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Genetic and epigenetic intra-tumoral heterogeneity cooperate to 
shape the evolutionary course of cancer1. Chronic lymphocytic 
leukaemia (CLL) is a highly informative model for cancer evolution 
as it undergoes substantial genetic diversification and evolution 
after therapy2,3. The CLL epigenome is also an important disease-
defining feature4,5, and growing populations of cells in CLL diversify 
by stochastic changes in DNA methylation known as epimutations6. 
However, previous studies using bulk sequencing methods to 
analyse the patterns of DNA methylation were unable to determine 
whether epimutations affect CLL populations homogeneously. 
Here, to measure the epimutation rate at single-cell resolution, we 
applied multiplexed single-cell reduced-representation bisulfite 
sequencing to B cells from healthy donors and patients with CLL. 
We observed that the common clonal origin of CLL results in a 
consistently increased epimutation rate, with low variability in 
the cell-to-cell epimutation rate. By contrast, variable epimutation 
rates across healthy B cells reflect diverse evolutionary ages 
across the trajectory of B cell differentiation, consistent with 
epimutations serving as a molecular clock. Heritable epimutation 
information allowed us to reconstruct lineages at high-resolution 
with single-cell data, and to apply this directly to patient samples. 
The CLL lineage tree shape revealed earlier branching and longer 
branch lengths than in normal B cells, reflecting rapid drift after 
the initial malignant transformation and a greater proliferative 
history. Integration of single-cell bisulfite sequencing analysis with 
single-cell transcriptomes and genotyping confirmed that genetic 
subclones mapped to distinct clades, as inferred solely on the basis 
of epimutation information. Finally, to examine potential lineage 
biases during therapy, we profiled serial samples during ibrutinib-
associated lymphocytosis, and identified clades of cells that were 
preferentially expelled from the lymph node after treatment, marked 
by distinct transcriptional profiles. The single-cell integration of 
genetic, epigenetic and transcriptional information thus charts the 
lineage history of CLL and its evolution with therapy.

To measure the intra-sample variability in the epimutation rate, we 
profiled single-cell DNA methylation (DNAme) of 831 normal B cells 
from six healthy donors, including B cells across the maturation spec-
trum, and 1,821 cells from 12 primary CLL samples with or without 
mutations in the gene encoding the immunoglobulin heavy-chain varia-
ble region (IGHV) (M-CLL or U-CLL, respectively; Fig. 1a, b; Extended 
Data Figs. 1, 2; Supplementary Tables 1–4). The average epimutation 
rate (measured by the proportion of discordant reads (PDR)6; Fig. 1c) 
was higher in B cells from patients with CLL than from healthy donors 
(Mann–Whitney U-test, P = 0.0003; Fig. 1d), in line with previous bulk 
DNAme sequencing results6. Notably, the single-cell measurement 
showed that the CLL epigenome exhibited consistently increased rates 
of epimutation (that is, low cell-to-cell variation in epimutation rates), 

irrespective of their IGHV mutational status, compared with CD19+ 
B cells (Mann–Whitney U-test, P = 0.0006; Fig. 1e; Extended Data 
Fig. 3a). Lower variability in the epimutation rate in CLL than in normal 
B cells was observed across all genomic regions, including regions that 
were hypermethylated (such as CpG islands (CGIs)) or hypomethylated 
(intergenic regions) in CLL (Extended Data Fig. 3b–e). The common 
origin of CLL cells from a single, transformed cell is thus reflected in 
minimal cell-to-cell epimutation rate variability. By contrast, normal B 
cells represent an admixture of cells with different replicative histories, 
with newly formed naive cells intermixed with long-lived post-germinal 
centre memory B cells, and have highly variable epimutation rates. The 
epimutation rates of index-sorted B cell subsets progressively increased 
during B cell maturation (Fig. 1f; Extended Data Fig. 3f, g). Notably, 
the CLL epimutation rate showed lower cell-to-cell variation than even 
these well-defined B cell subsets, especially those from low- to high- 
maturity memory B cells, which more closely resemble CLL in their 
epigenetic profiles4 (Extended Data Fig. 3h). These results are consistent 
with the epimutation rate correlating with the proliferative history of the 
cell, and serving as an epigenetic molecular clock7–9.

To extend the assessment of epimutation beyond DNAme concord-
ance within single sequencing reads6,7, we measured the concordance 
odds ratio of DNAme between pairs of neighbouring CpGs as a func-
tion of their genomic distance (Extended Data Fig. 4a). We observed 
a faster concordance decay in CLL at genomic regions with known 
regulatory roles, such as promoter CGIs, suggesting an erosion of CGI 
spatial organization (Mann–Whitney U-test, P = 0.0013; Extended 
Data Fig. 4b). Faster concordance decay involved promoters of TP53 
targets, genes differentially methylated across cancer, and genes associ-
ated with cell stemness (Extended Data Fig. 4c, e), previously reported 
to exhibit a high epimutation rate6, but not promoters of housekeeping 
genes (Extended Data Fig. 4d). Therefore, CLL epimutation also alters 
DNAme at larger scales10, in addition to local methylation disorder6.

Although stochastic diversification by epimutation occurs in CLL, a 
minority of CpGs may maintain stable DNAme owing to an active role 
in the leukaemia regulatory code. To identify CpGs with a low epimuta-
tion rate, we adapted the four-gamete test11 to measure the epimutation 
rate at single-CpG resolution (Fig. 1g; see Methods). As expected, the 
frequency of four gametes was positively correlated with the PDR meas-
urement of epimutation (Spearman’s rho = 0.32, P = 3.263 × 10−14).  
Across the 12 CLL patient samples, 166,720 CpGs exhibited a lower 
four-gamete frequency than expected based on their DNAme level, rep-
resenting 1.22% ± 0.42 (mean ± s.e.m.) of assessable CpGs per sample 
(Fig. 1h; Extended Data Fig. 5a–c; Supplementary Table 5). Consistent 
with the key role of transcription factors in the patterning of DNAme in 
CLL4, we identified enrichment in gene promoters for binding motifs of 
transcription factors with established roles in CLL progression at sites 
that surround low epimutation CpGs (±25 base pairs (bp)), including 
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NFKB112 and MYBL1, which encodes a transcription factor that is 
involved in MYC activation in lymphoid neoplasms13 (Fig. 1i, right; 
Extended Data Fig. 5d, e; Supplementary Table 6).

DNAme of enhancers can also affect transcriptional activity and 
cellular phenotypes in CLL14. Low epimutation enhancer CpGs 
(n = 1,585; Supplementary Table 7) were located in proximity to genes 
implicated in lymphoproliferation, including NOTCH1, NFATC1 and 
FOXC1, and genes involved in key CLL pathways (for example, the 
WNT and MAPK signalling pathways15; Benjamini–Hochberg false 
discovery rate (FDR) adjusted P < 0.2). Low epimutation enhancer 
CpGs were also enriched for binding sites of SP1, a component of the 
CLL regulatory network16, and the transcriptional repressor HINFP 
that is involved in DNAme-mediated gene silencing17 (Fig. 1i, left; 
Extended Data Fig. 5d, e; Supplementary Table 8). This suggests that 
conserved CpG sites are protected from alterations in DNAme by tran-
scription factor binding, by either direct exclusion of methylases or 
negative selection due to a disruption of the CLL regulatory code.

To examine the effect of epimutation on gene expression at the 
single-cell level, we integrated multiplexed single-cell reduced- 
representation bisulfite sequencing (scRRBS) with whole-transcriptome  
sequencing (Fig. 2a; Extended Data Fig. 6a). Although the expected 
relationship between promoter DNAme and gene silencing was  
preserved in both CLL and normal B cells (Extended Data Fig. 6b),  
a higher single-cell epimutation rate in CLL was associated with higher 
transcriptional entropy—a measure of heterogeneity of gene expres-
sion within cells18—than in normal B samples, consistent with tran-
scriptional dysregulation in CLL (Fig. 2b; Extended Data Fig. 6c–e). A 
negative correlation between promoter DNAme and gene expression 
was observed at the single-cell level in both CLL and normal B cells 
(Fig. 2c–f; Extended Data Fig. 6f–n), but was more pronounced in CLL 
(Fig. 2e; Extended Data Fig. 6j, n), suggesting that, at least in part, the 
decreased epigenetic–transcriptional coordination observed in bulk 
CLL sequencing6 results from intra-leukaemic epigenetic diversity. A 
subset of genes exhibited positive correlation between expression and 
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from healthy donors and patients with CLL. NBC, naive B cells; loMBC, 
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c, Epimutations are measured as the proportion of discordant reads (PDR). 
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according to the level of average methylation of each CpG across CLL 
cells (sample CLL04 is shown as a representative example; n = 29,114 
low epimutation CpGs out of a total of 1,835,994 CpGs assessed; see also 
Extended Data Fig. 5a). Red line denotes smooth local regression line. 
Low epimutation CpGs are indicated in red. i, Sequence logos of the DNA 
motifs significantly overrepresented in low epimutation CpGs (±25 bp) at 
promoters or enhancers, across CLL samples. For each motif, the E value 
and the TOMTOM P value are shown. See Methods for details on de novo 
motif enrichment analysis, and Extended Data Fig. 5d for additional 
motifs. TSS, transcription start site. In all figures, box plots represent the 
median, bottom and upper quartiles, whiskers correspond to 1.5× the 
interquartile range. P values were determined by Mann–Whitney U-test 
(d–f), comparing the median values across samples (d, e).
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promoter DNAme (Fig. 2g; Extended Data Fig. 6f, right), enriched in 
genes marked by cytosine hydroxymethylation, which is known to be 
positively correlated with gene expression19 (Extended Data Fig. 6o).

Because epimutations may serve as a molecular clock9, we used the 
heritable epimutation information to reconstruct methylation-based 
lineage relationships in CLL and normal B cells (Fig. 3a–d; Extended 
Data Fig. 7a–e; see Methods). CLL lineage trees exhibited early branch-
ing with a lower maximum tree depth (Fig. 3e; Extended Data Fig. 7f) 
and homogeneous root-to-tip branch lengths (Extended Data Fig. 7g), 
consistent with rapid drift after the initial malignant transformation 
(‘big bang’ cancer evolutionary framework20). Moreover, the homo-
geneous branch length is inconsistent with a notable contribution from  
cancer stem cells in CLL, in contrast to data that revealed highly diver-
gent replicative histories in acute myeloid leukaemia21, in which cancer 
stem cells have been well described. The greater proliferative histo-
ries in CLL were reflected in increased accumulation of epimutation 
resulting in higher patristic distances (that is, the sum of the lengths 
of branches that link two tips in a tree) than in normal B cell trees 
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(Fig. 3f; Extended Data Fig. 7h, i). By contrast, normal B cell clades 
followed a pattern that was consistent with normal B cell differentiation 
by exhibiting late branching and deeper tree topology, with younger 
naive CD27− B cells showing shorter branches than CD27+ memory 
terminally differentiated B cells (Fig. 3c; Extended Data Fig. 7b). As 
expected, normal B cell lineage trees resulted in a smaller increase in 
fidelity compared with parsimony trees (based on DNAme mismatches 
between cells; see Methods) than CLL trees, consistent with their non-
clonal growth (Fig. 3g).

