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Abstract: Resting-state fMRI (RS-fMRI) has become a useful tool to investigate the connectivity struc-
ture of mental health disorders. In the case of major depressive disorder (MDD), recent studies regard-
ing the RS-fMRI have found abnormal connectivity in several regions of the brain, particularly in the
default mode network (DMN). Thus, the relevance of the DMN to self-referential thoughts and rumi-
nations has made the use of the resting-state approach particularly important for MDD. The majority
of such research has relied on the grand averaged functional connectivity measures based on the tem-
poral correlations between the BOLD time series of various brain regions. We, in our study, investi-
gated the variations in the functional connectivity over time at global and local level using RS-fMRI
BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchroni-
zation and temporal stability were significantly increased in the MDD patients. Furthermore, the par-
ticipants with MDD showed significantly increased overall average (static) functional connectivity
(sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC
increased to predominance among the regions pertaining to the default mode network (DMN), while
the decreased variability of FC was observed in the connections between the DMN and the frontopari-

etal network. Hum Brain Mapp 37:2918-2930, 2016.
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INTRODUCTION

Major depressive disorder (MDD) is among the world’s
most prevalent mental health disorders. Annually, it
affects nearly 7% of the European Union’s population
[Wittchen et al., 2011], and in 2010 it was cited as the
second-most prevalent cause of disability worldwide [Fer-
rari et al, 2013]. Research on the complex mechanisms
underlying MDD is crucial as a means to ensure effective
measures for diagnosis, treatment and prevention as well
as for understanding function in the diseased brain as
compared with the healthy one. The current evidence sup-
ports the assertion that the development of MDD depends
on alterations in distributed neural networks involving
cortical and subcortical structures. In that respect, the
development of analysis approaches for resting-state fMRI
(rs-fMRI) represents a major step forward in the evalua-
tion of brain function at the network level.

Studies based on rs-fMRI have, with respect to MDD
samples, reported significant decreases in functional con-
nectivity among the cortical, limbic and thalamic regions
[Anand et al., 2005; Bluhm et al., 2009; Cullen et al., 2009;
Lui et al., 2011; Ramasubbu et al., 2014] (for review, see
Wang et al. [2012]). Likewise, rs-fMRI studies have high-
lighted the alterations in different resting-state functional
networks (RSNs). Particularly, research focusing on the
default mode network (DMN), typically being associated
with introspection and inward attention, has shown that
depressive patients exhibit increased functional connectiv-
ity within this network [Alexopoulos et al., 2012; Berman
et al., 2014; Greicius et al., 2007; Sheline et al., 2010; Zhou
et al, 2010], which is normalized after antidepressant
treatment [Li et al., 2013; Liston et al., 2014]. Other authors
have reported that, MDD patients in the resting state dis-

play an increased anti-correlation between task-positive
and task-negative (akin to the DMN) networks [Zhou
et al., 2010] but a failure to down-regulate the DMN dur-
ing tasks involving emotional judgment [Grimm et al.,
2011]. Contrastingly, significant disconnections between
posterior and anterior components of the DMN have been
also described [Grimm et al., 2011], showing in these com-
ponents a differential response to anti-depressant treat-
ment [Li et al, 2013]. In any case, alterations within the
DMN have been shown to be related to specific MDD clin-
ical features such as exaggerated self-focus and depressive
maladaptive ruminations [Berman et al., 2011; Hamilton
et al., 2011]. Concurrently, results regarding other RSNs
also remain controversial. For example, while some studies
have reported increased functional connectivity within
cognitive control and affective networks [Avery et al.,
2014; Connolly et al., 2013; Sheline et al.,, 2010], others
have, in regard to those regions, offered diametrically
opposite findings [Alexopoulos et al., 2012; Veer et al.,
2010].

Research on resting-state FC, in addition to providing
relevant information on the pattern of regional connectiv-
ity in specific brain networks, has made it possible to
examine functional connectivity patterns in the context of
the entire brain. This whole-brain approach has been
applied to the study of different samples of MDD patients
using a broad range of FC measurements [Gong and He,
2015]. However, disparate results have been reported in
regard to whole-brain functional connectivity decreases
[Berman et al., 2014], reductions in inter-hemispheric con-
nectivity [Guo et al., 2011; Li Wang et al., 2013] and
increases in global patterns of functional connectivity
[Bohr et al., 2013]. Different explanations for the inconsis-
tencies of the results have been proposed, including the
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clinical heterogeneity of MDD samples; the use of different
definitions for network nodes and edges; changes in
arousal; and cardiorespiratory and/or motion artifacts, all
of which might be correlated with the global properties of
brain networks [Gong and He, 2015].

Nearly all of the resting-state literature has considered
FC measurement as the average connectivity between dif-
ferent regions during a resting period (i.e., static FC), thus
assuming that functional connectivity remains constant
while the brain is in the resting state. Recently, however,
we have seen the emergence of interest in the temporal
properties of FC (i.e., dynamic FC), which may be defined
as the time-varying functional connectivity between brain
regions, whether assessed at rest or during task perform-
ance. Given the disparities among the findings regarding
the static measures of FC in MDD, an investigation of the
temporal dynamics of the FC during rest might provide
new insights into the alterations of functional connections
in MDD. As of this writing, few studies have been con-
ducted with the use of this approach and the findings
have been controversial, with null [Hamilton et al., 2011]
and positive findings reported. Regarding the latter, two
recent studies by Wei et al. [2013 and 2015] found altera-
tions in the Hurst exponent of the time series in MDD
patients. The Hurst exponent indicates the self-similarity
or regularity of a time series, where a greater Hurst expo-
nent value signifies highly regular fluctuations over time,
suggesting a tendency toward coordinated signal organiza-
tion within a network [Wei et al., 2015]. In depressed
patients, a low Hurst exponent was detected within the
DMN, thus indicating uneven signal oscillation over time.
Nevertheless, in this same sample the frontoparietal, ven-
tromedial prefrontal and salience networks showed
increased Hurst exponent values [Wei et al.,, 2013, 2015].
Several other studies investigated the role of dynamic FC
in schizophrenia [Damaraju et al., 2014; Rashid et al., 2014;
Yu et al., 2015], bipolar disorder [Rashid et al., 2014] and
psychedelic experience [Tagliazucchi et al., 2012]. In sum-
mary, although still in the emergent stage, the dynamic
analysis of rsFC appears to be useful as a means to obtain
additional measurements with which to better characterize
the underlying neuropathological mechanisms of MDD.

