
Fast matrix-free evaluation of discontinuous Galerkin finite

element operators∗

Martin Kronbichler† Katharina Kormann‡

October 2, 2019

Abstract

We present an algorithmic framework for matrix-free evaluation of discontinuous Galerkin
finite element operators. It relies on fast quadrature with sum factorization on quadrilateral
and hexahedral meshes, targeting general weak forms of linear and nonlinear partial differential
equations. Different algorithms and data structures are compared in an in-depth performance
analysis. The implementations of the local integrals are optimized by vectorization over several
cells and faces and an even-odd decomposition of the one-dimensional interpolations. Up to
60% of the arithmetic peak on Intel Haswell, Broadwell, and Knights Landing processors are
reached when running from caches and up to 40% of peak when also considering the access
to vectors from main memory. On 2× 14 Broadwell cores, the throughput is up to 2.2 billion
unknowns per second for the 3D Laplacian and up to 4 billion unknowns per second for the
3D advection on affine geometries, close to a simple copy operation at 4.7 billion unknowns
per second. Our experiments show that MPI ghost exchange has a considerable impact on
performance and we present strategies to mitigate this effect. Finally, various options for
evaluating geometry terms and their performance are discussed. Our implementations are
publicly available through the deal.II finite element library.

Key words. Matrix free method, Finite element method, Discontinuous Galerkin method, Sum
factorization, Vectorization, Parallelization.

1 Introduction

The discontinuous Galerkin (DG) method has gained a lot of momentum in a wide range of
applications in the last two decades. The method combines the favorable features of the numerical
fluxes in finite volume methods, also called Riemann solvers, with the high-order capabilities of
polynomial spaces in finite elements. This construction allows for both high convergence rates
on complicated computational domains as well as robustness in transport-dominated problems.
DG methods are promising ingredients for next-generation solvers in fluid dynamics and wave
propagation problems (see e.g. [60] and references therein) and are also applied to a large number
of other problems with mixed first and second order derivatives.

There is a large body of literature on implementing DG schemes and performance tuning for
particular equations, especially for GPUs, see e.g. [31, 48, 1] and references therein. Implemen-
tations for explicit time integration and various optimizations for triangles and tetrahedra have

∗This work was supported by the German Research Foundation (DFG) under the project “High-order dis-
continuous Galerkin for the exa-scale” (ExaDG) within the priority program “Software for Exascale Computing”
(SPPEXA), grant agreement no. KO5206/1-1 and KR4661/2-1. The authors acknowledge the support given by the
Bayerische Kompetenznetzwerk für Technisch-Wissenschaftliches Hoch- und Höchstleistungsrechnen (KONWIHR)
in the framework of the project Matrix-free GPU kernels for complex applications in fluid dynamics. The authors
gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project
by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ,
www.lrz.de) through project id pr83te.
†Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748 Garching

b. München, Germany (kronbichler@lnm.mw.tum.de).
‡Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany, and

Zentrum Mathematik, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
(katharina.kormann@ipp.mpg.de).

1

reached a high level of maturity [21]. The present work targets DG methods on quadrilaterals
and hexahedra with moderate polynomial degrees between 2 and 10 in the context of general
meshes and possibly variable coefficients. In this case, the final stencil cannot be separated into
tensor products of 1D matrices (as opposed to the constant coefficient Cartesian mesh case [25])
and the fastest implementation option is usually the evaluation of integrals on the fly by fast
sum-factorization techniques [12, 28, 35] that have their origin in spectral elements [50, 51]. Sum
factorization gives rise to an operator evaluation cost of O(dk) per degree of freedom in d spatial
dimensions for k polynomials per direction, i.e., polynomial degree p = k − 1, in contrast to costs
of O(kd) in (non-separable) matrix-based variants. While originally used for higher degrees, recent
work [9, 41, 44] has shown that these techniques are up to an order of magnitude faster than sparse
matrix-vector products already for medium polynomial degrees of p = 3 or p = 4, with increasing
gaps at higher orders.

Tensor product evaluation is a very active research area with implementations available in the
generic finite element software packages deal.II [3], DUNE [8, 7], Firedrake [52, 47, 45], Loopy [30],
mfem [33], Nek5000 [16], Nektar++ [10], NGSolve [55], or via OCCA [54] as well as in application
codes such as the compressible flow solver framework Flexi [22], SPECFEM3D [34] or pTatin3D
[46]. Despite the wide availability of software, including code generators and domain-specific
languages in Firedrake and Loopy, the analysis of high performance computing aspects and the
expected performance envelopes of operator evaluation—independent of the user interfaces—have
not yet been established. This work fills this gap by an extensive analysis of the evaluation of
high-order finite element and discontinuous Galerkin operators with focus on the choice of data
layouts and loop structures with their respective impact on performance for architectures with a
deep memory hierarchy, supported by careful numerical experiments and results from hardware
performance counters that quantify the effect of optimizations. Arithmetic intensities are in the
range of 1 to 10 Flop/Byte, which is similar to the machine balance of modern hardware. Thus,
both arithmetic optimizations and memory access optimizations are essential. We propose to
separately analyze these two effects in order to select the best possible algorithm and to gain
understanding into the behavior of the proposed algorithms.

The polynomial degree p is mostly treated as a parameter throughout this work and analyzed
over a wide range 1 ≤ p ≤ 25, even though there are vastly different requirements on meshing and
data structures at the two ends. Since intermediate polynomial degrees 3 ≤ p ≤ 8 are particularly
interesting in many challenging engineering applications [12, 14], the results for degrees p > 15
are mainly meant to show the limits of the present techniques, and do not exploit all possible
optimizations. The proposed algorithms aim for reaching high single-node performance, but they
also directly apply to the massively parallel context of petascale machines [6, 38, 44], given that
the communication in operator evaluation is only between nearest neighbors and naturally scales
to large processor counts. Our analysis is based on algorithms that are available in the open-
source finite element library deal.II [3] and accessible to generic applications within a toolbox
providing other advanced features such as multigrid solvers and mesh adaptivity with hanging
nodes. Applications of these algorithms in fluid dynamics can be found in [38, 40, 14] and for
wave propagation in [36, 43, 56]. The developments in this work interoperate with the continuous
finite element implementations from [41] using the same optimized code paths in the relevant
algorithms. Operator evaluation is traditionally the dominating algorithmic part both for explicit
time integration and for some iterative solvers such as multigrid with selected smoothers [11, 44].

This article is structured as follows. Sec. 2 introduces the test problems, the DG discretization,
and the matrix-free implementation based on fast integration. Sec. 3 concentrates on the compute
part of the algorithm. The access to the source and destination vectors for cell and face integrals
are analyzed in Sec. 4 alongside with the question of efficient ghost data exchange with MPI. Sec. 5
discusses the options for how to apply the geometry and Sec. 6 concludes this work.

2 DG algorithm

We assume a decomposition of the computational domain Ω into a set of quadrilateral or hexahedral
elements Th = {Ωe}. The faces Fh are the set of all intersections Ω̄e− ∩ Ω̄e+ , i.e., the edges of
the cells in 2D and the surfaces of the cells in 3D, with the subset F i

h denoting the interior faces
between two cells Ωe− and Ωe+ with solution u−h and u+

h , respectively, and the set of boundary

2

faces Fb
h where only the solution field u−h is present. The vectors n− = −n+ denote the outer

unit normal vectors on either side of a face. We also write n instead of n− for the normal vector
associated to the cell Ωe under consideration.

The quantity {{uh}} = 1
2 (u−h + u+

h) denotes the average of the values on the two sides of a

face and the jump is written as [[uh]] = u−h n
− + u+

h n
+ = (u−h − u

+
h)n−. At domain boundaries,

suitable definitions for the exterior solution u+
h in terms of the boundary conditions and the inner

solution u−h are used, e.g. the mirror principle u+
h = −u−h + 2g in case of Dirichlet conditions [21].

Inhomogeneous Dirichlet data add contributions to the right hand side vectors in linear systems.
To exemplify the algorithms, we consider two prototype discontinuous Galerkin discretizations

to stationary problems: The DG discretization of the stationary advection equation with local
Lax–Friedrichs (upwind) flux [21], characteristic for first-order hyperbolic PDEs, reads

− (∇vh, cuh)Ωe
+

〈
vhn, {{cuh}}+

|c · n|
2

[[uh]]

〉
∂Ωe

= (vh, f)Ωe
, (1)

where c = c(x) denotes the direction of transport and f is some forcing. The bilinear form
(a, b)Ωe =

∫
Ωe
abdx denotes volume integrals and 〈a, b〉∂Ωe

=
∫
∂Ωe

ab ds boundary integrals.

The symmetric interior penalty discretization of the Laplacian [4] is

(∇vh,∇uh)Ωe
− 〈vhn, {{∇uh}}〉∂Ωe

−
〈
∇vh,

1

2
[[uh]]

〉
∂Ωe

+ 〈vhn, τ [[uh]]〉∂Ωe
= (vh, f)Ωe

, (2)

on element Ωe, consisting of the cell integral, the primal consistency term, the adjoint consistency
term, and an interior penalty term with factor τ sufficiently large to render the discretization
coercive.

On each element Ωe, we assume the solution to be given by an expansion u
(e)
h =

∑N
i=1 ϕ

(e)
i (x)u

(e)
i ,

where u
(e)
i are the coefficient values determined through the variational principle and ϕ

(e)
i (x)

are basis functions. The basis functions are defined as polynomials ϕi(ξ) on the reference ele-
ment Ωunit with coordinates ξ and transformed to the coordinates x by a transformation x̂(e)

as x = x̂(e)(ξ), i.e., ϕ
(e)
i (x) = ϕi

(
ξ(e)(x)

)
. The Jacobian of the transformation is denoted as

J(e)(ξ) = dx̂(e)

dξ = ∇ξx̂
(e) with partial derivatives arranged in columns and coordinates in rows,

which allows to express the derivative as ∇xϕi(ξ
(e)(x)) = J−T

(e) ∇ξϕi(ξ). In this work, we as-

sume quadrilateral elements in two dimensions or hexahedral elements in three dimensions with
reference-cell shape functions defined through the tensor product of one-dimensional functions
ϕi(ξ1, ξ2, ξ3) = ϕ1D

i1
(ξ1)ϕ1D

i2
(ξ2)ϕ1D

i3
(ξ3) with the respective multi-index (i1, i2, i3) associated to the

index i. The integrals in equations (1) and (2) are computed numerically in the reference space
by summation of the integrands evaluated on a set of quadrature points ξq = (ξq1 , ξq2 , ξq3) with
associated weights wq defined as the tensor product of 1D quadrature formulas. For example, the
cell term for advection in (1) is approximated by

(∇ϕi, cuh)Ωe =

∫
Ωunit

(
J(e)(ξ)−T∇ξϕ(ξ)

)
·
(
c
(
x̂(e)(ξ)

)
u

(e)
h (ξ)

)
det(J(e)(ξ)) dξ

≈
nq∑
q=1

(
J(e)(ξq)

−T∇ϕi(ξq)
)
·
(
c
(
x̂(e)(ξq)

)
u

(e)
h (ξq)

)
det(J(e)(ξq))wq.

(3)

Since the operators on the left hand sides of equations (1) and (2) are linear, integrating an
equation against all test functions vh = ϕi corresponds to a matrix-vector product taking a vector
of coefficient values u = [ui] associated with the solution field uh and returning the integrals
y = [yi],

y = Au. (4)

Since our methods are based on numerical integration rather than the final cell matrices, the
techniques extend straight-forwardly to the residual evaluation of nonlinear equations.

2.1 Two implementation options for face integrals

The formulas (1) and (2), respectively, define the face integrals directly associated with the cell
integrals of Ωe. The operator evaluation implemented with this form of face integrals and a single

3

Figure 1: Data access pattern for element-wise face integrals of advection on a nodal basis with
p = 5. Black disks indicate read/write access by the marked cell, black circles read only. Gray
circles are not touched.

outer sum over all elements Ωe is labeled “element-wise face integrals” in the following. In this

variant, the same contribution to the numerical flux, e.g. {{cuh}}+ |c·n|2 [[uh]] in the case of advection,

is computed twice with different interpretations of u−h and u+
h and n on Ωe− and Ωe+ , respectively.

An alternative is to rearrange the loops to collect all contributions to an individual face F ∈ F i
h.

For advection, the left-hand side integrals can be equivalently stated as∑
Ωe∈Th

(∇vh,−cuh)Ωe +
∑
F∈F i

h

〈
[[vh]], {{cuh}}+

|c · n|
2

[[uh]]

〉
F

+
∑
F∈Fb

h

〈vhn, cuh〉F , (5)

representing the homogeneous part of a Dirichlet problem with u+
h = −u−h at the boundary.

The formulation (5), labeled “compact face integrals” in the following, has the advantage of
computing the flux term for both sides Ωe− and Ωe+ simultaneously. This reduces the number of
arithmetic operations and data access at quadrature points. Conversely, the element-wise evalua-
tion of face integrals computes all contributions to a cell at once (at the price of keeping results
from all 2d faces in flight), leading to a more structured access into vectors arranged cell-wise.
For example, this allows for a single write of the result originating from Ωe into the vector y of
the operator evaluation (4). Fig. 1 shows the access pattern in the element-wise face integrals,
which resembles finite differences. In the compact form of face integrals, the face’s data access
is somewhat delayed compared to the access of cell integrals, especially on unstructured meshes,
reducing the efficiency of caching. Since it is not a priori clear which formulation to prefer, both
are analyzed in this work.

2.2 Algorithm outline for discontinuous Galerkin finite element operator
evaluation

The matrix-free evaluation of the integrals representing the product (4) is implemented by a loop
over all the cells and faces appearing in the operators (1) or (2). Algorithm 1 describes the
procedure for the advection operator with compact face integrals. The evaluation is split into three
phases, addressing the cell integrals, integrals for interior faces, and integrals for boundary faces in
separate steps, following the sums in (5). Each of these loops logically consists of five components,
which are (a) the extraction of the solution values pertaining to the current cell(s) by a gather
operation, (b) the evaluation of values or gradients of the local solution at the quadrature points, (c)
the operation at quadrature points including the application of the geometry, (d) the multiplication
by the test functions and the summation in the numerical quadrature, and finally (e) accumulating
the local values into the respective entry of the global vector by a scatter-add operation. Splitting
the evaluation (b), operations at quadrature points (c), and integration (d) into separate phases
is a common interface that allows for combining generic programming interfaces with optimal-
complexity implementations [32]. Optimizations across these three steps is less common due to
code complexity, but it is possible by code generation frameworks such as Firedrake [24]. The
performance data available for Firedrake as of writing this text [58] is not yet conclusive as to
whether this would enable efficiency gains. Since each cell has independent degrees of freedom in

4

ALGORITHM 1: Evaluation of advection (5) with compact face integrals and Dirichlet b.c.

(i) update ghost values: Import vector values of u from other MPI processes that are adjacent to
locally owned cells and for which computations of the respective face integrals are scheduled on the
current MPI rank.