To validate tree topology inferred via epimutation, we integrated 
single-cell DNAme and whole-transcriptome sequencing with targeted 
sequencing of known somatic mutations in the cDNA (Extended Data 
Fig. 8a). We sampled a CLL that contains a subclonal driver muta-
tion in SF3B1 (K666N; variant allele frequency of 0.23) and inferred 
its lineage tree from single-cell DNAme (Fig. 3h; Extended Data 

Fig. 8b). The SF3B1-mutated cells mapped accurately to a distinct clade 
inferred solely based on epimutation information (Fisher’s exact test, 
P = 7.4 × 10−9; Extended Data Fig. 8c, d). This accurate mapping was 
probably not due to distinct DNAme profiles of SF3B1-mutated cells, 
given the small number of differentially methylated regions (Extended 
Data Fig. 8e), but instead due to the ability of stochastic epimutation 
to trace lineage histories. Cells belonging to the SF3B1-mutated clade 
showed higher alternative 3′ splicing than their wild-type counter-
parts (Mann–Whitney U-test, P = 0.015; Extended Data Fig. 8f), con-
sistent with the known SF3B1-mediated splicing defect22, and were 
marked by a distinct transcriptional profile (Extended Data Fig. 8g, h; 
Supplementary Table 9). We further observed decreased transcriptional 
similarity between cells as a function of their lineage distance, providing 
a direct measurement of the heritability of the transcriptional profile 
in a human sample (Mann–Whitney U-test, P = 0.044; Extended Data 
Fig. 8i). Notably, cells in the SF3B1-mutated clade showed lower node 
heights (that is, the sum of branch lengths of the longest downward path 
to a leaf from a given node; Extended Data Fig. 8j) and longer root-to-
tip branch lengths than cells in the wild-type SF3B1 clade (Extended 
Data Fig. 8k), consistent with SF3B1 mutation as a late subclonal event 
in CLL15. The molecular clock feature of epimutations further enabled 
the timing of the subclonal divergence in the evolutionary history of 
CLL, estimated to have occurred 2,180 ± 219 days after the emergence 
of the parental clone (Fig. 3i; Extended Data Fig. 8l).

Next, we applied joint single-cell DNAme and whole-transcriptome 
sequencing analysis to study the dynamic changes that occur during 
therapy with ibrutinib—a targeted agent that abrogates B cell recep-
tor (BCR) signalling. This treatment results in a transient rise in the 
peripheral blood leukaemic cell burden owing to forced migration of 
cells from the lymph node niche23. To examine potential lineage biases 
in ibrutinib-induced CLL migration, we profiled four CLLs, without 
subclonal genetic drivers, before (T0) and during (T1) ibrutinib-asso-
ciated lymphocytosis (Fig. 4a). Lineage trees that integrated T0 and T1 
cells identified major clades enriched for T1 cells in each of the CLL 
samples (Fig. 4b, c; Extended Data Fig. 9a–c; see Methods), despite 
few differences in DNAme between the T1-enriched clades and other 
T1 cells (Extended Data Fig. 9d). These data suggest that different CLL 
lineages may be preferentially affected by ibrutinib and expelled from 
the lymph node after treatment. Projection of transcriptomic data 
onto the lineage trees revealed that the T1-enriched clade cells were 
marked by increased expression of BCL11A—a proto-oncogene with 
expression restricted to the lymph node24—and increased expression of 
BCL10—an upstream regulator of the NF-κB pathway in the BCR sig-
nalling cascade. Genes related to cell cycle and proliferation pathways 
(Fig. 4d; Extended Data Fig. 10a; Supplementary Tables 10, 11) were 
also overexpressed in T1-enriched clades compared with other T1 cells. 
As the lymph node is the primary anatomical site of CLL proliferation25, 
these findings are consistent with the recent expulsion of cells of T1-
enriched clades from the lymph node after the initiation of treatment. 
T1-enriched clades across patients were also found to have upregulation 
of genes of the Toll-like receptor (TLR) pathway (Fig. 4d–f; Extended 
Data Fig. 10b). The TLR pathway is known to interact with the ibru-
tinib-inhibited BCR signalling pathway, as it has been identified in 
functional genomics screens for ibrutinib sensitivity26, and the pathway 
is specifically activated in CLL cells in the lymph node niche, trigger-
ing activation of the pro-survival NF-ĸB pathway27,28, which was also 
upregulated in T1-enriched clades (Extended Data Fig. 10c). Because 
the abnormal activation of the TLR pathway may disrupt lymph 
node trafficking, these results are consistent with clades enriched in  
ex-migrating cells, and also suggest the potential for dual inhibition of 
the BCR and TLR pathways, as described ex vivo27,28.

Collectively, by leveraging the heritable information captured by 
epimutation, we have retraced the evolutionary histories of CLL and 
charted its evolution after therapy, demonstrating how different line-
ages may be preferentially affected by a therapeutic intervention, even 
in the absence of genetic subclonal drivers. We foresee that future 
application of multi-modality single-cell sequencing will enable the 
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Fig. 4 | Joint single-cell methylomics and RNA sequencing link 
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Serial multiplexed scRRBS and joint multiplexed scRRBS and RNA 
sequencing (RNA-seq) were performed before (T0) and 1 month after 
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tree integrating CLL11 cells before treatment (T0; white circles) and 
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of 96 randomly sampled cells. Asterisk indicates bootstrap values <50%. 
Bottom, percentage of T1 cells in each of the two clades inferred from the 
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annotation of intra-tumoral disparities in transcription in response to 
therapy with precise lineage history information, as well as the integra-
tion of genetic, epigenetic and transcriptional information at the atomic 
unit of somatic evolution—the single cell.
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MEthodS
Human subjects, sample collection and genotyping. The study was approved 
by the local ethics committee and by the Institutional Review Board (IRB) and 
conducted in accordance to the Declaration of Helsinki protocol. Blood samples 
were collected in EDTA blood collection tubes (BD Biosciences) from patients 
and healthy adult volunteers enrolled on clinical research protocols at the Dana-
Farber/Harvard Cancer Center (DF/HCC) and New York-Presbyterian/Weill 
Cornell Medical Center (NYP/WCMC), approved by the DF/HCC and NYP/
WCMC IRBs. We note that the IRB does not permit collection of demographic 
information of healthy donors. The diagnosis of CLL according to WHO (World 
Health Organization) criteria was confirmed in all cases by flow cytometry, or by 
lymph node or bone marrow biopsy. Informed consent on DF/HCC and NYP/
WCMC IRB-approved protocols for genomic sequencing of patient samples was 
obtained before the initiation of sequencing studies. B cells from healthy donors 
and CLL patient samples were isolated from blood samples using Ficoll-Paque 
Plus (GE Healthcare) density gradient centrifugation and red blood cell lysis, 
followed by EasySep Human B Cell Enrichment Kit (STEMCELL Technologies, 
Vancouver, Canada) as per the manufacturer’s recommendations. IGHV homol-
ogy was determined31 (unmutated was defined as greater than or equal to 98% 
homology to the closest germline match). Cytogenetics were primarily evaluated 
by FISH analysis for the most common CLL abnormalities (del(13q), trisomy 12, 
del(11q), del(17p), del(6q), amp(2p)); if FISH was unavailable, genomic data were 
used (Supplementary Table 12). The presence and location of recurrent somatic 
mutations were detected in the genes tested by Genoptix clinical grade CLL gene 
panel testing (Genoptix; Supplementary Table 13).
Multiplexed scRRBS library construction. Single-cell methylome profiling was 
performed with multiplexed scRRBS—an adaption of a previous scRRBS proto-
col32,33 that enables throughput to be increased by the addition of cell barcodes 
early in the scRRBS protocol. Specifically, single-cell experiments were performed 
by sorting DAPI-negative cells into 96-well plates in 3 μl of 0.1× CutSmart buffer 
(New England Biolabs) per well using a BD Influx sorter (Becton Dickinson). 
Normal B cells for sample B04, B05 and B06 were further index-sorted using the 
following sorting strategy: NBC (CD27−, IgM+, IgD+++), loMBC (CD27−, IgM+, 
IgD+), intMBC (CD27+, IgM+, IgD++) and hiMBC (CD27+, IgG+). The antibod-
ies used were: FITC mouse anti-human IgD (clone IA6-2, BD Pharmingen), APC 
mouse anti-human IgG (clone G18-145, BD Biosciences), APC/Cy7 anti-human 
IgM (clone MHM-88, BioLegend) and PE/Cy7 anti-human CD27 antibody (clone 
O323, Bio Legend). Plates were then stored at −80 °C until further processing. The 
day of the experiment, cells were lysed for 2 h at 50 °C in 1× CutSmart buffer sup-
plemented with Proteinase K (0.2 U, NEB) and Triton X-100 (0.3%, Sigma Aldrich) 
for a final volume of 5 μl. Proteinase K was heat-inactivated for 30 min at 75 °C. 
DNA was incubated with 10 units of the restriction enzyme Msp1 (Fermentas) in 
6.5 μl final volume reaction during 90 min at 37 °C. Heat-inactivation was per-
formed for 10 min at 70 °C. Digested DNA was filled-in and A-tailed at the 3′ sticky 
ends in 8.5 μl final volume of 1× CutSmart with 2.5 units of Klenow fragment 
(Exo-, Fermentas). Reaction was supplemented with 1 mM dATP and 0.1 mM 
dCTP and 0.1 mM dGTP (NEB) and performed as follows in a thermocycler: 30 °C 
for 25 min, 37 °C for 25 min and heat-inactivation at 70 °C for 10 min. Custom bar-
coded methylated adaptors (0.1 μM) were then ligated overnight at 16 °C with the 
dA-tailed DNA fragments in the presence of 800 units of T4 DNA ligase (NEB) and 
1 mM ATP (Roche) in a final volume of 11.5 μl of 1× CutSmart buffer. T4 DNA 
ligase heat-inactivation was performed at 70 °C for 15 min the next day. Genomic 
DNA from 24 individual cells was pooled together according to their barcodes, 
giving, for a 96-well plate, 4 pools of 24 cells. Pooled genomic DNA was cleaned-up 
and concentrated using 1.8× SPRI beads (Agencourt AMPure XP, Beckman 
Coulter). Each pool was then sodium bisulfite-converted (Fast Epitect Bisulphite, 
Qiagen) following the manufacturer’s recommendations. To ensure full bisulfite 
conversion, two cycles of conversion were performed. The double-stranded DNA 
was first denatured for 10 min at 98 °C and then incubated for 20 min at 60 °C. 
Dephosphorylated and sheared bacterial DNA (100 ng) was added as carrier to 
every pool before conversion. Converted DNA was then amplified using primers 
containing Illumina i7 and i5 index. Following Illumina pooling guidelines, a dif-
ferent i7 index was used for every 24-cell pool, allowing multiplexing of 96 cells for 
sequencing on one Illumina HiSeq lane. Library enrichment was done using KAPA 
HiFi Uracil+ master mix (Kapa Biosystems) and the following PCR condition 
was used: 98 °C for 45 s; 6 cycles of: 98 °C for 20 s, 58 °C for 30 s, 72 °C for 1 min; 
followed by 12 cycles of: 98 °C for 20 s, 65 °C for 30 s, 72 °C for 1 min. PCR was 
terminated by an incubation at 72 °C for 5 min. Enriched libraries were cleaned-up 
and concentrated using 1.3× SPRI beads. DNA fragments between 200 bp and 1 kb 
were size-selected and recovered after resolving on a 3% NuSieve 3:1 agarose gel. 
Library molarity concentration calculation was obtained by measuring concen-
tration of double-stranded DNA (Qubit) and quantifying the average library size 
(base pairs) using an Agilent Bioanalyzer. Every 24-cell pool was mixed with the 
others pool in an equimolar ratio. All cells from a 96-well plate were sequenced as 

