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Abstract Numerical simulations have been carried out to understand the seeding of neoclassical tearing 

modes (NTMs), using a single fluid model and the four-field equations. The paper starts with considering a 

simplified physics situation: the destabilization of a linearly stable m/n=3/2 mode by an unstable m/n=2/2 mode 

(m/n being the poloidal/toroidal mode number). Within single fluid model the mode coupling is found to be 

weakened by relative mode rotation and enhanced by finite plasma β value. For the four-field equations in case 

of a sufficiently low electron diamagnetic drift frequency, the results are similar to those from the single fluid 

equations. For a sufficiently large diamagnetic drift frequency, three regimes are found: (a) Suppression regime 

for moderate plasma β values, in which the originally unstable 2/2 mode is stabilized by its coupling to the 

originally stable 3/2 mode; (b) Oscillation regime for a sufficiently large β value, in which the 3/2 mode has the 

feature of an ideal mode, and the diamagnetic drift frequency reaches the shear Alfven frequency outside the 

tearing layer; (c) NTM regime for sufficiently large β value and bootstrap current density. Consistent with these 

findings, in our simulations 3/2 modes are triggered by sufficiently strong sawtooth crashes at high β  value 

and/or a low electron diamagnetic drift frequency. A sufficiently large bootstrap current density is then required 

for the 3/2 island to grow into the NTM regime. 

 

 

 

 

 

 

 



1. Introduction  

It is well known that toroidal geometry results in coupling of modes with different poloidal mode 

numbers m, in particular to modes with mode numbers (m+1) and (m-1) at same toroidal mode 

numbers n. Experimental results have shown the importance of such mode coupling. For example, 

sawtooth crashes can trigger neoclassical tearing modes (NTMs) for sufficiently high plasma β values 

in tokamak experiments, which usually degrade plasma confinement or even lead to plasma disruption 

[1-11]. The large m/n=1/1 mode during the sawtooth crashes can possibly trigger the m/n=2/1 mode 

via toroidal mode coupling. However, in most experiments the nonlinear harmonic of the 1/1 mode, the 

2/2 component, is found to drive the 3/2 NTM more frequently [1-9]. Due to the importance of NTMs 

for tokamak power plants, the understanding of the physics involved in the triggering of NTMs is a 

very important issue. During major disruptions in tokamak plasmas, magnetic islands of different 

helicities or even stochastic field can be generated via mode coupling, usually in addition to a large 2/1 

mode, allowing the plasma energy to be released in a short time scale [12-13]. Due to toroidal mode 

coupling, edge localized modes (ELMs) might also drive islands of different helicities and cause local 

stochastic field in the edge region of H-mode plasmas, resulting in a release of ~10% of the total 

plasma energy within a short time scale (~1ms) [e.g. 14]. 

Since 1970s, extensive theoretical efforts have been devoted to understand the stability properties in 

toroidal geometry, including both analytical and numerical studies [15-34]. Without differential plasma 

rotation, a mode with one n number might have several large m components, in particular in strongly 

shaped plasmas [32]. Thus, an unstable tearing mode, e.g., the m/n=2/1 mode, will also lead to other 

islands, such as the 3/1 and 4/1 islands, in toroidal geometry. Differential plasma rotation, however, can 

weaken the mode coupling, as shown in analytical theory [16-18].  

Analytical theories reveal that without mode coupling, the stability of a single magnetic island is 

determined by the tearing mode stability index ∆′, bootstrap current density, Glasser effect, the 



diamagnetic drift, and the associated ion polarization current [35-40]. Among them, the diamagnetic 

drift is quite important for the stability of a small island. Linear tearing modes are predicted to be stable 

in high temperature plasmas due to electron diamagnetic drift even for a positive ∆′ [41], as also seen 

from two-fluid numerical studies in cylinder geometry [42,43]. 

As one of the major triggers for the NTM onset and generally as a typical phenomenon in tokamak 

experiments, sawteeth have attracted much research interest. Simulations in toroidal geometry have 

demonstrated that diamagnetic stabilization is essential to explain the quasi-periodic sawtooth cycles 

[44-46]. The very fast dynamics of a single sawtooth crash has been explained by the effect of the 

parallel electron pressure gradient in Ohm’s law. Fast sawtooth crashes and associated strong parallel 

electrical fields have been derived from two-fluid simulations for high temperature plasmas (2keV) in 

cylinder geometry [47,48]. Detailed investigations of the reconnection region during a sawtooth crash 

also indicate of the importance of two-fluid physics in toroidal geometry simulations [49]. 

The triggering of NTMs by sawteeth have been simulated before based on single fluid equations 

[50,51], taking into account the time evolution of ∆′ and bootstrap current perturbation, but neglecting 

the differential plasma rotation in the nonlinear calculations [50]. In Ref. [51] the ion polarization 

current was included, but assumed to be proportional to the bootstrap current perturbation and inversely 

proportional to the magnetic island width, while two-fluid physics as well as the differential plasma 

rotation were neglected. In these simulation a destabilization of the m/n=3/2 mode by the internal kink 

mode has been found [50,51]. Linear studies in toroidal geometry have revealed the importance of 

toroidal mode coupling as well as the diamagnetic drift for mode growth [52]. The sawtooth crash is 

found to lead to an increase in the ∆′ value of the driven mode [53]. 

For the case that the magnetic shear is sufficiently small over a large region in the core, numerical 

studies have shown fast growing infernal modes coupled to poloidal tearing sideband, driving magnetic 

islands on neighboring rational surfaces [54,55]. In these simulations the bootstrap current drive as well 



as the stabilizing Glasser effect are considered. Any shielding effects due to differential diamagnetic 

drift or plasma rotation have however been neglected [54,55]. 

Due to the complex nonlinearity and mode coupling in toroidal geometry, numerical calculations of 

nonlinear MHD instabilities are extremely challenging and have to be limited to certain physics issues. 

The input parameters for calculations, such as the Lundquist number (the ratio between the resistive 

time and the Alfven time), are usually well below experimental ones. 

In this paper, the toroidal mode coupling and the triggering of NTMs by sawteeth are studied 

numerically, based on the four-field equations [26]. The large aspect ratio expansion has been applied 

for obtaining these equations, and higher order terms, such as the magnetic field curvature are not 

accurately described [26]. Therefore, the approximations associated with the four-field model are 

particularly severe for the linear m/n=1/1 mode, which is always unstable in our model if the q value 

drops well below 1 for a relatively low diamagnetic drift frequency. When the 1/1 mode amplitude is 

sufficiently large such that the plasma pressure is flattened across the 1/1 island, the curvature effect is 

however expected to be less important. The main focus of this paper is not on the stability of the 1/1 

mode itself, but rather on its effect on neighboring resonant surfaces when its amplitude is sufficiently 

large. For such studies it is important that these equations include toroidal mode coupling, diamagnetic 

drift and the associated ion polarization current, bootstrap current, and differential plasma rotation, the 

key physics elements for the NTM onset as expected from analytical theories [5,35-40].  

As the equations of this model are relatively simple compared to the full MHD equations, numerical 

calculations are less time-consuming and thus allow the use of realistic experimental parameters as 

input. Our calculations are limited to the triggering of m/n=3/2 modes by 2/2 perturbations. The effects 

of the plasma β value, bootstrap current density, electron diamagnetic drift, and differential plasma 

rotation on mode coupling are studied. It will be shown that the two-fluid physics such as diamagnetic 

drift, neglected in previous nonlinear studies [50,51], is important for toroidal mode coupling and the 

triggering of NTM by sawteeth.  