This study is intended to examine the relationship
between first- and higher-order statistical measures based
on dynamic FC on the global level, as well as the local
level, in a sample of MDD patients. Accordingly, we have
employed whole-brain connectivity analysis based on
static and dynamic functional connectivity in 27 MDD
patients and 27 controls. We checked the global stability of
dynamic functional connectivity in each MDD patient dur-
ing the scan using the average global synchronization and
examined the similarities among the temporal states of the
subjects. We then compared the differences at the local
level using the overall average FC and the variability of
FC among the MDD patients and the controls. Finally,
through a process of machine-learning classification we
tested the clinical significance of the results.

TABLE I. Participant demographics

Healthy Major depression

controls disorder
Sample size 27 27
Age (yr) 455295 44.96 = 11.48
Gender 18 F/9 M 22 F/5M
HDRS 21.74+2.19
Age of onset (yr) 35.33 +10.48
Episode duration (d) 422.30 £307.24
Drug washout 20/27

MATERIALS AND METHODS
Participants

Twenty-seven MDD patients were recruited from the
Mood Disorders Unit of the University Hospital of
Bellvitge. Eligible participants were adult outpatients with
a primary diagnosis of MDD as assessed by the Structured
Clinical Interview for DSM-IV Axis I Disorders—Clinician
Version (SCID), as made by two senior psychiatrists who
reached a consensus for each item. Upon inclusion, each
patient had a Hamilton Depression Scale (HAM-D 17)
score equal to or greater than 18 (see Supporting Informa-
tion). The exclusion criteria included the presence or his-
tory of other Axis I diagnoses, relevant medical or
neurological disorders and an abnormal clinical MRI upon
radiological inspection. 20 patients were in a washout
period of 15 days. Concurrently, a group of 27 healthy vol-
unteers matched in gender, age, handedness and years of
education participated in the study (see Table I). A com-
plete medical interview was conducted with each prospec-
tive control subject in order to exclude anyone with
relevant medical or neurological disorders, history of sub-
stance abuse, and psychiatric illness. Each of the patients
and control subjects submitted a written informed consent
for participation in the study, such consent form having
been approved by the Research and Ethics Committee of
the University Hospital of Bellvitge.

fMRI Acquisition and Preprocessing

Image acquisition was accomplished with a 1.5 T Signa
system (GE Healthcare, Milwaukee, WI) equipped with an
eight-channel phased-array head coil. Protocol consisted in
an echo planar BOLD contrast sequence and a high-
resolution T1-weighted sequence. The acquisition parame-
ters for functional data were: repetition time [TR]= 2,000
ms; echo time [TE] =50 ms; flip angle [FA]=15° field of
view [FOV]=240 mm, a 64 X 64 matrix; slice
thickness =4 mm and inter-slice gap =15 mm. Twenty-
two slices parallel to the anterior-posterior commissure
line covered the entire brain. The sequence included four
additional dummy volumes to facilitate the equilibrium of
magnetization, thus totaling 120 volumes per session. The
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high-resolution T1-weighted anatomical image was a
three-dimensional fast spoiled gradient inversion-recovery
prepared sequence with 130 contiguous slices in the axial

plane (TR=11.8 ms, TE=42 ms, FA =15°,
FOV =300 mm, a 256 X 256 matrix and a slice thickness
of 1.2 mm).

Image preprocessing was performed in SPM8 (Wellcome
Trust Centre for Neuroimaging, University College London,
UK; http:/ /www filion.ucl.ac.uk/spm/). For every subject,
functional series were realigned in a two-step procedure:
first to the first image and then to the mean image. Next,
movement was regressed out from functional series using
the Volterra expansion of the parameters of movement (24
parameters). There were no significant differences between
groups in three translation and three rotation parameters.
Subsequent to inspection for the presence of artifacts, high-
resolution T1-weighted structural images were co-registered
to the mean functional image and then segmented. The
transformation from MNI to native space resulted from seg-
mentation was employed to warp the Automated Anatomi-
cal Labeling atlas (AAL) [Tzourio-Mazoyer et al., 2002]
from MNI to every T1 image. AAL atlases in native space
were restricted to subject’s gray matter by the formula:
[Atlas.*(GM > WM).*(GM > CSF).*(GM > 0.1)] where GM is
the gray matter, WM is the white matter and CSF is the cere-
brospinal fluid tissue probability maps and “.*” refers to
voxel to voxel product of images. The last atlases were used
to calculate functional time series on AAL’s areas.

Validation Data

To check the validity of the approach, we used a distinct
dataset comprising 25 healthy control subjects (age
between 18 and 33 years old, mean 26.2 (STD 4.8), 11
females, 14 males). The fMRI acquisition procedure was
described in detail in (Schirner et al., 2013). In brief, the
resting state fMRI time signals (BOLD-sensitive, T2*-
weighted, TR =1,940 ms, TE =30 ms, FA =78°, 32 trans-
versal slices (3 mm), voxel size 3 X 3 X 3 mm°
FOV =192 mm, 64 X 64 matrix) of the subjects were
acquired at Berlin Center for Advanced Imaging, Charité
University Medicine, Berlin, Germany. MRI was per-
formed using a 3 T Siemens Trim Trio MR scanner and a
12-channel Siemens head coil. Specifications for the
employed sequences can be found in Ritter et al. [2009].

Static and Dynamic Functional Connectivity
Construction

Preprocessed time series were band-pass filtered in 0.04
to 0.07Hz range in order to reduce the effects of low-
frequency drift and high-frequency noise [Glerean et al.,
2012]. The global average functional connectivity (sFC)
was defined as the Pearson’s correlation coefficient (r)
between the time series of each ROI. The resulting correla-
tion coefficients were approximated as a normal distribu-

tion using Fisher’s z-transformation (z=arctan(r)v/T—3),
where T is the total number of time points). The same
narrow-band signal was used for both analyses in order to
justify the comparison. One healthy control subject was
excluded from the analysis due to segmentation error in
any single ROI. However, no difference was observed in
the results between 26 of the MDD subjects and the 27
healthy control subjects.