paired-end on HiSeq 2500 with 10% PhiX spike-in. Negative controls (empty wells 
with no cells) were used to control for non-specific amplification of the libraries.
Multiplexed scRRBS read alignment. Each pool of 96 cells was first demulti-
plexed by Illumina i7 barcodes (Supplementary Table 1), resulting in four pools of 
24 cells. Each pool of 24 cells was further demultiplexed by unique cell barcodes 
(Supplementary Table 2). Reads were assigned to a given cell if they matched 
80% of the template adapters. Adapters and adaptor reverse complements (6 bp) 
were trimmed from the raw sequence reads. After adaptor removal, reads were 
trimmed from their 3′ end for read quality by applying a 4-bp sliding window and 
removing bases until the mean base quality of the window had a Phred quality 
score greater than 15. Read pairs with a read shorter than 36 bp after trimming 
were discarded. We aligned trimmed reads to the hg19 human genome assem-
bly using Bismark34 (v.0.14.5; parameters: -multicore 4 -X 1000 -un -ambiguous) 
running on bowtie2-2.2.8 aligner35. Bismark methylation extractor (-bedgraph 
-comprehensive) was used to determine the methylation state of each individual 
CpG. For downstream analyses, a site was considered methylated or unmethylated 
only if there was 90% agreement of the methylation state for all reads mapped 
to the site. Cells with coverage of at least 50,000 unique CpGs were retained for 
downstream analyses (n = 2,435 cells; 92% of the total; Fig. 1b; Extended Data 
Fig. 1b; Supplementary Table 4), with bisulfite conversion rates of 99.8% ± 0.09 
(median ± median absolute deviation) and an average of 276,165 ± 3,765 
(mean ± s.e.m.) unique CpGs per cell (Supplementary Table 4). We note that the 
analysis for Extended Data Fig. 2c was performed before the implementation of this 
filtering procedure to confirm that single-cell methylation values predominately 
equal 0 or 1, consistent with the random sampling of a single allele.
Joint multiplexed scRRBS and single-cell RNA-seq library construction. Single 
cells were sorted by flow cytometry, as above-described, into 5 μl of RLT Plus buffer 
(Qiagen) supplemented with 1 U μl−1 of RNase inhibitor (Lucigen). Sorted cells 
were immediately store at −80 °C. Genomic DNA (gDNA) and mRNA have been 
separated manually as previously described36. In brief, a modified oligo-dT primer 
(5′-biotin-triethyleneglycol-AAGCAGTGGTATCAACGCAGAGTACT30VN-3′, 
in which V is either A, C or G, and N is any base; IDT) was conjugated to streptavi-
din-coupled magnetic beads (Dynabeads, Life Technologies) according to the 
manufacturer’s instructions. To capture polyadenylated mRNA, we added the 
conjugated beads (10 μl) directly to the cell lysate and incubated them for 20 min 
at room temperature with mixing to prevent the beads from settling. The mRNA 
was then collected to the side of the well using a magnet, and the supernatant, 
containing the gDNA, was transferred to a fresh plate. Single-cell complementary 
DNA was amplified from the tubes containing the captured mRNA according to 
the Smart-seq2 protocol37. After amplification and purification using 0.8× SPRI 
beads, 0.5 ng cDNA was used for Nextera Tagmentation and library construction. 
Library quality and quantity were assessed using Agilent Bioanalyzer 2100 and 
Qubit, respectively. gDNA present in the pooled supernatant and wash buffer from 
the mRNA isolation step was concentrated on 0.8× SPRI beads and eluted directly 
into the reaction mixtures for Msp1 (±HaeIII) (Fermentas) enzymatic reaction 
(10 μl final reaction). The multiplexed scRRBS protocol was then performed on 
the digested gDNA after the restriction enzyme digestion step. To obtain higher 
coverage single-cell DNA methylomes, we performed double digestion with HaeIII 
in addition to MspI on cells from patient sample CLL11, increasing coverage to 
an average of 2,298,281 ± 86,699 (mean ± s.e.m.) reads per cell, and yielding 
790,951 ± 24,098 unique CpGs per cell.
Single-cell RNA-seq read-alignment and differential gene expression quanti-
fication. The sequenced read fragments were mapped against the hg19 human 
genome assembly using the 2pass default mode of STAR38 (v.2.5.2a) with the 
annotation of GENCODE39 (v.19). The number of read counts overlapping with 
annotated genes were quantified applying the ‘GeneCounts’ option in the STAR 
alignment. The single-cell transcriptomes recovered an average of 552,201 ± 19,808 
reads per cell and 4,211 ± 69 genes per cell, comparable to previous stand-alone 
single-cell whole-transcriptome data in CLL6.

Comparison of transcriptional distances as a function of lineage distance 
between cell pairs was performed by first normalizing the read counts by scaling 
for the total number of counts per cell. We then performed principal component 
analysis on the log of the normalized counts and used the first three components to 
compute the Euclidean distance between each pair of cells (Extended Data Fig. 8i).

Differential expression analyses (Fig. 4d; Extended Data Fig. 8g) were performed 
using a negative binomial model with observational weights to account for zero 
inflation40. Specifically, we used ZINB-WaVE41 (v.1.0.0) to estimate a set of obser-
vational weights and edgeR (v.3.20.1) to test for differential expression using a 
weighted F statistic approach, as previously described42.

In Extended Data Fig. 8g, we defined differentially expressed genes by adjust-
ing nominal P values using a Benjamini–Hochberg FDR procedure (cut-off of 
adjusted P < 0.2), with an additional criterion of an absolute log2(SF3B1 mutated- 
enriched/wild-type-enriched clade gene expression) > 0.5. In Fig. 4d, although the  
differentially expressed genes were examined individually for each patient (CLL03, 



LetterreSeArCH

CLL04, CLL05 and CLL11; Supplementary Table 10), they were also examined in 
combination across the four patients by combining the nominal P values for the 
differentially expressed genes via Fisher’s combined probability test and averaging 
the fold change in gene expression (Supplementary Table 11). We used Fisher’s 
combined P < 0.05 and absolute log2(T0-enriched/T1-enriched gene expression)  
> 0.5 to nominate candidate genes for subsequent gene set enrichment analysis (see 
‘Gene set enrichment analysis’ section). The gene set analysis was then followed 
by a Benjamini–Hochberg FDR adjustment, correcting the nominal P values for 
multiple hypothesis testing (cut-off of adjusted P < 0.2). Gene expression projec-
tions of transcriptomic data onto the lineage trees for differentially expressed genes 
belonging to TLR pathways in Fig. 4f and Extended Data Fig. 10b was performed 
by averaging gene expression across genes for each cell. Average gene expression 
was subsequently scaled by the maximum expression value to bring values into 
a 0–1 range.
Genome annotations definitions. Promoters were defined as 1 kb upstream and 
1 kb downstream of hg19 RefGene gene transcription start sites, unless stated oth-
erwise. The set of CGIs was defined using biologically verified CGIs43. Enhancer 
regions were defined using FANTOM5 human robust enhancer set44. To verify 
the suitability of FANTOM5 human robust enhancer set in the context of CLL, we 
produced genome-wide maps of H3K27ac by bulk chromatin immunoprecipita-
tion followed by sequencing (ChIP–seq) of two IGHV-mutated and two IGHV-
unmutated CLL patient samples. We observed a large overlap (72%) between 
FANTOM5 human robust enhancers and the CLL H3K27ac ChIP–seq peaks. In 
addition, 85% of the low epimutation CpGs at enhancers overlapped with CLL 
H3K27ac ChIP–seq peaks (1,360 out of 1,585). In Extended Data Fig. 1d, CTCF-
binding sites were annotated based on published CTCF binding ChIP–seq experi-
ments generated by the ENCODE Consortium from the GM12878 lymphoblastoid 
cell line45. We curated a list of CTCF-binding sites based on sites that were detected 
in at least 75% of these samples. The location of long terminal repeats was identified 
on the basis of the RepBase database46 for hg19.
ChIP–seq analysis. Antibody used for ChIP included anti-H3K27ac (2 mg for 
25 mg of chromatin; ab4729, Abcam). A minimum of 2 million purified human 
CLL cells were used. In brief, cells were fixed in a 1% methanol-free formaldehyde 
solution and then resuspended in sodium dodecyl sulfate (SDS) lysis buffer. Lysates 
were sonicated in an E220 focused-ultrasonicator (Covaris) to a desired fragment 
size distribution of 100–500 bp. ChIP assays were processed on a SX-8G IP-STAR 
Compact Automated System (Diagenode) using a direct ChIP protocol47. In brief, 
immunoprecipitation reactions were performed with the above-indicated antibody, 
each on approximately 500,000 cells, and incubated overnight at 4 °C. The immune 
complex was collected with protein A/G agarose or magnetic beads and washed 
sequentially in the low-salt wash buffer (20 mM Tris pH 8, 150 mM NaCl, 0.1% 
SDS, 1% Triton X-100, 2 mM EDTA), the high-salt wash buffer (20 mM Tris pH 
8, 500 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM EDTA), the LiCl wash buffer 
(10 mM Tris pH 8, 250 mM LiCl, 1% NP-40, 1% sodium deoxycholate, 1 mM  
EDTA) and Tris-EDTA buffer. Chromatin was eluted with elution buffer (1% SDS, 
0.1 M NaHCO3), and then reverse cross-linked with 0.2 M NaCl at 65 °C for 4 h.  
DNA fragments were purified using Agencourt AMPure XP beads (Beckman 
Coulter). Barcoded immunoprecipitated DNA and input DNA were prepared 
using the NEBNext ChIP-seq Library Prep Master Mix Set for Illumina (E6240, 
New England Biolabs) and TruSeq Adaptors (Illumina) according to the manufac-
turer’s protocol on a SX-8G IP-STAR Compact Automated System (Diagenode). 
Phusion High-Fidelity DNA Polymerase (New England Biolabs) and TruSeq PCR 
Primers (Illumina) were used to amplify the libraries, which were then purified 
to remove adaptor dimers using AMPure XP beads and multiplexed on the HiSeq 
2000 (Illumina). ChIP–seq data were processed according to the ENCODE Histone 
ChIP-seq Data Standards and Processing Pipeline (https://www.encodeproject.org/
chip-seq/histone/). Raw reads were mapped to the human genome hg19 assembly 
using Burrows–Wheeler Aligner48 (BWA v.0.7.17). Duplicate reads were removed 
using Picard (https://broadinstitute.github.io/picard/). Peaks were identified with 
MACS249 (v.2.0.10) with a q value threshold of 0.01. Peaks overlapping with satellite 
repeat regions and Encode blacklist were discarded.
Single-cell DNA methylation–gene expression correlation analysis. For each 
sample, we filtered out poor quality cells when the number of detected CpGs was 
below 50,000, the number of detected genes in the transcriptomes was below 2,000 
or the fraction of mitochondrial or ribosomal gene counts was higher than 20% of 
the library size (total number of read counts). We randomly downsampled the vec-
tor of RNA read counts per cell such that the total number of read counts equated 
to the bottom quartile of the library size distribution for all cells in the sample 
(cells below this threshold were dropped). Mitochondrial genes, genes encoding 
ribosomal proteins, and genes with RNA-seq expression in less than 5 cells were 
then removed from the analysis. At single-cell resolution, the methylation rate of 
a gene promoter was represented by the proportion of methylated CpGs in the 
region 1 kb upstream/downstream of the transcription start site. Genes with fewer 
than 5 CpG observations in the promoter region were excluded. Spearman’s rank 