(ii) loop over cells

(a) gather local vector values u
(e)
i on cell from global input vector u

(b) interpolate local vector values u(e) in quadrature points, u
(e)
h (ξq) =

∑
i ϕiu

(e)
i

(c) for each quadrature index q, prepare integrand at each quadrature point by computing

tq = J(e)(ξq)−1c
(
x̂(e)(ξq)

)
u

(e)
h (ξq)det(J(e)(ξq))wq

(d) evaluate local integrals by quadrature y
(e)
i =

(
∇ϕi, cu

(e)
h

)
Ωe

≈
∑

q∇ϕi(ξq) · tq for all test

functions i

(e) set the local contributions y
(e)
i into the global result vector y

(iii) loop over interior faces F i
h

(a−) gather local vector values u−i from global input vector u associated with interior cell e−

(b−) interpolate u− in face quadrature points u−h (ξq)

(a+) gather local vector values u+
i from global input vector u associated with exterior cell e+

(b+) interpolate u+ in face quadrature points u+
h (ξq)

(c) for each quadrature index q, compute the numerical flux contribution

(f∗ ·n−)q = 1
2
c
(
x̂(e)(ξq)

)
·n−

(
u−h (ξq) + u+

h (ξq)
)

+ 1
2

∣∣∣c(x̂(e)(ξq)) · n−
∣∣∣ (u−h (ξq)− u+

h (ξq)
)

and

multiply it by integration weight, tq = (f∗ · n−)qh(ξq)wq with area element h of face

(d−) evaluate local integrals by quadrature y−i = (ϕ−i , f
∗ · n−) ≈

∑
q ϕi(ξq)tq

(e−) add local contribution y−i into the global result vector y associated with e−

(d+) evaluate local integrals by quadrature y+
i = (ϕ+

i ,−f
∗ · n−) ≈

∑
q −ϕi(ξq)tq due to n+ = −n−

and the conservativity of the numerical flux function

(e+) add local contribution y+
i into the global result vector y associated with e+

(iv) loop over boundary faces Fb
h

(a) gather local vector values u−i from cell e− from global input vector u

(b) interpolate u− in face quadrature points u−h (ξq)

(c) for each quadrature index q, compute the numerical flux contribution and multiply by
integration factor

(d) evaluate local integrals y−i by quadrature similar to inner faces

(e) add local contribution y−i into the global result vector y associated with e−

(v) compress: Export parts of the residuals that have been generated on the current MPI process to
the owning process.

5

DG, the result vector needs not be zeroed explicitly as typical in continuous finite elements [41]
and the integral values in step (ii)(e) overwrite the previous vector content.

Algorithm 2 highlights the changes in the loop layout compared to Algorithm 1 if the element-
wise formulation of face integrals of formula (1) is used instead. The numerical flux is evaluated
twice for each interior face and an additional interpolation step (b+) is added. The other interpo-
lation and integration steps, (b−) and (d−), exactly represent the operations done from both sides
in Algorithm 1. At the same time, no explicit vector access (a−) and (e−) to the elements’ vector
data is necessary as the local data can be shared with cell integrals. Furthermore, Algorithm 2
only needs one MPI ghost exchange step, involving twice the data, though.

ALGORITHM 2: DG integration loop for the advection operator (1) with element-wise face integrals

and Dirichlet b.c.

(i) update ghost values: Import vector values of u from other MPI processes on all cells that are
adjacent to locally owned cells.

(ii) loop over cells

(a) read local vector values u
(e)
i

(b) interpolate local vector values u(e) in quadrature points of cell, u
(e)
h (ξq) =

∑
i ϕiu

(e)
i

(c) for each quadrature index q, prepare integrand at each quadrature point of cell by computing

tq = J(e)(ξq)−1c
(
x̂(e)(ξq)

)
u

(e)
h (ξq)det(J(e)(ξq))wq

(d) evaluate local cell integrals by quadrature y
(e)
i =

(
∇ϕi, cu

(e)
h

)
Ωe

≈
∑

q∇ϕi(ξq) · tq for all test

functions i

(iii) loop over all 2d faces of cell Ωe

(b−) interpolate values from cell array u(e) to quadrature points of face u−h (ξq)

(a+) if not on boundary, gather values from neighbor Ωe+ of current face or use −u− if on
boundary

(b+) interpolate u+ in face quadrature points u+
h (ξq)

(c) for each quadrature index q, compute the numerical flux contribution

(f∗ ·n−)q = 1
2
c
(
x̂(e)(ξq)

)
·n−

(
u−h (ξq) + u+

h (ξq)
)

+ 1
2

∣∣∣c(x̂(e)(ξq)) · n−
∣∣∣ (u−h (ξq)− u+

h (ξq)
)

and multiply it by integration weight, tq = (f∗ · n−)qh(ξq)wq with area element h of face

(d−) evaluate local face integrals by quadrature and add into cell contribution,

y
(e)
i = y

(e)
i +

∑
q ϕi(ξq)tq

(e) set all contributions of cell, y(e), into global result vector y

2.3 Sum factorization

In Algorithm 1, the steps (ii–iv)(b) and (ii–iv)(d) interpolating the solution from the coefficient
values to quadrature points and the summation for quadrature are the crucial components for
higher polynomial degrees because all vector entries inside a cell can contribute to the values at
each quadrature point. We specialize the evaluation for tensor product shape functions on tensor
product quadrature formulas.

Let us denote by Si the k× k matrix of values of all k one-dimensional shape functions ϕ1D of
degree p = k− 1 evaluated at k quadrature points and by Di the matrix of their derivatives along
direction i, respectively. Quadrature points are arranged in rows and shape functions in columns.
Note that all algorithms equally apply to the case where the number of quadrature points is larger
than k at similar arithmetic performance, see e.g. [15]. Further, denote by u(e) the DG coefficients
of the input vector. The interpolation step (ii)(b) of Algorithms 1 and 2 has the Kronecker product
form [

Sd ⊗ . . .⊗ S2 ⊗ S1

]
u(e). (6)

In order to avoid the naive 2k2d arithmetic cost (additions and multiplications counted individu-
ally), the Kronecker matrix is not applied in expanded kd × kd form, but rather for each of the d

6

factors separately in a rearranged way by sum factorization: The multiplication with e.g. the matrix[
I3 ⊗ I2 ⊗ S1

]
in three dimensions can be implemented by the multiplication of the k × k matrix

S1 with the k×k2 matrix obtained from reshaping u(e) in column-major form. The matrix-matrix
multiplication corresponds to a 1D interpolation with matrix Si along the coordinate direction i for
kd−1 lines. In total, the interpolation (6) involves d of these matrix-matrix multiplications. We call
each matrix multiplication a sum-factorization sweep in the rest of this work. With sum fac-
torization, the overall cost for the interpolation is 2dkd+1 arithmetic operations. Sum-factorization
algorithms have been established by the spectral element community [50, 57, 12, 28, 35] and have
also been derived for other element shapes than quadrilaterals and hexahedra with suitable bases
using truncated tensor products [57].

The integration step (ii)(d) multiplies the d partial derivatives of the test function ∇ϕi with
the d components of the integrand contribution, labeled t:,1, . . . , t:,d in Algorithm 1 and sums over
quadrature points. This step is given by

y(e) =


Sd ⊗ . . .⊗ S2 ⊗D1

Sd ⊗ . . .⊗D2 ⊗ S1

...
Dd ⊗ . . .⊗ S1 ⊗ S1


T 

t:,1

t:,2

...
t:,d

 , (7)

and can again be treated by a series of d2 sum-factorization sweeps in total.
For the case where quadrature points coincide with the node positions of Lagrange polynomials,

the interpolation matrix is the k×k identity matrix, Si = Ii. As a consequence, the number of sum-
factorization sweeps in (7) reduces to d evaluations of DT

i . It is a classical optimization in spectral
element codes to choose a suitable nodal basis and quadrature pairing, for example Lagrange
polynomials on Gauss–Lobatto points with Gauss–Lobatto quadrature on the same points [12, 35].
For a general polynomial basis, the cost of (7) can be reduced by combining such a simplified
derivative with a basis change: if we define a 1D gradient matrix (Dco

i)q,j as the gradient of

Lagrange polynomials ϕ1D,co
j (ξq) with nodes at the quadrature points, i.e., Di = Dco

i Si, expression
(7) can be rewritten as

y(e) =
[
ST
d ⊗ . . .⊗ ST

2 ⊗ ST
1

]︸ ︷︷ ︸
basis change

Id ⊗ . . .⊗ I2 ⊗Dco
1

Id ⊗ . . .⊗Dco
2 ⊗ I1

Dco
d ⊗ . . .⊗ I2 ⊗ I1

T

︸ ︷︷ ︸
collocation derivative


t1,:

t2,:

...
td,:

 . (8)

The first multiplication to the right corresponds to the summations of derivative contributions in
the basis associated to the quadrature points (e.g. Lagrange polynomials at Gauss quadrature
points), whereas the multiplication by the matrix

[
ST
d ⊗ . . .⊗ ST

2 ⊗ ST
1

]
transforms the integral

contributions to the actual basis (e.g. Lagrange polynomials in Gauss–Lobatto points). The
approach via the basis change reduces the number of sum-factorization sweeps for the gradient
from d2 in (7) to 2d. The basis change concept also applies similarly to the case with more
integration points than polynomials (sometimes called over-integration). In case the gradient of

the solution ∇ξu
(e)
h (ξq) is needed, like for the Laplacian (2), the transpose of (8) is applied, using

2d sum-factorization sweeps for a general basis or d sum-factorization sweeps for collocated nodal
and integration points.

The interpolation and integration operations for face integrals are of similar form. As an
example, let us consider the evaluation of uh and ∇ξuh at all quadrature points of a face in 3D
with normal in ξ2 direction. The interpolation matrix consists of four blocks, the first block for
the values at the quadrature points, the two subsequent blocks for the derivatives in the local
coordinate direction of the face (ξ1 and ξ3 in this case), and the last block for the derivative in
face-normal direction,

uh
∂ξ1uh
∂ξ3uh
∂ξ2uh

 =


 I3 ⊗ I1

I3 ⊗Dco
1

Dco
3 ⊗ I1

 [S3 ⊗ S1

] 0

0
[
S3 ⊗ S1

]


︸ ︷︷ ︸
interpolation within face

[
I3 ⊗ Sf ⊗ I1
I3 ⊗Df ⊗ I1

]
︸ ︷︷ ︸

face-normal interpolation

u(e), (9)

7

Table 1: Number of sum-factorization sweeps in d dimensions for the advection operator with a
Lagrange basis on Gauss–Lobatto points and the Laplacian on a Hermite-type basis using Gaussian
quadrature on kd points, using compact face integrals according to Algorithm 1. The basis change
and derivative columns specify how the total number of sum-factorization sweeps is derived.

total no. of sweeps basis change derivative face normal

advection, cell 3d on kd data 2d d —

advection, inner face 4d on kd−1 data 4(d− 1) — 4 on kd−1 data

advection, boundary face 2d on kd−1 data 2(d− 1) — 2 on kd−1 data

Laplacian, cell 4d on kd data 2d 2d —

Laplacian, inner face 12(d− 1) on kd−1 data 8(d− 1) 4(d− 1) 4 on 2kd−1 data

Laplacian, boundary face 6(d− 1) on kd−1 data 4(d− 1) 2(d− 1) 2 on 2kd−1 data

Figure 2: Data access pattern for element-wise face integrals for the Laplacian using a Hermite-like
basis with p = 5. Black disks indicate read/write access by the marked cell, black circles read only.
Gray circles are not touched.

where the 1× k matrices Sf and Df evaluate the shape functions and their first derivative on the
respective boundary of the 1D reference cell. For derivatives in ξ1 or ξ3 directions, the interpolation
matrices are moved to the respective slots in the face-normal interpolation.

The interleaved cell and face evaluation for Algorithm 2 allows to re-use the basis change
operation for an alternative evaluation strategy

uh
∂ξ1uh
∂ξ3uh
∂ξ2uh

 =


 I3 ⊗ I1
I3 ⊗Dco

1

Dco
3 ⊗ I1

 0

0
[
I3 ⊗ I1

]
[I3 ⊗ Sco

f ⊗ I1
I3 ⊗Dco

f ⊗ I1

] [
ST

3 ⊗ ST
2 ⊗ ST

1

]
u(e)︸ ︷︷ ︸

shared with cell integrals

. (10)

The face-normal interpolation matrices Sco
f and Dco

f in (10) refer to the Lagrange polynomials in
quadrature points. Formula (10) is used for processing u−h as well as the test functions local to
the element, whereas (9) is preferred for the exterior solution u+

h because a full basis change on
the exterior would be more expensive than (9). The operation counts in Sec. 3.5 below show that
working with the changed basis for interior face terms brings the cost of the element-wise face
integrals close to the cost of the compact face integrals. For the latter, such re-arrangement is
infeasible due to the unstructured access.

Table 1 specifies the number of sum-factorization sweeps for the interpolation steps (ii–iv)(b)
and the integration steps (ii–iv)(d) when calling Algorithm 1 for the advection operator on the
left hand side of (1) and the respective algorithm for the evaluation of the left hand side of the
Laplacian (2), in terms of the number of shape functions and points involved in the respective
sweeps (labeled “data”). A nodal basis on Gauss–Lobatto points with data access according to
Fig. 1 and a Hermite-type basis1 with data access according to Fig. 2, respectively, are chosen.

As compared to advection, face integrals for the Laplacian involve considerably more interpo-
lation steps for extracting both the solution values and gradients according to (9). Furthermore,

1We define a Hermite-type basis as a basis where at most two out of the k one-dimensional shape functions have
non-zero value and first derivative on a face as for the cubic Hermite polynomials. Hermite-type basis functions of
higher degree are constructed by adding suitable “bubble” functions. As a result, only 2kd−1 out of the kd solution
values need to be accessed for evaluating uh and ∇uh on the faces, see Fig. 2. Note that this basis is non-nodal,
despite the intuitive visualization in Fig. 2. The operator evaluation with the collocation basis executes more slowly
on an actual implementation despite fewer sum-factorization sweeps because the face-normal interpolation involves
all kd points of a neighbor cell rather than only the 2kd−1 with non-zero value and first derivative on the face.

8

twice the number of vector entries in face-normal direction are involved, compare also Fig. 1 with
Fig. 2. Other differential operators, like the scalar advection-diffusion-reaction equation, can be
treated with the same number of sum-factorization sweeps and only some additional operations
at quadrature points. Likewise, for systems of equations the cost in Table 1 is multiplied by the
number of components.

Note that this work does not consider specific optimizations for the case where the final cell
matrix (steps (b)–(d) in Algorithm 1) can be represented as a sum of Kronecker products, such
as the Laplacian on a Cartesian geometry L = L2 ⊗M1 + M2 ⊗ L1 in 2D. This involves fewer
sum-factorization sweeps than numerical integration and can sometimes be further reduced in
complexity [25]. These separable matrices only appear for the case of constant coefficients and
axis-aligned meshes and are not the primary interest of this work, even though the presented
computational kernels can also be applied to that setting.

2.4 Overview of algorithm design

In the literature, Algorithms 1 or 2 have often been implemented by specializations for the partic-
ular equations at hand or selected parallelization schemes. This work attempts to systematically
identify patterns ensuring high performance for generic C++ implementations that are not tied to
a particular equation and to define a set of algorithmic tests to analyze performance on modern
hardware.

The vector access steps (ii–iv)(a) and (ii–iv)(e) in Algorithm 1 merely rearrange data or can
even be merged with the other operations. The sum-factorization sweeps (ii–iv)(b) and (ii-iv)(d)
of Algorithm 1 operate on some arrays of size kd that are combined with the coefficients of the
polynomial evaluation Si and Di in a matrix-vector product fashion with different strides and allow
for caching. The operations performed at quadrature points, step (ii–iv)(c) in the algorithm, have
most variability and depend on the differential operator, the geometry, and the user code. In order
to assess the effects of code optimizations separately, the following three sections discuss these
aspects in sequence, starting from the in-cache case of sum factorization with a simple geometry
representation over the vector data access to the geometry representation.