The Hilbert transform [Glerean et al., 2012] was used for
the assessment of dynamic functional connectivity. This
approach allowed us to extract dFC with a higher tempo-
ral resolution given the short length of the resting-state
fMRI session. A recent study illustrated the use of this
approach to detect the community structure, and com-
pared them with well-established methods such as inde-
pendent component analysis [Ponce-Alvarez et al., 2015].
They also showed the validity of the approach using com-
putational modeling. The Hilbert transform, S(t)=Acos(p(t
)) of the preprocessed BOLD time series broke the signal
down to an analytical signal S(t) with an instantaneous
phase ¢(t) and amplitude A. For each time instance ¢, the
difference A@;(t) between the phases of the respective
ROIs was calculated, where i and j are the indices of each
ROI The phase differences were adjusted between 0 and n
such that:

Ae;(t)= |oi(t)—@;(B)], if |0;(t) — @, (t)]
< m2n—|@;(t) = ;(t)|, otherwise

Then, instantaneous coupling matrices (ICMs), C(t) were
constructed using the phase differences normalized
between 0 and 1, thereby representing perfect anti-
synchronization and perfect synchronization respectively,
such that: Cj(t) =1 — Ag;(t)/n.

Global synchronization G(t) was calculated using binar-
ized ICMs (i.e., binary connectivity matrix comprising
phase differences less than n/8). The percentage of exist-
ing connections at each binary ICM was defined as global
synchronization (see Supporting Information). Then, aver-
age global synchronization (G(t)) was computed for each
subject.

The similarities between the ICMs with the given time
lag (0-20 s.) were quantified for each subject as the correla-
tion coefficient between two matrices at each instance. The
intertemporal closeness (ITC) was defined as the propor-
tion of similarities between ICMs that were smaller than
the average similarity to the reference (i.e., the probability
of observing greater similarity between instances than
their similarity to the global phase-coupling matrix). Simi-
larity to the reference was calculated as the correlation
coefficient between each ICM and the average dFC. The
reason behind this metric is that while the similarity
between two ICMs decays over time, each of these matri-
ces shows a stable correlation with the global mean FC.
For the same reason we checked ITC for different time
lags .
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The static and dynamic analysis of rsFC (Materials and Methods).
Following the fMRI acquisition and preprocessing, the BOLD time
series results were band-pass filtered in the 0.04 to 0.07Hz fre-
quency range. The instantaneous phases of resulting time series
at each time step were then calculated using the Hilbert trans-
form (left). The phase difference between each ROl was normal-
ized between 0 and |, indicating perfect anti-synchrony and
synchrony, respectively. Consequently, the resulting matrix of
dynamic functional connectivity (dFC) comprised an instantaneous
coupling matrix (ICM) at each time step. The global synchrony,

G(t) and ITC were used to quantify the overall spatio-
temporal stability of the dynamic FCs. A high @ indi-
cates that the subject has a tendency to linger in a state
where the overall phase-coupling between each ROI is per-
sistently high. Contrastingly, ITC takes into account the
spatial similarity between each temporal state, character-
ized by ICMs. Furthermore, while the correlation coeffi-
cients among the ICMs decreased monotonously over
time, generally the correlation coefficients to the reference
were normally distributed around a moderate value (see
Supporting Information). Accordingly, a lower ITC sug-
gests that the fluctuations in temporal states around the
global average FC are higher, while a higher ITC indicates
a more stable temporal dynamic.

i.e., the percentage of synchronized pairs at each instance, was
calculated using binarized ICMs (connection pairs greater than m/
8). Intertemporal closeness (hereinafter “ITC”) was defined as
the probability of detecting two ICMs having greater-than-average
similarity to the grand average of dFC. Connectivity analysis was
performed through use of the Network Based Statistics (NBS)
toolbox. The global average FC (sFC) was calculated as Fisher’s z-
transformed correlation coefficient of the BOLD time series. The
variability of FC (vFC) was quantified as the index of dispersion
(variance/mean) of the dFC.

The variability in each pair in ICMs, C;j(t) was consid-
ered at the edge level. The variability of functional connec-
tivity (vFC) was computed as the index of dispersion
(variance/mean) of the coupling between each pair, and
this was calculated for each subject. Figure 1 illustrates the
process.

Global Average Signal Fluctuations

We computed the global average signal (GAS) as the
spatial average of the band-pass filtered BOLD signal.
Then, the GASs were z-transformed and high-GAS and
low-GAS states were defined as zgas>1 and zgas< —1,
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respectively. Finally, the average BOLD signal during
high-GAS and low-GAS states was estimated for each sub-
ject. The envelope of GASs was calculated as the absolute
value of the signal amplitude of the analytical signal,
which was acquired using Hilbert transform. A similar
approach was adapted to the dynamic FC. The spatial
average of the ICMs were z-transformed, and then the
high- and low-synchronization matrices were constructed
as Zgyne > 1 and zgyncn < —1, respectively.

Surrogate Time Series

To check whether the observed measures are due to the
dynamics, we used surrogate time series under linearity
and stationarity assumption. The surrogate time series were
generated before band-pass filtering using constrained
phase randomization approach that was introduced by Pri-
chard and Theiler (1994). This approach allowed generating
the surrogate time series with multivariate phase random-
ization. All the measures presented in materials and meth-
ods were computed using 100 surrogate time series
generated for each subject. The correlation coefficients,
mean and variance of phase coupling values between
regions were preserved in the surrogate signals. The group
averages for G(t) and ITC were estimated using 1,000 val-
ues randomly sampled from the surrogates. Finally, we
computed the P value to reject the null-hypothesis as the
probability of the observed test statistic (K) given the null-
distribution. The null-hypothesis was rejected if the proba-
bility of the observed statistic was less than 0.05. The
observed statistic was defined as the group means for the
validation dataset and T-statistic for the group comparisons.

Whole-Brain Network Comparison, Network
Visualization, and Statistical Analysis

We compared the difference between each pair in the
sFC and vFC matrices of patients and healthy controls
using the Network Based Statistics (NBS) toolbox [Zalesky
and Bullmore, 2010]. For each pair, a nonparametric per-
mutation test was performed using 5,000 permutations.
The corrected P value for the connected component was
established as P < 0.05. The minimum threshold by which
to calculate the maximal component size was defined as
t>24 (P = 0.01, dof =52). The networks were visualized
through use of the BrainNet toolbox [Xia et al., 2013].
Comparison between global synchronization, intertempo-
ral closeness and GAS-dependent BOLD signals were per-
formed using a permutation test (10,000 permutations, P <
0.05). The P values were corrected for multiple compari-
sons using false discovery rate (FDR) [Hochberg and Ben-
jamini, 1990].

We used machine-learning tools for the classification of
MDD patients and HCs in order to confirm the clinical
relevance of static and non-static measures. For that pur-
pose we implemented two popular approaches in machine

learning: Support Vector Machine (SVM). Moreover, we
used the Leave-One-Out (LOO) approach for the cross-
validation of the training set.