correlation coefficient between expression and promoter methylation rate was 
then calculated across available cells for each gene. The observed Spearman’s rho 
was validated by a non-parametric permutation test, in which we compared the 
correlation of promoter DNAme with gene expression against a null distribution 
obtained by randomly permuting cell labels for the methylation values (such that 
RNA and DNAme are no longer linked at the single-cell level) and then comput-
ing the Spearman’s rank correlation coefficient (n = 26 permutations for normal 
B sample (B04) and n = 16 permutations for CLL samples (CLL03 and CLL04) 
were used to obtain comparable numbers of genes between samples; see Fig. 2c, d; 
Extended Data Fig. 6f). We note that the same result was obtained when equalizing 
number of permutations (n = 16) and/or number of genes (n = 2,500) between 
samples in the analysis (see Extended Data Fig. 6g–n).
Single-cell transcriptional entropy analysis. Transcriptional entropy in Fig. 2b 
and Extended Data Fig. 6c, d was computed as previously described18. In brief, for 
a given cell we divided each element of the downsampled vector of gene expression 
counts by the cell’s library size to obtain the corresponding proportion of overall 
expression attributable to each gene. These gene proportions were used to compute 
Shannon’s information entropy for each cell using the standard formula:

= − ΣS P Pln( )i i i

Where S is Shannon’s information entropy, and Pi is the proportion of overall 
expression attributable to gene i within that single cell. This value was subsequently 
scaled by the maximum obtainable entropy to bring each value into a 0–1 range. We 
note that the analyses in Fig. 2b and Extended Data Fig. 6d were performed with 
downsampling to create a balanced dataset by matching the total number of RNA 
read counts for all cells in each sample (n = 50,000 reads per cell).
Gene set enrichment analysis. Gene set enrichment analysis was limited to the 
Molecular Signature Database50 (MSigDB; http://www.broad.mit.edu/gsea/) CGP 
(expression signatures of genetic and chemical perturbations) and CP (canon-
ical pathways derived from KEGG, Reactome, and BIOCARTA) curated gene 
set collections. In Fig. 4d, genes with a Fisher’s combined P < 0.05 and absolute 
log2(T0-enriched/T1-enriched gene expression) > 0.5 were used for the subsequent 
gene set enrichment analysis (n = 336). A hypergeometric test was used to measure 
the enrichment of these genes in each gene-set, followed by a Benjamini–Hochberg 
FDR procedure (cut-off of adjusted P < 0.2).
PDR analysis. Epimutation rates are quantified by assessing the concordance of 
adjacent CpGs within the same sequencing read (both methylated and unmethyl-
ated CpGs on a single sequencing read) and are measured with multiplexed scR-
RBS as the proportion of discordant reads per cell (single-cell PDR) as previously 
described6, with minor modifications. In brief, at each CpG, PDR is equal to the 
number of discordant reads (reads containing both methylated and unmethylated 
sites) divided by the total number of reads. To calculate PDR for each individual 
cell, all reads with greater than four CpGs were evaluated for discordance, and the 
sum of discordant reads was divided by total number of reads with greater than 
four CpGs within that cell. To determine region-specific PDR, each cell’s reads 
were intersected with the genomic coordinates of the region of interest before 
PDR calculation. To compute cell-to-cell PDR differences, pairs of cells were ran-
domly sampled without replacement and the absolute difference between the two 
cells was measured. This procedure was repeated until all pairs of cells within a 
sample were exhausted. We note that for the analyses in Fig. 1d, e and Extended 
Data Fig. 3b, we excluded 175 cells (6.5%) with a bisulfite conversion rate <0.99, 
to remove incomplete conversion as a technical source of epimutation, from the 
total of 1,721 cells profiled with stand-alone multiplexed scRRBS (see Extended 
Data Fig. 1b). In addition, we also excluded cells from sample B03, as these are 
CD19+CD27− index-sorted B cells.

To exclude technical artefacts as a potential cause of lower PDR dispersion 
in CLL compared with normal B cells, a multivariable generalized linear model 
regression analysis was performed, confirming that the observed low cell-to-cell 
epimutation rate variability was strongly associated with CLL versus normal B 
cell status. Cell-to-cell PDR difference was used as dependent variable. Number 
of unique CpGs, bisulfite conversation rate, number of reads, and cell type status 
(CLL versus normal B cells) were used as explanatory variables. P values for the 
generalized linear model coefficients (Student’s t-test) of less than 0.05 were con-
sidered significant (Extended Data Fig. 3e).
Concordance odds ratio analysis. We present a CpG auto-correlation metric 
known as the concordance odds ratio (COR). CpG observation (CpG_a) is con-
sidered concordant with another CpG observation (CpG_b) at genomic base pair 
distance, d, away if both CpG_a and CpG_b are methylated, or both are unmeth-
ylated, otherwise they are labelled as discordant. The COR at each base pair dis-
tance d is the quotient between the concordance empirical likelihood at d and the 
background concordance empirical likelihood. For a given distance d, all pairs 
of CpGs covered in a single cell i that are separated by d base pairs are obtained. 
The COR for distance d in a given single cell i is then computed by measuring the 
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ratio of concordant pairs separated by distance d out of all pairs of CpGs that are 
at a distance d and dividing it by the expected background ratio of concordance 
determined by average methylation in the given genomic region of interest in cell 
i (for example, CGI, see formula in Extended Data Fig. 4a). This provides a vector 
for cell i of COR values as a function of d, in the range of 100 bp (that is, beyond the 
length of a single sequencing read) to 1,000 bp for the region of interest. Owing to 
differences in length of the assessed genomic regions of interest, we corrected for 
the length of these genomic regions by dividing each genomic location into equal-
sized bins and averaging the COR values within each bin. For visualization clarity, 
COR values were subsequently scaled to bring all values into the range of 0–1. 
We then fitted a linear curve to this vector of COR by d and computed the slope 
as a measure of concordance decay for each independent cell. All cells belonging 
to CLL01–CLL12 and B01–B06 samples profiled with multiplexed scRRBS were 
used in the analysis. Finally, P values were computed for two-tailed Mann–Whitney 
U-test by comparing the average rate of decay in COR of healthy donor samples 
(n = 6) with the average rate of decay in COR of CLL samples (n = 12), to test 
whether CLL samples lose DNA methylation concordance at a different rate com-
pared with healthy donor samples.
Four-gamete analysis. We present a CpG epimutation metric based on the 
four-gamete test11. We will refer to this metric as four gametes. This test relies on 
the fact that detecting four gametes defies the assumptions of the infinite site muta-
tion model51 and therefore is likely to reflect a high epimutation rate. Moreover, 
this test allows us to estimate epimutation rate at single CpG site resolution in 
CpG-sparse regions, such as enhancers, in contrast to methods that rely on captur-
ing multiple CpGs on the same read6,7. For each sample (samples CLL01–CLL12 
were used in the analysis), the number of gametes between two CpGs, CpG_a, and 
CpG_b, was determined by counting how many of the four possible combinations 
of methylation and unmethylation were observed across all cells in a given sample 
where both CpG_a and CpG_b were obtained. This process was repeated by pairing 
each individual CpG_a with all CpGs further than 100 bp away (to exclude CpGs 
contained within a single sequencing read) and enumerated the number of gametes 
observed in each pair of sites in all cells. A binary mask was applied to the resulting 
counts to exclude the pairing of a site with itself. After all pairings, as a measure 
of CpG epimutation, we computed the frequency of observing four gametes at 
CpG_a by dividing the number of observed pairs with four gametes by the total 
number of pairings. As the direct implementation of such an algorithm has time 
complexity of O(m × n2), in which m is the number of cells and n is the number 
of sites, the number of pairings analysed for each CpG was randomly downsam-
pled by a 100× factor to speed up the calculation. To validate this approach, five 
runs with random 100-fold downsampling were performed for the same dataset 
and the frequencies of observing four gametes were compared. The results were 
highly concordant (Pearson correlation coefficient r = 0.93), supporting the valid-
ity of this approach. Notably, by pairing individual CpGs to all other CpGs across 
the genome, the four-gamete test enabled the determination of epimutation rate 
even for CpGs that are not in close genomic proximity to other CpGs, which is 
required for methods such as PDR and epigenetic polymorphism for calculation 
of epimutation6,7. We note that the assumption of independence between CpGs 
in the four-gamete test is probably valid here, as multiplexed scRRBS captures 
approximately 10% of the targeted methylome per single cell owing to the sparsity 
of the single-cell data. Therefore, the four-gamete test is based on a nearly unique 
combination of CpGs per cells for each CpG pairing. Only CpG sites covered by at 
least five cells in each sample were used in the analysis (range 156,662–2,371,498 
CpGs per sample). Within each sample (CLL01–CLL12), CpG sites with lower 
four-gamete rate than expected based on their methylation level (that is, low epi-
mutation CpGs) were defined as being 1.5× median absolute deviation away from 
the median frequency of four gametes in each DNAme window size of 0.05 (from 
0.1 to 0.9). A total of 166,720 unique CpGs across all the 12 CLL patient samples 
(average of 1.22% ± 0.42 (mean ± s.e.m.)); range 0.04–2.9%) exhibited a lower 
frequency of four gametes than expected based on their DNAme level and were 
used for downstream analyses.