In section 2 the equations utilized for our numerical modelling are described. The numerical results 

for the coupling between the 2/2 and 3/2 modes, obtained from both the single fluid and four-field 

equations, are presented in Section 3. The results on the triggering of the 3/2 NTMs by sawtooth 

crashes are presented in Section 4. Finally, the discussions and summary are given in the last section. 

 

2. Theoretical model 

A circular cross section of the equilibrium magnetic surfaces is assumed. The magnetic field is 

defined as [26] 

   B= R0 [(B0t+bt)∇ζ+∇ψ×∇ζ],     (1) 

where B0t is the vacuum toroidal field at the magnetic axis, bt is due to the diamagnetic correction, R0 

the major radius of the magnetic axis, ζ the toroidal angle, and ψ the flux function. The four-field 

equations, the electron continuity equation, generalized Ohm's law and the equation of motion in the 

perpendicular (after taking ∇ζ ⋅∇×) and the parallel direction, are utilized [26]. Normalizing the length 

to the plasma minor radius a, the time t to the resistive time τR=a2µ0/η (η is the plasma resistivity), the 

magnetic field to B0t, the ion velocity v to a/τR, and the electron density ne to its value at the magnetic 

axis, these equations become [26,56,57]  
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Differing from Ref. [26], the cold ion assumption is made in Eqs. (2)-(5), while the bootstrap current 

density jb, electron inertia and viscosity (the 3rd - 5th terms in Eq. (3)) are taken into account in Ohm’s 

law. The ion velocity v=v||+v⊥, the subscripts || and ⊥ denote the parallel and perpendicular 

components, d/dt=∂/∂t+v⊥⋅∇, j is the toroidal plasma current density, jb=-cb√e(∂pe/∂r)/Bp the bootstrap 

current density, cb a constant of order of unity, e=r/R0 the inverse aspect ratio, p=pe=neTe, Te the 

electron temperature, Bp the poloidal magnetic field. U=-(R/R0)2∇⊥
2φ is the plasma vorticity, φ the 

stream function, R the major radius, z the coordinate along the vertical direction, µ (µe) the ion 

(electron) viscosity, and D the particle diffusivity. Sn and Sm are the particle and momentum sources, 

which are choses to maintain specified equilibrium profiles for density and rotation against particle 

diffusion and viscous drag. E0 is the equilibrium electric field, S=τR/τA, d1=ωce/nei, Ω=0.5βed1, 

Cs=[Te/mi]1/2/(a/τR), β=βe=8πneTe/B0t
2, ωce the electron cyclotron frequency, υei the electron-ion 

collisional frequency, τA=a/VA, and the Alfven velocity VA is defined using the toroidal field. 

Straight field line coordinates (r, θ, ζ) are used with the Jacobian √g=rR2/R0, where r is the minor 

radius of the equilibrium magnetic surface, and θ is the “poloidal-like” angle [31]. In this coordinate 

system the operator B⋅∇ takes a simple form. The numerical code TM1 has been upgraded to include 

the toroidal coupling among modes with the same n but different m numbers, in addition to nonlinear 

two-fluid effects. The benchmark between TM1 and CASTOR3D [32] indicates that the results from 

these two codes agree for n>1 modes if the β value is not too high. 

The following equilibrium plasma parameters are used for the reference case: B0t=2T, a=0.5m, 

a/R0=0.2, Te=2keV, and ne=3×1019m-3, leading to S=2.6×108, d1=3.1×107, Cs=2.0×107a/τR, τR=23s, 

and nei=2.2×104/s. Furthermore, µe/υei=10-4a2, µ=0.2m2/s=19a2/τR, D⊥=µ/50, and a monotonic profile 

for the safety factor q are assumed with q0=0.91 and rq=1= 0.3a, where q0 is the original equilibrium 

safety factor at r=0, and rq=1 the minor radius at the q=1 surface. The q=3/2 surface is at r3/2 =0.68a. 

The equilibrium electron density has a radial profile of the form ne={0.8[1-(r/a)2]2+0.2}(3×1019m-3). 



The electron temperature is assumed to be a constant in space and time. These input parameters are 

used for our numerical calculations if not mentioned elsewhere. Without toroidal mode coupling, the 

m/n=2/2 mode is unstable in the linear phase, while the 3/2 mode is stable. 

In tokamak experiments the plasma rotation is essentially toroidal, while in Eqs. (2)-(5) due to the 

large aspect ratio approximation only the poloidal rotation is included, so that an enhanced plasma 

viscosity for the m/n=0/0 component, µ0/0=19×102 (a2/τR), is used in calculations. This value 

guarantees a reasonable balance between the electromagnetic and viscous force, based on the following 

considerations [17]: (a) The electromagnetic force in the toroidal direction is smaller by a factor 

(n/m)(rs/R) than that in the poloidal direction, where rs is the minor radius of the resonant surface. (b) 

To have the same mode frequency due to the plasma rotation, the toroidal rotation velocity should be 

(m/n)(R/rs) times larger than the poloidal one. These two effects lead to a larger viscous force compared 

to the electromagnetic force for the toroidal rotation case by a factor [(m/n)(R/rs)]2, which is of the 

order of 102.  

                  

3. Coupling between the m/n=2/2 and 3/2 modes 

In order to understand the triggering of the m/n=3/2 mode by a sawtooth crash, it is beneficial to 

first look into the destabilization of a 3/2 mode by a 2/2 tearing mode without including the n=1 

perturbations, since the 1/1 mode is an internal kink mode which would grow much more quickly than 

the m>1 tearing modes, and there is no steady 2/2 harmonic during and after sawtooth crashes [47]. In 

this section the calculations are thus carried out by only including the modes with the helicity m/n=2/2 

and 3/2 as well as the components due to the toroidal mode coupling among n=2 components.  

 

3.1 Calculation results from single fluid equations 



Eqs. (2) - (4) correspond to the single fluid case with Ω=d1=Cs=v||=0 [26-28]. We first study the 

destabilization of the 3/2 mode by the 2/2 mode in this case. The bootstrap current density is taken to 

be zero here. The time evolution of the normalized 2/2 and 3/2 island width is shown in Fig. 1 (left) for 

βe=0, ω2/2=2.02×104/τR, ω3/2=2.37×104/τR, ∆ω=(ω3/2-ω2/2)=3.5×103/τR, where ω2/2=2Vp/r is the 2/2 

mode frequency calculated at rq=1, Vp is an assumed poloidal equilibrium plasma rotation velocity, 

ω3/2=3Vp/r is the 3/2 mode frequency calculated at r3/2, and ∆ω is the relative frequency between the 

3/2 and 2/2 modes, being smaller than the linear 2/2 mode growth rate (~ 104/τR). The “island width” 

Wm/n=4[ψm/n/(Bp q′/q)]1/2 is calculated at rm/n, where rm/n and ψm/n are the minor radius of the resonant 

surface and the perturbed flux of the m/n component. It is seen that the 2/2 mode grows first, and the 

3/2 mode grows later driven by its coupling to the 2/2 mode. It should be noted that Wm/n represents the 

island width when the magnetic shear is not too small and the “constant ψm/n” approximation is valid. 

Otherwise it only gives the change of the value of (ψm/n/ q′)1/2 at rm/n. 

 

       

Figure 1 Time evolution of W2/2/a and W3/2/a (left), mode frequencies (middle) and radial profiles of the 

poloidal plasma rotation velocity at t=0 and in steady state (right) for βe=0 and ∆ω=(ω3/2-ω2/2)=3.5×103a/τR. 