All the analyses were performed in Matlab R2013b.

RESULTS

Global Stability of Dynamic Functional
Connectivity

We first compared the distributions of global synchroni-
zation (see Materials and Methods) of the MDD patients
and healthy controls using the Kolmogorov-Smirnov dis-
tance between cumulative distribution functions. We
found that the global synchrony distribution of MDD
patients had shifted toward high synchrony as compared
with the healthy controls, showing a significant difference
(Kolmogorov-Smirnov test, P < 0.001, D = 0.12). However,
we found no significant difference between the means of
global synchronization of the respective groups, despite a
tendency toward significance (P = 0.0554, permutation
test) (Fig. 2).

Subsequently, we defined the measure of intertemporal
closeness (ITC) to quantify the stability of FC over time
(see Materials and Methods). The MDD group showed sig-
nificantly greater intertemporal closeness than did the HC
group (P = 0.013, permutation test) (Fig. 3): In the former
group, ITC fell below the 5% chance level at a lag of
11.7 s, while for the HCs the time lag was approximately
10.3 seconds (Fig. 3), suggesting the greater stability of
dynamic functional connectivity in the MDD group.

The group differences were invariant to the choice of
the threshold. However, both measures were sensitive to
the band-pass frequency range. The group differences
were maximal at 0.04 to 0.07 Hz frequency band (see Sup-
porting Information Fig. 2). Furthermore, given the surro-
gate time series, the null hypothesis of linearity and
stationarity was rejected for global synchronization (P =
0.024) and ITC (P = 0.008) (Fig. 6).

Whole-Brain Connectivity Analysis Based on
S-FC (STATIC) and V-FC (Nonstatic)
Connectivity

We used the network based statistics (NBS) approach to
study local alterations in whole-brain functional connectiv-
ity. We compared static and non-static connectivity meas-
ures, namely sFC (Fisher’s z-transformed correlation
coefficients between the time series of each ROI) and vFC
(index of dispersion of the coupling between each pair),
respectively. (See the section Materials and Methods.) The
index of dispersion was used to distinguish the variability
of the coupled pairs from the uncoupled pairs. MDD
patients showed a significant, widespread increase in sFC
and a decrease in vFC. With respect to both measures, the
altered connections were observed among the right dorsal
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Figure 2.
Global synchrony. (a) Probability distribution histograms of global synchronization in MDD
patients and HCs; (b) cumulative distribution function: the distance between two distributions is
statistically different (Kolmogorov-Smirnov test, P <0.001); and (c) comparison of means of
global synchronization (tendency toward significance, P = 0.0554). (In all figures, black represents
healthy controls and gray represents MDD patients.).

and posterior cingulate, the precuneus, and the right
medial and left superior frontal gyri, forming a network
associated with the default mode network (DMN) (Fig. 4).
However, while the increase in sFC was extended further
to other DMN-related regions such as the right cuneus,
left thalamus and right angular gyrus, the decrease in vFC
suggested an impaired variability between the core DMN
components and the frontoparietal network comprising
the right paracentral and inferior parietal lobules, the dor-
sal part of the left superior frontal gyrus, the right inferior
frontal gyrus and the post-central gyrus (Table II). In brief,
MDD was manifested as hyperconnectivity within the
regions of the DMN accompanied by decreased variability
with DMN and the regions related to executive function
and sensory information integration.

Global Signal Fluctuations

We studied the influence of global average signal (GAS)
on the phase coupling between brain regions. We found

anti-correlated activation patterns during high GAS and
low GAS states (r=—0.99, P < 0.001). The BOLD signal
was higher in lingual gyrus, dorsal cingulate gyrus, and
precuneus during high GAS state, while the BOLD signal
in orbitofrontal cortex and posterior cingulate gyrus was
higher during low GAS state (Fig. 5a,b). Furthermore, we
found a relationship between global synchronization in dFC
and the phase coupling networks. The phase coupling was
increased between the posterior parts of the brain and
decreased within the orbitofrontal cortex during high syn-
chronization (Fig. 5c). Moreover, the mean phase coupling
strength during high synchronization state was highly cor-
related with the average BOLD signal during high GAS
state (r=0.96, P < 0.001). Consistent with these findings,
the envelope of the GAS fluctuations was significantly cor-
related with the global synchronization (r =0.93, P < 0.001).

The GAS-dependent activation patterns were signifi-
cantly different between groups. MDD patients had
increased BOLD signal during high GAS state in right
medial frontal gyrus (I' = —2.51, P < 0.05), inferior frontal
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Intertemporal closeness. (a) Probability of finding two temporal
states (characterized by ICMs) having a similarity (correlation
coefficient) greater than the overall similarity to the average
coupling matrix using different time-lags (i.e., excluding nearby t

gyrus (T = —3.21, P < 0.05), posterior cingulate (T = —2.43,
P < 0.05), postcentral gyrus (T = —2.33, P < 0.05), angular
gyrus (T=-229, P < 0.05), medial temporal gyrus
(T'=-229, P < 0.05), and decreased BOLD signal in tem-
poral pole (T =4.69, P < 0.05).

Classification and the Linear Model

Using SVM, global spatiotemporal measures correctly
classified 72% of the subjects (sensitivity: 70%; specificity:
74%). The connections in sFC classified each subject cor-
rectly with 75% accuracy (sensitivity: 78%; specificity:
73%), while in v-FC the accuracy was 73% (sensitivity:
78%; specificity: 69%). Taken together, sFC and vFC classi-
fied each subject with 81% accuracy (sensitivity: 81%; spec-
ificity: 81%). Finally, the global and nodal parameters
together classified each subject with 83% accuracy (sensi-
tivity: 81%; specificity: 85%).

Additionally, partial correlations of each feature with
clinical indicators (gender, duration of disease, HDRS, epi-
sode duration, drug washout) were calculated. No signifi-
cant correlation was found between clinical indicators and
global synchronization with respect to ITC. Nevertheless,
there was a significant correlation of raw global MDD-HC
FC distance to disease duration (p=0.47, P <0.05), sug-
gesting a global spatial alteration in MDD during the
course of the disease.

