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Dipole and stellarator geometries are capable of confining plasmas of arbitrary neutrality,
ranging from pure electron plasmas through to quasineutral. The Diocotron mode is
known to be important in non-neutral plasmas and has been widely studied. However,
drift mode dynamics, dominating quasineutral plasmas, have received very little by way
of attention in the non-neutral context. Here, we show that non-neutral plasmas can be
unstable respect to both density-gradient and temperature-gradient driven instabilities.
A local shearless slab limit is considered for simplicity. A key feature of non-neutral
plasmas is the development of strong electric fields, in this local limit, the effect of the
corresponding E×B drift is limited to the Doppler shift of the complex frequency ω →
ω − ωE . However, the breaking of the quasineutrality condition still leads to interesting
dynamics in non-neutral plasmas. In this paper we address the behaviour of a number of
gyrokinetic modes in electron-ion and electron-positron plasmas with arbitrary degree of
neutrality.

1. Introduction

Plasmas of arbitrary neutrality, ranging from pure electron plasmas through to stan-
dard quasineutral ion-electron plasmas, can be confined in both stellarator (CNT) (Ped-
ersen et al. (2004)) and levitated dipole (RT-1, APEX) geometry (Yoshida et al. (2006),
Pedersen et al. (2003)). Despite their laboratory and astrophysical relevance, relatively
little has been done in terms of investigating the myriad of instabilities which can exist
in such plasmas. In this work, we aim to examine certain classes of instabilities driven
by two motivating examples.

1.1. Conventional plasmas

The Columbia Non-neutral Torus (CNT) is first stellarator designed specifically to the
study of pure electron and other non-neutral plasmas (Pedersen et al. 2004). Experiments
undertaken at CNT have demonstrated that stable pure electron plasmas can enjoy
good confinement. Stellarators are ideal candidates for the study of non-neutral plasmas
as they are able to confine both signs of charge simultaneously and do not require
internal currents for confinement. As such, stellarators are able to confine plasmas of
arbitrary degree of neutrality (from pure electron to quasineutral). Stellarators present
fundamental advantages for the study of non-neutral plasmas.

Despite enjoying good confinement properties, low-β plasmas confined in toroidal
magnetic geometries can develop low frequency instabilities which propagate at velocities
of order of the E × B rotation velocity of the plasma. Indeed such low frequency
instabilities have been observed in CNT.

One type of plasma oscillation which is of particular importance in quasineutral
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plasmas are drift waves. Of particular relevance to this work, such oscillations have also
been observed for quasineutral plasmas in CNT. In their weakly non-neutral plasmas,
multiple modes are excited and it becomes impossible to identify clear drift wave signals
(Sarasola & Pedersen 2012). However, one might speculate that drift waves are amongst
this medley of different modes, partly guided by the relative simplicity of the physical
mechanisms involved. Drift waves are low frequency plasma oscillations driven by density
and temperature gradients. Drift waves are well understood in quasineutral plasmas but
have received little by way of theoretical attention in non-neutral plasmas.

Drift waves draw energy from the gradients of density and temperature in the plasma.
The occurence of these waves requires only that one species responds to the wave in an
adiabatic fashion, thus Debye shielding the disturbance, due to either the difference in
mass ratio (Universal modes and ITG modes) or to finite larmor radius (FLR) effects
(ETG modes). The trigger for instability is the build up of electrostatic potential due
to the different particle responses to an imposed perturbation. As discussed by Dubin
(2010), this in no way relies on different species having different signs of charge. The
generality of these physical mechanisms lead us to believe that nonneutral plasmas can
exhibit drift wave phenomena.

Here, we use gyrokinetic theory to examine the stability of drift waves in plasmas of
arbitrary neutrality in a shearless slab.

1.2. Electron-positron plasmas

The stability properties of non-neutral electron-positron plasmas will be of particular
importance in the upcoming experiments to create and confine the first laboratory
electron-positron plasma using a dipole field generated by a levitated magnetic coil
(Saitoh et al. 2015). Such a plasma ought to enjoy remarkable stability properties and a
wealth of literature exists examining the stability of such systems. It has been shown by
Helander (2014) that neutral pair plasmas possess unique gyrokinetic stability properties
due to the mass symmetry between the particle species. For example, drift instabilities
are completely absent in straight magnetic field geometry, e. g. in a slab, provided that
the density and temperature profiles of the two species are identical (“symmetric” pair
plasmas). The symmetry between the two species is broken if the temperature profiles
of the electrons and positrons differ or there is an ion contamination. In these regimes,
drift instabilities can be excited even in unsheared slab geometry (Mishchenko et al.
2018b). In a sheared slab, pure pair plasmas are prone to the current-driven reconnecting
instabilities (Zocco 2017), but there are no drift waves. Note that asymmetry between
the species is needed also in this case since the ambient electron flow velocity must differ
from the positron one for the ambient current to be finite. In contrast to slab geometry, a
dipole magnetic field has finite curvature. In this case, the symmetry between the species
is broken by curvature drifts and the plasma is also driven unstable by temperature
and density gradients Helander (2014), even without ion contamination and for identical
temperature profiles of the two species. This result also persists in the electromagnetic
regime Helander & Connor (2016). The nonlinear stability of dipole pair plasmas has also
been addressed by Helander (2017). More recently, Mishchenko et al. (2018a) performed
a detailed study of the gyrokinetic stability of pure pair plasma in the dipole geometry,
making use of both the Z-pinch and point-dipole limits. Again, it was found that such
pair plasmas can be driven unstable by a combination of magnetic curvature, density
and temperature gradients. Such instabilities in more complicated geometries such as
the tokamak and the stellarator was also recently addressed using a gyrokinetic code by
Kennedy et al. (2018).

One can effectively summarise previous results in one key statement: Electron-positron
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plasmas are driven unstable by symmetry breaking between the two species. In this paper,
we propose plasma non-neutrality as another way to break the species symmetry even in
the simplest unsheared slab geometry.