The 3/2 mode grows driven by its coupling to the 2/2 mode. The frequencies of these two modes approach the 

same value when the island widths are sufficiently large.  

 

The corresponding time evolution of the normalized 2/2 and 3/2 mode frequencies, calculated from 

the imaginary part of (∂ψm/n/∂t)/ψm/n, are shown in Fig. 1 (middle). The frequencies of these two modes 

approach the same value when the island widths are sufficiently large, indicating that the two modes 



are locked together. The corresponding radial profile of the normalized poloidal plasma rotation 

velocity in steady state is shown in figure 1 (right) by the solid curve. The poloidal rotation speed is 

increased at rq=1 but decreased at r3/2 compared to the original equilibrium velocity shown by the dashed 

curve, such that these two modes can have the same frequencies. The island rotates together with the 

local plasma once its width is sufficiently large. 

Fig. 2 (left) shows the time evolution of the corresponding island widths for a factor of ten increased 

relative equilibrium rotation frequency (∆ω=3.5×104/τR) between the m/n=3/2 and the 2/2 modes. This 

has been achieved by using a stronger momentum source in equation (4), while keeping the other input 

parameters unchanged. It is seen that again the 2/2 mode grows first, and the 3/2 mode growth is 

delayed compared to the case of a smaller relative mode frequency shown in figure 1(left). There are 

small oscillations in the mode amplitude in the nonlinear saturation phase.  

  

  

Figure 2 Time evolution of W2/2/a and W3/2/a (left), mode frequencies (middle) and radial profiles of the 

normalized flux functions ψ3/2 (right) at t=0.0024τR (black) and 0.0061τR (red) for βe=0 and ∆ω=3.5×104/τR. 

The solid (dashed) curves are for the real (imaginary) parts. The frequencies of these two modes are different 

once the island widths are sufficiently large. The oscillations in the mode amplitude and frequencies correlate 

with the change of the relative phase between these two modes. The ψ3/2 profiles first have the feature of an ideal 

mode across the q=3/2 surface marked by the vertical dotted line and then the feature of a tearing mode at later 

time.  

 



The corresponding mode frequencies are shown in figure 2 (middle). The two modes have the same 

frequencies around t=0.001τR when the 3/2 island width is still small. During this phase the 3/2 mode 

frequency follows that of the 2/2 mode, since the latter is driving the 3/2 mode, and a plasma can slip 

through a sufficiently small island. Once the 3/2 island is sufficiently large, its frequency is determined 

by the local plasma rotation frequency at r3/2, since in this case the island rotates together with the local 

plasma. The radial profile of the plasma rotation velocity is essentially not changed due to the stronger 

momentum source. Thus, the 3/2 mode frequency differs from that of the 2/2 mode. The relative 

frequency between these two modes is not too large, being comparable to the linear 2/2 mode growth 

rate, so that the 3/2 mode is still driven to grow by its coupling to the 2/2 mode. The oscillations in the 

mode amplitude and frequencies correlate with the change of the relative phase between these two 

modes.  

Corresponding radial profiles of the m/n=3/2 component of the normalized (to aB0t) flux functions, 

ψ3/2, are shown in figure 2 (right) at two different times, t=0.0024τR (black) and 0.0061τR (red), where 

the solid (dashed) curves represent the real (imaginary) parts. The ψ3/2 profiles first have the feature of 

an ideal mode t=0.0024τR, since ψ3/2 is about zero at r3/2 (marked by the vertical dotted line), and the 

3/2 perturbations outside the q=3/2 surface are shielded. This effect is similar to the shielding observed 

in RMP (resonant magnetic perturbation) penetration calculations when the plasma rotation frequency 

is sufficiently large [56]. Later in time the ψ3/2 profiles have the feature of a tearing mode when the 3/2 

island has grown. 

 



 

Figure 3 Time evolution of W2/2/a (dashed curves) and W3/2/a (solid) with ∆ω= 3.5×105/τR for βe=0 (black 

curves) and βe=0.003 (red). The 3/2 mode is driven to grow by its coupling to the 2/2 mode for a finite βe.  

 

Further increasing the relative equilibrium mode rotation frequency by ten times to ∆ω=3.5×105/τR, 

the time evolution of W2/2/a (dashed curves) and W3/2/a (solid) is shown in Fig. 3. It is seen that for βe=0 

(black curves), the 3/2 island width is close to zero, indicating the shielding of mode coupling by a 

large differential rotation. The 2/2 mode amplitude is also smaller compared to those shown in figures 

1 and 2. With βe=0.003 (red curves), the 3/2 island width is driven to grow by its coupling to the 2/2 

mode, indicating that a finite βe enhances mode coupling, as seen from Eq. (4). The oscillation in the 

2/2 island width (red curve) is again caused by the change in the relative phase between the two modes, 

which is larger when the 3/2 island becomes larger, since the interaction between the two modes is 

stronger for larger mode amplitude. The radial profile of the plasma rotation velocity is again not 

changed. The time evolution of the mode frequencies is similar to that shown in figure 2. When the 3/2 

island is small, the 3/2 mode frequency follows that of the 2/2 mode. Once the 3/2 island is sufficiently 

large, its frequency is determined by the local plasma rotation frequency at r3/2, being different from the 

2/2 mode frequency. 

The above results demonstrate the expected results for a single fluid model: the toroidal mode 

coupling, leading to the destabilization of the 3/2 mode by the 2/2 mode, is weakened by a larger 

relative rotation frequency between these two modes but is enhanced by a finite value of βe. Similar 



results have already been obtained in full toroidal geometry, but without including plasma rotation 

[50,51]. 

To conclude, the results of this subsection are summarized in figure 4, showing the ratio of W3/2/W2/2 

in steady state as a function of the frequency difference between the 2/2 and 3/2 mode, ∆ω, for βe =0 

(black circles). In this case the destabilization of the 3/2 mode by the 2/2 mode is effective only for a 

sufficiently low value of ∆ω. The result for βe =0003 at t=0.002τR is also added in the figure, indicating 

the destabilizing effect of finite βe. 

 

Figure 4 W3/2/W2/2 in steady versus the frequency difference between the 2/2and 3/2 mode, ∆ω, for βe =0 

(black circles). The result for βe =0003 at t=0.002τR is shown by the red square.  

 

3.2 Calculation results from four-field equations 

In the following, the full four-field equations, Equations (2)–(5), are utilized. If not stated otherwise, 

the bootstrap current density fractions fb=0.066 at rq=1 and fb=0.2 at r3/2 are taken. First, results on the 

destabilization of the 3/2 mode with a sufficiently high βe value will be presented in Section 3.2.1, 

followed by the results for a low and moderate βe values in Section 3.2.2. The effect of plasma rotation 

will be shown in Section 3.2.3. The effect of perpendicular particle diffusivity is given in Section 3.2.4, 

followed by the effect of the electron pressure profile in Section 3.2.5. 