Validation of the Measures

The validity of the proposed measures was tested using
a cross-validation dataset with higher recording time. We

time points). Chance level closeness (P<0.05) is 10.3 s for
healthy controls, 1.7 s for MDD patients. (b) Comparison of
mean intertemporal closeness without time-lag (permutation
test with 10,000 permutations, P = 0.013).

showed that the mean and the variance of the phase-
locking values were preserved in surrogate time series. In
addition, the variance of the phase-locking values was
comparable to that of the dynamic FC using sliding win-
dow analysis (window size =30 TR, step size=5 TR).
Moreover, we tested the hypothesis that the dynamics
underlying the group averages of global synchronization
and ITC were linear and stationary. The null hypothesis
was rejected both for global synchronization (P = 0.004)
and ITC (P=0.003). The activation patterns associated
with global signal fluctuations in the validation dataset
were consistent with the results (see Supporting Informa-
tion Fig. 6).

DISCUSSION

We studied the rsfMRI of depressive patients using
static and dynamic measures on the global and local lev-
els. Our results showed increased global synchronization
and temporal stability in the MDD patient group. Further-
more, we found alterations in static FC and the variability
of FC in MDD patients relative to the healthy control
group. Generally, those alterations occurred in the right
hemisphere but also occurred, albeit to a lesser extent, in
the interhemispheric static and dynamic connections.
Thus, our findings on widespread global synchronization
and increased temporal stability in MDD contradict the
results of Berman et al. [2014]. This might be due to the
differences in preprocessing steps, particularly in band-
pass filtering (as discussed below).

We found that, in depressive patients, static FC was
increased dominantly in the regions related to the DMN
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@ Lower in MDD

Figure 4.

Whole-brain connectivity analysis of sFC (top) and vFC (bot-
tom). Herein, sFC refers to static functional connectivity (i.e.,
Fisher’s z-transformed Pearson’s correlation coefficients), while
VFC refers to variability of functional connectivity (i.e., index of
dispersion of phase-coupling between two-ROI). The results are

and variability of FC decreased within an extended net-
work of the DMN and frontoparietal regions. This result is
consistent with the previous findings that showed reduced
irregularity (increased memory) in the frontoparietal net-
work using the Hurst exponent [Wei et al., 2013]. Further-
more, we showed that these measures might function as
predictors in discriminating patients from healthy controls.
Collectively, the results suggest that dynamic functional
connectivity can reveal different aspects of brain connec-
tivity in MDD patients. Therefore, we claim that attenu-

based on NBS using 5,000 permutations, corrected P value
<0.05 and maximum component threshold t> 3.3 (vFC) t> 3.2
(sFC). The red nodes and edges indicate higher values in MDD
patients, while the blue nodes and edges indicate lower values in
MDD patients.

ated variability in the frontoparietal region might
influence widespread global synchronization and the
difficulty of down-regulating the DMN. This conclusion is
consistent with the existing neuropsychological models of
MDD and most of the recent findings regarding the role of
the DMN in the disorder. The novelty is that we have
shown that the changes in modulatory networks (dynami-
cal/binding hubs) could be more effectively characterized
by dynamic FC than with static FC, and that the converse
is true for structural networks (static hubs). In our study,
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TABLE Il. Significantly different connections based on static FC (sFC) and variability of FC (vFC)

Static functional connectivity (sFC)

Variability of functional connectivity (vFC)

Pair T-statistic P Pair T-statistic P
IFGoperc (right)—FFG (left) 4.1412 0.0001 MFG (right)—PoCG (right) 4.3769 0.0001
MEG (right)—SFGmed (left) 3.6813 0.0006 IFGoperc (right)—PCG (right) 4.3620 0.0001
DCG (right)—PCG (right) 3.6159 0.0007 CAL (right)—IPL (right) 4.0979 0.0001
MFG (right)—CAL (right) 3.5159 0.0009 IFGoperc (right)—PCL (right) 4.0553 0.0002
SFGmed (left)—CUN (right) 3.5116 0.0009 DCG (right)—PCG (right) 4.0228 0.0002
MEFG (right)—CAL (left) 3.4895 0.001 MFG (right)—SFGmed (left) 3.9779 0.0002
DCG (right)—CAL (left) 3.4439 0.0011 SFGdor (left)—MFG (right) 3.4431 0.0011
IFGoperc (right)—LING (right) 3.4224 0.0012 IPL (right)—PCUN (left) 3.3909 0.0013
IFGoperc (right)—LING (left) 3.3994 0.0013 MFG (right)—PCL (right) 3.3567 0.0015
MFG (right)—THA (left) 3.3911 0.0013 SFGdor (left)—IPL (right) 3.3203 0.0016
ANG (right)—THA (left) 3.3882 0.0013

LING (right)—SMG (right) 3.3164 0.0017

PCG (right)—CAL (right) 3.3068 0.0017

SOG (right)—SMG (right) 3.3040 0.0017

SFGmed (left)—PCUN (right) 3.3019 0.0017

PCG (right)—PUT (left) 3.2903 0.0018

PreCG (right)—ANG (right) 3.2415 0.0021

MFG (right)—LING (right) 3.2412 0.0021

these potential modulatory networks were consistently the
regions related to executive function and the integration of
sensory information. Several other recent techniques might
be useful to investigate the interactions between resting
state networks [Allen et al., 2014].

The relationship involving increased global synchroniza-
tion, increased temporal stability, and decreased variability
might seem trivial or possibly as an artifact due to the
influence of physiological noise. Furthermore, the altera-
tion in temporal stability might be confounded by its
dependence to the global synchronization. However, the
occurrence of local alterations in variability within specific,
clinically relevant networks suggests that variations in
global and local spatiotemporal patterns might be linked.
In other words, the results might be interpreted such that
the local alterations in sFC (increased connectivity) and
VFC (decreased variability) might also manifest as
increased global synchronization and temporal stability in
MDD, or the other way around. Moreover, we found that
the average BOLD signal in the parietal and orbitofrontal
regions fluctuate with the global average signal. These
fluctuations were also correlated with the global synchro-
nization patterns. These finding are consistent with recent
studies suggesting the clinical implications of global signal
fluctuations [Yang et al., 2014]. Additionally, one study
reported that DMN is correlated with autonomic arousal
[Fan et al., 2012]. Thus, the relationship between global
and local variations might also be relevant to the bottom-
up modulation of binding hubs via subcortical circuits
and/or whole-brain global modulation by autonomic
arousal. Nevertheless, the evidence cannot rule out the
indirect involvement of physiological noise in the signal
and its ability to bias the results. Further research is

needed in order to clarify the mechanisms that underlie
the global average signal.