It is once again pertinent to comment on how one might expect drift waves to be driven
unstable in this case as there is certainly no species which now responds to the wave in
an adiabatic fashion. That is, in electron-positron plasmas both species must be treated
kinetically. However the underlying physical mechanism is simple, the unbalanced number
of particles means that even though both species respond kinetically, there is no need for
the drift contributions (which are in opposite directions due to the charge asymmetry)
to locally cancel and therefore electrostatic potential can still accumulate.

Such plasmas are also physically realisable. During the upcoming PAX/APEX ex-
periments it will be possible to operate the experiment in such a way that the plasma
will be non-neutral. There is also relevance to the upcoming experiments during the
accumulation process, singly charged electron plasmas and positron plasmas will be
confined separately in modified Penning-Malmberg traps and hence we declare an interest
in the stability of pure electron and positron plasmas as well as mixtures. The non-
neutrality of these plasmas leads to the generation of large electric fields within the
plasma which can impact the plasma stability. Here, we aim to present a simplified
discussion on gyrokinetic modes in non-neutral plasmas.

Electron-positron plasmas ought to be ideal for modelling with gyrokinetics. The reason
being that in the planned experiments the Debye length will exceed the gyroradius by
several order of magnitude. As the Debye length must be small compared to the system
size, this means that the gyrokinetic ordering will be well satisfied for such plasmas.

1.3. Electron-antiproton plasmas

One can also use the tools described within this paper to tackle questions pertaining
to the stability of multi-species non-neutral plasmas with only one sign of charge. An
example of such a system is commonly encountered in the manufacture of cold antihy-
drogen for laser spectroscopy studies. In experiments such as ATHENA low temperature
antihydrogen atoms are formed from the interaction of several thousands of antiprotons
with a dense positron plasma (Amoretti et al. 2002). Before being fed into the positron
plasma, the antiprotons are cooled through the interaction with a cold dense electron
plasma. This is an example of a non-neutral mutli-species plasma where all speicees have
the same sign of charge.

Such non-neutral systems have been studied by Dubin (2010) using a fluid model with
an adiabatic light species, discussing both the simplified slab geometry considered here
in tandem with a more experimentally relevant cylindrical geometry. It was found here
that non-neutral plasmas consisting of two or more species can exhibit ion sound waves,
drift waves, and ion temperature gradient waves, provided that certain conditions are
met even in more complex realistic geometry. Here, we will try to compliment this model
using gyrokinetic theory to examine the stability of drift waves in such plasmas in a
shearless slab.

1.4. Overview

In this paper we begin by extending the results of Mishchenko et al. (2018b), performing
a detailed study of the gyrokinetic stability of electron-positron-ion plasmas in slab
geometries where we relax the condition of quasineutrality to derive and numerically solve
a dispersion relation. We also investigate the particle fluxes due to the instabilities consid-
ered. The structure of this paper is as follows. In §2 we introduce the analytical theory of
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non-neutral local gyrokinetic stability and derive the dispersion relation. We then give a
brief discussion of some physical considerations and limits of our model. In §3 we solve the
dispersion relation for solutions of the sound wave type and give analytic estimates of the
frequency. In §4 we consider modes driven by density-gradients. We solve the dispersion
relation numerically for a range of different parameters and provide analytic estimates
of the growth rate and real frequency. We elucidate the difference between non-neutral
and quasineutral plasmas in this parameter regime, notably the existence of a second
stability threshold for plasmas with large deviations from quasineutrality. In §5 we discuss
modes driven by the temperature-gradient of the light species. Namely we investigate
the stability of non-neutral plasmas with sufficiently large positron(electron) fractions
to positron(electron)-temperature-gradient driven instabilities. In §6 we investigate the
stability of non-neutral plasmas contaminated by an ion species. In §7 we give our
conclusions, highlighting the difference between these classes of instabilities in non-
neutral plasmas compared to their quasineutral counterparts.

2. Gyrokinetic Theory

Following Helander (2014), Helander & Connor (2016), Mishchenko et al. (2018b)
and Mishchenko et al. (2018a); we will use gyrokinetic theory to analyse stability of
electron-positron-ion plasmas, in this work, retaining the possibility of arbitrary degree
of deviation from quasineutrality.

2.1. Dispersion relation

It is convenient to write the gyrokinetic distribution function in the form

fa = fa0

(
1− eaϕ

Ta

)
+ ga = fa0 + fa1, fa1 = −eaϕ

Ta
fa0 + ga. (2.1)

Here, fa0 is a Maxwellian, a is the species index with a = e corresponding to electrons,
a = p to positrons, and a = i to the heavy ion species. We take care here to point out that
in this work we will concern ourselves with both positively charged ions and negatively
charged antiprotons, both of which will be denoted by the same subscript, the charge
on species i will be assumed positive unless explicitly stated otherwise. ρ = b × v/Ωa
is the species gyroradius and Ωa the species cyclotron frequency. The remainder of the
notation is standard.

The potential function for this system is given by

φ = φ0 + χ (2.2)

where φ0 is the background electrostatic potential due to the non-zero equilibrium electric
field in the plasma, χ = ϕ−v‖A‖ is the usual gyrokinetic potential with ϕ the perturbed
electrostatic potential and A‖ the perturbed parallel magnetic potential.

In this notation, the linearised gyrokinetic equation is

(ω − kαφ′0 − ωda − k‖v‖)ga =
ea
Ta

(ω − kαφ′0 − ωT?a)(ϕ− v‖A‖)J0
(
k⊥v⊥
Ωa

)
fa0 (2.3)

with J0 the Bessel function, k⊥ the perpendicular wave number, k‖ the parallel wave
number. Other notation employed here is

ωT?a = ω?a

[
1 + ηa

(
v2

v2tha
− 3

2

)]
, v =

√
v2‖ + v2⊥, k⊥ =

√
k2x + k2y, kα =

ky
B

(2.4)
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ω?a =
kαTa
ea

d lnna
dx

, ηa =
d lnTa
d lnna

, vtha =

√
2Ta
ma

, ωda = k⊥ · vda, (2.5)

with

vda =
v2⊥

2Ωa
b×∇ lnB +

v2‖

Ωa
b× (b · ∇b). (2.6)

Here we will choose the sign convention such that ω?i 6 0, ω?p 6 0, and ω?e > 0. In our
slab geometry x denotes the direction of any non-uniformity in the plasma profiles. For
simplicity we will assume kx = 0 and k⊥ = ky throughout the paper.