 

3.2.1 Destabilization of the 3/2 mode 



The electron diamagnetic drift frequency is proportional to the input parameter Ω in equation (3) for 

a given electron density profile. The time evolution of W2/2/a (dashed curves) and W3/2/a (solid) is shown 

in Fig. 5 (left) for Ω=104 (black curves), corresponding to ω*e,2/2=0.68×105/τR (f*e,2/2=0.47kHz), 

ω*e,3/2=1.2×105/τR (f*e,3/2=0.83kHz) and ∆ω*e=( ω*e,3/2 - ω*e,2/2)=5.2×104/τR, where ω*e,2/2=2V*e/r is 

calculated at rq=1, V*e is the equilibrium electron diamagnetic drift velocity, ω*e,3/2= 3V*e/r is calculated 

at r3/2, and ∆ω*e is the relative frequency between the 3/2 and 2/2 modes due to the electron 

diamagnetic drift. It is seen that the 3/2 mode is driven to grow by its coupling to the 2/2 mode already 

for a quite low βe value, βe=5×10-4, after the 2/2 mode has grown. The 3/2 mode frequency approaches 

that of the 2/2 mode during mode growth. Increasing the value of Ω by two times to Ω=2×104 and for 

βe=0.001 (red curves), the time evolution of W2/2/a and W3/2/a is similar. The 2/2 mode grows first, and 

the 3/2 mode grows later. However, a larger value of Ω (diamagnetic drift frequency) results in a 

slower mode growth, even if the βe value is two times larger. Corresponding to the black curves in the 

left figure, radial profiles of the m/n=0/0 component electron density at t=0 and 0.005τR are shown in 

Fig. 5 (right). The electron density flattens around the q=1 and 1.5 surfaces at t= 0.005τR due to 

sufficiently large magnetic islands formed there.  

 

      

Figure 5 (left) Time evolution of W2/2/a (dashed curves) and W3/2/a (solid) for βe=0.0005/Ω=104 (black) 

and βe=0.001/Ω=2×104 (red). (right) Radial profiles of the normalized m/n=0/0 component electron density at 

t=0 and 0.005 for βe=0.0005/Ω=104. The locations of rq=1 and r3/2 are marked by vertical dotted lines.  

 



For the results shown in figure 5, the “constant ψ” approximation of the tearing mode is found after 

the 3/2 mode grows up due to a smaller value of Ω, similar to the red curves shown in figure 2 (right). 

While before the 3/2 mode grows up, the ψ3/2 profiles are similar to the black curves in figure 2 (right), 

and the 3/2 perturbations outside the q=3/2 surface are shielded. 

Further increasing the diamagnetic drift frequency (Ω value), the mode evolution becomes 

significantly different. An example of the time evolution of W2/2/a (dotted curves) and W3/2/a (solid) is 

shown in Fig. 6 (left) for Ω=4×104 and βe=0.007. The bootstrap current density fractions are fb=0.099 

at rq=1 and fb=0.3 at r3/2. In this case the 3/2 mode grows first, and its amplitude oscillates in time 

around t=3×10-4τR. The 2/2 mode growth is suppressed at the beginning but grows more quickly later. 

The oscillation in W3/2 is usually observed in calculations for sufficiently large values of Ω and βe. It 

will be termed as the oscillation regime in the following, while the NTM regime will only refer to the 

case in which the island grows up to a sufficiently large width.  

 

    

Figure 6 (left) Time evolution of W2/2/a (dotted curves) and W3/2/a (solid) for βe=0.007/Ω=4×104. (right) 

Corresponding radial profiles of the normalized real part of ψ3/2 at t=3.13×10-4τR (black) and 3.84×10-4τR (red). 

The ψ3/2 profiles first have the feature of an ideal mode, since it is close to zero at r3/2 marked by the vertical 

dotted line. In a later time the ψ3/2 profiles have the feature of a tearing mode when the 3/2 island grows up.  

 

Corresponding to figure 6 (left), the radial profiles of the normalized real part of flux functions ψ3/2 

are shown in figure 6 (right) at two different times, t=3.13×10-4τR (black curve) and 3.84×10-4τR (red). 



The profiles of imaginary part are similar to that of the real part. The ψ3/2 profiles first have the feature 

of an ideal mode, since the value of ψ3/2 is small at r3/2 (marked by the vertical dotted line). However, 

the n=2 perturbations are not shielded by the q=3/2 surface. In a later time the ψ3/2 profiles take the 

feature of a tearing mode, although the ψ3/2 profile is not smooth across r3/2. The amplitudes of ψ3/2 

outside the q=3/2 surface are of the same order of magnitude at the two different times but they 

significantly differ at r3/2. Such a feature was observed in experiments [10].   

When the 3/2 mode grows up into the NTM regime, the electron density flattens around the 

corresponding resonant surface as e.g. shown in figure 5 (right). When the 3/2 mode is in the 

oscillation regime, however, the radial profiles of the plasma current density and electron density are 

significantly different. Corresponding to figure 6 (left), figure 7 shows the radial profiles of the 

m/n=0/0 component plasma current density (left), the safety factor (middle), and the 0/0 component 

electron density (right) at t=0 and 3.13×10-4τR. There is a strong perturbation in the local plasma 

current density around the q=3/2 surface due to mode coupling and low plasma resistivity, similar to 

that observed in the calculations of plasma response to externally applied RMPs [57]. The safety factor 

is calculated from q=r Bt/(RBp,0/0), where Bp,0/0 is the m/n=0/0 component poloidal field. The flattening 

of the local q-profile around the q=3/2 surface is due to the change of the local plasma current density, 

resulting in the sparks in W3/2 around t=3×10-4τR in figure 6 (left) since W3/2 ~ 1/q', despite that the 

amplitude of ψ3/2 is small at r3/2 as shown in figure 6 (right). There is a drop in the local electron 

density at r3/2 marked by the vertical dotted line, while the electron density increases on its two sides. 

The perturbations in the local plasma current density and electron density around the q=3/2 surface are 

usually found in the oscillation regime.  

 



    

Figure 7 Corresponding to figure 6, radial profiles of the m/n=0/0 component plasma current density 

(left), the safety factor (middle), and the m/n=0/0 component electron density (right) at t=0 and 3.13×10-4τR.  

 

In the oscillation regime a mode with a frequency being much larger than the equilibrium electron 

diamagnetic drift frequency is generally observed from the spectrogram of magnetic flux perturbation, 

as shown in figure 8 (left), corresponding to the case of figure 6. This is caused by the interaction of 

modes of different frequency as well as the shear Alfven resonance. Corresponding radial profiles of 

the shear Alfven frequency, ωSA=k||VA, and the diamagnetic drift frequency for m=3 mode, ω*e,3= 

3V*e/r, at t=3.1×10-4τR are shown in figure 8 (right), where k||=(m/r)(1-q/qs)Bp,0/0/B0t is the parallel 

wave vector of the 3/2 mode and calculated from the m/n=0/0 component magnetic field,  qs is the q 

value at the q=3/2 surface, and V*e is the electron diamagnetic drift velocity calculated using the 0/0 

component electron density. It is seen that these two frequencies are close around |r- r3/2| ~ 0.03a. This 

feature is commonly observed in the oscillation regime. A local change in the electron density gradient, 

such as that shown in figure 7, results in a larger diamagnetic drift frequency such that it can reach ωSA 

outside the linear tearing layer. The linear tearing layer width is smaller than 0.01a. It is known from 

the single fluid theory that the shear Alfven resonance can cause significant perturbations in plasma 

current density and vorticity if the condition ωSA=ωp is satisfied outside the tearing layer [58-61], 

where ωp is the plasma rotation frequency for a mode. When the local magnetic shear is significantly 

decreased in the oscillation regime, the shear Alfven resonance is more easily satisfied, since k|| ~ 

(q’/qs) near the resonant surface.  