Our study was subject to various considerations and
limitations. We underscore the fact that these results are
very specific to the 0.04 to 0.07 Hz narrowband, which
was shown to be the most reliable frequency band [Gler-
ean et al.,, 2012] (see Materials and Methods). First, the
global synchronization of each region was correlated with
the power in the narrow band. Secondly, the average 0.04
to 0.07 Hz bandwidth power of related regions (such as
the medial frontal gyrus and precuneus) was significantly
different in the MDD patients (Supporting Information
Fig. 1). Accordingly, we suggest that the widespread
increase (or decrease) found in connectivity might be
related to the changes in the power of ROIs in various fre-
quency bands. It was also observed that the MDD patients
had increased power in this narrow bandwidth despite
their reduced power in wider bandwidths. In addition, the
group differences were maximized at 0.04 to 0.07 Hz fre-
quency band. This might indicate relative importance of
this frequency band in MDD or in other clinical popula-
tions. For example, in one study the highest classification
performance to detect mild cognitive impairment (MCI)
was found between 0.054 and 0.068 Hz [Wee et al., 2012].
Additional research is needed in order to clarify the role
of the spectral properties of RSNs. In any case, the major
limitation of this study was the short scan duration (4
min), which might be insufficient for the stabilization of
resting-state functional connectivity (rsFC). In addition to
the reliable stabilization of FCs, the short scan duration
prevented us from using extensive analyses such as
sliding-window analysis, the Fano factor of dynamic con-
nectivity in time, and wavelet analysis. Another limitation
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Figure 5.

Average BOLD signal during high-GAS (a) and low-GAS (b)
states of 26 healthy control subjects. During high-GAS state
posterior and occipital regions were activated, while orbitofron-
tal cortex and posterior cingulate gyrus were deactivated. The
activation patterns of high-GAS and low-GAS state were anti-
correlated. (c) The average phase coupling between regions dur-

of the study was that several individuals in the patient
group were in drug washout period. However, we did not
find any correlation between the measures and being in
drug washout.

This study provides new insights with which to better
our understanding of the anomalous pattern of brain activ-
ity during the resting state in MDD. The analysis of
dynamic functional connectivity reveals that the depressed
brain shows an abnormally stable, synchronous pattern of

ing high- and low-synchronization states. The red links and
nodes indicate the highest 200 connections that were increased
during high-synchronization state. The blue links and nodes indi-
cate the highest 200 connections that were increased during
low-synchronization state.

activity, whereby it mimics the various core features of
depressive patients, such as ruminative, slow, and monot-
onous thinking. Our novel approach has confirmed the
presence of static hyperconnnectivity in MDD within the
DMN, along with a reduction in the variability of dynamic
functional connectivity in the DMN and frontoparietal net-
works. This has in turn allowed us to accurately classify
depressed patients and distinguish them from healthy con-
trols. Although the machine learning classification was
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Figure 6.

Null distributions of global synchronization (a) and intertempo-
ral closeness (b) test statistics calculated using multivariate sur-
rogate data. Red arrows indicate observed test statistics.

limited due to LOO method implemented in a modest
sample size, it illustrated the clinical relevance of the
approach. Future examination of the complex relationship
between dynamic and static connectivity can provide
adequate measurements with which to deepen characteri-
zation in the pathophysiology of depression.

REFERENCES

Alexopoulos GS, Hoptman M], Kanellopoulos D, Murphy CF, Lim
KO, Gunning FM (2012): Functional connectivity in the cogni-
tive control network and the default mode network in late-life
depression. ]  Affect Disord 139:56-65. doi:10.1016/
jjad.2011.12.002.

Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun
VD. 2014. Tracking whole-brain connectivity dynamics in the
resting state. Cereb Cortex. 24:663-676. d0i:10.1093/cercor/
bhs352.

Anand A, Li Y, Wang Y, Wu ], Gao S, Bukhari L, Mathews VP,
Kalnin A, Lowe M] (2005): Activity and connectivity of brain
mood regulating circuit in depression: A functional magnetic
resonance study. Biol Psychiatry 57:1079-1088. doi:10.1016/
j.biopsych.2005.02.021.

Avery JA, Drevets WC, Moseman SE, Bodurka ], Barcalow JC,
Kyle Simmons W. 2014. Major depressive disorder is associ-
ated with abnormal interoceptive activity and functional con-
nectivity in the insula. Biol Psychiatry 76: 258-266. doi:
10.1016/j.biopsych.2013.11.027.

Berman MG, Misic B, Buschkuehl M, Kross E, Deldin PJ, Peltier S,
Churchill NW, Jaeggi SM, Vakorin V, McIntosh AR, Jonides ]
(2014): Does resting-state connectivity reflect depressive rumi-
nation? A tale of two analyses. Neuroimage 103:267-279. doi:
10.1016/j.neuroimage.2014.09.027.

Berman MG, Peltier S, Evan Nee D, Kross E, Deldin PJ, Jonides ]
(2011): Depression, rumination and the default network. Soc
Cognit Affect Neurosci 6:548-555. doi:10.1093 /scan/nsq080.

Bluhm R,Williamson P, Lanius R, Théberge ], Densmore M,
Bartha R, Neufeld R, Osuch E (2009): Resting state default-
mode network connectivity in early depression using a seed
region-of-interest analysis: Decreased connectivity with cau-
date nucleus. Psychiatry Clin Neurosci 63:754-761. doi:
10.1111/;.1440-1819.2009.02030.x.

Bohr IJ, Kenny E, Blamire A, O'Brien ]JT, Thomas A, Richardson ],
Kaiser M (2013): Resting-state functional connectivity in late-
life depression: Higher global connectivity and more long dis-
tance connections. Neuropsychiatr Imag Stimul 3:116. doi:
10.3389/fpsyt.2012.00116.

Connolly CG, Wu ], Ho TC, Hoeft F, Wolkowitz O, Eisendrath S,
Frank G, Hendren R, Max JE, Paulus MP, Tapert SF, Banerjee
D, Simmons AN, Yang TT (2013): Resting-state functional con-
nectivity of subgenual anterior cingulate cortex in depressed
adolescents.  Biol ~ Psychiatry = 74:898-907.  doi:10.1016/
j-biopsych.2013.05.036.

Cullen KR, Gee DG, Klimes-Dougan B, Gabbay V, Hulvershorn L,
Mueller BA, Camchong ], Bell CJ, Houri A, Kumra S, Lim KO,
Castellanos FX, Milham MP (2009): A preliminary study of
functional connectivity in comorbid adolescent depression.
Neurosci Lett 460:227-231. d0i:10.1016/j.neulet.2009.05.022.

Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon
DH, Mueller BA, Pearlson GD, Potkin SG, Preda A, Turner JA,
Vaidya JG, van Erp TG, Calhoun VD (2014): Dynamic func-
tional connectivity analysis reveals transient states of dyscon-
nectivity in schizophrenia. Neuroimage 5:298-308. doi:10.1016/
jnicl.2014.07.003.

Fan J,Xu P, Van Dam NT, Eilam-Stock T, Gu X, Luo Y, Hof PR
(2012): Spontaneous brain activity relates to autonomic arousal.
J Neurosci 32:11176-11186. doi:10.1523/JNEUROSCI.1172-
12.2012.

Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G,
Murray CJL, Vos T, Whiteford HA (2013): Burden of depres-
sive disorders by country, sex, age, and year: Findings from
the Global Burden of Disease Study 2010. PLoS Med 10:
€1001547. doi:10.1371/journal.pmed.1001547.

Glerean E,Salmi ], Lahnakoski JM, Jaaskelainen IP, Sams M (2012):
Functional magnetic resonance imaging phase synchronization
as a measure of dynamic functional connectivity. Brain Con-
nect 2:91-101. doi:10.1089 /brain.2011.0068.

Gong Q, He Y (2015): Depression, neuroimaging and connectom-
ics: A selective overview. Biol Psychiatry 77:223-235. doi:
10.1016/j.biopsych.2014.08.009.

Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB,
Kenna H, Reiss AL, Schatzberg AF (2007): Resting-state func-
tional connectivity in major depression: Abnormally increased
contributions from subgenual cingulate cortex and thalamus.
Biol Psychiatry 62:429-437. doi:10.1016/j.biopsych.2006.09.020.

¢ 2929 o


info:doi/10.1016/j.jad.2011.12.002
info:doi/10.1016/j.jad.2011.12.002
info:doi/10.1093/cercor/bhs352
info:doi/10.1093/cercor/bhs352
info:doi/10.1016/j.biopsych.2005.02.021
info:doi/10.1016/j.biopsych.2005.02.021
info:doi/10.1016/j.biopsych.2013.11.027
info:doi/10.1016/j.neuroimage.2014.09.027
info:doi/10.1093/scan/nsq080
info:doi/10.1111/j.1440-1819.2009.02030.x
info:doi/10.3389/fpsyt.2012.00116
info:doi/10.1016/j.biopsych.2013.05.036
info:doi/10.1016/j.biopsych.2013.05.036
info:doi/10.1016/j.neulet.2009.05.022
info:doi/10.1016/j.nicl.2014.07.003
info:doi/10.1016/j.nicl.2014.07.003
info:doi/10.1523/JNEUROSCI.1172-12.2012
info:doi/10.1523/JNEUROSCI.1172-12.2012
info:doi/10.1371/journal.pmed.1001547
info:doi/10.1089/brain.2011.0068
info:doi/10.1016/j.biopsych.2014.08.009
info:doi/10.1016/j.biopsych.2006.09.020

¢ Demirtas et al. ¢

Grimm S,Ernst J, Boesiger P, Schuepbach D, Boeker H, Northoff G
(2011): Reduced negative BOLD responses in the default-mode
network and increased self-focus in depression. World ] Biol
Psychiatry 12:627-637. doi:10.3109/15622975.2010.545145.

Guo W-b, Sun X-1, Liu L, Xu Q, Wu R-R, Liu Z-n, Tan C-1, Chen
H-f, Zhao J-P (2011): Disrupted regional homogeneity in
treatment-resistant depression: A resting-state fMRI study.
Prog Neuropsychopharmacol Biol Psychiatry 35:1297-1302.
doi:10.1016 /j.pnpbp.2011.02.006.

Hamilton JP, Furman DJ, Chang C, Thomason ME, Dennis E,
Gotlib IH. 2011. Default-mode and task-positive network activ-
ity in major depressive disorder: Implications for adaptive and
maladaptive rumination. Biol Psychiatry70: 327-333. doi:
10.1016/j.biopsych.2011.02.003.

Hochberg Y, Benjamini Y (1990): More powerful procedures for
multiple significance testing. Stat Med 9:811-818. doi:10.1002/
sim.4780090710.

Li B, Liu L, Friston KJ, Shen H, Wang L, Zeng L-L, Hu D. 2013. A
treatment-resistant default mode subnetwork in major depression.
Biol Psychiatry74: 48-54. doi:10.1016 /j.biopsych.2012.11.007.

Liston C, Chen AC, Zebley BD, Drysdale AT, Gordon R, Leuchter
B, Voss HU, Casey B]J, Etkin A, Dubin MJ. 2014. Default mode
network mechanisms of transcranial magnetic stimulation in
depression. Biol Psychiatry 76: 517-526. doi:10.1016/
j-biopsych.2014.01.023.

Lui S, Wu Q, Qiu L, Yang X, Kuang W, Chan RCK, Huang X,
Kemp GJ, Mechelli A, Gong Q (2011): Resting-state functional
connectivity in treatment-resistant depression. Am ] Psychiatry
168:642-648. doi:10.1176/appi.ajp.2010.10101419.

Ponce-Alvarez A, Deco G, Hagmann P, Luca Romani G, Mantini D,
Corbetta M (2015): Resting-state temporal synchronization net-
works emerge from connectivity topology and heterogeneity.
PLoS Comput Biol 11:1004100. doi:10.1371/journal.pcbi.1004100.

Prichard D, Theiler J (1994): Generating surrogate data for time
series with several simultaneously measures variables. Phys
Rev Lett 73:951-954.

Ramasubbu R, Konduru N, Cortese F, Bray S, Gaxiola I, Goodyear
B (2014): Reduced intrinsic connectivity of amygdala in adults
with major depressive disorder. Neuropsychiatr Imag Stimul
5:17. doi:10.3389/ fpsyt.2014.00017.

Rashid B, Damaraju E, Pearlson GD, Calhoun VD (2014): Dynamic
connectivity states estimated from resting fMRI identify
differences among schizophrenia, bipolar disorder, and healthy
control subjects. Front Hum Neurosci 8:897. doi:10.3389/
fnhum.2014.00897.

Ritter P, Becker R, Freyer F, Villringer A. 2009. EEG quality: The
image acquisition artefact. In: Christoph M, Louis L, editors.
EEG - fMRI. Berlin, Germany: Springer Berlin Heidelberg. pp.
153-171. http://link.springer.com/chapter/10.1007 /978-3-540-
87919-0_9.

Schirner M, Rothmeier S, Ritter P. 2013. Constructing subject-
specific virtual brains from multimodal neuroimaging data.
Front Neurosci Conference Abstract: Neuroinformatics 2015.
doi:10.3389/ conf.fnins.2015.91.00005.