BEDTools52 v.2.25.0 was used to calculate overlaps between low epimutation 
CpGs and gene promoters or FANTOM5 human robust enhancers44. De novo 
motif enrichment analyses were performed using MEME-ChIP53 against JASPAR 
CORE vertebrates and UniPROBE Mouse databases (-order 2, -meme-minw 
6, -meme-maxw 15, -meme-nmotifs 5, -dreme-e 0.05, -meme-mod zoops). 
Specifically, we performed a discriminative motif discovery to find motifs within 
gene promoters or enhancers that were overrepresented at sites surrounding low 
epimutation CpGs (±25 bp around CpG) relative to a control set consisting of 
randomly selected CpGs (±25 bp around CpG), matched for methylation values 
and cell coverage to the low epimutation CpGs. To control for possible CpG content 
biases further (for example, as MspI cut site is C^CGG), a two-order background 
model was used to normalize for biased distribution of trimer nucleotides in our 
sequences. Only motifs with an E ≤ 0.05 were reported, and each motif was then 
matched to its most similar motif in the TOMTOM database54 or literature if 

available. The E value is an estimate of the expected number of motifs with the 
given log-likelihood ratio (or higher), and with the same width and site count, that 
one would find in a similarly sized set of random sequences53. We also report the 
TOMTOM P value, defined as probability that a random motif of the same width 
as the target would have an optimal alignment with a match score as good as or 
better than the target53.
Lineage tree inference and support values. Because epimutations mark cell 
divisions9, the heritable DNAme information captured by multiplexed scRRBS 
can inform the reconstruction of cellular lineages. Given that the maintenance 
methylation machinery has an error rate estimated to be four orders of magnitude 
higher than that observed for DNA replication55,56, the phylogenetic information 
content of single-cell DNAme data are higher than that of single-cell nucleotide 
variants. Moreover, although single-cell copy number variations57,58, IGH tran-
script sequences59, somatic microsatellite21 and mitochondrial DNA60,61 mutations 
allow for the reconstruction of cancer lineages, they may have limited resolution 
given the smaller number of events that can be detected with current single-cell 
sequencing approaches, limited applicability across cancer types, or have not been 
adapted for large scale multi-modality single-cell sequencing. Specifically, recon-
struction of cancer lineages from copy number aberrations is not applicable to 
near-euploid cancers, such as CLL. We therefore generated methylation-based 
lineage trees by applying a tree-searching maximum-likelihood algorithm based 
on binary methylation values. We used the MPI version of IQ-TREE62 v.1.5.3, 
which exhibits improved performance compared to other maximum-likelihood 
fast phylogenetic programs in identifying trees of higher likelihood scores63. We 
selected a substitution model based on the binary alignment, inferred a maxi-
mum-likelihood tree, and computed bootstrap support values (1,000 bootstrap 
replicates). We opted for the new model selection procedure64 (-m TESTNEW), 
which additionally implements the FreeRate heterogeneity model inferring the 
site rates directly from the data (mixture of four gametes and technical errors 
permitted in phylogeny reconstruction) instead of being drawn from a gamma 
distribution65. General time reversible model ‘GTR2’ consistently outperformed 
the other model tested (Jukes–Cantor type model) for our methylation binary 
data. IQ-TREE also incorporates an approach for calculating ultrafast bootstraps 
(UFBoot)66. We complemented UFBoot analysis with the Shimodaira–Hasegawa-
like (SH-like) approximate likelihood ratio test (SH-aLRT) and the approximate 
Bayes test to further assess support for single branches. In brief, we initialized 
different tree search runs per batch of cells, each with a different random starting 
seed. In each run, a maximum-parsimony tree is first constructed directly from the 
alignment (methylation state mismatches between cells). Then, parameters of the 
given binary substitution models are estimated based on the maximum-parsimony 
tree. The log-likelihoods of this initial maximum-parsimony tree are computed 
for the many different given models along with the Akaike information criterion, 
corrected Akaike information criterion, and the Bayesian information criterion. 
The model that minimizes the Bayesian information criterion score (the best-fit 
model) is then selected. The estimated model parameters are now used for ini-
tializing candidate tree set and further maximum-likelihood optimizations using 
an iterative, ‘hill-climbing’ optimization technique. Maximum-likelihood tree 
search starts by generating 100 trees. From these 100 trees, all unique topologies 
are collected, and their approximate likelihoods computed. From the ranked list 
of maximum-likelihood values, the top 20 trees are selected and NNI are per-
formed on each tree to obtain the locally optimal maximum-likelihood trees. 
The top five topologies with highest likelihood (the candidate tree set) are then 
retained for further maximum-likelihood optimizations. An important weakness 
of pure hill-climbing methods is that they can be easily trapped in local optima. 
The locally optimal trees in the candidate tree set are, thus, randomly perturbed to 
allow escape from local optima. IQ-TREE keeps the best maximum-likelihood tree 
while it searches the tree parameter space and stops searching after going through 
a user-defined number of trees. We extended this number to 1,000 trees to better 
explore tree parameter space. The final optimized best maximum-likelihood tree is 
then printed in NEWICK format. Trees were visualized with FigTree v.1.4.3 (http://
tree.bio.ed.ac.uk/software/figtree/).

Lineage tree structures were validated by cross-validation by restricting phy-
logeny reconstruction to only autosomes or chromosome X, holding-out chro-
mosomes (three at a time), or downsampling the number of CpGs per cell to 
equal numbers, confirming the robustness of the lineage tree inference (Extended 
Data Fig. 7). The inferred lineage trees were also found to be >3-fold more robust 
than maximum-parsimony-based reconstruction trees (Extended Data Fig. 7e), 
confirming that the lineage tree structure adds new information to the simple 
comparison of the DNAme profiles. The haploid X chromosome in male patient 
samples showed an even greater robustness when compared with maximum-par-
simony trees, probably owing to the removal of the confounding random sampling 
of the two alleles in autosomes.

Methylation-based lineage trees integrating cells before treatment (T0) and dur-
ing treatment (T1) for patient samples CLL03, CLL04, CLL05 and CLL11 from 
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joint multiplexed scRRBS and single-cell RNA-seq were reconstructed by maxi-
mum-likelihood, followed by ultra-fast bootstrapping branch support analysis with 
1,000 replicates (Fig. 4b; Extended Data Fig. 9a). T1-enriched clades were defined 
based on clades occurring after the first major split in the lineage tree. Differential 
expression was compared between T1 cells that map to the T1-enriched clades and 
T1 cells that map to the T0-enriched clades. We further matched the cells belonging 
to the T1-enriched clade identified from these T0–T1 lineage trees, by integrating 
the two groups of T1 cells into a maximum-likelihood tree search and computing 
bootstrapping branch support analysis with 1,000 replicates, as described above. 
In Extended Data Figs. 8e, 9d, we defined genes with an absolute weighted aver-
age DNAme difference > 0.3 and a two-sided non-parametric permutation test 
P < 0.05 as differentially methylated.

Maximum tree depths—defined as number of nodes along the longest path from 
the root node down to the farthest leaf—of lineage trees of CLL and normal B cells 
were computed by initializing ten independent tree search replicates per batch of 
randomly sampled 50 cells, each with a different random starting seed. Patristic 
distances—defined as the sum of the lengths of the branches that link two tips in 
a given tree—between CLL and normal B cells were computed by analysing one 
representative methylation-based lineage tree of randomly sampled cells for each 
sample. To compare between inferred lineage trees, we computed the pairwise 
Robinson–Foulds distance—a measure of tree structure similarity between two 
given trees67— between them. Specifically, 30 independent tree search replicates 
per batch of randomly sampled 50 cells were initialized, each with a different ran-
dom starting seed. To compute the Robinson–Foulds distances, pairs of trees were 
then randomly sampled without replacement and the Robinson–Foulds distance 
between the two trees computed. The Robinson–Foulds distances were normal-
ized by the total number of internal edges in respective pairs of trees (normalized 
Robinson–Foulds distance). Node ages—the estimated number of divisions before 
present—were calculated by dividing node height (defined as the length of the 
longest downward path to a leaf from a given node) values by a rate of 0.0005 
changes per CpG site per division29.
Statistical methods. Statistical analysis was performed with Python 2.7.13 and 
R version 3.4.2. Categorical variables were compared using the Fisher’s exact 
test. Continuous variables were compared using the Mann–Whitney U-test, 
Welch’s t-test, Wilcoxon signed-rank test, non-parametric permutation test or 
Kolmogorov–Smirnov test as appropriate. P values were adjusted for multiple 
comparisons by Bonferroni family-wise error rate or Benjamini–Hochberg FDR 
adjustment procedure, as appropriate. All P values are two-sided and considered 
significant at the 0.05 level unless otherwise noted.

No statistical methods were used to predetermine sample size. The experiments 
were not randomized and investigators were not blinded to allocation during 
experiments and outcome.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
Multiplexed scRRBS and single-cell Smart-seq2 datasets have been deposited to 
the NCBI Gene Expression Omnibus (GEO) under accession number GSE109085. 
ChIP–seq datasets have been deposited to the NCBI GEO under accession num-
ber GSE119103. Other data are available from the corresponding author upon 
reasonable request.
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Extended Data Fig. 1 | Multiplexed scRRBS is an accurate and 
reproducible method for single-cell DNAme analysis. a, Detailed 
schematic of the protocol for multiplexed scRRBS. b, Summary table  
of the healthy donor and CLL patient samples used in this study.  
c, Representative size distribution of the multiplexed scRRBS libraries 
assessed by Agilent Bioanalyzer before and after primer dimers removal. 
The DNA fragment size in multiplexed scRRBS libraries is typically 200–
1,000 bp, with some visible peaks corresponding to the MspI fragments 
for repeat elements, and primer dimer contaminants (approximately 170 
bp). LM, lower marker; UM, upper marker; MW, molecular-weight size 
marker. d, Number of CpGs observed in multiplexed scRRBS libraries 
across relevant genomic regions comparing multiplexed scRRBS (left) 
and bulk RRBS (right) assays for normal B (B01) and CLL (CLL01) cells. 
The enrichment in exons, promoters and CpG islands (CGIs) observed 
in multiplexed scRRBS libraries corresponded to approximately 40% of 
the total sequenced CpGs, akin to bulk RRBS assays. e, Downsampling 
analysis showing that around 1.7 million paired-end reads per cell 

provided roughly 85% of unique CpGs with further sequencing, resulting 
in a marginal increase in coverage. f, Correlation of average CpG 
methylation across in silico merged single cells and bulk RRBS obtained 
from matched samples for normal B (B01, n = 40,257 CpGs) (left) and 
CLL (CLL01, n = 9,578 CpGs) (right) cells. P values are indicated for two-
sided Pearson’s correlation test. g, Pooling individual single cells together 
rapidly increases the number of CpGs recovered, approaching bulk RRBS 
coverage with more than 48 cells. The percentage of CpG sites detected in 
single-cell data (blue and red for normal B and CLL cells, respectively), the 
in vitro pooled single-cell datasets (light blue and light red, respectively) 
and matched bulk RRBS libraries (striped bars) are shown. Error bars 
represent 95% confidence interval. h, As in g for the percentage of average 
CpG DNA methylation. Single, pooled cells and bulk RRBS showed a 
similar percentage of CpG methylation, suggesting measured genome-
wide DNAme profiles of individual cells accurately recapitulate bulk 
methylation profiles in the same cell type.
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Extended Data Fig. 2 | Single-cell DNA methylation coverage analysis. 
a, The approximately 10% sampling of the multiplexed scRRBS DNA 
methylome leads to intersection decrease of individual CpGs across 
cells. Left, expected number of times of observing a given CpG across 
all k-cells (matching k (number of cells) indicated in the x-axis value). 
Right, expected number of measured CpGs given k-cells. b, Biallelic 
coverage within a given single cell was detected in only 4.6 ± 2% of 
approximately 230 germline single nucleotide polymorphisms (SNPs) 
available for analysis, suggesting that the observed single-cell CpG data 
largely represents only one of the two alleles of the near-diploid CLL 
genome. c, Histograms of the distribution of CpG methylation values 
for single normal B (blue) and CLL (red) cells and matched bulk RRBS 