3 Compute optimizations

In this section, we ignore the memory access and analyze the implementation of the compute
phase with focus on the sum-factorization sweeps for cell integrals at a complexity of O(k) per
degree of freedom. All experiments in this section use a microbenchmark that runs an outer
loop around the cell integrals (ii)(b)–(ii)(d) in Algorithm 1 (and face integrals in Sec. 3.5) for the
advection (1) and the Laplacian (2) with data u(e) of the same cell. In order to represent realistic
data dependencies, we include the loop over quadrature points (ii)(c) that applies the geometry
and quadrature weight wq with the same constant factor det(J(e))J−1

(e) J
−T
(e) at all quadrature

points (representing an affine cell geometry). Apart from possibly different geometric tensors, the
arithmetic operations performed in the next two sections are complete in the sense that they allow
integration on an arbitrarily deformed mesh with precomputed coefficients at quadrature points.
In terms of memory access, this represents a best-case scenario as explained in Sec. 5 below.

The outer loop length is set to ncells = d50000/k4e, which gives a run time of around 10−4

seconds. When using vectorization through single-instruction/multiple-data (SIMD) units, each
lane of a SIMD vector runs identical operations but with different data, except for the specific
vectorization tests in Section 3.3. The time to complete this computation is measured with the
C++ high-resolution timer std::chrono::system clock. To gather accurate statistics [23], the
test is repeated 50,500 times and numbers are reported based on the arithmetic average tavg of
the last 50,000 repetitions, excluding cold caches and possible frequency changes of the processor
during the first 500 repetitions. For all experiments reported in this section, the standard deviation
over the 50,000 samples is below 5% of the measured time, and the minimal timings over all samples
are within 2% of the mean. All cores perform the same work on separate data arrays by running
a parallel for loop with OpenMP and threads pinned to the cores. From the recorded timings, a
throughput number in terms of degrees of freedom processed per second is calculated as the size

9

Table 2: Specification of hardware systems used for evaluation. Memory bandwidth according to
the STREAM triad benchmark (optimized variant without read for ownership transfer involving
two reads and one write) and GFlop/s based on the theoretical maximum at the respective AVX
frequency.

Haswell Broadwell Knights Landing
Xeon E5-2630 v3 Xeon E5-2690 v4 Xeon Phi 7210

cores 2× 8 2× 14 64
frequency base 2.4 GHz 2.6 GHz 1.3 GHz
max AVX frequency 2.6 GHz 2.9 GHz 1.1 GHz
SIMD width 256 bit 256 bit 512 bit
arithmetic peak @ AVX freq. 666 GFlop/s 1299 GFlop/s 2253 GFlop/s
last level cache 2.5 MB/core L3 2.5 MB/core L3 512 kB/core L2
memory interface DDR4-1866, 8 chan. DDR4-2400, 8 chan. MCDRAM
STREAM memory bandwidth 95 GB/s 112 GB/s 450 GB/s
Linux operating system release CentOS 7.1 CentOS 7.1 SLES 11 SP4

compiler g++, version 6.3.0, flags -O3 -funroll-loops -march=native

per core divided by the time per core,

degrees of freedom per second (DoF/s) =

ncores∑
i=1

ncellsk
dnSIMD lanes

ti,avg
,

accumulating the throughput over all cores. Likewise, GFlop/s numbers are computed from the
DoF/s numbers based on the operation counts per degree of freedom like the one reported for the
cell terms of the 3D Laplacian in Table 3. We have verified with hardware performance counters
through the tool likwid [59] that the expected number of arithmetic operations is actually executed.

Our experiments are performed on the three Intel HPC systems presented in Table 2, including
two server processors and a throughput-oriented Xeon Phi (Knights Landing, KNL). We have
verified that all benchmarks were run at the maximum AVX frequency specified in the table. The
GNU compiler g++ version 6 with flags described in Table 2 is used on all systems. For our code
g++ generates executables of slightly better performance (0–10%) than clang 3.9.0 and the Intel
compiler versions 16, 17, 18.

The Haswell configuration with 2 × 8 cores features a relatively high memory bandwidth as
compared to arithmetic throughput. The Broadwell system with 2 × 14 cores theoretically offers
twice the arithmetic performance of the Haswell system, but with the same number of 8 DDR4
memory channels and only slightly higher STREAM memory throughput due to a higher memory
frequency. The Knights Landing processor has 64 cores that run with wider vector units but at a
low frequency of 1.1 GHz and with reduced features, the most important of which are the only 2-
wide decode throughput and the absence of a level-3 cache [27]. On the other hand, KNL provides
a high-bandwidth memory interface, which is addressed in flat mode with numactl [27] in all our
experiments.

3.1 Code choices for sum-factorization sweeps

For simple operators such as the Laplacian or advection, the sum-factorization sweeps for interpo-
lation and integration contribute with around 70% of arithmetic costs at k = 1 and more than 85%
for k ≥ 6, see Table 3 and the algorithms from Section 3.2 below. Thus, efficient operator evalua-
tion critically depends on these operations. At the same time, the work at quadrature points is not
negligible, and it becomes even more important for more complicated operators, for instance the
compressible Navier–Stokes equations [15]. Hence, a close integration between sum-factorization
sweeps and quadrature-point operations is desirable. For example, SIMD vectorization needs to
be applied to both.

Due to the small dimensions of the coefficient arrays S and Dco with k rows and columns and
matrices of dimension k × k2 for the 3D solution values u(e), generic BLAS multiplication kernels
dgemm that are specialized for the LINPACK context of medium and large sizes are not suitable due
to large function call, dispatch, and data rearrangement overheads. As an alternative, optimized
small matrix multiplication kernels have been suggested by the batched BLAS initiative [13] and

10

Table 3: Number of arithmetic operations per degree of freedom for evaluating the cell integrals
of the 3D Laplacian (∇ϕi,∇uh)K with 12 sum-factorization sweeps for basic matrix-matrix mul-
tiplication implementations as well as using the even-odd decomposition for the one-dimensional
operations described in Section 3.2.

polynomial degree p = k − 1 1 2 3 4 5 6 7 8 9 10
number of arithmetic operations, Flop/DoF

sum fact., basic matrix multiply 36 60 84 108 132 156 180 204 228 252
sum fact., even-odd matrix multiply 36 44 60 70 84 94 108 119 132 143
operations at quadrature points 18 18 18 18 18 18 18 18 18 18

of which fused multiply-add (FMA) instructions
sum fact., basic matrix multiply 12 24 36 48 60 72 84 96 108 120
sum fact., even-odd matrix multiply 0 4 12 17 24 29 36 41 48 53
operations at quadrature points 6 6 6 6 6 6 6 6 6 6

by the libxsmm project [18]. While these interfaces could provide a path towards standardization,
their suitability for moderate polynomial degrees p ≤ 10 is not clear a priori: A black-box matrix
multiplication interface will typically lose optimization opportunities of repeated operations along
different directions and quadrature points, which can be a substantial portion of a sum-factorization
sweep given out-of-order execution windows of 200 instructions or more. Furthermore, the 1D in-
terpolations over ξ1, ξ2 and ξ3 directions with strides of 1, k and k2 leads to additional “reshape”
operations when addressed by a single matrix multiplication interface, i.e., load/store access be-
tween registers and the L1 cache or permute operations in case SIMD is used. Also, to enable
batched BLAS calls [13] with low overhead, tens of thousands of arithmetic operations must be
combined by batching together the work of many elements, which necessarily exceeds at least the
L1 cache. In other words, aggregating enough matrix-matrix multiplications separates the individ-
ual sum-factorization sweeps far away from each other and from the quadrature-point operations,
reducing data locality and thus possibly performance in the low and medium polynomial degree
case.

In this work, we analyze possible code layouts enabling an optimizing compiler to generate
highly efficient machine code. As we will show below, very good performance is obtained by
letting the compiler perform the loop unrolling and register allocation for p ≤ 10. However, it
is essential that the loop bounds are specified by templates and the use of full SIMD vectors is
forced by intrinsics. For our implementation, vectorization is mostly transparent to the user code
by vectorized data types and operator overloading. In an implementation in C++ like the one in
deal.II, the full set of sum-factorization sweeps can be handled by three functions in transpose and
non-transpose flavors, namely a function to change the basis with the matrices

[
Sd ⊗ . . .⊗ S2 ⊗ S1

]
according to (8), by a second one to compute the derivative in the collocation space, and face-
normal interpolation from (9).

3.2 Implementation of matrix-matrix multiplications

We start the analysis by considering implementation options for the small matrix-matrix multi-
plications in sum factorization according to Eqs. (6) and (8) with operation counts from Table 3.
Several steps beyond a basic implementation with run time loop bounds are tested:

• Template parameter on loop bounds. This optimization makes loop bounds a compile-
time constant and is essential for the short loops at small polynomial degrees, as it allows the
compiler to completely unroll the loops and to re-arrange operations to improve instruction
flow. In the results denoted “templated loop bounds”, no further loop optimizations are
specified in the C++ code, with one accumulator in the innermost loop. The compiler
typically places the data input along a one-dimensional line of the data array in registers for
p < 10 and loads the entries in the 1D interpolation matrix from memory, i.e., L1 cache.

• For higher degrees, the compiler’s heuristics do not generate optimal matrix multiplication
code from the templated loops alone. Throughput is considerably improved by loop un-

11

rolling and register blocking as classically used in state-of-the-art matrix-matrix multi-
plication gemm kernels and appearing in libxsmm [18]. For the reported results, we manually
apply 4× 3, 5× 2, and 8× 1 unrolling with 12, 10 and 8 independent accumulators, with the
first number referring to the block size along the rows of the coefficient matrices S or Dco,
respectively, and the second number the block size aggregating over several lines in the array
u(e). At low degrees where not enough data streams are available for blocking, appropriate
remainder code is generated. For a practical implementation of a given size k, the unrolling
strategy with the lowest amount of remainder code is most beneficial.

• Even-odd decomposition of local interpolation. For the case that integration points
are symmetric, shape functions are symmetric, and derivatives skew-symmetric with respect
to the center of the 1D reference cell, i.e., ϕ1D

i (ξq) = ϕ1D
p+2−i(ξnq+1−q), there are only k2/2

unique entries of the k2 total entries in the 1D interpolation or derivative matrices S and
Dco. Thus, working separately on the even and odd components of the vector [35, Sec. 3.5.3],
e.g. the four components of k = 4,

u1,e = u1 + u4, u2,e = u2 + u3 u1,o = u1 − u4 u2,o = u2 − u3, (11)

reduces the operation count for a one-dimensional kernel from k(2k−1) arithmetic operations
(k multiplications, k(k − 1) fused multiply-add operations, FMAs) to

2k additions/subtractions, k multiplications, and bk(k − 2)/2c FMAs. (12)

The separate additions and subtractions are due to extracting the even and odd contributions
via (11) and similarly to transform the even and odd result of the 1D interpolation back to
the values at the physical quadrature points, wheres multiplications and FMAs are spent
in two matrix-vector products of size bk/2c × dk/2e each. Note that it is not feasible to
perform all computations in the even and odd contributions directly because quadrature-
point operations cannot be assumed to exhibit the symmetry of the shape functions, and
thus an in-place decomposition is needed for every access. Table 3 shows the number of
arithmetic operations per DoF for the 3D cell Laplacian with even-odd decomposition as
well as for a basic matrix multiplication that ignores these symmetries. The numbers in
Table 3 multiply the result of formula (12) by 12 (number of sum-factorization sweeps from
Table 1) and normalize to one DoF by division by k.

Fig. 3 displays the performance of these variants in terms of DoF/s and the arithmetic through-
put in terms of GFlop/s, using explicit vectorization by doing the same operation on each SIMD
lane (see “vectorized over cells plain” in Sec. 3.3 below). Alongside the results, the right panel of
Fig. 3 also plots the attainable GFlop/s rate for both the standard matrix-matrix multiplications
and the even-odd decomposition given the SIMD execution ports of Broadwell, which is lower than
the arithmetic peak due to the instruction mix with FMAs and separate additions and multiplica-
tions, especially for the even-odd case according to (12). The throughput of non-templated loops
is more than three times lower than that of all other options. The 8 × 1 blocked variant of the
basic matrix-matrix multiplications runs at up to 750 GFlop/s in 3D, i.e., 58% of arithmetic peak
or 61% of the attainable peak. In 2D, the 5 × 2 blocked variant reaches up to 900 GFlop/s or
75% of the attainable peak (red dotted line in right panel of Fig. 3). Especially for p > 8, the
additional register blocking clearly helps performance. For comparison, the highly tuned dgemm

implementation of the Intel MKL library (version 18.2) runs at up to 1035 GFlop/s on the same
system with matrices of 12,000 rows and columns. Note that the actual performance limit is often
a combination of the L1 cache access and instruction latencies rather than the sole throughput of
floating point units.

Despite the lower GFlop/s number for the even-odd decomposition, its DoF/s throughput is
considerably higher than all variants of the standard matrix-matrix multiplications for p > 1. This
is because around half the arithmetic operations according to Table 3 are run with an arithmetic
throughput only 10–20% lower, i.e., up to 620 GFlop/s. Even assuming dgemm level throughput
of the basic matrix-matrix multiplication at 1,000 GFlop/s, the even-odd decomposition provides
higher throughput for degrees p > 3. These experiments highlight that the GFlop/s metric is
only a secondary quantity as long as the algorithm is not fixed, subordinated to optimizing the

12

0 5 10 15 20 25

109

1010

Polynomial degree p

D
o
F

/
s

0 5 10 15 20 25
0

200

400

600

800

1,000

1,200

Fastest 2D result
Arith. limit even-odd
Arith. limit standard

Polynomial degree p

G
F

lo
p
/
s

templated, even-odd templated, blocking 4× 3 templated, blocking 5× 2

templated, blocking 8× 1 templated loop bounds non-templated loops

Figure 3: Arithmetic performance of implementation variants for matrix multiplications in sum-
factorization sweeps of cell terms for the 3D Laplacian on fully populated 2 × 14 cores Intel
Broadwell (Xeon E5-2690 v4 @ 2.9 GHz). The standard matrix-matrix multiplications are provided
in five variants, three of which use register blocking with r × s accumulators, running through r
local shape value rows in S and Dco and s layers of coefficients in u(e).

DoF/s metric. At very high degrees, p > 15, the even-odd implementation could be enhanced
by further loop unrolling/register blocking besides the natural 2 × 1 blocking for the even and
odd contributions. In the remainder of this work, the even-odd decomposition is used for all
sum-factorization sweeps, without additional register blocking. We note that the strategies below
similarly apply to the other loop variants considered in this section.

Design Choice 1 The results of this subsection have established the conclusion that it is important
to implement the sum-factorization sweeps with compile-time loop bounds based on an algorithm
that minimizes arithmetic operations by employing the collocation idea of equation (8) and an
even-odd decomposition.

3.3 Vectorization strategy

Modern high-performance CPU architectures increasingly rely on SIMD primitives as a means
to improve performance per watt. An arithmetic or load/store operation is issued by a single
instruction for nlanes data elements in parallel. Cross-lane permutations require separate instruc-
tions that may incur a performance penalty, depending on the superscalar execution capabilities
of the microarchitecture. Furthermore, loads and stores to a contiguous range of memory (packed
operation) are faster than indirect addressing with gather or scatter instructions with multiple
address generation steps.