Sheline YI, Price JL, Yan Z, Mintun MA (2010): Resting-state func-
tional MRI in depression unmasks increased connectivity
between networks via the dorsal nexus. Proc Natl Acad Sci
USA 107:11020-11025. doi:10.1073 /pnas.1000446107.

Tagliazucchi E, Von Wegner F, Morzelewski A, Brodbeck V, Laufs
H (2012): Dynamic BOLD functional connectivity in humans

and its electrophysiological correlates. Front Hum Neurosci 6:
339. d0i:10.3389/fnhum.2012.00339.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F,
Etard O, Delcroix N, Mazoyer B, Joliot M (2002): Automated
anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage 15:273-289. doi:10.1006/nimg.2001.0978.

Veer IM, Beckmann C, Van Tol M-], Ferrarini L, Milles J, Veltman
D, Aleman A, Van Buchem MA, Van Der Wee NJA, Rombouts
SAR (2010): Whole brain resting-state analysis reveals
decreased functional connectivity in major depression. Front
Syst Neurosci 4:41. doi:10.3389/fnsys.2010.00041.

Wang L, Hermens DF, Hickie IB, Lagopoulos J (2012): A system-
atic review of resting-state functional-MRI studies in major
depression. ]  Affect Disord 142:6-12. doi:10.1016/
jjad.2012.04.013.

Wang L, Li K, Zhang QE, Zeng YW, Jin Z, Dai W], Su YA, Wang
G, Tan YL, Yu X, Si TM (2013): Interhemispheric functional
connectivity and its relationships with clinical characteristics in
major depressive disorder: A resting state fMRI study. PLoS
One 8:60191. doi:10.1371/journal.pone.0060191.

Wee C-Y, Yap P-T, Denny K, Browndyke JN, Potter GG, Welsh-
Bohmer KA, Wang L, Shen D (2012): Resting-state multi-
spectrum functional connectivity networks for identification of
MCI patients. PLoS ONE 7:e37828. doi:10.1371/
journal.pone.0037828.

Wei M,Qin |, Yan R, Li H, Yao Z, Lu Q (2013): Identifying major
depressive disorder using hurst exponent of resting-state brain
networks. Psychiatry Res Neuroimag 214:306-312. doi:10.1016/
j-pscychresns.2013.09.008.

Wei M,Qin J, Yan R, Bi K, Liu C, Yao Z, Lu Q (2015): Association
of resting-state network dysfunction with their dynamics of
inter-network interactions in depression. | Affect Disord 174:
527-534. doi:10.1016/j.jad.2014.12.020.

Wittchen HU, Jacobi F, Rehm ], Gustavsson A, Svensson M,
Jonsson B, Olesen ], Allgulander C, Alonso ], Faravelli C,
Fratiglioni L, Jennum P, Lieb R, Maercker A, van Os ], Preisig
M, Salvador-Carulla L, Simon R, Steinhausen HC (2011): The
size and burden of mental disorders and other disorders of the
brain in Europe 2010. Eur Neuropsychopharmacol 21:655-679.
doi:10.1016 /j.euroneuro.2011.07.018.

Xia M,Wang ], He Y (2013): BrainNet viewer: A network visual-
ization tool for human brain connectomics. PLoS One 8:€68910.
doi:10.1371/journal.pone.0068910.

Yang GJ, Murray JD, Repovs G, Cole MW, Savic A, Glasser MF,
Pittenger C, Krystal JH, Wang X], Pearlson GD, Glahn DC,
Anticevic A (2014): Altered global brain signal in schizophre-
nia. Proc Natl Acad Sci USA 111:7438-7443. doi:10.1073/
pnas.1405289111.

Yu Q, Erhardt EB, Sui J, Du Y, He H, Hjelm D Cetin MS, et al.
(2015): Assessing dynamic brain graphs of time-varying con-
nectivity in FMRI data: Application to healthy controls and
patients with schizophrenia. Neuroimage 107:345-355. doi:
10.1016/j.neuroimage.2014.12.020.

Zalesky A, Fornito A, Bullmore ET (2010): Network-based statistic:
identifying differences in brain networks. Neuroimage 53:
1197-1207. doi:10.1016/j.neuroimage.2010.06.041.

Zhou Y,Yu C, Zheng H, Liu Y, Song M, Qin W, Li K, Jiang T
(2010): Increased neural resources recruitment in the intrinsic
organization in major depression. ] Affect Disord 121:220-230.
doi:10.1016/j.jad.2009.05.029.

* 2930 «


info:doi/10.3109/15622975.2010.545145
info:doi/10.1016/j.pnpbp.2011.02.006
info:doi/10.1016/j.biopsych.2011.02.003
info:doi/10.1002/sim.4780090710
info:doi/10.1002/sim.4780090710
info:doi/10.1016/j.biopsych.2012.11.007
info:doi/10.1016/j.biopsych.2014.01.023
info:doi/10.1016/j.biopsych.2014.01.023
info:doi/10.1176/appi.ajp.2010.10101419
info:doi/10.1371/journal.pcbi.1004100
info:doi/10.3389/fpsyt.2014.00017
info:doi/10.3389/fnhum.2014.00897
info:doi/10.3389/fnhum.2014.00897
http://link.springer.com/chapter/10.1007/978-3-540-87919-0_9
http://link.springer.com/chapter/10.1007/978-3-540-87919-0_9
info:doi/10.3389/conf.fnins.2015.91.00005
info:doi/10.1073/pnas.1000446107
info:doi/10.3389/fnhum.2012.00339
info:doi/10.1006/nimg.2001.0978
info:doi/10.3389/fnsys.2010.00041
info:doi/10.1016/j.jad.2012.04.013
info:doi/10.1016/j.jad.2012.04.013
info:doi/10.1371/journal.pone.0060191
info:doi/10.1371/journal.pone.0037828
info:doi/10.1371/journal.pone.0037828
info:doi/10.1016/j.pscychresns.2013.09.008
info:doi/10.1016/j.pscychresns.2013.09.008
info:doi/10.1016/j.jad.2014.12.020
info:doi/10.1016/j.euroneuro.2011.07.018
info:doi/10.1371/journal.pone.0068910
info:doi/10.1073/pnas.1405289111
info:doi/10.1073/pnas.1405289111
info:doi/10.1016/j.neuroimage.2014.12.020
info:doi/10.1016/j.neuroimage.2010.06.041
info:doi/10.1016/j.jad.2009.05.029

	l