libraries showing highly digitized patterns of DNAme in single cells (that 
is, CpG sites either methylated or unmethylated) in contrast to bulk RRBS, 
which shows intermediate DNAme values. d, Representative analysis for 
three non-contiguous genomic windows around the promoter region of 
TWIST2, previously shown to be implicated in CLL pathogenesis68. Shown 
from top to bottom are the annotation of the TWIST2 promoter locus with 
CGI sites indicated (green); the estimated methylation rate of in silico 
pooled single cells for healthy donors and CLL; and the CpG methylation 
patterns (black circles: methylated; white circles: unmethylated) of single 
cells. Note the higher level of DNAme percentage in CLL compared with 
healthy donor cells at these selected regions.
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Extended Data Fig. 3 | CLL epigenomes show an increased epimutation 
rate across all genomic regions, with low cell-to-cell variability in 
epimutation rates. a, Representative analysis of the WT1 locus. CpG 
island is indicated in green, along with the CpG methylation patterns 
(black circles denote methylated; white circles denote unmethylated) in 
single cells. We note that CLL cells exhibit lower cell-to-cell variation in 
the epimutation rate than normal B cells. b, Comparison of cell-to-cell 
epimutation rate difference per genomic region between CLL cells (n = 12; 
M-CLL (CLL01–CLL07), n = 309 pairs; U-CLL (CLL08–CLL12), n = 218 
pairs) and healthy B cells (n = 5; B01–B02, B04–B06, n = 256 pairs). 
c, Difference in average CpG methylation per genomic region between 
CLL samples (n = 12; CLL01–CLL12 (M-CLL, n = 619 cells; U-CLL, 
n = 436 cells)) and normal B samples (n = 6; B01–B06 (n = 666 cells)). 
d, Percentage of change in CpG methylation at CGIs when comparing 
the DNAme level of individual cells in each sample to the baseline 
(defined as the average DNAme level across all samples) for CLL cells 
(n = 12; CLL01–CLL12 (M-CLL, n = 619 cells; U-CLL, n = 436 cells)) 

and normal B cells (n = 6; B01–B06 (n = 666 cells)). e, Multivariable 
linear regression model that accounts for potential technical confounders 
(bisulfite conversion rate, number of aligned reads, number of covered 
CpGs) in CLL samples (n = 12; CLL01–CLL12 (M-CLL, n = 619 cells; 
U-CLL, n = 436 cells)) and normal B samples (n = 6; B01–B06 (n = 666 
cells)). f, Single-cell epimutation rate across index-sorted normal B cells 
(B04, n = 96 cells; B05, n = 96 cells; B06 = 92 cells). g, As in f for the 
difference in cell-to-cell epimutation rate (B04, n = 48 pairs; B05, n = 48 
pairs; B06 = 46 pairs). h, Direct comparison of difference in cell-to-cell 
epimutation rate between CLL cells (n = 12; M-CLL (CLL01–CLL07)), 
n = 309 pairs; U-CLL (CLL08–CLL12), n = 218 pairs) and index-sorted B 
cells (n = 3; B04–B06; NBC, n = 35 pairs; loMBC, n = 35 pairs; intMBC, 
n = 35 pairs; hiMBC, n = 35 pairs). Box plots are as defined in Fig. 1. 
Error bars represent 95% confidence interval. P values were determined 
by two-sided Mann–Whitney U-test (b, f–h), followed by a Bonferroni 
adjustment procedure (b).
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Extended Data Fig. 4 | Long-range DNA methylation concordance 
decay. a, Concordance odds ratio (COR) of the DNA methylation state 
between any two neighbouring CpGs as a function of their genomic 
distance (see Methods for details). b, Left, scaled COR (0–1) for CGIs at 
transcription start sites (TSS) (the B01 and CLL01 samples are shown as 
representative examples). Right, average rate of decay (slope of the first 
order fit line) in the COR for normal B samples (n = 6) and CLL samples 
(n = 12) for CGIs at TSS (B01–B06 (n = 666 cells; n = 48,065,000 CpGs) 
and CLL01–CLL12 (M-CLL, n = 619 cells, n = 38,968,846 CpGs; U-CLL, 
n = 436 cells, n = 37,464,310 CpGs)). c, As in b for CGIs at TSS of genes 
belonging to the TP53 gene set69. Healthy donor B cell samples (n = 6): 
n = 666 cells, n = 6,308,174 CpGs; CLL samples (n = 12): M-CLL, n = 619 

cells, n = 5,113,493 CpGs; U-CLL, n = 436 cells, n = 4,982,039 CpGs.  
d, As in b for CGIs at the TSS of housekeeping genes70. Healthy donor 
B cell samples (n = 6): n = 666 cells, n = 2,087,432 CpGs; CLL samples 
(n = 12): M-CLL, n = 619 cells, n = 1,686,295 CpGs; U-CLL, n = 436 
cells, n = 1,620,802 CpGs. e, Average rate of decay in the COR for 
normal B (n = 6) and CLL (n = 12) samples for CGIs at the TSS of 
genes belonging to gene sets previously reported to be affected by a high 
epimutation rate6. Healthy donor B cell samples (n = 6): n = 666 cells, 
n = 48,065,000 CpGs; CLL samples (n = 12): M-CLL, n = 619 cells, 
n = 38,968,846 CpGs; U-CLL, n = 436 cells, n = 37,464,310 CpGs. Error 
bars represent 95% confidence interval. P values were determined by two-
sided Mann–Whitney U-test.
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Extended Data Fig. 5 | Epimutations at single CpG resolution.  
a, Frequency of four gametes according to the level of average methylation 
of each individual CpG site in each CLL sample (CLL01–CLL12; randomly 
sampled CpGs shown out of the total CpGs assessed in each CLL sample; 
range 156,662–2,371,498 CpGs per sample covered in >5 cells in each 
sample). Smooth local regression line (LOESS) is shown in red. b, Low 
epimutation (loEpi) CpGs are defined as being 1.5× median absolute 
deviation (MAD) away from the median frequency of four gametes in each 
DNAme window of 0.05 (range 0.1–0.9) for a given sample. Shown is a 
representative example of this procedure for DNAme window of 0.5–0.55 
in the CLL04 patient sample. c, Percentage of low epimutation CpGs 
(average of 1.22% ± 0.42 (mean ± s.e.m.); range 0.04–2.9%) out of the 
total CpGs assessed in each CLL sample. CLL01, n = 14,711 loEpi CpGs; 
CLL02, n = 2,573 loEpi CpGs; CLL013, n = 25,270 loEpi CpGs; CLL04, 
n = 29,114 loEpi CpGs; CLL05, n = 16,603 loEpi CpGs; CLL06, n = 11,413 

loEpi CpGs; CLL07, n = 19,330 loEpi CpGs; CLL08, n = 19,916 loEpi 
CpGs; CLL09, n = 11,440 loEpi CpGs; CLL10, n = 18,614 loEpi CpGs; 
CLL11, n = 7,067 loEpi CpGs; CLL12, n = 308 loEpi CpGs. d, Additional 
sequence logos of the DNA motifs determined to be significantly 
overrepresented in low epimutation CpGs (±25 bp around CpGs at 
promoters (TSS ± 1 kb) or at enhancers) across all CLL samples. For each 
motif, the E value and the TOMTOM P value are shown. See Methods for 
details on the de novo motif enrichment analysis and the statistical tests 
used. e, Median protein expression (log10(normalized intensity-based 
absolute quantification (iBAQ))) of transcription factors for which motifs 
were enriched in regions with low epimutation CpGs, confirming that 
the identified transcription factors are expressed at the protein level in 
B cells and/or haematopoietic compartments. Error bars represent 95% 
confidence interval. All available human proteome data from lymphoid/
haematopoietic lineages are displayed71.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Methylation-transcription relationships at the 
single-cell level. a, Number of reads (left) and expression of IGH genes 
(right) in index-sorted B cells, validating our index-sorting strategy 
(CD27−IgM+IgD+++IgG− (NBC, n = 24 cells), CD27−IgM+IgD+IgG− 
(loMBC, n = 24 cells), CD27+IgM+IgD++IgG− (intMBC, n = 24 cells), 
and CD27+IgG+ (hiMBC, n = 23 cells)). Violin plots represent kernel 
density estimation showing the distribution shape of the data.  
b, Proportion of cells with gene expression (read count > 0) and exhibiting 
above-threshold DNAme. Data are mean ± s.e.m. across all genes with 
sufficient RNA (expression seen in >5 cells) and DNAme (>5 CpGs 
per promoter) information across the three samples (n = 1,816 genes). 
c, Transcriptional entropy across cells (see Methods) showing higher 
transcriptome entropy in CLL cells (CLL03, n = 94; CLL04, n = 92) than 
in healthy donor B cells (B04, n = 84) across various downsampling 
regimes (range 5,000–100,000; step-size of 1,000). Data are mean ± s.e.m. 
d, e, Single-cell transcriptional entropy (d) and epimutation rate (e) 
between normal CD27− B (NBC and loMBC) and CD27+ B (intMBC 
and hiMBC) cells. f, Left, distribution of the Spearman’s rho between 
expression and promoter DNAme rate (n = 3,094 genes with sufficient 
RNA (expression seen in >5 cells) and DNAme (>5 CpGs per promoter) 
information) in CLL04. The observed Spearman’s rho values were 
compared to values obtained by randomly permuting cell labels for 
the methylation values (see Methods). Right, heat maps of Spearman’s 
rank-order correlation for representative genes with positive or negative 
single-cell expression-methylation correlation. Scale bar represents 
promoter methylation and RNA read counts scaled by maximal 