We propose to vectorize over several cells which is an option that is simple to program. Fig. 4
shows a numbering of degrees of freedom on a Q3 basis in 2D with 4-wide vectorization which
allows for direct packed access. The lower left node values of four cells are placed adjacent in
memory. The next storage location is the second node for all four cells, and so on. In this format,
no cross-lane data exchange is needed for cell integrals and the sum-factorization sweeps can be
directly applied to the data stored in the global input vector without a separate gather step. This
scheme can straight-forwardly be extended to operations at quadrature points and also select the
most beneficial width of vectorization for a given hardware by using overloaded SIMD data types
according to [41, 42]. Partially filled SIMD lanes occur at most on a single cell batch per operator
evaluation for meshes whose number of cells is not divisible by the vectorization width. We also
apply this approach to face integrals, i.e., we process the integrals of several faces at once, rather
than SIMD-parallelizing within a face or over the two cells adjacent to a face. Besides changing
the loop over the mesh, possible disadvantages of this scheme are

• a somewhat larger spread in the indices of gather/scatter steps of face integrals,

13

. . .

. . .

. . .

0 4 8 12

16 20 24 28

32 36 40 44

48 52 56 60

1 5 9 13

17 21 25 29

33 37 41 45

49 53 57 61

2 6 10 14

18 22 26 30

34 38 42 46

50 54 58 62

3 7 11 15

19 23 27 31

35 39 43 47

51 55 59 63

64 68 72 76

80 84 88 92

96 100 104 108

112 116 120 124

66 70 74 78

82 86 90 94

98 102 106 110

114 118 122 126

e1 e2 e5

e3 e4 e7

Figure 4: Visualization of layout of degrees of freedom for vectorization over elements, using an
array-of-structure-of-array data layout.

x

z

Values in nodes

z

Values in q-points

xy

∂uh
∂x

x

∂uh
∂y

y

∂uh
∂y

z

Figure 5: Visualization of a single-dimension vectorization scheme within a single element with
degree p = 3 shown in x− z plane with y-direction orthogonal to the sketch. Shaded areas collect
the entries within a single SIMD array, involving transpose (cross-lane) operations to switch from
one order to the other. Blue arrows show the action of 1D interpolations, one arrow per sum-
factorization sweep to compute ∇ξuh.

• cases where the number of locally processed elements is less than the width of vectorization
do not see speedups, which is usually only limiting over the communication cost for more
than 500 degrees of freedom per cell [44], and

• a large working set size of the temporary arrays in sum factorization, which might exceed
the capacity of caches and thus slow down execution.

These disadvantages can be avoided when vectorizing the work done on a single cell instead. On
the other hand, such strategies often must use different implementations for different sizes of the
SIMD vectors [29]. Several strategies are conceivable, in particluar the reference [49] proposes to
vectorize over gradient components. That strategy is, however, intimately tied to the representation
(7). Here, we evaluate two flavors compatible with Design Choice 1 for comparison for the special
case of 4-wide SIMD.

A first variant is to combine the values along a single direction in a SIMD array. We exemplify
a variant in Fig. 5 where SIMD lanes collect data subject to the same 1D interpolation, i.e., no
lanes are crossed during interpolation. Instead, three transpose operations of length kd in the
spirit of array-of-struct into struct-of-array conversions are needed to arrange the data properly
for a particular stride in 1D interpolations along the various directions. In case the number of
1D degrees of freedom is not a multiple of the SIMD width, the last SIMD array is filled up with

Figure 6: Visualization of vectorization scheme over quadrants within a single element for poly-
nomial degree p = 3. Shaded areas of the same color collect the entries within a single SIMD
array.

14

0 5 10 15 20 25
0

200

400

600

800

Polynomial degree p

G
F

lo
p
/
s

2D Laplacian

0 5 10 15 20 25
0

200

400

600

800

Polynomial degree p

G
F

lo
p
/
s

3D Laplacian

vectorized over cells tiled vectorized over cells plain vectorized within cell, quadrant

vect. within cell, single-direction auto-vectorization only

Figure 7: Comparison of throughput of local cell kernels on fully populated 2 × 14 cores of Intel
Broadwell (Xeon E5-2690 v4) for cell integrals with respect to vectorization for Laplacian in 2D
and 3D.

dummy values, which leads to distinct drops in performance.
A second variant for vectorization within a cell is to embed the lane-crossing within the 1D

interpolations. A quadrant-based layout as displayed in Fig. 6 combines well with the even-odd
decomposition. Here, a 4-wide SIMD lane contains the entries starting from the four corner degrees
of freedom. Each interpolation then computes the even ui,e and odd parts ui,o, e.g. in x-direction,
within a lane by

[u1,e u1,o u3,e u3,o] = [u2 u1 u4 u3] +
[
1 −1 1 −1

]
.* [u1 u2 u3 u4] .

Here, the first array on the right hand side is obtained by a permutation of the input order
[u1 u2 u3 u4] representing e.g. the values in the corners according to Fig. 6 in the SIMD array (using
the vpermilpd assembly command in this example), and the addition and subtraction in different
lanes is realized by an FMA with multiplication of the respective sign. For the multiplication by S
and Dco, a dk/2e×dk/2e matrix containing coefficients with odd and even parts in the appropriate
lanes is used. Finally, the end result is obtained by an additional permutation and FMA. This
option exactly fills all 4-wide SIMD lanes for all odd degrees p (i.e., k = p + 1 even), making it
more flexible than the single-line vectorization. For the full interpolation for the 3D Laplacian, the
number of instructions on the permute/shuffle port of Broadwell is similar for the single-direction
vectorization and the quadrant vectorization.

The performance of the three vectorization variants, implemented through wrappers around
intrinsics, is shown in Fig. 7. The floating point performance is related to operation counts of
the even-odd decomposition according to Table 3 for all variants, without counting the excess
operations due to partially filled SIMD lanes for vectorization within a cell. Vectorization over
several cells shows the best performance and an approximately constant arithmetic throughput
for all p, whereas vectorization within cells shows a distinct difference in GFflop/s throughput
depending on the occupation of the SIMD lanes, with lower performance for even degrees and
especially for p = 4, 8, 12, 16, 20, 24 for the single-direction vectorization. The quadrant-based
vectorization performs better than the single-direction variant and is able to almost reach the
performance of vectorization over cells for odd degrees p.

The figure also contains data points with automatic vectorization as exploited by the compiler
with restrict annotations to arrays to help in the aliasing analysis. Automatic vectorization
is not competitive at less than half the throughput (similar numbers have been obtained with the
Intel compiler). This is because only 5% to at most 25% of arithmetic instructions are done in
packed form, with the best result for p = 7 (i.e., k = 8).

In order to reduce the cache pressure of the sum-factorization sweeps with vectorization over
cells, Algorithm 3 proposes to merge loops over x and y within a single loop over the last direction z

15

ALGORITHM 3: Loop tiling for sum factorization, exemplified for the 3D cell Laplacian

• for iz = 0, . . . , k − 1

– Apply S1 along x for k2 points in xy plane with offset izk
2 and stride 1

– Apply S2 along y for k2 points in xy plane with offset izk
2 and stride k

• for i = 0, . . . , k2 − 1

– Apply S3 along z for k points with offset i and stride k2

– Apply Dco
3 along z for k points with offset i and stride k2

• for iz = 0, . . . , k − 1

– Apply Dco
2 along y for k2 points with offset izk

2

– for iy = 0, . . . , k − 1

∗ Apply Dco
1 along x for k points with offset izk

2 + iyk

∗ Laplacian at k quadrature points along x with offset izk
2 + iyk according to Alg. 1, (ii)(c)

∗ Apply (Dco
1)T (integration) along x for k points with offset izk

2 + iyk

– Apply (Dco
2)T along y for k2 points with offset izk

2; sum into result from x direction

• for i = 0, . . . , k2 − 1

– Apply (Dco
3)T along z for k points with offset i; sum into results from x, y directions

– Apply ST
3 along z for k points with offset i and stride k2

• for iz = 0, . . . , k − 1

– Apply ST
2 along y for k2 points in xy plane with offset izk

2 and stride k

– Apply ST
1 along x for k2 points in xy plane with offset izk

2 and stride 1

(applied to step (ii)(b) and (ii)(d) in Algorithms 1 and 2). The corresponding data point is marked
as “vectorized over cells tiled” in Fig. 7. As opposed to the inner register blocking explored in
Sec. 3.2, this tiling is across different sum-factorization sweeps. The options for register blocking
(which is not used here) are limited somewhat due to the lower dimensionality in the inner loop
dimensions. In 2D, performance is similar apart from slight code generation differences by the
compiler. For low degrees in 3D, performance is slightly reduced due to latency effects,2 but it is
higher for higher degrees.

Further details on the vectorization variants are provided by a cache access analysis. Fig. 8
shows measurements of the actual data transfer (read + evict) between the various cache levels
of Intel Broadwell Xeon with 4-wide vectorization extracted from hardware performance counters
with the likwid tool [59] with likwid-perfctr -C 0-27 -m -g CACHES. Raising the polynomial
degree increases the size of the temporary arrays holding intermediate results of sum-factorization
sweeps. For vectorization over cells, degrees larger than 5 spill to the L2 cache and degrees larger
than 10 spill to the L3 cache. The tiled algorithm approximately halves the cache access because
data is aggregated along 2D planes and only 5 instead of 13 outer loops are run. Assuming perfect
caching of inner layers and the coefficients, the tiled algorithm performs 7 read and 7 write accesses
per DoF rather than 17 reads and 15 writes for the untiled one. An apparent outlier in Fig. 8 is
degree 15 with k = 16 on 163 degrees of freedom per cell which is affected by cache associativity
limitations due to access to 64 entries at a distance of exactly 8 kiB = 256 × 32[Bytes]. For
vectorization within cells, the active set is smaller by a factor of four approximately. Spilling to
L2 cache only becomes significant at degree 8 and to L3 cache for degrees larger than 15.

The reduced cache pressure when vectorizing within cells does not materialize in better per-
formance, though. This is because more transfer from outer level caches comes along with more
arithmetic due to the linear complexity O(k) per DoF, offsetting the reduced throughput and in-
creased latency of outer level caches. For example, the L2 cache of Broadwell can sustain around

2The tiled algorithm is up to 8% faster with 2-way hyperthreading enabled at 640 GFlop/s on p = 2 or 710
GFlop/s for p = 8. For the plain sum-factorization sweeps, performance is not significantly increased with hyper-
threading.

16

0 5 10 15 20 25
0

100

200

300

400

Polynomial degree p

B
y
te

/
D

o
F

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

Polynomial degree p

B
y
te

/
F

lo
p

vectorized over cells tiled L1 ↔ L2 transfer L2 ↔ L3 transfer L3 ↔ RAM transfer

vectorized over cells plain L1 ↔ L2 transfer L2 ↔ L3 transfer L3 ↔ RAM transfer

vectorized within cell quadrant L1 ↔ L2 transfer L2 ↔ L3 transfer L3 ↔ RAM transfer

Figure 8: Memory access on various levels of the memory hierarchy for the compute part of the
cell integral of the 3D Laplacian, listed as Bytes/DoF (left panel) and Bytes/Flop (right panel).

30 Bytes/cycle compared to 16 peak Flop/cycle [26]. According to the right panel of Fig. 8, the
“vectorized over cells plain” data point at k = 8 with 2.67 Byte/Flop runs at a flop rate around half
of the arithmetic peak, so L2 bandwidth is not a hard limit, even though a relaxation of the cache
access as provided by the tiling indeed leads to slightly better performance. Likewise, throughput
of the L3 cache is around half that of L2 cache in recent Intel architectures, which again fits well
with the access patterns in sum factorization according to Fig. 8 (dashed lines).

Note that the cache behavior is intimately linked with the architecture. For example, the KNL
or Skylake-SP microarchitectures with 8-wide vectorization and faster L1 caches do indeed push
the L2 cache interface to its limit, and the throughput is considerably higher for the tiled algorithm
than for the plain sum-factorization sweeps. Likewise, the overall capacity of caches on KNL (1MB
L2 cache for two cores) is not enough to hold all temporary arrays for degrees beyond 11 in 3D,
spilling to memory.

Design Choice 2 From the results of this subsection, we conclude that vectorization over cells
yields best performance. Cache pressure can be reduced by using tiling over the sum factorization
sweeps.

We note that the performance reported by [49, 29] indeed suffers from a performance deficit by
a factor of three to four due to the higher operation count of their algorithm tied to a particular
vectorization choice, reflected in the final throughput of operator evaluation compared to our results
in Sec. 4 below.

3.4 Compute performance on CPUs and Xeon Phi

We now analyze the throughput of the cell integrals for the Laplacian, implemented with even-
odd decomposition, loop tiling and templated loop bounds, on the three Intel processors listed in
Table 2. The result is shown in Fig. 9. On Haswell, 320–340 GFlop/s are recorded in both 2D
and 3D for degrees p around 10. This represents 40–50% of the arithmetic peak or up to 70% of
the possible arithmetic performance for the given instruction mix, similar to Broadwell. Similar
GFlop/s rates are also recorded for mass matrices (at 2× the DoF/s throughput) and advection
(at 1.5× the DoF/s throughput).

The performance on the KNL many-core processor is less regular. In 3D, a distinct decrease
in arithmetic performance is observed for p ≈ 11 where the local data arrays exhaust the 512 kiB
of L2 cache per core and an increasingly larger part of the temporary arrays for sum-factorization
sweeps needs to be fetched from the MCDRAM memory. Note that performance for p > 10 is only

17

0 5 10 15 20 25

109

1010

Polynomial degree p

D
o
F

/
s

0 5 10 15 20 25
0

200

400

600

800

1,000

1,200

Polynomial degree p

G
F

lo
p
/
s

2D, Haswell 2D, Broadwell 28T 2D, Broadwell 56T 2D, KNL 64T 2D, KNL 128T

3D, Haswell 3D, Broadwell 28T 3D, Broadwell 56T 3D, KNL 64T 3D, KNL 128T

Figure 9: Throughput of local cell integrals of Laplacian in 2D and 3D on 2 × 8 core Intel Xeon
E5-2630 v3 (Haswell), 2× 14 core Intel Xeon E5-2690 v4 (Broadwell), and 64 core Intel Xeon Phi
7210 (KNL). Broadwell and KNL are run with one thread per core (28T/64T) as well as two-way
hyperthreading (56T/128T).

around 80 GFlop/s when binding the kernel to the slow DDR4 RAM with numactl --membind=0

rather than the fast 16 GB of MCDRAM [27]. The tensor product tiling of Algorithm 3 is more
important on KNL than on the CPUs. We reach up to 1.3 TFlop/s for low to moderate polynomial
degrees or 57% of the arithmetic peak, which is extremely good given the simplified hardware of the
KNL microarchitecture. This number can be compared to 56% of peak performance (720 GFlop/s)
recorded on Broadwell with 2-way simultaneous multithreading (hyperthreading) for degree p = 8
in 2D and 3D. For low degrees p ≤ 8 in 3D and for p ≤ 19 in 2D, 2-way hyperthreading (128
threads) increases throughput due to latency hiding, but the picture is reversed for higher degrees
when too much data is in flight; a similar behavior regarding hyperthreading is also observed on
Broadwell. For the remaining experiments, KNL and Broadwell are run with 2-way hyperthreading
unless noted otherwise, whereas Haswell has hyperthreading disabled in all experiments.

