Rh(wo, k)
0

—00

T L
= Cos (kao sinh™* (—)) . (L.19)
2 2k
207\/1+ (%)

- 100 -



Consequently, we get the following expression for the integral O3, given by:

T o L
Integral ITT: O3 = R} (wo, k) + Rb(wo, k) = W cos <2kw0 sinh™! (2]{:)) . (1.20)
+ (3)

Further, substituting rwy = ¢ (n + %) V n € Z, we get the following simplified expression
for the integral O3, given by:

™

L
Integral IIT: O3 = Ry (wy, k) + Ra(wo, k) = — Cosh<(2n + 1) sinh™! (%)) . (1.21)
Ly\/1+ (%)

1.4 Integral IV

In this subsection we explicitly compute the finite contribution from the following integral:

N wwp I
Oy 1= /DC dw (1 — 27 (w + wp) (w — wo)f <w> 2> ; (1.22)

where, we define the function f (w, %) given by the following expression:

L 1 L
f <w, 2) = - sin <2kw sinh ™ <2k’>> . (1.23)
Luy/1+ (£)
In the limit 27x >> 1, one can further expand the integrand as:

Wwy f (CL), %) . Wwo f (wa %)

(1 —e 2™ (w+ wp) (W — wp) 2mrw>1 (W + wp) (W — wp)

S(wo, w, k) := = S(wo, w, k).

(I.24)
This implies that, in the limit 27k >> 1 the integrand of ©3 is not independent of the
parameter k.
Now, further using this approximation the integral ©4 can be further simplified as:

o) 0 o0
O, ~ / dw S(wo,w, k) = / dw S(wo,w, k) + / dw S(wo,w, k),  (1.25)
_ 0

oo — 00
\ /

= ﬁ?(rwo,k‘) = E;(,wo,k)
where we have written the integrals into two parts, indicated by L(wp, k) and Lo(wy, k).
Now, here in the limit 27k >> 1 we get:

0

L1 (wo, k) :/ dw S(wo,w, k) = —/ dw S(wo,w, k) = —Lo(wy, k)
0

—00

1
: I\2 &
= — T - G%é —w2k?sinh ™ <2—> | ? . (1.26)
o1+ () 7 e
Meijer C?‘rrfunction
Consequently, we get the following expression for the integral ©,4, as given by:
Integral IV : @4 = ,Cl (w07 k) + LQ(W(), k) =01. (127)
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J Functions appearing in the solution of GSKL master equations

The functional form of the terms Ay, By and B, appearing in the solution of the evolution
equations of the reduced subsystem density matrix are functions of the components of the
GSKL C’fj‘.ﬁ matrix and effective Hamiltonian Hf]‘.ﬁ matrix that we have computed explicitly
in the previous Appendices. These factors are defined as:

. 2 L
Al = W cos (2/<;w0 sinh ! (2—>)
ALy /1 + (£)2 &
2

I ((2n+1) sinh ! (23)) (J.1)

ALy 1+ (£)2 &
: 2 2
1wy w 1
B, = = - 2
! 47 4Tk (TH— 2) ’ (J2)

B WQ sin (2/4:(,0 sinh~! ( L ))
2 = 0 —
AL\1+ (£)? 2%
0 L
= — sinh ((2n+ 1) sinh™! (2—>) : (J.3)

ALy1 4 (L) &

The functions A;(w),As(w) and Az(w) appearing in the fi(w),f2(w) and f3(w) terms
of the solutions of the evolution equations are explicitly written in the following equations.
Here the following synbols have been used to write A;(w),As(w) and Az(w) terms

by = —48A7 + 36B; — 4w? (J.4)
by = 288A%w + 432Bjw + 16w® (J.5)

Now we define, A (w),Ay(w) and Az(w) in terms of the predefined factors by,b and b3 given
by the following expression:

A (w) = %“’ — 21/3%2(1)1, by) + 3X—121/32(b1, by), (J.6)
Anfw) = 22 4 (Lt iv3h)) L 1 iVB)Z(b,b), (7.7)

3 T 3x2283Z(by,by) 6 x21/3

3 T 3x228Z(by,by) 6 X 21/3(1 +iV3)Z(by, by), (J.8)

where we define again a new function Z(by, bs), which is given by:

1/3
Z(by, by) = (52 /4Bt bg) . (1.9)

The above equation shows that the function A;(w) is real, whereas Ay(w) and Az(w) are
complex. The arbitrary constants obtained after using the late time behaviour as the initial
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conditions which are written in the earlier section of this paper are explicitly defined by the
following expressions:

1

Y1 fa(w) Y1 f3(w) _Yofs(w) | Vsfo(w) V1 fo(w) 3B2 f3(w) _Yofs(w) | Vsfa(w)
"~ 4(Bi+By) - 4(Bl+B2)> ( Va4 + Va > + <4(Bl+32)2 + 4(31+B2)2> < Va - Va4 )

gi(w) =
<

N% V1 fa(w) V1 f3(w) Wof Vst
~ 94 (B 1 Bo) (‘4(51132) + 4(51;1132)> tanh(rrw) — Vi (=52 + 52) tanh(rrw)

(_ Vi1 fa(w) + y1f2(w)f3(w)>
4(B1+Bz2) 4(B1+Bz2)

fo— f3)(12B1B3 — 36B3 — B1f£ + B1fif2 + Bif1fs + 3Bafafs)’
4

f2 — f3)(12B1 B3 — 36B5 — By f{ + Bififa + Bif1fs + 3Bz faf3)
x [12B;B; tanh(mkw) + 48 By By tanh(mkw)
+ 36 B, tanh(mkw) + B f} tanh(mrw)
+ By By f} tanh(mkw) + 3B By f; tanh(mkw)
+ 3B3 f, tanh(rkw)], (J.12)

X

, (J.10)

g2(w) = ( (J.11)

93(w) = _(

1
 12B1B3 + 36B3B1f2 — Bififo — Bififs — 3Bafof3
X [4B1 By fy tanh(rkw) + 383 fo tanh(mkw)
+ By By fs tanh(mkw) + 3B;5 fstanh(rkw)], (J.13)

gs(w) =

1
~ 12B,B% + 3683 + B1ft — Bififs — Bififs — 3Bafafs
x [4B? f, tanh(mkw)tanh(rkw) + 16 B By(fy tanh(mkw) + 1283 f3 tanh(rkw)
+ 4B? f5 tanh(mkw) + 16 B; By tanh(mkw) + 1283 f3 tanh(rkw)
— 128, B tanh?(mkw) — 36 B3 tanh?(mkw) — By f{ tanh?(7rw)
+ By fifs tanh®(mkw) + By f1f3 tanh?(1rw)
+ 3By fofs tanh*(mrw)].  (J.14)

g6(w)

where in writing the function ¢;(w) we have introduced the following symbols:

y, = (1 - B%Bz) | (7.15)
YV, = —12B3 — f2, (J.16)
Vs = —12B3 — f2, (J.17)
Vi = 16A,(B; + By)*. (J.18)
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