The influence of the background electric field is only felt through the term

kαφ
′
0 = k⊥ · vE0, vE0 =

1

B
b×∇φ0, (2.7)

a quantity which is locally constant. We will discuss the consequences of this local
approximation at the end of the section.

In slab geometry ωda = 0 and hence our equation may be trivially solved to give

ga =
ω − kαφ′0 − ωT?a
ω − kαφ′0 − k‖v‖

eafa0
Ta

J0(ϕ− v‖A‖)fa0. (2.8)

This equation is supplemented by Poisson’s equation and the parallel Ampere’s Law for
the perturbation. These equations read(∑

a

nae
2
a

Ta
+ ε0k

2
⊥

)
ϕ =

∑
a

ea

∫
gaJ0 d3v, A‖ =

µ0

k2⊥

∑
a

qa

∫
v‖gaJ0 d3v. (2.9)

For the electromagnetic dispersion relation we will find it convenient to define the function

Wna = − 1

navntha

∫
ω − kαφ′0 − ωT?a
ω − kαφ′0 − k‖v‖

J2
0fa0v

n
‖ d3v, (2.10)

which may be evaluated to obtain

Wna = ζa

{(
1− ω?a

ω − kαφ′0

)
ZnaΓ0a +

ω?aηa
ω − kαφ′0

[
3

2
ZnaΓ0a − ZnaΓ?a − Zn+2,aΓ0a

]}
.

(2.11)
Here, the following notation has been used

1

λ2Da
=
q2ana
ε0Ta

,
1

λ2D
=
∑
a

1

λ2Da
, ba = k2⊥ρ

2
a, ρa =

√
maTa
|ea|B

(2.12)

Γ?a = Γ0a − ba[Γ0a − Γ1a], Γ0a = I0(ba)e−ba , Γ1a = I1(ba)e−ba (2.13)

Zna =
1√
π

∫ ∞
−∞

xne−x
2

x− ζa
, ζa =

ω − kαφ′0
k‖vtha

(2.14)

We can substitute our equation for the gyrokinetic distribution function into each of the
field equations and use the notation given above to obtain

(1 + k2⊥λ
2
D)ϕ+

∑
a

λ2D
λ2Da

(
W0aϕ−W1aA‖vtha

)
= 0, (2.15)

A‖ +
1

c2

∑
a

vtha
k2⊥λ

2
Da

(
W1aϕ−W2aA‖vtha

)
= 0. (2.16)
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This gives rise to the dispersion relation(
1 + k2⊥λ

2
D +

∑
a

λ2D
λ2Da

W0a

)(
1− 2

∑
a

βa
k2⊥ρ

2
a

W2a

)
+

+2
∑
a

λ2D
λ2Da

W1avtha
∑
a

βa
k2⊥ρ

2
a

W1a

vtha
= 0. (2.17)

Here βa = µ0naTa/B
2, the usual plasma beta. We will restrict our attention to the

electrostatic limit, corresponding to βa = 0. This dispersion relation clearly reduces to
the result of Mishchenko et al. (2018b) in the limit of quasineutrality.

2.2. Quasilinear particle fluxes

Following Helander & Zocco (2018), we define the cross-field particle flux of species a
to be given by

Γa = Re

〈∫
(vE · ∇ψ)fa d3v

〉
(2.18)

where the angular brackets denote the flux surface average

〈· · · 〉 = lim
L→∞

∫ L

−L
(· · · ) dl

B(l)

/∫ L

−L

dl

B(l)
, (2.19)

which we remark has no effect in the straight field line limit considered here.
The non-neutral drift waves reported in this paper can also lead to cross-field particle

diffusion. The particle flux due to drift-wave instabilities in standard electron-ion plasmas
have been studied in the aforementioned paper by Helander & Zocco (2018). Here we
are able to simplify certain aspects of the calculations by the restrictions placed on the
geometry whilst introducing further complications by the non-neutrality.

We have already found that the equation for the perturbed part of the distribution
function is given in the local limit by equation (2.3). Hence, the quasilinear particle flux
of species a is given by

Γa = Re

〈∫
(vE · ∇ψ)fa d3v

〉
= Im

1

B

〈∫
kyϕ

?gaJ0 d3v

〉
, (2.20)

which yields

Γa =
ky
B

Im

〈∫
ω − kαφ′0 − ωT?a
ω − kαφ′0 − k‖v‖

eafa0
Ta

J2
0 |ϕ|2fa0 d3v

〉
=
ky
B

Im

〈
naea
Ta

W0a|ϕ|2
〉
.

(2.21)
Hence, one obtains

Γa =
ky
B

Im

〈
naea
Ta
|ϕ|2ζa

{(
1− ω?a

ω − kαφ′0

)
Z0aΓ0a+ (2.22)

ω?aηa
ω − kαφ′0

[
3

2
Z0aΓ0a − Z0aΓ?a − Z2,aΓ0a

]}〉
. (2.23)

We remark that it is of course very simple to extend the particle flux to the electromag-
netic case, however the focus of this work is exclusively on βa = 0 plasmas and hence we
shall not do so here.

It is well known that gyrokinetic transport is intrinsically ambipolar (Sugama et al.
1998) and it is easy to verify that this result also holds true in the non-neutral case. We
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calculate ∑
a

eaΓa = ε0ky|ϕ|2 Im

(∑
a

W0a

λ2Da

)
= 0 (2.24)

where the final equality follows immediately from the electrostatic limit of the dispersion
relation (2.17).