3.5 Cell and face integrals on CPUs and Xeon Phi

Finally, we look at cell and face integrals together. For efficient evaluation of face integrals, we use a
nodal basis in the nodes of the k-point Gauss–Lobatto–Legendre quadrature formula for advection,
i.e., one node placed at each of the 1D interval end points. This allows to directly pick the kd−1 node
values on the face according to Fig. 1 without interpolation normal to the face over all kd points.
Likewise, a Hermite-type basis is chosen for the Laplacian (2) according to Sec. 2.3. Gaussian
quadrature on kd and kd−1 points for cells and faces, respectively, is used. In analogy to Table 3
for cell operations, Table 4 lists the number of arithmetic operations per degree of freedom, both in
the variant with compact face integrals and with element-wise face integrals using the optimization
of the basis change for the interior portion of the face interpolations according to Equation (10).
The final operation counts are similar for the two variants, with the compact face integral variant
involving somewhat more work in face sum-factorization sweeps, and the element-wise face integrals
involving more work at the face quadrature points.

Fig. 10 presents the throughput for the “compact face integrals” variant on the three hardware
systems of Table 2 for a benchmark representing the artificial case of periodic boundary conditions
within the same cell that can directly use the vectorized data storage according to Fig. 4 in order
to ignore the cost of indirect addressing. The data in Fig. 10 confirm the performance results from
the cell integrals in the previous figures, with up to 650 GFlop/s on Broadwell and 1030 GFlop/s
on KNL. As can be seen by comparing Table 4 with the sum of the second and third data rows of

18

Table 4: Number of arithmetic operations per degree of freedom (Flop/DoF) for evaluating the cell
and face integrals of advection and the Laplacian with even-odd decomposition in sum-factorization
sweeps. Both the variant of compact face integrals according to Algorithm 1 as well as the element-
wise face integrals of Algorithm 2 with face interpolations of the interior shared with cell integrals
according to (10) are listed.

polynomial degree p = k − 1 1 2 3 4 5 6 7 8 9 10
2D advection, compact face integral 46 38 50 49 59 61 69 72 80 84
2D advection, element-wise face int. 57 49 59 59 68 70 78 81 89 93
3D advection, compact face integral 90 70 90 88 102 105 118 122 134 139
3D advection, element-wise face int. 86 72 88 88 101 104 117 121 133 139
2D Laplacian, compact face integral 109 83 98 94 106 106 117 120 131 135
2D Laplacian, element-wise face int. 114 95 111 108 121 122 134 137 148 152
3D Laplacian, compact face integral 238 177 206 191 212 209 226 228 244 249
3D Laplacian, element-wise face int. 236 183 211 199 219 217 234 238 254 259

Table 3, face integrals contribute with more than two thirds of the arithmetic work of the Laplacian
up to cubic polynomials. Since the cost of face integrals scales as O(1) (sum-factorization sweeps)
and O(1/k) (operations at quadrature points), an approximately constant DoF/s throughput at
low degrees 2 ≤ p ≤ 6 is observed. For the 3D Laplacian, a throughput of more than 4 · 109

degrees of freedom per second on KNL for 1 ≤ p ≤ 7 and more than 2.6 · 109 degrees of freedom
on Broadwell for 3 ≤ p ≤ 9 can be reached. For the same in-cache test of the “element-wise face
integrals” of Algorithm 2, GFlop/s numbers are very close to the results from Fig. 10 and not
reported separately. According to Table 4, the DoF/s throughput between Algorithms 1 and 2 is
also very similar.

4 Data access patterns and parallelization

In this section, we analyze the performance of the operator evaluation including the actual data
access patterns of DG cell and face integrals into the input and output vectors x and y of (4),
as well as parallelization. As in Sec. 3, we assume constant factors det(J(e))J−1

(e) c (advection)

det(J(e))J−1
(e) J

−T
(e) (Laplacian) at all quadrature points, i.e., only d or d(d + 1)/2 data points are

needed for the full mesh, which corresponds to evaluating constant-coefficient operators on an
affine domain.

To exploit the parallelism of multi-core processors that are connected by high-speed networks in
modern petascale machines, two parallelization concepts are commonly used, the shared-memory
paradigm of OpenMP/pthreads and the distributed memory paradigm implemented by the mes-
sage passing interface (MPI). Increasingly, a mixture of both is applied, separating intranode and
internode parallelism, respectively. MPI parallelism for finite elements usually relies on domain
decomposition to partition the cells in the mesh among the processors. For the exchange of in-
formation between subdomains, the locally owned subdomain is augmented by ghost elements on
each MPI rank. In our implementation, we assume one layer of ghost elements around the owned
cells, supported by the massively parallel algorithm from [6]. The particular form of the mesh
partitioning is immaterial, as long as the information provided by the mesh infrastructure allows
for a unique identification of the degrees of freedom in the locally owned and ghosted cells.

For shared-memory parallelism, loops over the mesh entities are split across the participating
threads. Algorithm 2 computing face integrals element-wise allows for a straight-forward use of
shared memory, since all of a cell’s integrals are computed without interference from other threads.
We consider both OpenMP and MPI parallelization for this variant. For the compact face integral
variant in Algorithm 1, however, some coordination is necessary to avoid race conditions when
integrals from several faces go to the same vector entries. This is because face integrals are
scheduled freely and all faces of an element could be scheduled to different threads (and thus
conflict) in the worst case. As these synchronization models are not yet well-developed in the finite
element community, only MPI is considered as a shared memory model for Algorithm 1.

19

0 5 10 15 20 25

109

1010

Polynomial degree p

D
o
F

/
s

advection

0 5 10 15 20 25
0

200

400

600

800

1,000

Polynomial degree p

G
F

lo
p
/
s

advection

0 5 10 15 20 25

109

1010

Polynomial degree p

D
o
F

/
s

Laplacian

0 5 10 15 20 25
0

200

400

600

800

1,000

Polynomial degree p

G
F

lo
p
/
s

Laplacian

2D, 2× 8 C Haswell 2D, 2× 14 C Broadwell 2D, 64 C KNL

3D, 2× 8 C Haswell 3D, 2× 14 C Broadwell 3D, 64 C KNL

Figure 10: Throughput of cell and face integrals together, variant “compact face integrals”, for
advection and Laplacian in 2D and 3D without vector access on 2× 8 core Intel Xeon E5-2630 v3
(Haswell), 2× 14 core Intel Xeon E5-2690 v4 (Broadwell) and 64 core Intel Xeon Phi 7210 (KNL).
Broadwell and KNL are run with 2-way hyperthreading.

20

Table 5: Arithmetic intensity in Flop/Byte for cell integral of 3D Laplacian with vector access of
24 Bytes per DoF, assuming a global affine geometry.

polynomial degree p = k − 1 1 2 3 4 5 6 7 8 9 10
Flop/Byte for 3D cell Laplacian 2.2 2.6 3.2 3.7 4.2 5.7 5.2 5.7 6.2 6.7

0 5 10 15 20 25

109

1010

112 GB/s

450 GB/s

Polynomial degree p

D
o
F

/
s

2D

0 5 10 15 20 25

109

1010

95 GB/s

112 GB/s

450 GB/s

Polynomial degree p
D

o
F

/
s

3D

Haswell 16 cores Broadwell 56 threads KNL 128 threads

Figure 11: Performance of cell integrals of Laplacian in 2D and 3D including the global vector access
on 2× 8 core Intel Xeon E5-2630 v3 (Haswell), 2× 14 core Intel Xeon E5-2690 v4 (Broadwell) and
64 core Intel Xeon Phi 7210 (KNL). Broadwell and KNL use two-way hyperthreading. The solid
lines indicate the computational throughput according to Fig. 9 and the dashed lines the memory
bandwidth with stream triad at two reads, one write, matching the data access in this benchmark.

4.1 Vector access analysis for cell integrals only

We first consider the access to global input and output vectors, running the full phase (ii) of
Algorithm 1 on

⌊
5 · 107/kd

⌋
cells, representing vectors of about 50 million unknowns. The compute

part corresponds to the experiment in Fig. 9, i.e., using even-odd decomposition and vectorization
over cells with sum factorization tiling according to Algorithm 3. Due to vectorization over several
cells, the cell operations are performed for a batch of SIMD WIDTH cells in one loop iteration of
the algorithm. Indices are laid out in interleaved form according to Fig. 4, i.e., sum factorization
can directly operate on the respective sections of the vectors. The test is repeated 500 times and
arithmetic averages are reported according to the procedure in Sec. 3, with standard deviations
below 2%. The vector size eliminates cache effects and results in one vector read for the input
vector, one vector write for the output vector, and one vector read operation on the output vector
due to the read-for-ownership memory access pattern [17]. Since no interactions with neighbors
appear for this test case, the memory access is of streaming character, alternating with large blocks
of computations on cached data in steps (ii)(b)–(ii)(d) of Algorithm 1. The performance of this
test case is relevant in case cell and face integrals are done in separate loops, for applying DG mass
matrices or inverse mass matrices [56, 15], or for continuous finite element algorithms with DG
data storage, as e.g. used by Nek5000 [16].

Table 5 shows the arithmetic intensity for 1 ≤ p ≤ 10, computed as the ratio of the arithmetic
operations in Table 3 and the vector access of 24 Bytes/DoF. By comparing the machine balances
of Haswell, Broadwell, and KNL at 7.0, 11.6 and 5.0 Flop/Byte, respectively, with the arithmetic
intensities of the 3D Laplacian from Table 5 and further taking into account that an arithmetic
efficiency of around 50% of peak can be achieved due to local instruction mix and core limitations
as elaborated in Sec. 3, the roofline model [61] predicts that degrees p ≤ 4 are memory-limited
on Haswell, p ≤ 9 are memory-limited on Broadwell, and p = 1 on KNL, whereas higher degrees
are core-limited. This matches well with the computational results in Fig. 11. The results are
presented together with the two performance limits, namely the memory bandwidth of the vector
access as measured by a STREAM triad test (95 GB/s, 112 GB/s, and 450 GB/s for Haswell,
Broadwell, and KNL, respectively) and the compute throughput from Fig. 9. A strong impact
of the memory bandwidth on throughput especially in 2D and for low and medium polynomial

21

degrees k ≤ 10 can be observed. The gap at intermediate degrees is due to effects not captured
by the simple distinction between main memory bandwidth limit and arithmetic performance in a
roofline fashion, but could be explained by a more detailed representation of the cache hierarchy
such as the execution cache memory model [17]. For example, KNL reaches around 900 GFlop/s for
polynomial degrees between 5 and 9 in 3D, around 15% less than what is reported for the in-cache
compute of Sec. 3.4. Apart from these effects, the envelope established by in-core performance and
memory bandwidth closely describes the achieved performance.

Since the arithmetic intensity of 3D cell integrals at 1 ≤ p ≤ 10 is between 2 to 7 Flop/Byte,
close to the machine balance of today’s hardware, it can be concluded that optimal execution of
arithmetic work must be combined with memory access patterns that do not waste bandwidth. As
has been proposed in Algorithm 1(ii), all operations belonging to the cell integrals must be done
within a single loop through the vector data such that data loaded to caches can be reused. This
includes a possible copy of the vector portions u(e) into formats more amenable to vectorization
or basis change operations. A separate global loop over the mesh would increase the memory
traffic by several times and lower throughput significantly unless all vector data fits into the last-
level caches. Even though there are phases with several tens of thousands of instructions without
memory access, close to full memory utilization can be achieved thanks to hardware prefetching
that eagerly pre-loads the vector entries before the actual read operation is executed on all three
architectures. Note that no software prefetching is used in our experiment. This result shows
that the memory-intensive operations in the vector access can indeed be mixed with the compute-
dominated interpolation and integration steps. Hardware performance counter verify that the data
that flows between the phases (a)–(e) of the algorithm remains in cache memory according to the
results of Fig. 8.

The present experiment and the roofline model also predict what will happen once face integrals
are added to the picture: The combined arithmetic cost of cell and face integrals in Table 4 with
a single access to the source and destination vectors gives rise to arithmetic intensities around 7
to 10 Flop/Byte for the 3D Laplacian. For example on Broadwell, the compute throughput of
at most 3 GDoF/s for the 3D Laplacian and 7 GDoF/s for 3D advection according to Fig. 10
is at a comparable level as the memory throughput of two loads and one store at around 4.7
GDoF/s. Thus, vector entries loaded to caches for cell integrals that are re-used for face integrals
promise significantly better performance as two sweeps through data, which would at best achieve
2.3 GDoF/s. This can be achieved by interleaving the cell loop (ii) with the inner face loop (iii)
and the boundary face loop (iv) in Algorithm 1. Algorithm 2 enforces this locality by design.
For curved geometries where separate geometric tensors are loaded at each quadrature point, the
Flop/Byte ratios are lower and a reduction in memory transfer for the vector access as given by
the interleaved loop execution can improve performance also on machines with high-bandwidth
memory such as KNL, albeit not by integer factors.

Note that the importance of memory transfer is the result of optimizing the compute phase
first with the aim to keep the arithmetic work to a minimum.

4.2 Vector access for face integrals with vectorization over cells

Since all DoF are local to a cell in DG without continuity constraints that link to neighboring cells,
a single index per cell suffices to represent the local–global index translation even on unstructured
meshes. Furthermore, the index layout can be set up as exemplified in Fig. 4 to ensure direct
SIMD array access on cells. However, this setup inevitably leads to some indirect access to vector
data in face integrals. For the element-based face integrals of Algorithm 2, access to u+ requires
a gather operation. For compact face integrals, the role of u− and u+ is arbitrary, and thus,
indirect access can appear on either side. The decision between a fast contiguous read path and
a slower gather/scatter path depends on the mesh and is made at run time by conditional jumps.
Furthermore, run-time decisions are involved for different local face numbers within the cell from
both sides u− and u+ (e.g. for face-normal interpolation) or for faces that are not in the standard
orientation with respect to the cell’s local coordinate system, an unavoidable case on general 3D
meshes as opposed to the 2D case [2]. This dispatch overhead can be kept small by organizing
the vectorization such that (most) decisions are the same for all SIMD lanes. For compact face
integrals, the two aims of keeping decisions uniform across SIMD lanes (e.g. the imposition of
boundary conditions) and of performing face integrals after cell integrals to ensure “set” semantics

22

processor p1

processor p2

processor p3

e1 e2

e3 e4

e5 e6

e7 e8

Figure 12: When three processors meet at a corner, it is possible that one processor cannot have
the same stride on all SIMD lanes in its ghosted cells.

in cell integrals according to Algorithm 1 imply that some faces involve indirect access on both
sides. The optimization of this process is beyond the scope of this work, and a greedy approach
is used in the code available through the deal.II library and the experiments below. As a result,
faces with indirect addressing on both sides are about as many as there are faces on subdomain
interfaces with MPI.

Besides one 32-bit integer for the vector index for each SIMD lane, one 8-bit integer is needed
for identifying the local face number, one 8-bit integer for identifying a possible face on a hanging
node (for 2:1 mesh refinement ratio), and one 8-bit integer for the face orientation. Compared to
the access of data, e.g. 4 values for each SIMD lane already for p = 1, the memory consumption
for this metadata is well below 10% of all data access on the face, often below 2%. Following
the mathematical formulas (9), we keep the number of rearrangements with different coordinate
systems in different SIMD lanes to a minimum by ensuring that the normal derivative component
to a face is always the last component in the local coordinate system, and arrange geometry terms
such as the Jacobian J(e) appropriately.

For the indirect gather/scatter access on faces, e.g. the faces on the exterior right of the cells
{e1, e2, e3, e4} in Fig. 4, extraction of data along the vertical axis accesses {1, 64, 3, 66, 17, 80, 19, 82, . . .}.
With a gather operation and index offsets {1, 64, 3, 66}, the data values on the cells can be accessed
with the same offset, e.g. SIMD WIDTH * local offset = 4 * 4.