value. g, As in f for individual normal B cells (n = 5,729 genes; n = 16 
permutations; see Methods for details). h, As in g for CLL03 (n = 2,699 
genes; n = 16 permutations). i, As in g for CLL04 (n = 3,094 genes; n = 16 
permutations). j, Absolute change in Spearman’s rho when comparing 
matched versus scrambled DNAme and RNA single-cell data in CLL 
(CLL03 and CLL04) and normal B (B04) cells. From the pool of genes 
used in g–i, only overlapping genes (n = 951) across the three samples 
were used in the comparison. k, As in f for individual normal B cells 
(n = 2,500 most variable genes with sufficient RNA (expression seen 
in >5 cells) and DNAme (>5 CpGs per promoter) information; n = 16 
permutations; see Methods for details). l, As in k for CLL03. m, As in 
k for CLL04. n, Absolute change in Spearman’s rho when comparing 
matched versus scrambled DNAme and RNA single-cell data in CLL 
(CLL03 and CLL04) and normal B (B04) cells. From the pool of genes 
used in k–m, only overlapping genes (n = 459) across the three samples 
were used in the comparison. o, Hydroxymethylation (5hmC) level at 
genes with positive correlation between expression and promoter DNA 
methylation (top correlated 10% of genes) compared with negatively 
correlated genes (top anti-correlated 10% of genes) in both normal B (B04; 
n = 336 and 330 genes, respectively) and CLL (CLL03 (n = 290 and 278 
genes, respectively); CLL04 (n = 320 and 314 genes, respectively)) cells. 
Error bars represent 95% confidence interval. Published 5hmC data were 
used for the analysis19. Box plots are as defined in Fig. 1. P values were 
determined by two-sided Kolmogorov–Smirnov test (f–i, k–m), two-sided 
Wilcoxon signed-rank test (j, n) or two-sided Welch’s t-test (o).
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Extended Data Fig. 7 | Methylation-based lineage trees provide a 
native lineage tracing system. a, Additional representative (random 
cell subsampling) methylation-based lineage trees of CLL cells. b, As 
in a for index-sorted normal B cells, showing that naive CD27− B cells 
(NBC; CD27−IgM+IgD+++IgG−) precede CD27+ memory terminally 
differentiated B cells (hiMBC; CD27+IgG+) in the lineage tree.  
c, Representative (cell subsampling) methylation-based lineage trees 
of CLL cells reconstructed using only autosomes or chromosome X. 
Tree topologies are similar to when using whole-genome information 
(see a and Fig. 3d), showing rapid drift after the initial malignant 
transformation. d, As in c for lineage trees of CLL cells obtained by 
holding-out chromosomes (hold-out three chromosomes at a time before 
phylogeny reconstruction; for example, excluding chromosomes 1–3, left), 
or downsampling the number of CpGs per cell to equal numbers (120,000 
CpGs per cell; right). e, Normalized Robinson–Foulds distances between 
any two trees (n = 30 tree replicates; see Methods) of CLL01 reconstructed 
by maximum (M)-likelihood versus maximum-parsimony analyses. 
Differences (Δ) are indicated. f, Average maximum tree depth of lineage 

trees (n = 10 tree replicates; see Methods) of CLL (CLL01) and normal B 
(B02) cells when using whole-genome information compared to lineage 
trees obtained by holding-out chromosomes (hold-out three chromosomes 
at a time before phylogeny reconstruction). Error bars represent 95% 
confidence interval. g, Distribution of root-to-tip branch lengths (that is, 
the length from the root to each tip in the lineage tree) between CLL and 
normal B cells (M-CLL (CLL07), U-CLL (CLL10) and B05 are shown as 
representative examples). h, Patristic distances between index-sorted B 
cells from B04, B05 and B06 healthy donor samples (NBC, n = 24 cells 
for each sample; loMBC, n = 24 cells for each sample; intMBC, n = 24 
cells for each sample; hiMBC, n = 23 cells for each sample). i, Patristic 
distances between CLL (CLL01) and normal B (B02) cells obtained from 
lineage trees reconstructed by using only autosomes, chromosome X, 
holding-out chromosomes (hold-out three chromosomes at a time before 
phylogeny reconstruction), or downsampling the number of CpGs per cell 
to equal numbers (120,000 CpGs per cell), respectively. Box plots are as 
defined in Fig. 1. P values were determined by two-sided Mann–Whitney 
U-test (e, h, i) or Welch’s t-test (f).



Letter reSeArCH

M-Likelihood

M-Parsimony

0

0.1

0.2

0.3

0.4

0.5

 = 0.44
P = 3.5 x 10-5

N
or

m
al

iz
ed

 R
F

 d
is

ta
nc

e

b d

SF3B1 wild type enriched clade

SF3B1 mutated enriched clade

1

2

3

N
o.

 o
f C

pG
s 

(x
10

5 )

(26)

0.2

0.4

0.6

0.8

%
 o

f m
et

hy
la

tiu
on

P = 0.763 P = 0.813

(30) (26)(30)
# single cells # single cells

0

0.01

0.02

0.03

190 210 230 250 270
Node age

de
ns

ity

Mean
MedianP = 4.6 x 10-5

SF3B1 wild type enriched clade

SF3B1 mutated enriched clade

0.7

0.8

0.9

1

R
el

at
iv

e 
no

de
 h

ei
gh

ts

P = 4.6x10-5

(30)
# nodes

(25)

0.08

0.10

0.12

0.14

P = 0.018

R
oo

t t
o 

tip
 b

ra
nc

h 
le

ng
th

(30)
# single cells

(26)

f

P = 0.015

A
lte

rn
at

iv
e 

3’
 s

pl
ic

in
g 

sc
or

e

SF3B
1 

wild
 ty

pe

en
ric

he
d 

cla
de

SF3B
1 

m
ut

at
ed

 

en
ric

he
d 

cla
de

0.30

0.35

0.45

0

50

100

S
F

3B
1 

m
ut

at
ed

 c
el

ls
 (

%
)

P = 7.4x10-9

SF3B
1 

wild
 ty

pe

en
ric

he
d 

cla
de

SF3B
1 

m
ut

at
ed

 

en
ric

he
d 

cla
de

g

Overlap with Wang L. et al. 2016

Up-regulated in SF3B1
wild type enriched clade

Up-regulated in SF3B1 
mutated enriched clade 

-5 -4 -3 -2 -1 0 1 2 3 4 5

DTX4

RBM25 HEATR6

APBB3

SUN1

SLC16A7

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

−
lo

g 10
(a

dj
us

te
d 

P
−

va
lu

e)

 #genes = 6774

log2(SF3B1 mutated/WT gene expression)

h i

40

50

60

70

80

90

T
ra

ns
cr

ip
tio

na
l d

is
ta

nc
e 

be
tw

ee
n 

ce
ll 

pa
irs

  

P = 0.044

Bet
wee

n 
cla

de
s

W
ith

in 
cla

de
s

RBM
25

SUN1

0

1

Normalized
RNA expression

0

1

2

3

4

5

-1 0 1
DNA methylation difference

−
lo

g 10
(P

−
va

lu
e)

 # Genes = 4669

e

j k

l

c

# pairs: 54 54

SF3B1 wild type enriched clade

SF3B1 mutated enriched clade

Single cell sorting

Poly(A) RNA capture by 
oligo(dT) magnetic beads

gDNA isolation

Single cell
gene expression
(SMARTseq2)

Single cell
DNA methylation

(MscRRBS)

Joint DNAme, RNA and mutation calling

Specific enrichment for
locus of interest 

Single cell
genotyping

(Site-specific sequencing)

a

SF3B1 c.1998G>CSF3B1 wild type

T A CG TG TT AA GG TTT AAAA T A CG TG TT AA GC TTT AAAA

SF3B1 wild type cells
SF3B1 mutated cells

# trees= 30 30

Extended Data Fig. 8 | Multiplexed scRRBS integration with single-cell 
transcriptomes and genotyping. a, Schematic of the joint multiplexed 
scRRBS, transcriptome and genotyping capture protocol. b, Normalized 
Robinson–Foulds distances between any two trees (n = 30 tree replicates; 
see Methods) of CLL12 (n = 56 cells; see Fig. 3h) reconstructed by 
maximum-likelihood versus maximum-parsimony analyses. Differences 
(Δ) are indicated. c, Proportion of wild-type (white) and mutated 
(black) SF3B1 cells in each clade identified from the lineage tree shown 
in Fig. 3h. d, Comparison of the number of unique CpGs (left) and the 
CpG methylation level (right) between the wild-type-enriched and the 
mutated-enriched SF3B1 clade of cells identified from the lineage tree 
in Fig. 3h. e, Volcano plot of differentially methylated gene promoters 
(absolute weighted average DNAme difference > 0.3 and two-sided non-
parametric permutation test P < 0.05) between the wild-type and mutated 
SF3B1 cells from the lineage tree shown in Fig. 3h. f, Single-cell alternative 
3′ splicing score (fraction of reads that map downstream to the 3′ end 
(up to 100 bp) of the exons versus within the exons) for cells belonging to 
wild-type (n = 30) and mutated (n = 26) SF3B1 clades identified from the 
lineage tree shown in Fig. 3h. g, Volcano plot of differentially expressed 
genes between the wild-type-enriched and mutated-enriched SF3B1 

clade. Genes (n = 57) with absolute log2(SF3B1 mutated-enriched/SF3B1 
wild-type-enriched gene expression) > 0.5 and Benjamini–Hochberg 
FDR-adjusted weighted F-test P < 0.2 are shown in red. Genes that were 
previously reported to be affected by SF3B1 mutation22 are also labelled.  
h, Gene expression projections on lineage trees for two representative 
genes identified in g. i, Comparison of transcriptional distances (measured 
as Euclidean distances of the first three principal components after 
principal component analysis) as a function of lineage distance between 
cell pairs from the lineage tree shown in Fig. 3h. j, Cells belonging to 
SF3B1-mutated enriched clade show significantly lower relative node 
heights (that is, height of internal tree nodes relative to the root node; 
see Methods) compared with wild-type SF3B1-enriched clade, consistent 
with SF3B1 mutation being a later subclonal event in CLL15. k, As in j 
for root-to-tip branch lengths (that is, the length from the root to each 
tip in the lineage tree). l, Distribution of node ages (estimated number 
of divisions before present; see Methods) between the wild-type (white, 
n = 30 nodes) and mutated (grey, n = 25 nodes) SF3B1 enriched clade. 
Box plots are as defined in Fig. 1. P values were determined by two-sided 
Mann–Whitney U-test (b, d, f, i, j, l) or two-sided Fisher’s exact test (c).