In this work, we will numerically calculate the quantity

Λa =
eaΓa
ε0|ϕ|2

. (2.25)

Here, |ϕ|2 is a scaling factor associated with the saturation amplitude of the fluctuations,
which does not need to be determined explicitly as we are primarily interested in the
directions of the fluxes and any interesting behaviour exhibited. To this end, we remark
that Λa is simply the particle current up to an unknown positive constant. We are able
to calculate the quantity Λa for the entire parameter range but note here that we only
expect these to make some physical sense in the parameter ranges where the growth rate
γ > 0 i.e. where there is actually an instability present. It is worth remarking that usually
one expects |ϕ|2 = 0 in the stable domain and hence the quasilinear fluxes Γa = 0 in
these domains. This rule of thumb is generally, but not always true and it may be the case
that even in linearly stable domains, there is a particle transport driven by subcritical
turbulence, i.e. the system is formally stable to small perturbations, but, given a large
enough initial perturbation, it transitions to a turbulent state.

2.3. Physical assumptions

In the local limit considered here, we have relegated the effect of the background
electric field into a Doppler shift of the complex frequency ω → ω − kαφ′0. This result
has a simple physical interpretation, namely that in the frame rotating with the E ×B
velocity, the nascent electric field generated by the plasma is identically zero. Hence in
this rotating frame we achieve precisely the result of Mishchenko et al. (2018b). We note
that in our model, the Doppler shift is arbitrary. The reason for this is that φ0 does
not appear explicity in the zeroth order Poisson equation for the length scales considered
here: φ′′0/φ0 � k2⊥. It may appear at first glance that this trivialises the dynamics of non-
neutral plasmas insofar as one might expect the problem reduces exactly to Mishchenko
et al. (2018b). This is not the case.

Despite the relatively straightforward, physically pleasing relationship between the
dispersion relation for non-neutral and quasineutral plasmas in the local limit, there
is more subtle difference at play. We recall that in Mishchenko et al. (2018b) it was
necessary for there to be symmetry breaking due to either the temperature profiles or
ion contamination for instabilities to be excited. In a non quasineutral plasma, there is
another degree of freedom in the system as it permissible to violate the quasineutrality
condition. A key stability parameter for three component non-neutral plasmas was the
species fraction

νa =
na
ne
, (2.26)

where we note that a quasineutral plasma must satisfy the quasineutrality constraint∑
a

νa = 2. (2.27)

For a non-neutral plasma we have no such constraint and
∑
a νa may be arbitrary. Indeed,

it is now possible to break the symmetry of the density profiles of even a simple pair
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plasma. This leads to a diversification in the types of gyrokinetic modes which can arise
in such plasmas. Indeed, it is precisely this symmetry breaking (allowing us to take in
pair plasma ne 6= np for example) that gives rise to instabilities.

Here we consider a local theory including ambient electric field, always present in non-
neutral plasma, but neglect the shear of this field. This is an important approximation
which will be relaxed in future work. Indeed, it must be relaxed for the Diocotron
instability (Davidson 1974). It is well known that the global Diocotron mode, an analogue
of the shearing Kelvin-Helmholtz instability plays a pivotal role in the dynamics of non-
neutral plasmas. We plan to address this more complex question with a global gyrokinetic
code in the future. In this paper we will consider only the local limit and concentrate
solely on drift mode dynamics.

It is also pertinent to comment on the use of Ampere’s Law in our derivation above.
One ought to question whether there is a need to include the displacement current on
the basis that we have included Debye shielding in Poisson’s equation. Here, Debye
shielding is important due to having a sufficiently small plasma βa (which here means that
βa . v2tha/c

2). This makes it necessary to include Debye shielding effects as λ2Da/ρ
2
a =

(1/2βa)(v2tha/c
2) and hence we expect the Debye length to be comparable to the electron

Larmor radius. However, as pointed out by Barnes et al. (2018) we note that even when
λ2Da/ρ

2
a ∼ 1, the displacement current appearing in Ampere’s law is negligible in the

gyrokinetic ordering compared to the plasma current. In this ordering the displacement
current must only be retained when taking the divergence of Ampere’s Law.

3. Gyrokinetic stable modes

We first consider the case of a conventional electrostatic electron-hydrogen plasma,
whilst dropping the usual assumption of quasineutrality. In this case, our dispersion
relation (2.17) reduces to

1 + k2⊥λ
2
D +

λ2D
λ2De

W0e +
λ2D
λ2Di

W0i = 0. (3.1)

In the absence of density and temperature gradients and assuming that both species have
equal temperatures, i.e. Ti = Te, we can further simplify the dispersion relation to obtain

1 + k2⊥λ
2
D +

1

νi + 1

[
νiζiZ0iΓ0i + ζeZ0eΓ0e

]
= 0. (3.2)

In a quasineutral hydrogen plasma, the additional constraint enforces the relation νi = 1
and we trivially recover equation (3.3) [e.g. Yegorenkov & Stepanov (1988), Fried & Gould
(1961)], which describes the plasma stability in the absence of density and temperature
gradients and assuming Ti = Te:

1 + k2⊥λ
2
D +

1

2

[
ζiZ0iΓ0i + ζeZ0eΓ0e

]
= 0. (3.3)

This equation has an infinite number of solutions which can be of either the ion type with
ζi > 1 and ζe � 1, or the electron type with ζe > 1. Mishchenko et al. (2018b) investigate
these sound wave solutions for quasineutral hydrogen plasmas, electron-positron plasmas
and electron-positron-ion plasmas.