In an MPI parallelization where a single layer of ghost cells is added around the locally owned
cells, however, a third case besides contiguous access and gather with the same stride must be
considered. As an example, consider the case of SIMD WIDTH=2 for a cell at the corner with two
additional processors according to Fig. 12. Further, assume that the face e2 ∩ e4 is processed by
processor p2 and face e2 ∩ e5 by p3, respectively. If the indices on p1 are interleaved between e1

and e2, this interleaved access is also possible on p2. However, p3 has no knowledge of e1, so the
ghost indices transformed to the MPI-local index space on p3 appear to have stride 1 for e2. This
case is handled by scalar data access to each SIMD lane in our implementation.

4.3 Partitioning of faces for compact face integrals with MPI paralleliza-
tion

For element-wise face integrals, ghost data from all cells around the locally owned cells must be
imported in the MPI setting. For compact face integrals, all integrals associated to a face are
computed at the same time. It must then be decided how to divide the integrals on faces between
different MPI processes. The import of ghost data from the source vector in Algorithm 1 only
involves half as much data as Algorithm 2, which is however compensated by an equivalent send
operation of the resulting face integrals on faces to ghosted cells back to the owner. Assuming
a balanced domain decomposition of cells, we propose to split face integrals pairwise on each
interface pi ∩ pj of two processes pi and pj to reach balanced work on faces. We set the following
two restrictions:

• If the set of shared faces Fij along the interface between pi and pj contains two faces fa
and fb referring to a single cell e from processor pi, we schedule both integrals on pj . This
approach reduces the amount of data sent, since the data from e sent from pi to pj is used
for two (or more) face integrals.

• If a face f ∈ Fij is on an interface of different mesh levels (hanging node) where pi is on the
coarser side and pj on the refined side, we schedule the integral on pj . If pj holds all children,

23

Table 6: Description of operator evaluation test case on an affine geometry in 2D and 3D.
two space dimensions three space dimensions

mesh p = 1, 2: 20482; p = 3 . . . 5: 10242 p = 1, 2: 1283; p = 3 . . . 5: 643

p = 6 . . . 11: 5122; p = 12 . . . 23: 2562 p = 6 . . . 11: 323; p = 12 . . . 23: 163

number of DoF 11.1M. . . 37.7M 9.0M. . . 56.6M
property globally affine, cube topology, Morton ordering of cells, including MPI partitioning

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

Polynomial degree p

G
D

o
F

/
s

advection slim

advection full

Laplacian slim

Laplacian full

Figure 13: Compact face integrals: Influence of the MPI communication pattern (full cells vs. slim)
on throughput of cell and face integrals as a function of the polynomial degree on 28 Broadwell
cores.

which is the most common case, we again reduce the data sent.

Since the number of cells is balanced and each processor gets half the faces with each of its
neighbors, the faces are also globally split evenly. This algorithm involves up to twice the number
of messages than what would be theoretically necessary. However, it is easier and cheaper to set
up than balancing faces more globally. We observed experimentally that in all our setups, the
number of locally computed faces does not differ by more than up to a few dozens of faces among
all MPI ranks, more or less independent of the number of cells in the mesh (which is typically a
few thousands or more).

4.4 Minimal ghost data exchange

Following the layout described in [41], the ghost exchange is done by dedicated vector types that
provide additional space beyond the locally owned range to fit the ghost data. Access to ghosted
vector entries occurs with the same index space as the owned data but a larger index value. Outside
the integration loops, such as in time steppers or linear solvers, only the vector data of the locally
owned range (one-to-one map over processors) is exposed and ghost data is ignored. Avoiding a
deep copy of the full vector into a ghosted one is beneficial because we aim for performance close
to the limits of vector access, rendering a copy of the whole vector together with ghosts inefficient.

Fig. 13 lists the throughput of the matrix-vector product including the MPI exchange with the
compact face algorithm from Algorithm 1. To ensure comparable vector sizes, we vary the mesh
with the polynomial degree according to Table 6. Fig. 13 reveals sudden drops in performance at
those polynomial degrees where the mesh size is reduced. This decreases the volume-to-surface
ratio for the next smaller mesh level and a larger proportion of cells must be exchanged. For p ≤ 2,
around 4% of cells have remote neighbors, whereas the number is more than 80% at p ≥ 24. The
default MPI ghost exchange is labeled “full” in the figure and exchanges all degrees of freedom on
each remote cell. For 6 ≤ p ≤ 11, the ghost exchange consumes more than 40% of the operator
evaluation time for the Laplacian in 3D. We have verified that this part indeed runs at full memory
speed of 110 GB/s on Broadwell, so the issue is a memory bandwidth issue due to an excessive
number of ghost entries.

The data exchange for face integrals can be reduced by observing that the face-normal inter-
polation will only touch some of the degrees of freedom of a cell for certain bases and derivatives,

24

namely those where Sf and possibly Df of Eq. (9) are non-zero. For the example of advection on
the configuration of Fig. 1, only 6 out of 36 DoF are needed for evaluating integrals with function
values on faces. For a Hermite-like basis, two layers of 2kd−1 points are necessary as illustrated in
Fig. 2. We propose to pack/unpack and communicate only those vector entries where the neigh-
bor’s Sf or Df matrix entries of the respective cell are nonzero in Algorithm 4. The algorithm
keeps the integration and vector access routines agnostic of this fact: we provide storage for all
the degrees of freedom of a cell but only populate some of the entries with data. Copying the slim
indices adds another indirection to extract the DoF on the cell’s surface in the “unpack” stage
of update ghost values and in the “pack” stage of compress, respectively. The code pattern
is analogous to the selection of some entries among the locally owned DoF, so existing imple-
mentations can be readily extended. Note that Algorithm 4 cannot be directly implemented via
general-purpose vector classes with MPI facilities such as PETSc [5] or Trilinos’ Epetra and Tpetra
[19, 20] without deep vector copies, which is why we use our own specialized implementation inside
deal.II that is interlinked with the needs of the integrators.

ALGORITHM 4: Slim MPI communication

• Required input:

– Type of basis: nodal at boundary, Hermite-type, generic.

– Which terms are required for inner face integrals (only cell terms, values on face, values and
first derivatives on face)?

• update ghost values fills the ghosted data, compress accumulates integral contributions to the
respective entries at the owner. The communication is established according to the following three
options:

– If no face integrals, do nothing in DG (or cell-only ghost exchange for continuous elements).

– If only face values and basis nodal at boundary, send only one single layer of kd−1 vector
entries per cell at the interface.

– If only up to first derivatives on face and Hermite-type basis, send only the two layers
representing values and normal derivatives with 2kd−1 entries per cell at the interface.

Fig. 13 shows that the slim MPI communication of Algorithm 4 improves throughput by more
than 30% for the Laplacian with p = 6 and by almost 80% for the advection operator with p = 6,
both involving 8.9 million unknowns. The drops in throughput when going to smaller meshes
with larger surfaces at processor boundaries are still visible for the slim implementation but less
pronounced.

The cost of MPI communication is explicitly listed in a breakdown of times of the various
algorithmic components in the DG operator evaluation in Fig. 14. The small experiment uses one
mesh level less than what is reported in Table 6 (i.e., one eighth the number of cells), whereas the
large experiments uses 16 times as many cells. Timings are based on the RDTSC timer register of
Intel processors placed in inner loops. To show uncertainties and influence of timers on out-of-order
execution that are more than 10% at p < 4, we also include reference runs with disabled timers,
displayed by diamonds. The results show that MPI communication (memcpy and pack/unpack) is
responsible for around a third of run time for 3 ≤ p ≤ 11 for problem sizes between 1 and 7.1
million DoF. Sum-factorization sweeps on cells of complexity O(k) per DoF get more expensive
for higher degrees according to Fig. 10.

Since the above experiments are run in shared memory, communication is not overlapped with
computation, as opposed to communication over an Infiniband-like fabric that indeed is overlapped
with our implementation.

4.5 Performance on Broadwell and Knights Landing

Fig. 15 shows our main result, the performance with compact face integrals and element-wise face
integrals for the DG discretization of the advection equation (1) and the DG discretization of the
Laplacian (2), including the full code with MPI data exchange. Results are recorded with the
algorithmic setup analyzed in Sec. 3.5 for an affine-mesh case according to Table 6. The test is

25

1 5 9 13 17 21 25
0

0.5

1

1.5

2

Polynomial degree p

s/
G

D
o
F

1M to 7.1M DoF

1 5 9 13 17 21 25
0

0.5

1

1.5

2

Polynomial degree p

s/
G

D
o
F

160M to 1.1B DoF

Bookkeeping and control logic Local computation cells Vector access face integrals

Local computation faces Local operation load imbalance MPI comm.: (un)pack + memcpy

Compute without timers

Figure 14: Breakdown of computation times into different phases for the 3D Laplacian for a small
sized experiment at 1–7.1 million DoF and a large experiment at 128 million to 900 million DoF.
The timings have been recorded for compact face integrals and with slim MPI communication on
28 Broadwell cores and rescaled to the time for a fixed fictive size of 1 billion (109) degrees of
freedom.

repeated 500 times and the average is reported. As in the other tests, standard deviations between
different runs are below 5%. We compare the actually achieved performance (lines with marks)
to the in-cache performance limit established in Fig. 10 and the memory bandwidth limit. The
3D MPI test cases on Broadwell are run with 28 ranks, i.e., without hyperthreading, whereas all
2D cases as well as the OpenMP cases are run with hyperthreading, which represents the better
performing option in either case for all p ≤ 15. On KNL, 2-way hyperthreading is fastest in both
cases for p ≤ 10 and used throughout.

The results in Fig. 15 show that the element-wise face integrals of Algorithm 2 deliver consis-
tently higher performance than the compact face integrals of Algorithm 1. This result suggests
that the explicit collection of integral values within an element with a single write to the global
data structure is superior to synchronizing over the result vector (where caches need to make sure
that data is properly handled). In an analysis using the likwid tool for hardware performance
counters [59], we observed that the compact face integrals access more vector data not only in the
ghost transfer (where one additional write/read-for-ownership transfer is necessary for the final
addition in compress) but also during operator evaluation. This is because caching is needed for
both the input and the output vector, and face integrals can be delayed compared to cells due to
the requirement that cell integrals set the vector value and face integrals add into it, whereas only
the input vector data is accessed several times by the element-wise face integrals. The performance
counter data for 28 MPI ranks shows that cache misses result in reading data worth 3.0 vectors
for p = 5 in 3D for element-wise face integrals (including read-for-ownership) but reading worth
3.2 vectors and writing worth 1.5 vectors for compact face integrals. The imperfect caching of
neighboring data is well-studied in finite differences [17]. It is related to the order the cells are
passed through, which is the Morton order for the present experiments according to Table 6.

The gap between the in-cache performance and the actual result is due to three main factors.
The first factor is the general-purpose gather access pattern of face integrals. In element-wise face
integrals, indirect addressing occurs for reads to exterior values u+ only and reduces throughput by
about 5–10%, e.g. from 650 GFlop/s to 580 GFlop/s on an in-cache case with p = 8 on Broadwell.
Furthermore, not all vector access of face integrals hits caches, as detailed below, which lowers
performance by another 5–10%. For compact face integrals, both reads and writes are subject to
indirect addressing and cache misses, such that the performance drop is more significant, losing up
to 25% of the throughput recorded in Fig. 10. Secondly, the MPI data exchange consumes between

26

2× 14 core Intel Xeon Broadwell E5-2690 v4, 2.9 GHz

0 5 10 15 20
0

1

2

3

4

5

Polynomial degree p

G
D

o
F

/
s

3D advection

0 5 10 15 20
0

1

2

3

4

5

Polynomial degree p

2D Laplacian

0 5 10 15 20
0

1
2

1

3
2

2

5
2

3

Polynomial degree p

3D Laplacian

64 core Intel Xeon Phi Knights Landing 7210, 1.1 GHz

0 5 10 15 20
0

1

2

3

4

5

6

7

Polynomial degree p

G
D

o
F

/
s

3D advection

0 5 10 15 20
0

1

2

3

4

5

6

7

Polynomial degree p

2D Laplacian

0 5 10 15 20
0

1

2

3

4

5

Polynomial degree p

3D Laplacian

Compact face integrals, MPI Element-wise face integrals, MPI

Element-wise face integrals, OpenMP Element-wise, OpenMP, streaming stores

Compute throughput, Fig. 10 Memory bandwidth limit 3 vectors

Figure 15: Comparison of the throughput on the 2D and 3D advection operator and Laplacian on
Broadwell (top row) and KNL (bottom row). The measurements are compared to the theoretical
throughput of the kernels from Fig. 10 (solid lines) and the memory bandwidth of 112 GB/s on
Broadwell (dashed lines) and 450 GB/s on KNL (outside shown range) for the idealized setting of
two vector reads and one vector write.

27

10−5 10−4 10−3 10−2 10−1
0

1

2

3

4

5

Time matrix-vector product [s]

G
D

o
F

/
s

28 OpenMP threads, usual stores

56 OpenMP threads, usual stores

56 OpenMP threads, streaming stores

Figure 16: Throughput of matrix-vector product over its duration for p = 5 with OpenMP paral-
lelization on 28 core Broadwell for 3D advection.

2–5% of operator evaluation time in 2D and more than 30% on KNL in 3D. The cost of the MPI
exchange is clearly visible by comparing the results of the element-wise face integrals with MPI
parallelization versus the OpenMP version, see also the cost of MPI in Fig. 14. The third factor
are main memory reads and writes that can slow down the cores below the pure roofline limits for
cases close to the memory bandwidth and arithmetic limits as has been observed in Sec. 4.1. For
element-wise face integrals with OpenMP parallelization on Broadwell, Fig. 15 also displays the
throughput for a variant where the usual SIMD store to the result vector is replaced by a streaming
store operation, which avoids the read-for-ownership transfer and reduces the ideal data transfer
to 8 Bytes read and 8 Bytes written. For the Laplacian, throughput increases by around 10% even
though the memory bus runs at no more than 70 GB/s, and we record up to 480 GFlop/s for
advection and 520 GFlop/s for the 3D Laplacian. On KNL with up to 550 GFlop/s, no significant
performance gain is observed by streaming store, indicating that memory bandwidth is sufficient.
Nonetheless, the performance loss is on KNL more severe, which we identified to be more stalls
due to missing prefetching.

Fig. 16 plots the throughput of the matrix-vector product over its wall time for the 3D advection
case with p = 5, contrasting the throughput on the y-axis over latency barriers on the x-axis. The
problem size varies from 8 cells with 1,700 unknowns to 453 million unknowns. Up to 55,000
unkowns (256 cells or 64 cell batches with 4-wide SIMD), there is not enough parallelism to
saturate the system. Once hyperthreading is enabled, twice the parallelism is needed and the
overall latency is 1.8 times higher. The throughput reaches a peak at slightly less than 10−3

seconds (corresponding to 480 GFlop/s) for a size of 3.5 million unknowns where both vectors fit
into the 70 MB of L3 cache in the case of usual stores or up to 7.1 million unknowns for streaming
stores (input vector cached, output written to main memory).

For large problem sizes where all vector data must be read from main memory, streaming stores
permit a higher performance, but the effect is reversed if data would fit into caches. Regarding
throughput, hyperthreading improves performance by around 10% (and similarly for the Lapla-
cian). Together with performance counters which report memory stalls due to wait for L2/L3
caches or memory, the performance increases by the added memory-level parallelism of hyper-
threading suggests that prefetching is not perfect and latency issues in the processor’s execution
pipeline can be hidden. A more accurate modeling and prediction of these effects is beyond the
scope of the present work.