LetterreSeArCH

CLL04 -T0 / T1
CLL05 -T0 / T1

a

T1 cells T0 cells

CLL03 -T0 / T1

T
1-

en
ric

he
d 

cl
ad

e
T

0-
en

ric
he

d 
cl

ad
e

T1 cells T0 cells

T
1-

en
ric

he
d 

cl
ad

e
T

0-
en

ric
he

d 
cl

ad
e

0.2

0.4

0.6

0.8

M
et

hy
la

tio
n

T 1
-e

nr
ich

ed

T 0
-e

nr
ich

ed
n= 2753

0.2

0.4

0.6

0.8

M
et

hy
la

tio
n

T 1
-e

nr
ich

ed

T 0
-e

nr
ich

ed
n= 3050

0.2

0.4

0.6

0.8

M
et

hy
la

tio
n

T 1
-e

nr
ich

ed

T 0
-e

nr
ich

ed
n= 3441

0.2

0.4

0.6

0.8

M
et

hy
la

tio
n

T 1
-e

nr
ich

ed

T 0
-e

nr
ich

ed
n= 1626

5

15

25

N
o.

 o
f C

pG
s 

(x
10

4 )

T 1
-e

nr
ich

ed

T 0
-e

nr
ich

ed
n= 2753

10

20

30

N
o.

 o
f C

pG
s 

(x
10

4 )

T 1
-e

nr
ich

ed

T 0
-e

nr
ich

ed
n= 3050

6

12

18

N
o.

 o
f C

pG
s 

(x
10

4 )

T 1
-e

nr
ich

ed

T 0
-e

nr
ich

ed
n= 3441

6

12

18

N
o.

 o
f C

pG
s 

(x
10

4 )

T 1
-e

nr
ich

ed

T 0
-e

nr
ich

ed
n= 1626

T
1-

en
ric

he
d 

cl
ad

e
T

0-
en

ric
he

d 
cl

ad
e

T1 cells T0 cells

CLL03

DNA methylation difference

 # Genes = 5150

1

2

3

4

5

-1 0 1

−
lo

g 10
(P

−
va

lu
e)

Hypermethylated in
T1-enriched clade

Hypomethylated in
T1-enriched clade

CLL11

 # Genes = 5780

1

2

3

4

5

-1 0 1

−
lo

g 10
(P

−
va

lu
e)

Hypermethylated in
T1-enriched clade

Hypomethylated in
T1-enriched clade

DNA methylation difference

CLL04

 # Genes = 4290

1

2

3

4

5

-1 0 1

−
lo

g 10
(P

−
va

lu
e)

Hypermethylated in
T1-enriched clade

Hypomethylated in
T1-enriched clade

DNA methylation difference

CLL05

 # Genes = 6900

1

2

3

4

5

-1 0 1

−
lo

g 10
(P

−
va

lu
e)

Hypermethylated in
T1-enriched clade

Hypomethylated in
T1-enriched clade

DNA methylation difference

CLL03 CLL11CLL05CLL04

c

b

d

P = 0.052 P = 0.92P = 0.18P = 0.44

P = 0.4 P = 0.39P = 0.44P = 0.37
CLL03 CLL11CLL05CLL04

Extended Data Fig. 9 | Joint single-cell methylomics and RNA-seq link 
epigenetic and transcriptional information in CLL evolution with 
therapy. a, Representative methylation-based lineage trees integrating 
cells before treatment (T0; white circle; n = 40 out of 96 randomly sampled 
cells) and during treatment (T1; red circle; n = 40 out of 96 randomly 
sampled cells) for samples CLL03, CLL04 and CLL05. See Fig. 4c for 
the percentage of T1 cells in each of the two clades (defined as the ones 
occurring after the first major split in the lineage tree) inferred from these 
lineage trees. b, Comparison of the CpG methylation level between the 
T1-enriched clade of cells and the remaining T1 cells identified from the 

lineage trees in a and in Fig. 4b and for samples CLL03, CLL04, CLL05 
and CLL11, respectively. c, As in b for number of unique CpGs. d, Volcano 
plot of differentially methylated genes (absolute weighted average DNAme 
difference > 0.3 and two-sided non-parametric permutation test P < 0.05) 
between the T1-enriched clade of cells and the remaining T1 cells identified 
from the lineage trees in a and Fig. 4b for CLL03 (n = 515 genes), CLL04 
(n = 429 genes), CLL05 (n = 690 genes) and CLL11 (n = 578 genes), 
respectively. Box plots are as defined in Fig. 1. P values were determined by 
two-sided Mann–Whitney U-test (b, c).
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Description P-value P-adjust BH-FDR

Base-Excision Repair, AP Site Formation 6.7x10-5 0.029 0.029
DNA Repair 0.00035 0.049 0.049
Regulation of TP53 Activity 0.0025 0.17 0.17
Base Excision Repair 0.0037 0.2 0.2

MyD88-independent TLR3/TLR4 cascade 0.0083 0.083 0.071
Toll Like Receptor 3 (TLR3) Cascade 0.0083 0.083 0.071
TRIF-mediated TLR3/TLR4 signaling 0.0083 0.083 0.071
JNK (c-Jun kinases) phosphorylation and
  activation mediated by activated human TAK1

0.0008 0.012 0.011

Cell Cycle, Mitotic 0.0095 0.092 0.078
Nuclear Pore Complex (NPC) Disassembly 7.03x10-6 0.0017 0.0014
Nuclear Envelope Breakdown 3.11x10-6 0.0015 0.0013
Mitotic Prophase 0.0009 0.013 0.011
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Extended Data Fig. 10 | Cells preferentially expelled from the lymph 
nodes are marked by a distinct transcriptional profile. a, Gene sets 
(canonical pathways; CP) enriched in differentially expressed genes 
(n = 336) between the T1-enriched clade of cells and the remaining 
T1 cells identified from the lineage trees in Fig. 4b and Extended Data 
Fig. 9a. A two-sided hypergeometric test was used to measure the 
enrichment of these genes in each gene set, followed by a Benjamini–
Hochberg (BH) FDR procedure (cut-off of adjusted P < 0.2). b, Gene 

expression projections on lineage tree for TLR pathway genes from Fig. 4d 
for samples CLL04, CLL05 and CLL11, respectively. Scale bar represents 
RNA read counts scaled by maximal value. Expression value projection 
is performed only for T1 cells, comparing T1 versus T0-enriched clades. 
Asterisks indicate cells without RNA information. c, Fold change in gene 
expression of NF-κB-related genes between the T1-enriched clade of cells 
and the remaining T1 cells identified from the lineage trees in Fig. 4b and 
Extended Data Fig. 9a.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis Bismark (v.0.14.5); bowtie2-2.2.8; BWA v0.7.17; Picard; Macs2 (v2.0.10); STAR(version 2.5.2a); ZINBWaVE(v. 1.0.0); edgeR (v. 3.20.1); 
GSEA software and Molecular Signature Database (MSigDB) (http://www.broad.mit.edu/gsea/); BEDTools v2.25.0; MEME-ChIP; IQ-TREE 
v1.5.3; FigTreev1.4.3; Python 2.7.13; R version 3.4.2.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

MscRRBS and single-cell Smart-seq2 datasets have been deposited to the NCBI Gene Expression Omnibus (GEO) under accession number GSE109085. ChIP-seq 
datasets have been deposited to the NCBI GEO under accession number GSE119103. Additional supplementary data is available upon request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We sequenced 2,652 single cells in total from 6 and 12 B cell healthy donors and CLL patients, respectively, enabling us to do statistics both at 
the single cell and sample level, giving us enough statistical power to detect differences in all the analyses reported in this study (e.g., 
epimutation rates difference, concordance odds ratio analysis, four-gamete analysis). In addition, PAC learning analysis showed that ~400K 
CpGs enable trees with up to 350 leaves, allowing for information loss due to random sampling of two alleles. The dataset has >80% power to 
detect significant (p < 0.05), epigenetically derived subpopulations.

Data exclusions No data were excluded from the study. 

Replication We performed 18 independent biological replicates, by applying multiplexed single-cell reduced representation bisulfite sequencing 
(MscRRBS) to 6 different B cells healthy donors and 12 CLL patients. This translates into a total of 2,652 cells profiled by single-cell 
methylome sequencing. All attempts at replication were successful. 

Randomization Randomization is not applicable as no experimental groups were used in our study.

Blinding Blinding is not applicable as no experimental groups were used in our study. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used The antibodies used for index sorting of normal B cells were: FITC Mouse Anti-Human IgD (Clone IA6-2, BD Pharmingen), APC 

Mouse Anti-Human IgG (#562025, BD Biosciences), APC/Cy7 anti-human IgM Antibody (Clone MHM-88, BioLegend) and PE/Cy7 
anti-human CD27 Antibody (clone O323, Bio Legend). 
Antibody used for ChIP is anti-H3K27ac (2 mg for 25 mg of chromatin; ab4729 Abcam, Cambridge, United Kingdom).

Validation Expression of Immunoglobulin Heavy Chain (IGH) genes was assessed by scRNAseq in index-sorted B cell subpopulations 
validating our index-sorting strategy (CD27-IgM+IgD+++IgG- [NBC], CD27-IgM+IgD+IgG- [loMBC], CD27+IgM+IgD++IgG- [intMBC], 
and CD27+IgG+ [hiMBC]).  
In addition, all antibodies used were validated for their use in FACS or ChIP-seq experiments with human samples, as shown on 
the website provided by the respective companies.

Human research participants
Policy information about studies involving human research participants

Population characteristics Relevant information on human research participants is provided in Figure 1b, Extended Data Figure 1b and Supplementary 
Table 12. 

Recruitment The diagnosis of CLL according to World Health Organization (WHO) criteria was confirmed in all cases by flow cytometry, or by 
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Recruitment lymph node or bone marrow biopsy. IRB-approved protocols for genomic sequencing of patients’ samples was obtained prior to 
the initiation of sequencing studies. Blood samples were collected in EDTA blood collection tubes from patients and healthy 
adult volunteers enrolled on clinical research protocols at the Dana-Faber/Harvard Cancer Center (DF/HCC) and NewYork-
Presbyterian/Weill Cornell Medical Center (NYP/WCMC), approved by the DF/HCC and NYP/WCMC Institutional Review Boards. 

Ethics oversight The study was approved by the local ethics committee and by the Institutional Review Board (IRB) and conducted in accordance 
to the Declaration of Helsinki protocol. We note that the IRB does not permit collection of demographic information of healthy 
donors. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119103

Files in database submission GSM3358078 cll_175_h3k27ac_bam 
GSM3358082 cll_189_h3k27ac_bam 
GSM3358099 cll_248_h3k27ac_bam 
GSM3358103 cll_253_h3k27ac_bam

Genome browser session 
(e.g. UCSC)

No longer applicable

Methodology

Replicates Two IGHV mutated and two IGHV unmutated CLL patient samples.

Sequencing depth 125 bp paired-end mode. An average of 75 million paired reads was generated per sample

Antibodies Antibody used for ChIP is anti-H3K27ac (2 mg for 25 mg of chromatin; ab4729 Abcam, Cambridge, United Kingdom).

Peak calling parameters Peaks were identified with Macs2 (v2.0.10) with a q-value threshold of 0.01, according to the ENCODE Histone ChIP-seq 
Data Standards and Processing Pipeline (https://www.encodeproject.org/chip-seq/histone/). 

Data quality Deeptools plotFingerprint v2 was used to assess ChIP-seq signal enrichment over background signal.  
In addition, we observed a large overlap (72%) between FANTOM5 human robust enhancers (defined by H3K27ac signal) 
and our CLL H3K27ac ChIP-seq peaks, confirming the reproducibility of our ChIP-seq data. 

Software ChIP-seq data were processed according to the ENCODE Histone ChIP-seq Data Standards and Processing Pipeline (https://
www.encodeproject.org/chip-seq/histone/). Raw reads were mapped to the human genome hg19 assembly using Burrows-
Wheeler Aligner (BWA v0.7.17). Duplicate reads were removed using Picard (https://broadinstitute.github.io/picard/). Peaks 
were identified with Macs2 (v2.0.10) with a q-value threshold of 0.01. Peaks overlapping with Satellite repeat regions and 
Encode Blacklist were discarded.
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