For non-neutral plasmas, we can make analytical progress for sound waves of the ion
type, satisfying ζi � 1 and ζe � 1. In this regime the following asymptotic forms of the
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plasma dispersion function can be used:

Z0(ζi) ≈ 2i
√
π exp

(
−ζ2i

)
− 1

ζi
− 1

2ζ3i
, Z0(ζe) = i

√
π − 2ζe, (3.4)

which lead to the approximated dispersion relation for sound waves of the ion type:

1 +

(
νi

νi + 1
2iζi
√
π exp

(
−ζ2i

)
− νi
νi + 1

)
Γ0i +O

(
ζe,

1

ζi

2)
= 0. (3.5)

For simplicity, we will neglect Finite Larmor Radius (FLR) effects implying Γ0i = 1. We
are also at liberty to neglect the small contributions 1/(4ζ2i ) � 1 relative to the other
terms. We then obtain the dispersion relation in the form

2iνiζi
√
π exp

(
−ζ2i

)
+ 1 = 0. (3.6)

Using the notation ζ = x− iy and assuming x = ±(y +∆) with ∆� 1, we arrive at:

2νiy
√

2πe−2y∆ exp

[
2iy2 − 3πi

4

]
= 1 = exp(2πim), m ∈ N. (3.7)

From this, we can write down an infinite family of solutions for sound waves of the ion
type as

ym =

√
πm+

3π

8
≈
√
πm , ∆m =

1

2ym
ln
(

2νiym
√

2π
)
, xm = ym +∆m. (3.8)

One sees that ∆m increases with νi > 1, i. e. the real part of the frequency increases at
νi > 1. The condition ∆m � 1 is violated when νi is large enough and the asymptotic
relations hitherto employed are rendered invalid.

The waves described above are simply Landau damped sound waves propagating in an
electron-ion plasma slab and are stable in both non-neutral and quasineutral plasmas,
a well established result in the quasineutral case. We note that the calculations in this
section are independent of the species charge and hence the same Landau damped sound
waves can propagate in an electron-antiproton plasma slab. This idea has been further
explored by Dubin (2010) who found that such waves can propagate with only very weak
Landau damping provided that the density of the heavy species is large compared to that
of the light species i.e. νi � 1. In the analytic model considered here, such an ordering
renders the previous assumptions invalid and the asymptotic limit analysis breaks down.

However, one can of course perform a similar analysis for the case where the species
fraction of the large species is much greater than one. i.e. νi � 1. In this case, one
employs the notation ξ = x(1− i∆). We obtain the results

∆m = − πm

ln(2νi
√
π)

2 , ω = ln
(
2νi
√
π
)
, γ = − πm

ln(2νi
√
π)

2 , (3.9)

where the lowest order mode, m = 1, corresponds to the sound wave solution. Hence, we
obtain the result that indeed for sufficiently large ion fraction, sound waves can propogate
in electron-antiproton plasmas with only weak Landua damping, in qualitative agreement
with Dubin (2010).

4. Density-gradient-driven modes

We now turn out attention to unstable modes by allowing gradients in the plasma
profiles. Universal modes are plasma modes which can be driven unstable by density
gradients. For simplicity we assume throughout this section that the temperature profiles
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of all species are flat and equal. We will later relax this constraint when we consider modes
driven by temperature gradients. We will also once again focus our attention on electron-
ion plasmas to highlight the difference between quasineutral and non-neutral plasmas in
a perhaps more familiar setting.

The dispersion relation in two-component non-neutral plasma (one light species and
one heavy) has the form:

1 + k2⊥λ
2
D +

1

νi + 1

∑
a

νaζa

(
1− ω?a

ω

)
Z0aΓ0a = 0, (4.1)

where, as introduced above, we have employed the notation νa = na/ne for each species.
We once again highlight the difference between quasineutral plasmas, in which νi = 1, and
the non-neutral plasmas considered here where νi can be completely arbitrary. Taking
the limit k‖vthi � ω � k‖vthe we obtain the leading order approximations to the plasma
dispersion functions:

Z0i ≈ −
1

ζi
, Z0e ≈ i

√
π. (4.2)

Hence to lowest order we obtain the dispersion relation

(1 + νi)(1 + k2⊥λ
2
D)− νi

(
1− ω∗i

ω

)
Γ0i + iνeζe

√
π
(

1− ω∗e
ω

)
Γ0e = 0. (4.3)

Solution of this equation for ω = ωr + iγ assuming γ � ωr is

ωr = − νiω∗iΓ0i

(1 + νi)(1 + k2⊥λ
2
D)− νiΓ0i

, γ =
νeωr
√
π

kzvthe

(
ω∗e − ωr

)
Γ0e. (4.4)

One sees that the frequency is determined by the density gradient of the heavy species
(ions) and the growth rate by the density gradient of the light species (electrons). One
requires density gradients of both species to have an instability, implying that both
ωr ∼ |ω∗i| > 0 and γ ∼ ω∗e − ωr > 0.

In the quasineutral case, the additional restriction of νe + νi = 2 renders the growth
rate monotonic as in Mishchenko et al. (2018b). This behaviour is shown in the numerical
solution of the dispersion relation (2.17) in the quasineutral case shown in figure (1) where
we plot the growth rate and frequency of the universal mode as a function of κni. Here,
we use the parameters λD/ρi = κTeρi = κTpρi = κTi = 0, kyρi = 2, k‖ρi = 7.4 × 10−4

with the notation

κna = −d lnna
d lnx

, κTa = −d lnTa
d lnx

. (4.5)

We note that in the quasineutral case we are forced to set the electron density gradient
through the quasineutrality condition νeω?e+νiω?i = 0. In the non-neutral case however,
we have another free parameter in that we may set κni and κne independently.

As such, in non-neutral plasmas, the behaviour of the instability is more interesting.
We have adopted the convention that, ω?i < 0 and hence one expects the frequency of
the universal modes to remain positive as the density profile steepens. This result lead to
a monotonic growth rate in a quasineutral plasma as the growth rate was proportional
to −ωrω?i. In non-neutral plasmas, however, the growth rate depends non-linearly on
the frequency and is proportional to ωr(ω?e − ωr), so that if ωr > ω?e the growth
rate decreases, which leads to a second stability threshold for the universal mode. This
can be seen in figures (2) and (3) where the full dispersion relation is solved for the
same parameters as above but with the assumption of quasineutrality relaxed. One
would need to revisit the asymptotic analysis and include resonant contributions etc
to find the analytic stability threshold, however this can easily be found numerically
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Figure 1. The frequency ω, and growth rate γ, of the universal mode (left) and the associated
scaled quasilinear particle fluxes as defined by equation (2.25) (right) as a function of the ion
density gradient κni in a quasineutral electron-ion plasma. One sees that the ion density gradient
must be larger than some threshold for the mode to become unstable. The growth rate increases
monotonically with the ion density gradient. Parameters as given in the text.