The algorithms are equally beneficial for large-scale parallel simulations as shown in Table 7
for a pure MPI parallelization. We record almost ideal strong scaling until around 0.5 ms. The
main reason for the loss in efficiency is the larger proportion of pack/unpack and memcpy routines
in the communication reported in Fig. 14.

28

Table 7: Strong scaling experiment of Laplacian on 3D affine mesh with 262,144 cells and p = 5
(56.6 million degrees of freedom) on Xeon E5-2697 v3 (2 × 14 cores operating at 2.1 GHz) based
cluster on up to 512 nodes with 14,336 cores. Numbers are reported as the absolute run time in
milliseconds [ms] of a matrix-vector product including communication and in terms of throughput
measured as billion degrees of freedom per second and node (GDoF/s/node) reporting the parallel
efficiency.

nodes 1 2 4 8 16 32 64 128 256 512
double precision, compact face integrals

time [ms] 53.9 28.0 14.9 7.88 3.97 2.01 1.10 0.646 0.418 0.261
GDoF/s/node 1.05 1.01 0.947 0.898 0.892 0.880 0.806 0.685 0.529 0.424

double precision, element-wise face integrals
time [ms] 49.7 25.3 12.9 6.80 3.42 1.72 0.892 0.477 0.273 0.182
GDoF/s/node 1.14 1.12 1.10 1.04 1.04 1.03 0.992 0.928 0.808 0.609

single precision, element-wise face integrals
time [ms] 26.3 13.3 6.86 3.43 1.73 0.909 0.492 0.421 0.213 0.110
GDoF/s/node 2.16 2.13 2.06 2.06 2.04 1.95 1.80 1.05 1.04 1.01

4.6 Comparison to global trace storage

A common implementation strategy in DG codes with minimal data exchange, not linked to a
particular finite element basis as the one above, is to use compact face integrals in conjunction
with performing face-normal interpolation Df and Sf (or numerical traces) into a separate global
storage, see also the algorithm layout described extensively in [21] and related to the flux memory
layout of [31]. This involves an initial loop over the cells where the face data is collected (and cell
integrals are computed), a loop over the faces which reference only to the separate trace storage
for computing integrals within the faces, and a final loop over the cells that collects the face
integrals and associates them with shape functions on the cells. Such a strategy is also easily run
in multithreaded mode without race conditions [42]. A disadvantage of this scheme is an around
4× higher data transfer on affine meshes since the result vector is accessed twice and the separate
global trace storage is involved. An example for the transfer is given in Table 1 of [39]. Even
though it would be conceivable to keep the data storage lower with dynamic dependency-based
task scheduling, the authors’ experience from [37, 42] suggests that available implementations
such as Intel Threading Building Blocks [53] or OpenMP tasks do typically lead to significant
memory access from remote NUMA domains and other cache or prefetcher inefficiencies that lower
application performance once using 10 or more cores.

Table 8 compares the throughput of the proposed algorithms for the 3D Laplacian on a Hermite-
like basis in an MPI-only experiment with a global trace storage as used e.g. in [22, 42]. For global
trace storage a basis with collocation of nodal points and quadrature points is used because it can
skip the basis change algorithm in cell integrals. The results highlight that the proposed method
with a single loop for cell and face integrals is almost twice as fast for degree p = 5 and still 25%
faster for p = 11. The global trace storage only becomes superior at p > 15 where the advantages
of collocated node and quadrature points in cell integrals get significant. Note that the global trace
storage scheme runs at full memory throughput with > 90 GB/s for all degrees p ≤ 11, whereas
the proposed scheme does not utilize the full RAM bandwidth, despite being substantially faster.

5 Representation of geometry

In Algorithm 1, we assumed the final geometric factor involving the inverse Jacobian J(e) of the
transformation from unit to real cell to be given. In a generic computation of integrals, the
inverse Jacobian as well as the determinant of the Jacobian and normal vectors n derived from
the Jacobian need to be specifically supplied. The Jacobian is often defined as the derivative of a

piecewise m-th degree polynomial description of the geometry through some mapping nodes x
(i)
msp,

i = 1, . . . , npoints, related to evaluation of the geometry on the Gauss–Lobatto nodes of degree m,
but it can also be defined by analytical tangent vectors on the geometry. Extending over a short
discussion in [41], a high-performance implementation for arbitrary geometries can select between

29

Table 8: Throughput and measured memory throughput for evaluation of the 3D Laplacian on
2×14 Broadwell cores on a Hermite-like basis with compact and element-wise face integrals against
scheme with global trace storage with collocated nodal and quadrature points minimizing arith-
metic operations.

polynomial degree p 2 3 5 8 11 15 20
billion degrees of freedom per second, GDoF/s

element-wise face integrals 1.45 1.65 1.76 1.56 1.61 1.17 1.05
compact face integrals 1.22 1.32 1.48 1.23 1.28 0.918 0.833
global trace storage 0.551 0.646 0.897 1.01 1.07 0.901 0.902

measured memory throughput, GB/s
element-wise face integrals 51.5 54.4 56.7 58.3 60.8 55.3 53.7
compact face integrals 58.4 61.3 63.8 62.5 58.6 53.1 52.9
global trace storage 106 106 107 102 90.7 75.1 72.6

at least four main variants:

(G1) Storage of mesh nodes x
(i)
msp for all indices i in the mesh with usual indirect addressing of

continuous finite elements and subsequent evaluation with sum factorization. This involves

transfer of kd

(k+1)d
d double precision values per quadrature point for isoparametric mappings.

(G2) Storage of all quadrature points x
(q)
qp in physical space, from which the Jacobian can be com-

puted by a collocation derivative. This needs d double precision values per quadrature point
in 3D. For face integrals, separate data is needed except for Gauss–Lobatto like integration
rules.

(G3) Pre-computation of J(e) in all quadrature points of the mesh; for face integrals, separate
data is needed. Storing the inverse Jacobian and the determinant of the Jacobian involves
transfer of 10 double precision values per quadrature point in 3D.

(G4) Pre-computation of the effective coefficient in the particular equation at hand, e.g. a sym-
metric d× d tensor J−1

(e) J
−T
(e) det(J(e)) for the cell term of the Laplacian (6 double precision

values in 3D) or the vector J−1
(e) c(x)det(J(e)) for the advection equation (3 double precision

values in 3D), a technique used e.g. by Nek5000 [16].

Furthermore, coefficients such as c
(
x̂(e)(ξ)

)
in Algorithm (1) can be pre-computed and loaded

during the operator evaluation or computed on the fly based on the location of the quadrature

point x
(q)
qp . The pre-computed variants can also be combined with simple memory compressions,

such as the constant-Jacobian case on affine meshes [41] or constant-in-one-direction case on ex-
truded meshes. The results in the previous section, using variant (G4) with constant data in
all points, have shown that the operator evaluation is mostly core-limited on affine meshes, in
particular on the Haswell and KNL systems. Since the first two options (G1) and (G2) involve
additional computations, it is not clear a priori whether the variable-coefficient case runs faster
with tabulation involving higher memory transfer or more computations. Note that [54] concluded
that pre-computed variants on a GPU are superior over computation on the fly, which is related
to the more limited cache sizes and a GPU’s memory hierarchy.

The variants (G3) and (G4) result in different code layouts, respectively: (G3) allows for the
definition of arbitrary weak forms and integration of nonlinear terms by separate control over the
operators on trial functions and test functions. The variant (G4) hardcodes the differential operator
in the coefficient, which is more efficient for certain operators like the Laplacian or advection, and
involves reference-cell quantities otherwise. When a highly tuned operator evaluation according to
the concepts presented above is used in a generic software package with a user-defined quadrature
operation, our experience from the deal.II package is that core-limited patterns including table
lookups, branches, or computations are more common. Thus, variant (G3) with pre-computed
geometric quantities such as normal vectors, Jacobians, and Jacobian is often preferable over (G2)
and particularly (G1). An optimizing library can provide implementations of the various variants
(G1)–(G4) and let the user code switch to the desired option via run-time parameters or even

30

1 5 9 13
0

0.4

0.8

1.2

1.6

Polynomial degree p

G
D

o
F

/
s

affine mesh (constant coefficient)

precomputed final coefficients (G4)

precomputed Jacobians (G3)

precomput. Jac., naive face (G3)

cell Jacobians from q-points (G2)

compute geometry, cells only (G1)

compute geometry, cells & faces (G1)

Figure 17: Throughput of evaluation of 3D Laplacian with compact face integrals using MPI for
various ways to represent a curved geometry on 28 Broadwell cores.

determine the most suitable one by auto-tuning. Repetitive implementations of variants (G3) and
(G4) could be avoided by a domain-specific compiler like is used in Firedrake [24], for instance.
Note that access to large geometry arrays is often prefetcher-friendly, in particular on sophisticated
CPUs such as Haswell and Broadwell.

Fig. 17 gives an example of the tradeoffs in the geometry evaluation, using the 3D Laplacian
with compact face integrals on a deformed geometry using an iso-parametric polynomial description
of degree p. The mesh topology and problem sizes are the same as in Table 6 with 8 million to
57 million unknowns. The pre-computed geometry options show the most consistent performance,
despite the highest memory transfer as an inverse Jacobian and the Jacobian determinant (G3) or
final coefficients of (G4) must be loaded for each quadrature point. Compared to the affine mesh,
throughput is significantly lower, as the additional memory access reduces the arithmetic intensity
from around 8 Flop/Byte in the affine mesh case to between 1 and 2 Flop/Byte, see Fig. 18. A
distinctive trend is that the memory bandwidth limit renders throughput measured as the number
of degrees of freedom processed per second almost constant for a wide range of polynomial degrees,
3 ≤ p ≤ 11, since the data accessed per degree of freedom is O(1).

When computing the geometric factor J(e) of both cells and faces from a p-degree continuous
finite element representation including indirect addressing, marked “compute geometry, cells &
faces (G1)” in Fig. 17, performance does not exceed 350 million degrees of freedom per second.
Since face integrals only access kd−1 out of the kd elemental values for the geometry, it is preferable
to at least precompute the Jacobian data on the faces as in “compute geometry, cells only (G1)”.
For the test “precomputed Jacobian, naive face (G3)”, we first compute the full gradient J−T

(e) ∇ξu

and then multiply by n. However, access can be simplified by directly computing the normal
derivative n · ∇xu through a geometric quantity jn = n · J−T

(e) . This simplification, proposed in

Design Choice 3, is used for all the cases “precomputed final coefficients (G4)”, “precomputed
Jacobians (G3)”, “cell Jacobians from q-points (G2)” as well as “compute geometry, cells only
(G1)”.

Design Choice 3 For discretizations of operators that involve the inverse Jacobian J−T
(e) and

normal vector n together, such as the symmetric interior penalty discretization of the Laplacian
(2), a pre-computed vector jn = n · J−T

(e) is preferable over the two separate factors. This way, only

2d values per quadrature point need to be accessed, rather than 2d2 for the inverse Jacobians on
both sides and further d values for the normal vector.

With respect to the geometry on cells, we see that the computation from a continuous finite
element field (G1) that includes indirect access is only competitive for low degrees where the
reduced memory access pays off. For p > 5, some pre-computation is preferable. The computation

31

1
2

1 2 4 8 16

64

128

256

512

1024

P
u
re

lo
ad

m
em

or
y
b
w

12
5
G
B
/s

Peak DP 2.9 GHz

w/o FMA

w/o vectorization

Flop/Byte ratio

G
F

lo
p
/
s

affine, element-wise, OpenMP

affine, compact face int., MPI

precomp. final coefficients (G4)

precomputed Jacobians (G3)

precomp. Jac., naive face (G3)

cell Jacobians from q-pts (G2)

comp. geom., cells only (G1)

comp. geom., cells & faces (G1)

Figure 18: Roofline model for the evaluation of the 3D Laplacian with different geometry variants
on 2 × 14 Broadwell cores, displaying the data for p = 1, 3, 5, 8, 11 for five cases from Fig. 17
regarding the geometry representation as well as the element-wise face integrals with streaming
stores and OpenMP parallelization, the fastest option identified in Sec. 4. The arithmetic balance
is based on theoretical (best-case) memory throughput computed from the vector and geometry
access, assuming perfect caching, and GFlop/s rates according to the operation counts derived in
this work and similar numbers for the geometry. Arrows indicate increasing polynomial degrees
and higher degrees tend to be further to the right.

of cell Jacobians from the positions of the quadrature points that only involves a collocation
derivative operation on all d components, i.e., d2 sum-factorization sweeps, is a very attractive
option and even outperforms the precomputed final coefficients option for low degrees. However,
for large degrees p > 10 the arithmetic intensity of the cell work increases and the temporary
arrays for the geometry’s sum-factorization sweeps spill to outer level caches and eventually to
main memory, making precomputed variants preferable.

The fact that the best performance is observed for the case where the geometry is precomputed,
leading to higher memory transfer, is explained by the fact that the affine-mesh case is core-limited.
As a consequence, doubling or tripling computations and the associate in-cache data access for the
variants (G1) or (G2) directly increases pressure on the critical resource. To give a point of
reference, evaluating the 3D Laplacian for p = 5 with precomputed coefficients (G4) involves 212
Flop/DoF according to Table 4, the variant “cell Jacobians from q-points (G2)” 337 Flop/DoF,
and “compute geometry, cells only (G1)” 401 Flop/DoF. The memory access, on the other hand,
can partly be absorbed behind computations. Even though the cost of memory access is high, the
loss in performance is less than due to additional computations with (G1) or (G2). This choice
obviously depends on the hardware and the Flop/Byte machine balance.

Fig. 18 displays the performance of operator evaluation in terms of the roofline performance
model [61]. The results are based on best-case theoretical computations of the memory access,
assuming perfect caching. As has been analyzed in Sec. 4, considerably more data is loaded from
the solution vectors than this ideal value. For p = 1, the data transfer of metadata is also non-
negligible. When looking at the actual memory access with the likwid tool, the pre-computed
versions are essentially at the limit of the memory bandwidth. For computing the Jacobian from
the quadrature point locations, a considerably higher arithmetic intensity with some components
dominated by memory transfer and others being core-bound is observed. The slight deviation
from the ideal memory transfer can be explained by the different performance boundaries in the
high polynomial degree case: This variant has a lower arithmetic performance limit due to a

32

lower density of FMA instructions (inverting the Jacobian involves about three times as many
multiplications as FMAs). Furthermore, it is heavier on the L2 and L3 cache access at p = 8 and
p = 11. The evaluation of the geometry for cells and faces shows a very low performance despite
a high arithmetic intensity. This is mainly because of the very intensive indirect addressing into
the geometry arrays on faces with gather instructions and additionally relatively poor caching for
high degrees p = 8 and p = 11.

6 Conclusions and future developments

We have presented a detailed performance analysis of matrix-free operator evaluation for discontin-
uous Galerkin methods with cell and face integrals. The methods are specialized for quadrilateral
and hexahedral meshes and use sum-factorization techniques for computing the integrals by quadra-
ture. This work has highlighted algorithmic choices to reach high performance and a set of tests
to verify the performance of an implementation.

Firstly, we have considered the in-cache case of sum-factorization sweeps and quadrature point
operations. We have presented an approach which minimizes the number of arithmetic operations
by a basis change and collocation derivative together with an even-odd decomposition that utilizes
the symmetry in shape functions and quadrature points. Our experiments have shown that up to
60% of arithmetic peak on Intel Haswell and Broadwell processors as well an Intel Knights Landing
manycore processor can be reached.