 

    
  

Figure 8 Corresponding to figure 6 for βe=0.007/Ω=4×104, (left) the spectrogram of the magnetic flux 

perturbation at r=0.917a.There is a mode fluctuating around the frequency f ~ 106/tR ~ 43 kHz in the oscillation 

regime. The mode frequency approaches zero after entering the NTM regime. (right) radial profiles of the shear 

Alfven frequency and the m=3 diamagnetic drift frequency in oscillation regime at 3.22×10-4tR.  

  

Calculations have also been carried out by using a sufficiently large (small) value of VA (Ω) while 

keeping other input parameters unchanged. In these cases no high frequency mode is observed, and ωSA 

=ω*e,3 only at |r- r3/2|~0, indicating that the high frequency mode is caused by the shear Alfven 

resonance.    

With an even larger value of Ω, the results are similar to those shown in figures 6-8 for a sufficiently 

large value of βe. If the bootstrap current density is sufficiently low, the 3/2 mode saturates in the 

oscillation regime. Taking Cs=0, the results are about the same. Increasing the value of d1 in equation 

(2), the 3/2 mode grows into the oscillation regime already at a lower βe value. 

The results shown above indicate that in the framework of the four-field equations, the 

destabilization of the 3/2 mode by its coupling to the 2/2 mode is significantly affected by the value of 

Ω (electron diamagnetic drift frequency). For a lower value of Ω, the 3/2 mode grows into the NTM 

regime even for a quite low βe. Increasing the value of Ω, the 3/2 mode is destabilized at a larger βe 

value. In this case the 3/2 mode first grows into the oscillation regime. In this regime the ψ3/2 profiles 



have the feature of an ideal mode at the 3/2 rational surface, but the n=2 perturbations are not shielded 

by q=3/2 surface. In a later time the 3/2 mode enters the NTM regime if the bootstrap current density is 

sufficiently large.  

Comparing the results obtained from the single fluid equations shown in figures 3 to those from the 

four-field equations in figure 6 (left), it is found that the 3/2 mode is more easily destabilized by the 2/2 

mode in the framework of the single fluid equations. The value of ∆ω (=3.5×105/τR) in figure 3 is 

larger than that of ∆ω*e (=2.08×105/τR) for Ω=4×104 in figure 6, while the 3/2 mode is destabilized for 

the single fluid case at a lower  βe value. This indicates that the diamagnetic drift and the associated ion 

polarization current are stabilizing for the island growth, as expected from existing theories [35-41] and 

seen from the two-fluid calculation results without including mode coupling [42,43]. 

To conclude this sub-section: With increasing electron diamagnetic drift frequency, a larger βe value 

is required for destabilizing the 3/2 mode by its coupling to the 2/2 mode. For sufficiently large values 

of Ω and βe, the 3/2 mode first grows into the oscillation regime and has the feature of an ideal mode, 

which enters the NTM regime later if the bootstrap current density is sufficiently large. 

 

3.2.2 Mode suppression at low βe  

For a sufficiently low βe but a high value of Ω, the growth of the originally unstable 2/2 mode is 

found to be suppressed by its coupling to the 3/2 mode. With Ω=4×104, the time evolution of W2/2/a 

(dotted curves) and W3/2/a (solid) is shown in Fig. 9 (left) for βe=0.001 (solid curve). The dashed curve 

is for the 2/2 mode alone (i.e., the toroidal mode coupling is not included in the calculation). The 2/2 

mode grows more slowly than that without the mode coupling, and the 3/2 mode saturates at a small 

amplitude.  

 



          

Figure 9 With Ω=4×104, (left) Time evolution of W2/2/a (dotted curves) and W3/2/a (solid) for βe=0.001. 

The dashed curve is for the 2/2 mode alone, i.e. without mode coupling. (middle) Time evolution of W2/2/a (dotted 

curves) and W3/2/a (solid) for βe=0.005 (blue) and 0.006 (red). The dashed curve is for the 2/2 mode alone. 

(right) Time evolution of the normalized 2/2 (dotted curves) and 3/2 (solid) mode frequencies for βe=0.001 

(black) and 0.005 (blue). 

 

In figure 9 (middle) the time evolution of W2/2/a (dotted curves) and W3/2/a (solid) are shown for 

higher βe values, βe=0.005 (blue) and 0.006 (red), being slightly lower than that for figure 6 (left). The 

case for the 2/2 mode alone is also shown (black dashed). The 3/2 island saturates at a small width of 

about 0.01a but is larger than that of the 2/2 mode. It is interesting to note that the 2/2 mode growth is 

suppressed by its coupling to the 3/2 mode in this case. In order to understand these results, it is helpful 

to consider the effect of externally applied RMPs on NTMs [57]. There it was found that if the local 

electron diamagnetic drift frequency is sufficiently large, the NTM growth can be suppressed by RMPs 

of moderate amplitude [57]. A similar physics mechanism seems to also exist in the mode coupling 

process studied here. 

In Fig. 9 (right) the time evolution of the normalized 2/2 (dotted curves) and 3/2 (solid) mode 

frequencies are shown for βe=0.001 (blue) and 0.005 (red). The 3/2 mode frequency approaches that of 

the 2/2 mode for βe=0.001. For the case with βe=0.005 or 0.006, however, the frequency of the 2/2 

mode approaches that of the 3/2 mode. 

 



 

Figure 10 Corresponding to figure 9 (middle), radial profiles of the normalized ψ2/2 (black) and ψ3/2 (red) 

for Ω=4×104 and βe=0.006 at t=2.8×10-3τR. The solid (dashed) curves are for the real (imaginary) parts. The 

locations of q=1 and 3/2 surfaces are marked by the vertical dotted lines. The ψ2/2 profile has the feature of an 

ideal mode, while the ψ3/2 profile has the feature of a tearing mode. 

 

With Ω=4×104 and βe=0.001, the ψ2/2 profiles have the feature of a tearing mode, and the ψ3/2 

profiles have the feature of an ideal mode, so that the 3/2 mode follows the 2/2 mode frequency. 

Corresponding to figure 9 (middle) with Ω=4×104 and βe=0.006, radial profiles of the normalized ψ2/2 

(black) and ψ3/2 (red) at t=2.8×10-3τR are shown in figure 10, where the solid (dashed) curves are for 

the real (imaginary) parts. In this case the ψ2/2 profile has the feature of an ideal mode, while the ψ3/2 

profile has the feature of a tearing mode, explaining why the 2/2 mode follows the 3/2 mode frequency. 

The coupling between tearing and twisting modes was analyzed before, showing that it can be 

important in addition to the coupling between tearing modes [18].  

To conclude, the results of this sub-section indicate that for a sufficiently large diamagnetic drift 

frequency and moderate βe value, the mode coupling can be stabilizing for an originally unstable 

tearing mode, and this mode becomes a twisting-like (ideal) mode. 

 

3.2.3 Effect of plasma rotation 

With βe=0.001 and Ω=2×104, the effect of plasma rotation on mode coupling is studied in the 

following. The time evolution of W2/2/a (dashed curves) and W3/2/a (solid) is shown in Figure 11 (left) 



for different equilibrium plasma rotation frequencies, corresponding to a 2/2 mode frequency ωE0=0 

(black), 1.6×105/τR (green), 3.2×105/τR (blue), and -3.2×105/τR (red) due to plasma rotation (electric 

drift). The equilibrium plasma rotation is driven by the momentum source in equation (4). A positive 

(negative) value of ωE0 refers to the rotation in the electron (ion) drift direction. The equilibrium 

plasma rotation frequency at r3/2 is zero. The 2/2 island growth is similar for all these cases, while the 

3/2 mode grows only for a small relative rotation frequency between the two rational surfaces (ωE0=0 

and 1.6×105/τR). For the case ωE0=1.6×105/τR, the 3/2 island grows faster than that for ωE0=0. The 

mode frequency results from a combination of the plasma rotation and electron diamagnetic drift. For 

the green curve the relative frequency due to plasma rotation, ∆ωE0=( ωE0,3/2 - ωE0,2/2)=-1.6×105/τR, is 

close to that due to diamagnetic drift, ∆ω*e=1.04×105/τR, but with opposite sign. Thus, the relative 

electron fluid velocity and the relative mode frequency are the lowest for this case.  