Figure 2. The frequency ω, and growth rate γ, of the universal mode (left) and the associated
scaled quasilinear particle fluxes (right) as a function of the electron density gradient κne

in a non-neutral electron-ion plasma. The dependence of the growth rate on the density
gradient becomes non-monotonic so that a second threshold at large density gradients appears.
Parameters as given in the text.

when required. It is important to note that no such second stability threshold exists in
standard quasineutral plasmas and that this feature is unique to non-neutral plasmas. We
see a similar pattern with a sufficiently large density gradient stabilising the universal
mode for electron-anitproton plasmas as shown in figure (4). It is interesting to note
that instability in antiproton-electron plasmas requires κniκne < 0, this condition is only
necessary for plasmas where each species has the same sign of charge. This result agrees
with those obtained by Dubin (2010) using an analytic model in a cylindrical geometry.
It is also interesting to note that these modes have a different sign of frequency compared
to the modes in plasmas where the different species have different signs of charge.

The scaled fluxes Λa are also shown in figures (1) - (4). We immediately note once
again by inspection that the quasilinear transport is ambipolar, as proven previously.

5. ETG instability

We now turn our attention to the case where temperature gradients are present in
the plasma, this is likely to be of importance to the PAX/APEX investigations. In the
aforementioned experiments, it is planned to confine an electron-positron plasma in a
vacuum vessel using a levitated coil. In order to accomplish this goal, the electrons are to
be injected with an electron gun whereas the positrons will be supplied from the research
neutron source at the Technical University of Munich. This separate injection may afford
different temperature profiles to the two species.
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Figure 3. The frequency ω, and growth rate γ, of the universal mode (left) and the
associated scaled quasilinear particle fluxes (right) as a function of the ion density gradient
κni in a non-neutral electron-ion plasma. The dependence of the growth rate on the density
gradient becomes non-monotonic so that a second threshold at large density gradients appears.
Parameters as given in the text.

Figure 4. The frequency ω, and growth rate γ, of the universal mode (left) and the associated
scaled quasilinear particle fluxes (right) as a function of the antiproton density gradient κni in
a non-neutral electron-antiproton plasma. The dependence of the growth rate on the density
gradient becomes non-monotonic so that a second threshold at large density gradients appears.
Parameters as given in the text.

For simplicity we will now consider flat density profiles. We will find it convenient to
define ωTa = ηaω?a = kyTa/(eaB) d lnTa/dx, which is finite also at zero density gradient.

We will allow symmetry breaking not only through relaxation of the quasineutrality
condition, but also by allowing each plasma species to have different temperature profiles.
To this end, we introduce the notation

ν̂a =
2νa/τa∑
a′ νa′/τa′

(5.1)

where νa = na/ne and τa = Ta/Te. It is important to note that quasineutral plasmas
satisfy both

∑
a νa = 2 and

∑
a ν̂a = 2 whereas in non-neutral plasmas these quantities

are both arbitrary. If the temperatures of all species are equal (τa = 1) in such plasmas
then ν̂a = νa.

We seek to use our machinery to examine the behaviour of electron and positron
temperature-gradient driven modes. Using this notation and restricting our attention to
the case where the only gradients present are electron and positron temperature gradients,
the dispersion relation reduces to

1 + k2⊥λ
2
D +

∑
a=p,e,i

ν̂a
2
ζaZ0aΓ0a +

∑
a=p,e

ν̂a
2
ζa
ωTa
ω

(
3

2
Z0aΓ0a − Z0aΓ?a − Z2aΓ0a

)
= 0.

(5.2)
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Figure 5. The frequency ω, and the growth rate γ, of the ETG instability (left) and the
associated scaled quasilinear particle fluxes (right) as a function of ion fraction νi, in a
non-neutral electron-ion plasma. Parameters as given in the text.

Figure 6. The frequency ω, and the growth rate γ, of the ETG instability (left) and the
associated scaled quasilinear particle fluxes (right) as a function of the positron fraction νp,
in non-neutral pair plasma. We note that in a non-neutral pure pair plasma (i.e. with no ion
contamination) it is still possible to have temperature gradient driven instabilities as there is no
requirement for the electron and positron contributions to cancel. Parameters as given in the
text.

Figure 7. The frequency, ω, and the growth rate γ, of the PTG instability (left) and the
associated scaled quasilinear particle fluxes (right) as a function of the positron fraction νp,
in non-neutral pair plasma. We note that in a non-neutral pure pair plasma (i.e. with no ion
contamination) it is still possible to have temperature gradient driven instabilities as there is no
requirement for the electron and positron contributions to cancel. Parameters as given in the
text.

We assume that k⊥ρi � 1 but k⊥ρe,p � 1, which yields

Γ0i = 0, Γ?i = 0, Γ0(e,p) = 1, Γ?(e,p) = 1, (5.3)

and also make the assumption of large frequencies ω � k‖vth(e,p), allowing us to use
an asymptotic form of the plasma dispersion function. Namely, we can make use of the
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Figure 8. The frequency, ω, and the growth rate γ, of the ETG instability (left) and the
associated scaled quasilinear particle fluxes (right) as a function of the antiproton fraction νi,
in non-neutral electron-antiproton plasma. Parameters as given in the text.

relations

Z0(ζe,p) ≈ −
1

ζi
− 1

2ζ3i
, Z2(ζi) ≈ −

1

2ζ
− 3

4ζ3
, (5.4)

where the second expansion follows immediately from the recurrence relation Z2(ζ) =
ζ + ζ2Z0(ζ) which itself follows straightforwardly from equation (2.14).