In a second set of experiments, we have included the access to the input and output vectors.
When cell integrals are run in isolation, the computations become memory bandwidth bound,
especially for advection and two-dimensional problems with low and moderate polynomial degrees.
Thus, our experiments suggest that cell and face integrals must be interleaved for reaching optimal
performance. Guided by a roofline performance model, this setup has been shown to be limited by
the in-core performance on simple geometries, but it is memory-bound in case a variable geometry
with different factors must be loaded at each quadrature point. Two layouts for implementing
face integrals have been considered, one computing all face integrals associated to a cell that visits
each interior face twice (Algorithm 2), and a second one which computes all integrals to a face at
once (Algorithm 1). Even though the latter would seem superior for the core-limited case due to
less arithmetic operations, better performance has been recorded for the former due to simpler,
finite-difference like data access where the full result of a cell is computed and written to memory
in a single sweep and the neighbor’s cells are only read.

On affine geometries and with 28 Intel Broadwell cores, we measured a throughput of the
matrix-vector product of up to 4 billion unknowns per second for the 3D advection and up to 2.2
billion unknowns per second for the 3D Laplacian. The time to perform the matrix-vector product
comes close to the time it takes to copy the source to the destination vector at 4.7–6.9 billion
unknowns per second. This shows that the DG operator evaluation can almost be hidden behind
the unavoidable memory transfer on processors like Broadwell which have a high machine balance
in terms of Flop/Byte. The fast matrix-vector products are especially beneficial for iterative
solvers and preconditioners that spend the bulk of their time in matrix-vector products or residual
evaluations and apply equally well to explicit time integration as to linear and nonlinear systems.
However, the high throughput has implications for future algorithm design: the matrix-vector
product alone might no longer be the dominant part of algorithms and be outweighted by other
seemingly cheaper operations, such as vector updates or inner products in iterative solvers, see
e.g. [44, 14].

When it comes to the MPI parallelization, our experiments have identified the MPI data ex-
change operations to take up to a third of the operator evaluation time on a single node, even
after optimizing the MPI data transfer for special polynomial bases according to Algorithm 4.
This highlights the importance to consider shared-memory parallelization or MPI shared memory
schemes according to the MPI-3 standard. Furthermore, these alternative parallelization concepts
reduce the amount of duplicated data in general, promising better use of many-core architectures
that have less memory per core available than today’s multi-core processors.

33

References

[1] D. S. Abdi, L. C. Wilcox, T. C. Warburton, and F. X. Giraldo. A GPU-accelerated continuous
and discontinuous Galerkin non-hydrostatic atmospheric model. The International Journal of
High Performance Computing Applications, 33(1):81–109, 2019.

[2] R. Agelek, M. Anderson, W. Bangerth, and W. L. Barth. On orienting edges of unstructured
two- and three-dimensional meshes. ACM Transactions on Mathematical Software, 44:5:1–
5:22, 2017.

[3] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmoeller,
T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and
D. Wells. The deal.II library, version 9.0. J. Numer. Math., 26(4):173–184, 2018.

[4] D. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis, 39:1749–1779,
2002.

[5] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Ei-
jkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith,
S. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 -
Revision 3.7, Argonne National Laboratory, 2016. http://www.mcs.anl.gov/petsc.

[6] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data structures
for massively parallel generic finite element codes. ACM Trans. Math. Softw., 38(2):14:1–14:28,
2011.

[7] P. Bastian, C. Engwer, J. Fahlke, M. Geveler, D. Göddeke, O. Iliev, O. Ippisch, R. Milk,
J. Mohring, S. Müthing, M. Ohlberger, D. Ribbrock, and S. Turek. Hardware-based efficiency
advances in the EXA-DUNE project. In H.-J. Bungartz, P. Neumann, and W. E. Nagel,
editors, Software for Exascale Computing – SPPEXA 2013-2015, pages 3–23. Springer, Cham,
2016.

[8] P. Bastian, C. Engwer, D. Göddeke, O. Iliev, O. Ippisch, M. Ohlberger, S. Turek, J. Fahlke,
S. Kaulmann, S. Müthing, and D. Ribbrock. EXA-DUNE: Flexible PDE solvers, numerical
methods and applications. In Euro-Par 2014: Parallel Processing Workshops, volume 8806 of
Lecture Notes in Computer Science, pages 530–541. Springer, 2014.

[9] J. Brown. Efficient nonlinear solvers for nodal high-order finite elements in 3D. J. Sci.
Comput., 45(1-3):48–63, 2010.

[10] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia,
S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson,
B. Nelson, P. Vos, C. Biotto, R. M. Kirby, and S. J. Sherwin. Nektar++: An open-source
spectral/hp element framework. Computer Physics Communications, 192:205–219, 2015.

[11] L. E. Carr III, C. F. Borges, and F. X. Giraldo. Matrix-free polynomial-based nonlinear least
squares optimizated preconditioning and its applications to discontinuous Galerkin discretiza-
tions of the Euler equations. Journal of Scientific Computing, 66:917–940, 2016.

[12] M. O. Deville, P. F. Fischer, and E. H. Mund. High-order methods for incompressible fluid
flow, volume 9. Cambridge University Press, 2002.

[13] J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N. Higham, J. Hogg, P. V. Lara,
M. Zounon, S. Relton, and S. Tomov. A proposed API for batched basic linear algebra
subprograms. Technical report, University of Tennessee, 2016. https://bit.ly/batched-blas.

[14] N. Fehn, W. A. Wall, and M. Kronbichler. Efficiency of high-performance discontinuous
Galerkin spectral element methods for under-resolved turbulent incompressible flows. Inter-
national Journal for Numerical Methods in Fluids, 88(1):32–54, 2018.

34

[15] N. Fehn, W. A. Wall, and M. Kronbichler. A matrix-free high-order discontinuous Galerkin
compressible Navier–Stokes solver: A performance comparison of compressible and incom-
pressible formulations for turbulent incompressible flows. International Journal for Numerical
Methods in Fluids, 89(3):71–102, 2019.

[16] P. F. Fischer, S. Kerkemeier, et al. Nek5000 Web page, 2018. https://nek5000.mcs.anl.gov.

[17] G. Hager and G. Wellein. Introduction to High Performance Computing for Scientists and
Engineers. CRC Press, Boca Raton, 2011.

[18] A. Heinecke, G. Henry, and H. Pabst. LIBXSMM: A high performance library for small matrix
multiplications, 2017. https://github.com/hfp/libxsmm.

[19] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B.
Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S.
Tuminaro, J. M. Willenbring, W. A., and K. S. Stanley. An overview of the Trilinos project.
ACM Transactions on Mathematical Software, 31(3):397–423, 2005.

[20] M. A. Heroux et al. Trilinos Web page, 2018. http://www.trilinos.org.

[21] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Application, volume 54 of Texts in Applied Mathematics. Springer, 2008.

[22] F. Hindenlang, G. Gassner, C. Altmann, A. Beck, M. Staudenmaier, and C.-D. Munz. Explicit
discontinuous Galerkin methods for unsteady problems. Computers & Fluids, 61:86–93, 2012.

[23] T. Hoefler and R. Belli. Scientific benchmarking of parallel computing systems. In SC15, Nov.
2015.

[24] M. Homolya, R. C. Kirby, and D. A. Ham. Exposing and exploiting structure: optimal code
generation for high-order finite element methods. arXiv preprint, 1711.02473:cs.MS, 2017.

[25] I. Huismann, J. Stiller, and J. Fröhlich. Factorizing the factorization – a spectral-element
solver for elliptic equations with linear operation count. Journal of Computational Physics,
346:437–448, 2017.

[26] Intel Corporation. Intel 64 and IA-32 Architectures Optimiza-
tion Reference Manual, July 2017. Order no. 248966-037,
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-optimization-manual.pdf.

[27] J. Jeffers, J. Reinders, and A. Sodani. Intel Xeon Phi Processor High Performance Program-
ming, Knights Landing edition. Morgan Kaufmann, Cambridge, MA, 2016.

[28] G. E. Karniadakis and S. J. Sherwin. Spectral/hp element methods for computational fluid
dynamics. Oxford University Press, 2nd edition, 2005.

[29] D. Kempf, R. Hess, S. Müthing, and P. Bastian. Automatic code generation for high-
performance discontinuous Galerkin methods on modern architectures. arXiv preprint,
1812.08075:math.NA, 2018.

[30] A. Klöckner. Loo.py: transformation-based code generation for GPUs and CPUs. In Proceed-
ings of ARRAY ‘14: ACM SIGPLAN Workshop on Libraries, Languages, and Compilers for
Array Programming, Edinburgh, Scotland., 2014. Association for Computing Machinery.

[31] A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven. Nodal discontinuous Galerkin
methods on graphics processors. Journal of Computational Physics, 228(21):7863–7882, 2009.

[32] M. G. Knepley, J. Brown, K. Rupp, and B. F. Smith. Achieving high performance with unified
residual evaluation. arXiv preprint, 1309.1204:cs.MS, 2013.

[33] T. Kolev et al. MFEM: Modular finite element methods, 2018. mfem.org.

35

[34] D. Komatitsch et al. SPECFEM 3D cartesian user manual. Technical report, Computational
Infrastructure for Geodynamics, Princeton University, CNRS and University of Marseille, and
ETH Zürich, 2015.

[35] D. Kopriva. Implementing spectral methods for partial differential equations. Springer, Berlin,
2009.

[36] K. Kormann. A time-space adaptive method for the Schrödinger equation. Communications
in Computational Physics, 20(1):60–85, 2016.

[37] K. Kormann and M. Kronbichler. Parallel finite element operator application: Graph parti-
tioning and coloring. In Proceedings of the 7th IEEE International Conference on eScience,
pages 332–339, 2011.

[38] B. Krank, N. Fehn, W. A. Wall, and M. Kronbichler. A high-order semi-explicit discontinuous
Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent
channel flow. Journal of Computational Physics, 348:634–659, 2017.

[39] M. Kronbichler and M. Allalen. Efficient high-order discontinuous Galerkin finite ele-
ments with matrix-free implementations. In H.-J. Bungartz, D. Kranzlmüller, V. Weinberg,
J. Weismüller, and V. Wohlgemuth, editors, Advances and Trends in Environmental Infor-
matics, pages 89–110, 2018.

[40] M. Kronbichler, A. Diagne, and H. Holmgren. A fast massively parallel two-phase flow solver
for the simulation of microfluidic chips. International Journal on High Performance Computing
Applications, 32(2):266–287, 2018.

[41] M. Kronbichler and K. Kormann. A generic interface for parallel cell-based finite element
operator application. Computers & Fluids, 63:135–147, 2012.

[42] M. Kronbichler, K. Kormann, I. Pasichnyk, and M. Allalen. Fast matrix-free discontinuous
Galerkin kernels on modern computer architectures. In J. M. Kunkel, R. Yokota, P. Balaji,
and D. E. Keyes, editors, ISC High Performance 2017, LNCS 10266, pages 237–255, 2017.

[43] M. Kronbichler, S. Schoeder, C. Müller, and W. A. Wall. Comparison of implicit and explicit
hybridizable discontinuous Galerkin methods for the acoustic wave equation. International
Journal for Numerical Methods in Engineering, 106(9):712–739, 2016.

[44] M. Kronbichler and W. A. Wall. A performance comparison of continuous and discontinu-
ous Galerkin methods with fast multigrid solvers. SIAM Journal on Scientific Computing,
40(5):A3423–A3448, 2018.

[45] F. Luporini, D. A. Ham, and P. H. J. Kelly. An algorithm for the optimization of finite element
integration loops. ACM Transactions on Mathematical Software, 44(1):3:1–3:26, 2017.

[46] D. A. May, J. Brown, and L. Le Pourhiet. pTatin3D: High-performance methods for long-term
lithospheric dynamics. In J. M. Kunkel, T. Ludwig, and H. W. Meuer, editors, Supercomputing
(SC14), pages 1–11, New Orleans, 2014.

[47] A. T. T. Mcrae, G.-T. Bercea, L. Mitchell, D. A. Ham, and C. J. Cotter. Automated generation
and symbolic manipulation of tensor product finite elements. SIAM Journal on Scientific
Computing, 38(5):S25–S47, 2016.

[48] A. Modave, A. St-Cyr, and T. Warburton. GPU performance analysis of a nodal discontinuous
Galerkin method for acoustic and elastic models. Computers & Geosciences, 91:64–76, 2016.

[49] S. Müthing, M. Piatkowski, and P. Bastian. High-performance implementation of matrix-free
high-order discontinuous Galerkin methods. arXiv preprint, 1711.10885:math.NA, 2017.

[50] S. A. Orszag. Spectral methods for problems in complex geometries. Journal of Computational
Physics, 37:70–92, 1980.

36

[51] A. T. Patera. A spectral element method for fluid dynamics: Laminar flow in a channel
expansion. Journal of Computational Physics, 54(3):468–488, 1984.

[52] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T. Bercea,
G. R. Markall, and P. H. J. Kelly. Firedrake: Automating the finite element method by com-
posing abstractions. ACM Transactions on Mathematical Software, 43(3):24:1–24:27, 2016.

[53] J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

[54] J.-F. Remacle, R. Gandham, and T. Warburton. GPU accelerated spectral finite elements on
all-hex meshes. Journal of Computational Physics, 324:246–257, 2016.

[55] J. Schöberl. C++11 implementation of finite elements in NGSolve. Technical Report ASC
Report No. 30/2014, Vienna University of Technology, 2014.

[56] S. Schoeder, K. Kormann, W. A. Wall, and M. Kronbichler. Efficient explicit time stepping of
high order discontinuous Galerkin schemes for waves. SIAM Journal on Scientific Computing,
40(6):C803–C826, 2018.

[57] S. J. Sherwin and G. E. Karniadakis. Tetrahedral hp finite elements: Algorithms and flow
simulations. Journal of Computational Physics, 124(1):14–45, 1996.

[58] T. Sun, L. Mitchell, K. Kulkarni, A. Klöckner, D. A. Ham, and P. H. J. Kelly. A study of
vectorization for matrix-free finite element methods. arXiv preprint, 1903.08243:cs.MS, 2019.

[59] J. Treibig, G. Hager, and G. Wellein. LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments. In Proceedings of PSTI2010, the First Interna-
tional Workshop on Parallel Software Tools and Tool Infrastructures, San Diego CA, 2010.
https://github.com/RRZE-HPC/likwid, retrieved on October 15, 2018.

[60] Z. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann,
K. Hillewaert, H. Huynh, N. Kroll, G. May, P.-O. Persson, B. van Leer, and M. Visbal. High-
order CFD methods: current status and perspective. International Journal for Numerical
Methods in Fluids, 72(8):811–845, 2013.

[61] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful visual performance
model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009.

37

	Introduction
	DG algorithm
	Two implementation options for face integrals
	Algorithm outline for discontinuous Galerkin finite element operator evaluation
	Sum factorization
	Overview of algorithm design

	Compute optimizations
	Code choices for sum-factorization sweeps
	Implementation of matrix-matrix multiplications
	Vectorization strategy
	Compute performance on CPUs and Xeon Phi
	Cell and face integrals on CPUs and Xeon Phi

	Data access patterns and parallelization
	Vector access analysis for cell integrals only
	Vector access for face integrals with vectorization over cells
	Partitioning of faces for compact face integrals with MPI parallelization
	Minimal ghost data exchange
	Performance on Broadwell and Knights Landing
	Comparison to global trace storage

	Representation of geometry
	Conclusions and future developments