 

             

Figure 11 (left) Time evolution of W2/2/a (dashed curves) and W3/2/a (solid) with βe=0.001/Ω=2×104 for 

different ExB rotation frequencies of the 2/2 mode, ωE0=0 (black), 1.6×105 (green), 3.2×105 (blue), and -

3.2×105/τR (red). The positive (negative) value refers to the rotation in the electron (ion) drift direction. (right) 

corresponding time evolution of the 2/2 (dashed curves) and 3/2 (solid) mode frequencies for ωE0=1.6×105 

(green), 3.2×105 (blue) and -3.2×105/τR (red).  

 



The time evolution of mode frequencies are shown in figure 11 (right) for ωE0=1.6×105/τR (green), 

3.2×105/τR (blue) and -3.2×105/τR (red). In all cases, the 3/2 mode frequency approaches that of the 2/2 

mode.  

To conclude, the results of this sub-section indicate that the mode coupling is stronger for a lower 

relative mode frequency determined by the local electron fluid velocity and mode numbers.  

 

3.2.4 Effect of perpendicular particle diffusivity 

The perpendicular transport is known to affect the NTM growth. Increasing the perpendicular 

particle diffusivity by 10 times to D⊥=3.76a2/τR and using Ω=4×104, fb=0.099 at rq=1 and fb=0.3 at r3/2, 

the time evolution of W2/2/a (red curve) and W3/2/a (black) is shown for βe=0.008 in Fig. 12. The 3/2 

mode first grows into the oscillation regime and then NTM regime after t=0.0005τR, similar to the 

results obtained with a smaller value of D⊥. Compared to figure 6 it is found that for a larger value of 

D⊥, a higher βe value is required for the 3/2 mode to grow up. In the oscillation regime, the local 

perturbations in the electron density and plasma current density are also observed, similar to that shown 

in figure 7 with a smaller value of D⊥ except for a larger radial width of the perturbation due to a larger 

value of D⊥. Further increasing the perpendicular particle diffusivity by 5 times to D⊥=18.8 a2/τR while 

keeping the other input parameters unchanged, an even higher βe is required for the 3/2 mode to grow. 

This is consistent with the results in [43] that a larger value of D⊥ is stabilizing for island growth.  

 

       



Figure 12 Time evolution of W2/2/a (red curve) and W3/2/a (black) for D⊥=3.76a2/τR, βe=0.008, Ω=4×104 

and fb=0.3 at r3/2.  

To conclude, the results in this sub-section indicate that a larger perpendicular particle diffusivity 

results in a higher βe value required for destabilizing the 3/2 mode.  

 

3.2.5 Effect of electron pressure profile 

In addition to the electron density profile and the value of Ω, it is seen from Ohm’s law that the term 

Te/ne in front of the parallel electron density gradient affects the local electron diamagnetic frequency. 

A constant electron temperature in space has been used in all other parts of this paper. In this sub-

section, however, a radial profile of the equilibrium electron temperature, Te~[1-(r/a)2]2, is used, 

resulting in a smaller value of ω*e,3/2 for same the Ω value compared to the cases considered before. 

For Ω=9.4×104, one finds ω*e,2/2=5.3×105/τR, ω*e,3/2=3.3×105/τR and ∆ω*e=-2×105/τR. The value of 

|∆ω*e| is close to the case Ω=4×104 in previous sections, but ω*e,3/2 is smaller. With fb=0.054 at rq=1 and 

fb=0.058 at r3/2, the time evolution of W2/2/a and W3/2/a is shown in Fig. 13 for βe=0.005. It is seen that 

the growth of the 2/2 and 3/2 mode is similar to that with Ω=104 and 2×104 shown in figure 5, 

indicating that the 3/2 mode is more easily destabilized by taking into account the radial profile of the 

electron temperature. The value of ω*e,3/2 (=3.3×105/τR) for figure 13 is smaller than that for figure 6 

with Ω=4×104 (ω*e,3/2=4.8×105/τR). This indicates again that a large local diamagnetic drift frequency 

at r3/2 counteracts 3/2 mode destabilization by the 2/2 mode.  

 

 



Figure 13 Time evolution of W2/2/a (dashed curves) and W3/2/a (solid) with βe=0.005/Ω=9.4×104/τR for 

Te~[1-(r/a)2]2.  

To conclude, the results of this sub-section indicate that a large local diamagnetic drift frequency at 

r3/2 is more important than the relative mode frequency in preventing the 3/2 mode destabilization by 

the 2/2 mode. 

 

 

Figure 14 Stability diagram in the (ω*e,3/2 - βe) plane for the destabilization of the 3/2 mode by the 2/2 

mode. The black circles (blue squares) correspond to the cases with (without) 3/2 NTMs. The red circles 

correspond to cases in which the 3/2 mode is destabilized first into the oscillation regime with shear Alfven 

resonance and later into the NTM regime. The required βe value for destabilizing the 3/2 mode significantly 

increases for a sufficiently large electron diamagnetic drift frequency at r3/2. 

 

The results of Section 3.2 are summarized in the (ω*e,3/2 -βe) plane shown in figure 14, including 

only the results of Section 3.2.1 and 3.2.2 for simplicity. The black circles (blue squares) correspond to 

the cases with (without) 3/2 NTMs. The red circles correspond to cases that the 3/2 mode is 

destabilized first into the oscillation regime with shear Alfven resonance and later into the NTM 

regime. The required βe value for destabilizing the 3/2 mode significantly increases for a sufficiently 

large electron diamagnetic drift frequency at r3/2.  

 

4. Triggering of m/n=3/2 mode by sawtooth crash 



In this section the m/n=1/1 mode and its harmonics, 2/2, 3/3, …, are included in the calculations, 

in addition to the perturbations with m/n=3/2 helicity. This will lead to the growth of the internal kink 

mode and finally to a sawtooth crash [47,48]. To isolate effects in our study, toroidal mode coupling is 

only included among n=2 components.  

An example of a sawtooth collapse is shown in Fig. 15 for Ω=2×104, βe= 0.005, and fb=0.13 at rq=1 

and fb=0.4 at r3/2. The sawtooth happens at t=2×10-5τR, as seen from the sudden decrease (increase) of 

the normalized m/n=0/0 component of the electron density inside (outside) the original q=1 surface at 

rq=1=0.3a in Fig. 15 (left). The q-profile flattens to about unity in the central region after the collapse as 

shown in Fig. 15 (middle). There is a large amplitude 2/2 perturbation around the sawtooth crash time 

at t=2×10-5τR (correlating with the 1/1 perturbation amplitude), but it decays shortly afterwards as seen 

from Fig. 15 (right). Thus, the major difference from the cases discussed in Sec. 3 is in particular that 

the 2/2 mode responsible for the triggering of the 3/2 mode has a significant large amplitude only for a 

short time period. Nevertheless, surviving 2/2 postcursor can have a sufficient amplitude to trigger a 

3/2 mode.  