These simplifications reduce the dispersion relation in the leading order to(
1− ν̂e + ν̂p

2
+ k2⊥λ

2
D

)
+
ν̂eτeωTe + ν̂pτpωTp

4ωζ2e
= 0. (5.5)

This dispersion relation is valid in plasmas of arbitrary neutrality since the ion response
is negligible due to Γ0i ≈ 0 at large k⊥ρi. One can solve this leading order approximation
to the dispersion relation analytically to obtain the unstable branch

ω =
1

21/3

(
ν̂eτeωTe + ν̂pτpωTp

2(1 + k2⊥λ
2
D)− ν̂e − ν̂p

)1/3
(

1

2
+ i

√
3

2

)
. (5.6)

This equation immediately leads to the first interesting result that even pure electron
plasmas can sustain unstable electron temperature-gradient driven (ETG) modes. This
is easily seen by simply noting even when νi = νp = 0 the unstable branch still exists.

Another interesting result here is the existence of such modes in pair plasma with no
ion contamination. In (Mishchenko et al. 2018b) it was found that temperature-gradient
driven instabilities can exist in pair plasmas in a slab only if the temperatures of the two
species differed. However, in non-neutral plasmas the ETG mode can also be unstable
even in a pure pair plasma where the electrons and positrons have the same temperature
profiles provided that νp 6= 1. Again this is also seen from the asymptotic solution to the
dispersion relation.

These behaviours are clearly seen in figures (5) - (7) where the full dispersion relation
(2.17) is solved for the parameters λD/ρi = 0.1, κTeρi = κTpρi = 0.1, κTi = 0, kyρi = 12
andk‖ρi = 7.4× 10−4, With different numbers and types of species being shown in each
figure.

For non-neutral electron ion plasmas, the ETG mode still exists and shows little
deviation as the ion fraction is varied. This is seen in Fig. 5 where we note that ETG
modes are unstable through a large swathe of ion fractions ranging from a quasineutral
electron-ion plasma (right most point) through to a pure electron plasma (left most
point). Again we see from this solution of the full dispersion relation that unstable ETG
modes can exist even in pure electron plasmas. The ETG mode can also be unstable in
non-neutral pair plasmas for νp < νe (see Fig. (6)) and the PTG instability can appear
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for νp > νe (see Fig. (7)). This PTG mode propagates in the opposite direction to the
ETG modes.

Similalry the ETG mode also exists in electron-antiproton plasmas as shown in figure
(8). The left most point in this figures of corresponds to a pure electron plasma is in
agreement with the pure electron plasma limit of the previous figures.

Interestingly, both the ETG and PTG modes are stable for pair plasmas which are
“close” to quasineutrality, this is easily seen in on the right hand side of Fig. (6) and the
left hand side of Fig. (7) where the growth rate is negative.

One area of investigation which is important experimentally is the effect of large Debye
length on this class of instabilities. In fusion plasmas this effect is usually negligible as the
Debye length is much smaller than the ion Larmor radius for fusion relevant parameters.
However, for the pair plasma experiment under construction, this will not be the case.
The Debye length of such plasmas is expected to become comparable to the proton
gyroradius. One can see from equation (5.6) that large Debye length can have a strongly
stabilising effect on the ETG and PTG instabilities in non-neutral pair plasma.

Once again we note that the quasilinear particle fluxes obtained numerically are
ambipolar. Furthermore, focussing our attention on figure (6) we can obtain a useful
sanity check on our model. We note that, even though the growth rate is large, the
scaled particle flux (and hence the actual quasilinear particle flux) of both species tends
to zero as νp → 0. This is again a consequence of ambipolarity.

6. ITG instability

In analogy to the ETG instability, the ITG mode can exist in non-neutral plasma with
a sufficiently large ion fraction νi > νe, see fig. 9. Interestingly, the ITG mode needs some
finite fraction of electrons to be unstable, in contrast to the ETG instability which we
found could also exist in pure electron plasma and did not need a finite ion or positron
fraction.

We restrict our attention to non-neutral electron-ion plasma where the only gradients
present are now ion temperature gradients. The dispersion relation becomes

1 + k2⊥λ
2
D +

1

2

[
ν̂iζiZ0iΓ0i + ν̂eζeZ0eΓ0e

]
+
ν̂iωTiζi

2ω

(
3

2
Z0iΓ0i − Z0iΓ?i − Z2iΓ0i

)
= 0.

(6.1)
We consider the long wavelength limit Γ0a = Γ?a = 1 for all particle species. For the ITG
instability, we can assume that k‖vthi � ω � k‖vth(e,p). Then, the plasma dispersion
function can be expanded as

Z0(ζi) ≈ −
1

ζi
− 1

2ζ3i
− 3

4ζ5i
, Z2(ζi) ≈ −

1

2ξ
− 3

4ζ3
, Z0(ζe) ≈ i

√
π. (6.2)

To leading order, we obtain the dispersion relation

1 + k2⊥λ
2
D −

ν̂i
2

= − ν̂iωTi
4ω3

k2‖v
2
thi. (6.3)

Noting that by convention ωTi < 0, we obtain the unstable branch of the ITG mode

ω =
1

21/3

(
ν̂i|ωTi|k2‖v

2
thi

2(1 + k2⊥λ
2
D)− ν̂i

)1/3(
−1

2
+ i

√
3

2

)
. (6.4)

We can see immediately from this equation that the ITG frequency is negative as
expected. One also sees, exactly the same as in the quasineutral case, the factor (ν̂iωTi)

1/3
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Figure 9. The frequency, ω, and the growth rate γ, of the ITG instability (left) and associated
scaled quasilinear particle fluxes (right) as a function of the ion fraction νi, in non-neutral
electron-ion plasma. Parameters as given in the text.

Figure 10. The frequency, ω, and the growth rate γ, of the ITG instability (left) and associated
scaled quasilinear particle fluxes (right) as a function of the ion fraction νi, in non-neutral
electron-antiproton plasma. Parameters as given in the text.

appearing in the numerator of the growth rate. However, the dependence of the growth
rate on (ν̂iωTi)

1/3 is no longer monotonic as we are no longer restricted to the range
νi ∈ [0, 1] as we were in the quasineutral case. One can also see that the ITG mode is
stabilized for sufficiently large ion fraction, this can be seen from the asymptotic solution
of the dispersion relation. This behaviour is seen in the numerical solution of the full
dispersion relation (2.17) as shown in figure (9). Here, the dispersion relation is solved
for the parameters λD/ρi = 0.1, κTiρi = κTeρi = 0.02, κn(i,e) = 0, kyρi = 0.3, k‖ρi =
7.4× 10−4.

There is also non-monotonic behaviour displayed by the scaled quasilinear fluxes. As
seen in figure (9) there is a change in the direction of particle transport for sufficiently
large ion fraction.

The antiproton-termperature-gradient instability in electron-anitproton plasmas can
be seen in figure (10). It is interesting to note that frequency of these waves are positive,
propagating in the opposite direction to ITG driven waves in electron-ion plasmas. Similar
to the ITG instability, a finite number of anitprotons are required for the modes to become
unstable.

7. Summary and discussion

In this paper, we have studied the gyrokinetic stability of non-neutral electron-positron-
ion plasmas by solving, both analytically and numerically, the dispersion relation (2.17)
in slab geometry and relaxing the quasineutrality condition. It has been found that,
much like their quasineutral counterparts, such non-neutral plasmas can support the
gyrokinetic ITG, ETG, PTG, anitproton-temperature-gradient and universal instabilities
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Instability quasineutral non-neutral

Univ. Exists in standard electron-ion
plasmas. Driven by density gradi-
ents. Growth rate is a monotonic
function of density gradient.

Exists in non-neutral electron-
ion plasmas. Driven by density
gradients. Existence of a second
stability threshold for sufficiently
large density gradients.

ETG / PTG Temperature gradient driven. Ex-
ists only with finite ion fraction or
with κTe 6= κTp.

Temperature gradient driven.
Both ETG and PTG driven
modes exist in pure electron-
positron plasma even when
κTe = κTp.

ITG Temperature gradient driven. Ex-
ists only with finite electron
fraction.

Temperature gradient driven.
Exists only with finite electron
fraction. Existence of unstable
antiproton-temperature-gradient
driven modes in electron-
antiproton plasmas.

Table 1. Qualitative differences and similarities between the different types of gyrokinetic
modes arising in both quasineutral and non-neutral plasmas.

even in slab geometry. However, we found that in most cases the physics of these insta-
bilities was different in non-neutral plasmas. We note here some of the major differences
between these gyrokinetic instabilities in quasineutral and non-neutral plasmas as well
as a summary of some qualitative differences which is shown in table (1).

Quasilinear cross-field particle flux was investigated for each instability and it was
found that the quasilinear particle flux was intrinsically ambipolar as it is in standard
quasineutral gyrokinetics. We were also able to verify this numerically in each case and
plot a scaled version of the particle current up to an unknown positive constant.

We found many differences between the unstable modes arising in quasineutral and
non-neutral plasmas. Similarly to quasineutral plasmas, we found that non-neutral
electron-ion plasmas can support the universal instability driven by a density gradient.
However, in non-neutral plasmas the universal instability has a second stability threshold
for large density gradients that does not exist in the quasineutral case. We found that
non-neutral plasmas can also support electron and positron temperature-gradient driven
instabilities. Contrary to the case for quasineutral plasmas, we found that non-neutral
pair plasmas can support both ETG and PTG modes even when each species has the
same temperature and without the need for ion contamination. We also found that the
ETG instability can exist even in pure electron plasmas and it can hence be reasoned
that the PTG instability should also exist in a pure positron plasma. It was found that
similarly to their quasineutral counterparts, the Debye length has a stabilising effect
on temperature-gradient driven instabilities. It was found that the quasilinear particle
fluxes were ambipolar in each instance.

It is worth remarking that instabilities which exist even in quasineutral plasmas e.g.
ETG in pure pair plasma with different species temperatures (Te 6= Ti) might somehow
be of more importance in the non-neutral setting. In a quasineutral plasma, different
electron and positron temperature profiles are unlikely in steady state, since the char-
acteristic time of energy exchange between species is comparable to the Maxwellisation
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time. However, in non-neutral plasmas, such scenarios become much more physically
realisable. So it might be more likely that this instability manifests experimentally
in non-neutral plasmas. These results may have particular interest in the upcoming
PAX/APEX experiments to investigate the stability of electron-positron plasmas. Indeed,
in the aforementioned experiments it will be necessary to confine pure electron and pure
positron plasmas and hence the stability of such systems is of great importance.

The ITG mode also exists in non-neutral electron ion plasmas. However, the growth
rate is no longer simply monotonic. We also found a change in the flux direction of
both particle species for sufficiently large ion fraction. We also found that temperature-
gradient-driven modes exist even when the heavy species and light species carry the
same sign of charge. We found unstable antiproton-temperture-gradient driven modes in
electron-antiproton plasmas.

We were able to use our model to investigate drift wave instabilities in fully un-
neutralized multi-species plasmas, that is, plasmas in which all species have the same
type of charge, paying particular attention to electron-antiproton plasmas. We were able
to make contact with some existing work on this subject such as the results of Dubin
(2010) who found similar results using a fluid model with a more realistic geometry.

We once again remark on some of simplifications invoked in this work. Particularly our
use of a local theory including ambient electric field, always present in non-neutral plasma,
but neglecting the shear of this field assuming the shear length exceeds the characteristic
length of the modes discussed here. Furthermore, the slab geometry also neglects the
centrifugal effect of the E×B plasma rotation in our stability calculations. It is pertinent
to comment that experimentally these effects can and do have a destabilizing influence
in addition to the destabilizing density and temperature-gradient effects considered here.
This area also warrants further investiagtion using a more sophisticated model. To claim
that this model captures all the non-neutral plasma dynamics would be an egregious
oversight, but hopefully the results presented here do allow us some physical insight
into non-neutral plasmas, in particular highlighting some of the important distinctions
between the nature of such instabilities in quasineutral and non-neutral plasmas. We plan
to address the more complex systems including a shearing electric field in the future.
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