 

   

Figure 15 (left) Time evolution of the normalized m/n=0/0 component electron density at r=0.15, 0.25 and 

0.35a. The sawtooth crash happens at t=2×10-5τR. (middle) Corresponding q-profiles at t=0, 2.0×10-5 and 

3.3×10-5τR. (right) Corresponding radial profiles of the normalized ψ2/2 at t=2.0×10-5 and 3.3×10-5τR. The solid 

(dashed) curves are the real (imaginary) parts.  

 



For the sawtooth crash shown in figure 15, the time evolution of W3/2/a is shown by the black curve 

in Fig. 16 (left). After sawtooth crash, the 3/2 mode first grows into the oscillation regime around t=10-

4τR and then into the NTM regime after 2×10-4τR. The red curve is for βe=0.004, keeping other input 

parameters the same as those for the black curve. The 3/2 mode remains at a low level for βe=0.004, 

showing the destabilizing effect of higher βe value similar to what was found in Section 3 without the 

1/1 mode. 

 

     

Figure 16 (left) The black curve shows the time evolution of W3/2/a corresponding to the parameters of 

figure 15. The red curve is for βe=0.004, keeping other input parameters the same as those for the black curve. 

(middle and right) Corresponding to the black curve in the left figure, radial profiles of the normalized ψ3/2 (red 

curves) and ψ2/2 (black) at t=9.9×10-5τR~2.3ms and 1.7×10-4τR ~3.9ms. The solid (dashed) curves are the real 

(imaginary) parts. The vertical dotted line shows the r3/2 location.  

 

For the parameters of Fig. 15 (corresponding to the black curve in Fig 16 (left)), radial profiles of 

ψ3/2 (red curves) and ψ2/2 (black) are shown at t=9.9×10-5τR ~ 2.3ms and 1.7×10-4τR ~ 3.9ms in figure 

16 (middle and right). The solid (dashed) curves are the real (imaginary) parts. The vertical dotted line 

shows the r3/2 location. The ψ3/2 profiles first have the feature of an ideal mode in the oscillation 

regime, with the n=2 perturbations not being shielded by the q=1.5 surface. Later in time, when the 

mode amplitude has become large, the ψ3/2 profiles show the features of a tearing mode, similar to what 

was found in Section 3.  



Comparing with the red curves shown in figure 5 (left) in Section 3, which is also obtained for 

Ω=2×104 but for a 2/2 island as driver, it is found that a higher βe value is required for the 3/2 island to 

grow up into the NTM regime by a sawtooth crash. The sawtooth crash flattens the central electron 

density profile in a short time scale (~50µs), resulting a larger relative frequency between the 2/2 and 

3/2 components before the 3/2 island grows up. In addition, the 2/2 component amplitude is large only 

during the sawtooth collapse but much smaller afterwards, as shown in figures 15 and 16.  

Again for the parameters of figure 15, the radial profiles of the normalized m/n=0/0 component 

plasma current density and electron density are shown in figure 17 (left and right) at t=0, 9.9×10-5τR 

and 5.6×10-4τR. There are local perturbations in the m/n=0/0 component of the plasma current density 

and of the electron density around r3/2 at t=9.9×10-5τR, similar to what has been found in the oscillation 

regime of Section 3. The flattening of the m/n=0/0 component of the plasma current density and 

electron density in the central region is caused by the sawtooth crash. Later in time the 3/2 mode grows 

into the NTM regime. The electron density flattens around r3/2, and the local m/m=0/0 component of the 

plasma current density perturbations disappear, similar to that of the NTM regime shown Section 3.  

 

    

Figure 17 Corresponding to figure 15, radial profiles of the normalized m/n=0/0 component of the plasma 

current density (left) and of the electron density (right) at t=0, 9.9×10-5 and 5.6×10-4τR. 

 

Increasing the value of Ω to Ω=4×104 while keeping other input parameters to be the same as those 

for figure 15, the 3/2 mode grows into the oscillation regime but not the NTM regime for βe=0.008, 

indicating the stabilizing effect of a larger diamagnetic drift frequency.  



The time evolution of W3/2/a is shown in figure 18 for different bootstrap current density. The black 

curve is the same as that in figure 16 (left), shown here for comparison. The red curve is for zero 

bootstrap current density, and the blue curve is obtained with half the bootstrap current density of that 

for the black curve, keeping other input parameters unchanged. The 3/2 mode grows into the NTM 

regime later for a lower bootstrap current density. Without the bootstrap current, the 3/2 mode only 

grows into the oscillation regime, showing the destabilizing effect of higher bootstrap current. 

 

 

Figure 18 Time evolution of W3/2/a. The black curve is the same as that in figure 16 (left), shown here for 

comparison. The red curve is for zero bootstrap current density, and the blue curve is obtained with half the 

bootstrap current density of that for the black curve, keeping other input parameters unchanged. 

   

In the oscillation regime a high frequency mode with a frequency f ~ 4×104 Hz is usually observed, 

and the shear Alfven frequency and the diamagnetic drift frequency are close at |r- r3/2| ~ 0.02a similar 

to that shown in Section 3.  

Increasing the perpendicular particle diffusivity by 10 times to D⊥=3.76a2/τR, the time evolution of 

W3/2/a (solid) is shown in Fig. 19 (left) for βe=0.006 by the black curve, keeping the other input 

parameters the same as those for figure 15, The sawtooth crash happens at t=2×10-5τR. Afterwards the 

3/2 mode first grows into the oscillation regime and then into the NTM regime, similar to the case 

shown in figure 16. For the higher diffusion coefficient considered here, the oscillation regime lasts 

longer, until t=0.00036τR~ 8.3ms. After the 3/2 mode enters the NTM regime, the ψ3/2 profiles have the 

feature of a tearing mode. If the bootstrap current is taken to be zero, the 3/2 mode only grows into the 



oscillation regime. Keeping other input parameters the same as those for the black, the 3/2 mode 

remains at a very small amplitude for a lower value of βe, βe=0.004 (blue). When using an upwards 

shifted equilibrium q-profile with a smaller rq=1, rq=1=0.18a, which results in a smaller sawtooth crash 

amplitude, while keeping other input parameters the same as those for the black curve, the 3/2 mode 

only has a low amplitude (red).  

 

    

Figure 19 (left) Time evolution of W3/2/a for D⊥=3.76 (a2/τR), Ω=2×104 and fb=0.4 at r3/2. The black (blue) 

curve is obtained for βe=0.006 (0.004). The red curve is obtained for an upwards shifted equilibrium q-profile 

(rq=1= 0.18a), keeping other input parameters the same as those for the black one. (right) Time evolution of 

W3/2/a with Ω=4×104 for βe=0.008 (black curve) and 0.006 (red), keeping other input parameters the same as 

those for the black curve in the left figure.  

 

For the case shown by the black curve in figure 19 (left), there is also a local perturbation in the 

m/n=0/0 component electron density around r3/2 in the oscillation regime. After the 3/2 mode enters 

into the NTM regime, the electron density flattens around r3/2, similar to the results shown in figure 17. 

The radial profiles of the normalized m/n=0/0 component plasma current density also have similar 

features to that shown figure 17. In the oscillation regime a mode fluctuating around a frequency f ~ 

4×104 Hz is also seen due to the shear Alfven resonance. 

Increasing the value of Ω by two times to Ω=4×104 (∆ω*e=2.1×105/τR), the time evolution of W3/2/a 

is shown in Fig. 19 (right) for βe=0.006 (red curve) and 0.008 (black). The other input parameters are 

the same as those for the black curve in figure 19 (left). The 3/2 mode saturates at a low level for 



βe=0.006 but grows into the oscillation regime for βe=0.008, showing again the destabilizing effect of 

higher βe value. However, the 3/2 mode has not grown into the NTM regime due to a larger Ω value. 

Comparing with figure 19 (left), it is found that a higher βe value is required to excite the 3/2 mode for 

a larger value of Ω.  

The above results indicate that the triggering of a 3/2 magnetic island by a sawtooth crash is similar 

to the mode coupling to a 2/2 tearing mode (without the 1/1 mode involved). Both the oscillation and 

NTM regime shown in Section 3 are also found here. As the electron diamagnetic drift is stabilizing for 

the 3/2 mode growth, while a high βe value enhances the mode coupling between the 2/2 and 3/2 

components, the 3/2 mode is more easily triggered after the sawtooth collapse for a higher βe value 

and/or smaller electron diamagnetic drift frequency. The 3/2 mode saturates in the oscillation regime 

for a low bootstrap current density or a large diamagnetic drift frequency, but grows into the NTM 

regime in the opposite limit. 

 

 

Figure 20 Stability diagram in the (ω*e,3/2 - βe) plane for the destabilization of the 3/2 mode by sawteeth. 

The black circles correspond to the cases in which the 3/2 mode is destabilized first into the oscillation regime 

with shear Alfven resonance and then into NTM regime. The red diamonds correspond to cases in which the 3/2 

mode is only destabilized into the oscillation regime. The blue squares correspond to the cases with no 3/2 mode 

destabilized. The required βe value for the 3/2 mode to enter the NTM regime significantly increases for a 

sufficiently large diamagnetic drift frequency at r3/2.  

 



The results of this section are summarized in the (ω*e,3/2 - βe) plane in figure 20. The other input 

parameters are the same as those for figure 15. The black circles correspond to the cases in which the 

3/2 mode is destabilized first into the oscillation regime with shear Alfven resonance and then into the 

NTM regime. The red diamonds correspond to cases in which the 3/2 mode is only destabilized into the 

oscillation regime. The blue squares correspond to the cases with no 3/2 mode. The required βe value 

for destabilizing the 3/2 mode significantly increases with increasing the local diamagnetic drift 

frequency at r3/2. A larger perpendicular particle diffusivity results in a higher βe for destabilizing the 

3/2 mode than that shown in figure 20.  

 

5. Discussion and summary 

The stabilizing role of the differential plasma rotation and the destabilizing role of a finite plasma β 

value in mode coupling are found from the single fluid simulations, as expected from analytical theory 

[16-18]. The results obtained from the four-field equations are, however, much more complicated even 

without including the 1/1 mode in the calculations. For a low electron diamagnetic drift frequency 

((Ω≤2×104, corresponding to f*e,3/2≤1.7 kHz), the results are similar to that of the single fluid 

calculations. In this case, the 3/2 mode grows into the NTM regime for a quite low value of βe 

(=0.001). For a sufficiently large yet realistic value of the diamagnetic drift frequency (Ω≥4×104), 

three regimes are found: The suppression regime exists for moderate βe values, in which the originally 

unstable 2/2 mode is stabilized by its coupling to the 3/2 mode, and the 3/2 mode saturates at a low 

amplitude, as shown in Section 3.2.2. Increasing the value of βe to about 0.007 (depending on the value 

of the perpendicular particle diffusivity), an oscillation regime exists, in which the 3/2 mode has the 

feature of an ideal mode. The NTM regime exists for a sufficiently large βe and bootstrap current 

density. The 3/2 mode first enters into the oscillation regime and then the NTM regime. If the bootstrap 

current density is too small, the 3/2 mode saturates in the oscillation regime.  



The simulation results of the destabilization of 3/2 modes by sawteeth are similar to those with a 2/2 

tearing mode only (without the 1/1 mode), but a higher βe value and a sufficiently large rq=1 (or 

sawtooth amplitude) is required for the 3/2 mode onset. The 3/2 mode grows into the NTM regime only 

several ms after the sawtooth crash, if the bootstrap current density is sufficiently large. These 

numerical results indicate that the electron diamagnetic drift, plasma beta value and the bootstrap 

current are important in determining the triggering of 3/2 tearing modes by sawteeth. 

In the standard four-field equations, the electron temperature is assumed to be a constant in space 

and time [26]. As shown in Section 3.2.5, the term Te/ne(r) in front of the parallel electron density 

gradient in Ohm’s law affects the local electron diamagnetic frequency at r3/2 for a given value of Ω, 

and a higher value of Te/ne(r) at r3/2 corresponds to a larger local electron diamagnetic drift. As the local 

electron diamagnetic drift significantly affects the 3/2 mode onset, further extension of the standard 

four-field equations, to include the time evolution of the electron temperature, is required.   

Analytical theories on shear Alfven resonance exist only for a single tearing mode in one-fluid 

model [58-61]. Further analytical works are required to include the mode coupling and two-fluid 

effects to compare with numerical results. 

Experiments have been carried out in ASDEX upgrade, TCV and Tore Supra to study the triggering 

of NTMs by usual or monster sawteeth [10,62,63]. A quick growth of the n=2 magnetic perturbations 

right after a sawtooth is usually observed [10,62], as also seen in our simulations. Sawteeth with longer 

period, usually corresponding to larger amplitude, are found to more easily generate NTMs [62]. This 

is particularly true for the 3/2 NTMs with significant (2,2) component triggered by monster sawteeth, 

which have a large minor radius of q=1 surface [63]. After sawtooth crash the magnetic island is 

measured a few ms later or even longer on ASDEX upgrade [10]. About the same time scale is seen 

from our numerical results. As pointed out in Ref. [10], it is possible to identify the mode type (ideal or 

tearing) in experiments after the crash only with local measurements, e.g. ECE diagnostic, and the 



island can be measured only when it is sufficiently large (~1cm, depending on measurement accuracy). 

All measurements related to the mode structure identification in Ref. [62] were however non-local, 

made either outside the plasma (magnetic probes) or using line integrated signs (Soft X-ray cameras).  

We would like to emphasize again the limitations of our studies. Our results are based on the four-

field equations that neglect higher order terms in large aspect ratio expansion, which is of particular 

importance for the 1/1 internal kink mode. The cold ion assumption has been made. Sawtooth 

amplitude is determined only by taking different equilibrium q-profiles. Our results are affected by the 

value of, e.g. the Lundquist number and the parameter d1 in the electron continuity equation, which are 

known to be related the ion polarization current [35], suggesting its role in the NTM stability. The ion 

polarization current is self-consistently described by the four-field equations only in the fluid or 

collisional regime [26,35,36], while kinetic corrections in the collisionless regime, as described in Ref. 

[36], have not been included, which would require a modification of the equations in the future. 

In summary, numerical simulations have been carried out to understand the mode coupling and 

seeding of NTMs. Within single fluid model the mode coupling is found to be weakened by relative 

mode rotation but enhanced by finite plasma β value. Using the four-field equations, the 3/2 NTMs are 

found to be triggered by sufficiently strong sawtooth crashes or 2/2 perturbations at higher β  value and 

bootstrap current density and/or a lower electron diamagnetic drift frequency. Before the 3/2 mode 

grows into the NTM regime, an oscillation regime is found existing for a sufficiently large diamagnetic 

drift frequency and β  value, in which the diamagnetic drift frequency reaches the shear Alfven 

frequency outside the tearing layer and causes shear Alfven resonance.  
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